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Abstract

[Ag2(9-aca)2]n and [Ag4(9-aca)4(NH3)2] (9-acaH = 9-anthracenecarboxylic acid) have been prepared and structurally characterized.
[Ag2(9-aca)2]n consists of polymeric ribbons of linked disilver(I) syn–syn bridged dicarboxylate units. [Ag4(9-aca)4(NH3)2] is tetrameric
and centrosymmetric, with two syn–syn bridging carboxylates linked to the bimetallic Ag–Ag core and a further two syn–anti bridged
carboxylate ligands in the equatorial plane, being coordinated to one Ag in the bimetallic core and to a second Ag, with the latter also
bonded to an NH3 ligand. In vitro studies show that both complexes are extremely cytotoxic against selected human fungal and bacterial
pathogens, and each complex also greatly inhibits the growth of two mammalian cancer cell lines.
� 2007 Elsevier B.V. All rights reserved.
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In the early part of the last century elemental silver and
simple silver salts were used as antimicrobial agents in
curative and preventative healthcare, but lost favour fol-
lowing the discovery of penicillin and other new antibiotics.
However, silver-based chemotherapy is now undergoing
somewhat of a renaissance, instigated primarily by the
emergence of stubborn microbial strains that are extremely
tolerant of current prescription drugs (for example, methi-
cillin-resistant Staphylococcus aureus (MRSA)). We have
recently demonstrated the in vitro efficacy of a range of
Ag(I) complexes against fungal and bacterial opportunistic
human pathogens [1–3] and also against mammalian can-
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cer cells [4–6]. Herein, we detail the synthesis and structures
of two new Ag(I) complexes of 9-anthracenecarboxylic acid
(9-acaH) and also report the growth inhibitory effects of
the complexes on harmful bacteria (MRSA and Escherichia

coli) and fungi (Candida albicans). In addition, the anti-
cancer chemotherapeutic potential of the complexes was
determined using two human-derived cell lines (hepato-
cellular carcinoma (Hep-G2) and kidney adenocarcinoma
(A-498)).

Ag2O reacted with 9-acaH (1:2 mol ratio) to form
[Ag2(9-aca)2]n, whilst AgNO3 combined with 9-acaH
(1:1 mol ratio) in the presence of ammonia to yield the
ammine adduct [Ag4(9-aca)4(NH3)2] [7]. X-ray diffraction
analysis [8] revealed that [Ag2(9-aca)2]n consists of poly-
meric ribbons of linked disilver(I) dicarboxylate units
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(Fig. 1, Table 1) and is structurally similar to simpler
silver(I) carboxylates [10]. The Ag1–Ag1A distance is
2.8508(9) Å and indicates some metal–metal interaction.
The carboxylate ligands are syn–syn bridging to the bime-
tallic core and this is further linked to neighbouring cores
by weaker equatorial Ag–O interactions. There are two
independent Ag(9-aca) units in the asymmetric unit, gener-
ating two independent ribbons which differ principally in
the angle of the anthracene unit to the ribbon. Both types
of ribbon run parallel to the b-axis (Fig. 2). The longer
Ag� � �Ag distances in the structure (e.g. Ag1� � �Ag1b) are
Fig. 1. Structure of one of the polymeric strands in [Ag2(9-aca)2]n.
Symmetry transformations used to generate equivalent atoms: #1 �x + 1,
�y + 1, �z; #2 x, y + 1, z; #3 x, y�1, z.

Table 1
Selected bond lengths [Å] and angles [�] for [Ag2(9-aca)2]n

Ag(1)–O(1) 2.170(3)
Ag(1)–O(2)#1 2.190(3)
Ag(1)–O(2)#2 2.473(4)
Ag(1)–Ag(1)#1 2.8508(9)
O(2)–Ag(1)#1 2.190(3)
O(2)–Ag(1)#3 2.473(4)
O(1)–Ag(1)–O(2)#1 162.20(13)
O(1)–Ag(1)–O(2)#2 116.66(12)
O(2)#1–Ag(1)–O(2)#2 76.88(13)
O(1)–Ag(1)–Ag(1)#1 84.41(9)
O(2)#1–Ag(1)–Ag(1)#1 79.04(9)
O(2)#2–Ag(1)–Ag(1)#1 150.72(8)
Ag(1)#1–O(2)–Ag(1)#3 103.12(13)

Symmetry transformations used to generate equivalent atoms: #1 �x + 1, �y
3.657(1) and 3.615(1) Å for the Ag1 and Ag2 chains,
respectively.

[Ag4(9-aca)4(NH3)2] is tetrameric and centrosymmetric
(Fig. 3, Table 2) and has a slightly longer Ag1–Ag1A dis-
tance (2.939(1)Å). Again, the two carboxylates which are
linked to the metal–metal bonded bimetallic core are
syn–syn bridging. The two carboxylate ligands in the equa-
torial plane are in the syn–anti configuration being coordi-
nated to one Ag in the bimetallic core and to a second silver
(Ag2). The Ag1–Ag2 distance is 3.63 Å. Whilst Ag2 is
coordinated approximately linearly by carboxylate and
ammonia it also interacts with the p-systems of a neigh-
bouring molecule, and this interaction is supported by
two long H-bonds from the ammonia ligand to carboxylate
oxygen atoms of the same neighbouring molecule (Fig. 4).
This arrangement leads to the packing arrangement seen in
Fig. 5, which is notably more detailed than that for [Ag2(9-
aca)2]n.

Whilst 9-anthracenecarboxylic acid was inactive against
fungi and bacteria at a concentration of 225 lM, both
[Ag2(9-aca)2]n and [Ag4(9-aca)4(NH3)2] demonstrated high
cytotoxicity in vitro [11] (Table 3). [Ag4(9-aca)4(NH3)2]
was over 30 times more active against C. albicans than
the commonly used antifungal agent ketoconazole.
Ag(2)–O(3) 2.190(3)
Ag(2)–O(4)#4 2.243(3)
Ag(2)–O(4)#3 2.381(4)
Ag(2)–Ag(2)#4 2.8643(9)
O(4)–Ag(2)#4 2.243(3)
O(4)–Ag(2)#2 2.381(4)
O(3)–Ag(2)–O(4)#4 163.19(13)
O(3)–Ag(2)–O(4)#3 119.35(12)
O(4)#4–Ag(2)–O(4)#3 77.20(13)
O(3)–Ag(2)–Ag(2)#4 84.01(9)
O(4)#4–Ag(2)–Ag(2)#4 79.39(9)
O(4)#3–Ag(2)–Ag(2)#4 156.59(8)
Ag(2)#4–O(4)–Ag(2)#2 102.80(13)

+ 1, �z; #2 x, y + 1, z; #3 x, y�1, z; #4 �x, �y + 2, �z + 1.

Fig. 2. Packing diagram for [Ag2(9-aca)2]n.



Fig. 3. X-ray crystal structure of [Ag4(9-aca)4(NH3)2]. Symmetry trans-
formations used to generate equivalent atoms: #1 �x + 1, �y, �z.

Table 2
Selected bond lengths [Å] and angles [�] for [Ag4(9-aca)4(NH3)2]

Ag(1)–O(3) 2.193(5) Ag(1)–Ag(1)#1 2.9390(13)
Ag(1)–O(4)#1 2.260(5) Ag(2)–O(2) 2.134(5)
Ag(1)–O(1) 2.328(6) Ag(2)–N(1) 2.147(6)
O(3)–Ag(1)–O(4)#1 155.66(18) O(4)#1–Ag(1)–Ag(1)#1 75.26(13)
O(3)–Ag(1)–O(1) 100.5(2) O(1)–Ag(1)–Ag(1)#1 164.10(16)
O(4)#1–Ag(1)–O(1) 95.07(19) O(2)–Ag(2)–N(1) 170.5(2)
O(3)–Ag(1)–Ag(1)#1 85.16(14)

Symmetry transformations used to generate equivalent atoms: #1 �x + 1,
�y, �z.

Fig. 5. Packing diagram for [Ag4(9-aca)4(NH3)2].
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Although [Ag2(9-aca)2]n appears to be only half as active as
[Ag4(9-aca)4(NH3)2], when their MIC100 values are equated
to their silver ion content (58 lM and 56 lM, respectively)
then both complexes display approximately equal activity.
Fig. 4. Intermolecular p- and H-bonding interactions in [Ag4-
(9-aca)4(NH3)2]. Symmetry transformations used to generate equivalent
atoms: #1 �x + 1, �y, �z; #2 x, �y + 1/2, z + 1/2; #3 �x + 1, y + 1/2,
�z + 1/2.
Against MRSA and E. coli [Ag2(9-aca)2]n and [Ag4(9-
aca)4(NH3)2] both appeared to perform significantly better
than the topical antibacterial agent silver(I) sulfadiazine.
However, when equated to their silver ion content all three
Ag(I) complexes were equally active.

The anti-cancer chemotherapeutic potential of [Ag2(9-
aca)2]n and [Ag4(9-aca)4(NH3)2] was determined against
the human-derived cell lines, hepatocellular carcinoma
(Hep-G2) and kidney adenocarcinoma (A-498), and com-
pared to the Pt(II) complex, cisplatin [13] (Table 3). Each
of the Ag(I) complexes decreased the proliferation of both
cancer cell lines in a concentration-dependent manner.
[Ag4(9-aca)4(NH3)2] was the most active of the anthracene
complexes, suggesting that the extra two Ag(I) centres
and/or the additional two NH3 ligands were augmenting
the activity. In our previous studies using [Ag2(salH)2]
and [Ag2(NH3)2(salH)2] [4], the latter ammine complex
was more active against Hep-G2 but less potent against
A-498. In comparison, [Ag4(9-aca)4(NH3)2] was more cyto-
toxic than [Ag2(salH)2], [Ag2(NH3)2(salH)2] and cisplatin
across both cell lines. Finally, hepatic cells appeared to
be more sensitive to the effects of [Ag4(9-aca)4(NH3)2] than
Table 3
Antimicrobial and anti-cancer activities (lM concentrations)

Drug C. albicans

MIC100

MRSA
MIC50

E. coli

MIC50

Hep-G2

IC50

A-498
IC50

[Ag2(9-aca)2]n 0.29 55.91 61.53 27.8 30.0
[Ag4(9-aca)4-(NH3)2] 0.14 28.36 40.73 3.6 5.5
Ketoconazole 4.70
Silver(I) sulfadiazine 120.40 154.00
Cisplatin 15.0 14.0



1152 R. Curran et al. / Inorganic Chemistry Communications 10 (2007) 1149–1153
renal cells, suggesting a degree of anti-cancer cyto-
selectivity.
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Appendix A. Supplementary material

CCDC 626868 and 605749 contain the supplementary
crystallographic data for [Ag2(9-aca)2]n and [Ag4(9-
aca)4(NH3)2] . These data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or
from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplemen-
tary data associated with this article can be found, in the
online version, at doi:10.1016/j.inoche.2007.06.021.

References

[1] R. Rowan, T. Tallon, A.M. Sheahan, R. Curran, M. McCann, K.
Kavanagh, M. Devereux, V. McKee, Polyhedron 25 (2006) 1771.

[2] B.S. Creaven, D.A. Egan, K. Kavanagh, M. McCann, A. Noble, B.
Thati, M. Walsh, Inorg. Chim. Acta 359 (2006) 3976.

[3] 92. B. Thati, A. Noble, R. Rowan, B.S. Creaven, M. Walsh, M.
McCann, D. Egan, K. Kavanagh, Toxicol. In Vitro 21 (2007) 801.

[4] B. Coyle, M. McCann, K. Kavanagh, M. Devereux, V. McKee, N.
Kayal, D. Egan, C. Deegan, G.J. Finn, J. Inorg. Biochem. 98 (2004)
1361.

[5] M. McCann, B. Coyle, S. McKay, P. McCormack, K. Kavanagh, M.
Devereux, V. McKee, P. Kinsella, R. O’Connor, M. Clynes,
BioMetals 17 (2004) 635.

[6] C. Deegan, M. McCann, M. Devereux, B. Coyle, D.A. Egan, Cancer
Lett. 247 (2007) 224.

[7] All preparations were conducted in the absence of light and samples
were stored in the dark. [Ag2(9-aca)2]n: Ag2O (0.70 g, 3.0 mmol) was
suspended in ethanol and added to a refluxing solution of 9-
anthracenecarboxylic acid (9-acaH) (1.332 g, 6.0 mmol) in ethanol
(170 cm3). A green precipitate formed and the suspension was
refluxed for 1 h. The solid was filtered off and placed in refluxing
ethanol (350 cm3) for 1 h. A brown precipitate was filtered off and the
filtrate reduced to low volume to yield a yellow solid. The yellow solid
was filtered off, washed with cold ethanol and allowed to air-dry.
Yield: 0.41 g, 21%. The yellow complex was insoluble in water,
soluble in hot ethanol and hot toluene, and soluble in DMSO,
chloroform and acetonitrile. Crystals suitable for X-ray structural
analysis were obtained by recrystallisation from hot ethanol. Ele-
mental analysis calcd (%) for C30H18O4Ag2: C, 54.74; H, 2.76. Found:
C, 54.08; H, 2.68. IR (KBr): 3384 cm�1, 3047, 1566, 1537, 1429, 1391,
1319. 1H NMR (DMSO-d6): 7.47 ppm (m), 8.03 (m), 8.44 (s). [Ag4(9-
aca)4(NH3)2]: AgNO3 (0.51 g, 3.0 mmol) was dissolved in water
(5 cm3) and concentrated ammonia solution (ca. 10 cm3, density
0.88 g cm�3) was added until all solids dissolved. This solution was
then added to a solution of 9-anthracenecarboxylic acid (9-acaH)
(0.67 g, 3.0 mmol) in ethanol:water (80:20, 100 cm3) and more
concentrated ammonia added (10 cm3 slowly with stirring). The
resulting solution was stirred for 0.5 h and then rotary evaporated to
low volume. The precipitated light yellow solid was filtered off,
washed with cold ethanol and allowed to air-dry. Yield: 0.46 g, 45%.
Over a period of a few days some light-yellow crystals deposited in the
filtrate and these were used for X-ray studies. The original reaction
filtrate was allowed to slowly evaporate over a period of days to give
light-yellow crystals suitable for X-ray structural analysis. The
complex was insoluble in water, slightly soluble in warm ethanol
and warm acetonitrile and soluble in DMSO. Elemental analysis calcd
(%) for C60H42N2O8Ag4: C, 53.36; H, 3.14; N, 2.07. Found: C, 53.2;
H, 3.03; N, 2.12. IR (KBr): 3410 cm�1, 3050, 1558, 1428, 1390, 1319.
1H NMR (DMSO-d6): 3.04 ppm (s), 7.47 (m), 8.08 (m), singlet 8.44
(s).

[8] Crystal data for [Ag4(9-aca)2]n: monoclinic, P21/c, a = 14.813(3) Å,
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