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Abstract
Studies of social networks in organizations confront analytical challenges posed by the multilevel
effects of hierarchical relations between organizational subunits on the presence or absence of
informal network relations among organizational members. Conventional multilevel models may be
usefully adopted to control for generic forms of non-independence between tie variables defined at
multiple levels of analysis. Such models, however, are unable to identify the specific multilevel
dependence mechanisms generating the observed network data. This is the basic difference between
multilevel analysis of networks and the analysis of multilevel networks. The aim of this article is to
show how recently derived multilevel exponential random graph models (MERGMs) may be
specified and estimated to address the problems posed by the analysis of multilevel networks in
organizations. We illustrate our methodological proposal using data on hierarchical subordination
and informal communication relations between top managers in a multiunit industrial group. We
discuss the implications of our results in the broader context of current theories of organizations as
connected multilevel systems.
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Introduction

Research in organizational behavior (OB) has long been aware of the need to develop a multilevel

understanding of individual behavior in organizations (Porter & Schneider, 2014). Somewhat more

recently, a similar awareness also spilled over to neighboring research fields such as organizational

psychology (Zohar & Luria, 2005), human resource management (HRM) (Wright & Boswell, 2002),

organization and management theory (OMT) (Ibarra, Kilduff, & Tsai, 2005; Lomi & Larsen, 2001),

and management information systems (MIS) (McLaren, Head, Yuan, & Chan, 2011). Multilevel
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models are now common also in studies of leadership (Yammarino, Dionne, Chun, & Dansereau,

2005) and in research on human and social capital (Oh, Labianca, & Chung, 2006; Ployhart & Moli-

terno, 2011). One consequence of these developments has been the progressive diffusion of multi-

level research methods for studying organizations (Bliese, Chan, & Ployhart, 2007; Klein &

Kozlowski, 2000; Scherbaum & Ferreter, 2009).

Despite this extensive organizational literature, developing models capable of capturing multile-

vel mechanisms has proved particularly elusive for researchers interested in social networks (Brass,

Galaskiewicz, Greve, & Tsai, 2004). This state of affairs is surprising given the considerable body of

organizational research contributed by social network perspectives (Borgatti & Foster, 2003; Brass,

Labianca, Mehra, Halgin, & Borgatti, 2014; Moliterno & Mahony, 2011). As Contractor, Wasser-

man, and Faust observe (2006):

One of the key advantages of a network perspective is the ability to collect, collate, and study

data at various levels of analysis . . . . However, for the purposes of analyses most network data

are either transformed to a single level of analysis . . . which necessarily loses some of the rich-

ness in the data, or are analyzed separately at different levels of analysis thus precluding direct

comparisons of theoretical influences at different levels. (p. 684)

In an attempt to address this analytical concern, models for the analysis of multilevel networks have

been recently proposed within the more general analytical framework of exponential random graph

models (ERGMs), a family of stochastic models for the analysis of social networks (Snijders, Patti-

son, Robins, & Handcock, 2006). Exponential random graph models allow examining networks at a

single level of analysis. Multilevel exponential random graph models (MERGMs) add the possibility

of testing hypotheses about how the presence of ties (i.e., social relations) among lower-level actors

or units (e.g., among individuals) depend on the presence of ties among higher-level actors or units

(e.g., among organizational subunits) (Wang, Robins, Pattison, & Lazega, 2013). This analytical

framework would be clearly valuable in studying organizations where connected individuals are

typically contained in more aggregate structures (subunits), which may themselves be connected

through, for example, workflow or hierarchical relations. While alternative statistical models exist

for studying organizational social networks, MERGMs are the only existing models that allow direct

modeling of interdependences induced by known relational mechanisms. Common examples of such

mechanisms include reciprocity (the tendency of individuals to prefer social relations characterized

by mutuality) and transitivity (the tendency of individuals sharing partners to become directly

connected).

MERGMs have not been developed specifically for studying networks within organizations.

While ERGMs are becoming more common in organizational research (Lomi, Lusher, Pattison,

& Robins, 2013), no empirical application is yet available where MERGMs are adopted for the anal-

ysis of social networks across multiple organizational levels. To the best of our knowledge, this arti-

cle provides the first application of MERGMs to the analysis of intraorganizational relations.

Unlike more general multilevel models used in organizational research, MERGMs are cross-

sectional models derived specifically for tie variables: MERGMs are designed to test hypotheses

about mechanisms underlying the presence of relations between individuals in organizations.

MERGMs do not assume that interdependence between organizational members derives only from

common membership in organizational subunits. More specifically, MERGMs recognize that orga-

nizational subunits such as, for example, divisions, subsidiaries, or project teams, have an internal

structure and that members occupy differentiated positions in this structure. MERGMs also recog-

nize that organizational subunits themselves may be connected, thus introducing important elements

of realism in studies of organizational networks. Organizations are more than anything else hierarch-

ical social systems with multiple and partially nested levels of action (March & Simon, 1958; Simon,
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1996). Perhaps the most obvious implication of adopting organizations as settings for studying social

networks is that hierarchical elements shape the interaction among organizational members within

but also across structural layers. For this reason, it is important to have available specialized models

that may be specified to assess the influence that the structure of relations at one level exerts on the

structure of relations at another level (Moliterno & Mahony, 2011).

In this article, we introduce MERGMs and illustrate how they may be useful to understand inter-

personal networks of communication relations among the members of a top management team in a

multiunit industrial group. In the empirical case study we present, subsidiary companies are the

higher-level actors. Members of the top management team are the lower-level actors. We are inter-

ested in understanding the extent to which interpersonal communication relations crosscutting the

boundaries of the subsidiaries (lower-level ties) are affected by hierarchical relations existing

between the subsidiaries (higher-level ties). We clarify the difference between multilevel analysis

of social networks and multilevel network analysis by providing a detailed guide to specification

and empirical estimation of MERGMs.

Our more specific objective is to clarify the social and organizational mechanisms affecting the

likelihood that informal communication networks will cross-cut the formal organizational bound-

aries encircling the subsidiary units. This objective is analytically important because research on

social networks conducted at a single level is incapable of establishing the autonomy of informal

boundary spanning interaction with respect to formal relations existing between organizational

subunits containing the individuals. This objective is also substantively important given the far-

reaching implications of boundary crossing interaction for a variety of organizational outcomes

(Burt, 2004; Hansen, 1999; Reagans & McEvily, 2003).

The article is organized as follows. In the next section, we outline the motivation for developing

models for multilevel networks. In the third section, we introduce the MERGM class of models,

define their main analytical components, and state their main underlying assumptions. In the fourth

section, we describe the research design behind our empirical illustration. We briefly discuss the

variables, the measures needed for the specification of the empirical model, and the computational

approach for estimating and evaluating MERGMs. In the fifth section we report the empirical esti-

mates and provide an overall diagnostic evaluation of the model. We conclude with a short discus-

sion on the general usefulness, applicability, and limitations of MERGMs in organizational research.

General Background and Motivation

Multilevel Models in Organizations

Organizations are a prototypical example of hierarchical multilevel social system (Kozlowski &

Klein, 2000). Until relatively recent times, however, this observation has not been accompanied

by a parallel development of analytical approaches to the study of organizational behavior across

multiple levels (Porter & Schneider, 2014). Thanks to advances in multilevel analysis, the situation

is now rapidly changing within organization studies in general—and more specifically within the

fields of organizational behavior, including leadership (Beal & Dawson, 2007; Bliese, Halverson,

& Schriesheim, 2002; Hirst, Van Knippenberg, Chen, & Sacramento, 2011), human resource man-

agement (Bell, Towler, & Fisher, 2011), organizational communication (Monge & Contractor,

2003), and organization and management theory (Contractor et al., 2006).

In the typical organization, members are affiliated to internal subunits or work teams. Internal

subunits and teams are part of companies. Companies (subsidiaries) in turn may be contained in

larger multiunit corporate formations (Granovetter, 2005; Hofmann, 1997). Group factors produced

by common membership in superordinate subunits are important sources of nonindependence in

individual behavior. Because of the well-known statistical problems1 caused by lack of

544 Organizational Research Methods 18(3)



independence in behavioral data, an increasing number of papers relies on multilevel modeling tech-

niques to assess the influence of group factors on lower-level outcomes—typically on organizational

members’ attitudes and behaviors.

Multilevel models specify a set of lower- and higher-level actor covariates that are expected to

explain lower-level outcome variables. In order to capture the total variance of the outcome vari-

able(s), multilevel models estimate regression coefficients of lower-level variables and model

between-groups variation in an attempt to partial out the effect of the higher-level term (Hofmann,

1997). Various specifications have been introduced to deal with different data structures and

research purposes (for a review, see Bryk & Raudenbush, 1992). A number of methods have been

proposed to alleviate issues of endogeneity—a central problem in assessing causality (Antonakis,

Bendahan, Jacquart, & Lalive, 2010).

Multilevel modeling techniques have been successfully applied to a considerable variety of orga-

nizational phenomena. In studies of leadership, for example, multilevel models have been adopted to

assess the effect of common group factors (e.g., complexity, professionalism and culture) on lead-

ership emergence and performance (Mumford, Antes, Caughron, & Friedrich, 2008). In the study of

organizational socialization, team expectations and team performance have been shown to differ-

ently predict initial performance and performance improvement of newcomers (Chen, 2005).

Despite these and related examples of successful organizational applications of multilevel models,

the core insights of multilevel analysis does not extend directly to the analysis of multilevel

networks. This is the main motivation for recent attempts to develop the specialized models for the

analysis of multilevel networks that we discuss in this article.

Networks in Organizations

Over the past two decades or so, organizational and management research has emphasized the mul-

tiple roles that social networks play in organizations (Borgatti & Forster, 2003; Brass et al., 2004;

Carpenter, Li, & Jiang, 2012). For example, research in organizational behavior instructs us that

organizational members with high self-monitoring tendencies are more likely to occupy central posi-

tions in organizational networks (Mehra, Kilduff, & Brass, 2001) and that innovative ideas are more

likely to originate with individuals occupying boundary spanning roles—or network positions con-

necting disjoint third parties (Burt, 2004).

More generally, the presence and absence of relations between organizational members has

been shown to be systematically associated to important interpersonal differences in productiv-

ity (Reagans & Zuckerman, 2001), resources (Podolny & Baron, 1997), reputation (Kilduff &

Krackhardt, 1994), propensity to innovate (Hansen, 1999), power (Brass & Burkhardt, 1993),

and autonomy (Burt, 1992).

Networks exist at different organizational levels. Within-organization networks may be observed

between individuals, subunits, teams, departments, or subsidiaries (Borgatti & Forster, 2003). Most

available studies have analyzed these networks separately, typically ignoring the possible existence

of dependencies across levels—multilevel network dependencies.

Because lower-level actors are nested in higher-level actors (groups in standard multilevel mod-

eling), relations between lower-level actors are nested in higher-level relations. Not surprisingly,

awareness is increasing of the need to devote attention to antecedents and consequences of multi-

level networks of this kind (Baum & Ingram, 2002; Brass, 2000; Brass et al., 2004; Oh et al., 2006).

Analyzing multilevel network systems involves specifying ‘‘how an observed network structure

at one level of the system of organizational networks relates to network structures and effects at

higher or lower levels of the system’’ (Moliterno & Mahony, 2011, p. 443). Building on this view,

models for multilevel networks specify how relations between individuals in organizations are
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shaped by (1) their joint membership in more aggregate units and (2) the presence of relations

between such units. Multilevel network models of this kind would have wide applicability.

Studies of leadership, for example, frequently apply a relational framework to identify emergent

leaders, defined as organizational members recognized and nominated as leaders by their network

peers (Balkundi & Kilduff, 2006). Similarly, studies of organizational reputation demonstrate that

perceived network connections to prominent friends increase the reputation of individuals for high

performance (Kilduff & Krackhardt, 1994). Despite the apparent validity of these results, a detailed

analysis of the organizational setting would be needed to rule out the possibility that individual out-

comes (e.g., leadership or reputation) are a consequence of membership in subunits occupying a spe-

cific position in the network of formal hierarchical reporting relations or in the workflow network.

Without such assessment, it may be misleading to associate measures of leadership or reputation

exclusively to personal characteristics or positions that individuals occupy in informal social net-

works within their subunits (Carson, Tesluk, & Marrone, 2007).

In summary, the multilevel character of interpersonal networks within organizations makes it

necessary to develop a multilevel understanding of social networks, particularly—although not

exclusively—when they are observed in intraorganizational contexts. Such understanding requires

specification of specialized models for multilevel networks of the kind we illustrate in the empirical

part of the article. Before we do so, however, we need to clarify the fundamental differences between

multilevel models for networks and models for multilevel networks. The first class of models has

found wide application in the study of organizational behavior (Rousseau, 1985) and consists of

standard hierarchical linear models (HLMs), which specify relational characteristics of individu-

als—affiliated to different subunits—within their own network and, possibly, characteristics of indi-

viduals and subunits as predictors of individual behavior (Li, 2013). The second class of models is

more recent and significantly less developed. We discuss these models next.

Models for Multilevel Networks in Organizations

The models for multilevel networks differ from standard multilevel models in at least two respects.

First, multilevel network models take relations, rather than actors, as the focal element of analysis

(Brass, 2000)—namely, as the outcome variable. Network models are models for tie variables. Their

main objective is to explain the presence or absence of ties between lower-level actors contained in

more aggregate units—namely, higher-level actors—that may themselves be connected. As such,

network models are not general purpose models. They are useful only insofar as one pursues specific

analytical objectives requiring estimation of the probability of observing a tie between two actors.

Second, multilevel network models are defined by hypothesis about interdependence among tie

variables specified at different levels of analysis. The predictors of the outcome tie variable are local

configurations of network ties. Local configurations represent relational mechanisms—like recipro-

city and transitivity, mentioned previously—and are defined across multiple levels (Wang, Robins,

Pattison, & Lazega, 2013). The objective of multilevel network models is to assess the effect of

higher-level predictors on the probability of observing a network tie rather than estimating between

group variations (Bryk & Raudenbush, 1992).

Because of these differences, standard multilevel statistical models (HLMs) apply only imper-

fectly to multilevel network problems. Available multilevel models can be adapted to social net-

works because they can control for the effect of (lower- and higher-level) relational predictors

like centrality measures on lower-level behaviors. This approach can successfully deal with endo-

geneity and other vexing statistical issues, as Li (2013) shows in a comprehensive review on regres-

sion methods applied to network data. However, conventional multilevel models typically adopted

in the study of organizations would be of limited assistance in examining network interdependences
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across levels as such models do not allow specification and identification of the form that such inter-

dependences might take (see Table 1).

With respect to multilevel issues, as Lazega, Jourda, Mounier, and Stofer (2008) put it:

‘‘Although the multilevel dimension is intrinsic to the analysis of social networks, the analysis

of relationship between structures of different levels remains underdeveloped’’ (p. 160). Most

of the empirical studies available have relied on various forms of simplification of the data struc-

ture in order to account for multilevel effects.

The typical approach consists in reducing a multilevel network to a single-level network, with a

set of actors (individuals or subunits) and two relations among them, to analyze the resulting net-

work with standard social network analysis methods. Fernandez (1991), for example, in a study

on emergent leadership, represents the formal hierarchical structure among divisions of a multiunit

organization—which is an inherently interunit relation (Hansen, 1999)—in a fine-grained way, as

the ‘‘reporting to’’ relation among organizational members affiliated to the various divisions. He

analyzes this relation together with informal relation of ‘‘respect’’ and ‘‘friendship.’’ By contrast,

Tsai (2002), in examining cooperation and competition within a multiunit organization, represents

informal knowledge sharing as a relation between subunits and examines it together with formal

cooperation ties. By assuming that relations are isomorphic across levels (Rousseau, 1985), this

Table 1. Comparison Between Models for Multilevel Analysis, Multilevel Analysis of Networks, and Multilevel
Network Analysis.

Multilevel Analysis
Multilevel Analysis
of Networks Multilevel Network Analysis

Object Assessing the dependence
of a lower-level actors’
behavior on lower- and
higher-level actors’
individual characteristics

Assessing the dependence of
a lower-level actors’
behavior on lower-level
actors’ individual and
RELATIONAL
characteristics and on
higher-level actors’
individual characteristics

Assessing the
interdependence between
RELATIONAL
characteristics of lower-
and higher-level actors

Model HLMs HLMs with network
measures of lower-level
actors’ position as
predictors

MERGMs

Data structure A vector for a lower-level
actors’ outcome variable
and a set of vectors for
lower- and higher-level
actors’ variables

A vector for a variable
representing affiliation of
lower- to higher-level
actors

A vector for a lower-level
actors’ outcome variable
and a set of vectors for
lower- and higher-level
actors’ variables

A binary square matrix
representing a lower-level
network (then converted
into a set of vectors for
relational variables)

A vector for a variable
representing affiliation of
lower- to higher-level
actors

A set of vectors for lower-
and higher-level actors’
variables

A binary square matrix
representing a higher-
level network and a binary
square matrix
representing a lower-
level network

A rectangular matrix
representing affiliation of
lower- to higher-level
actors

Possible extensions Treatment of panel data Treatment of panel data Cross-sectional data only

Note: In multilevel analysis and multilevel analysis of networks models can be specified so that they include either fixed or
random effects. HLMs ¼ hierarchical linear models; MERGMs ¼ multilevel exponential random graph models.
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approach disregards the multilevel nature of the data structure. In doing so, this approach is likely to

alter the relationships in the data and to increase the risk of misspecification or other statistical issues

well documented in multilevel modeling (Hofmann, 1997; Rousseau, 1985).

Multilevel Exponential Random Graph Models

The Structure of Multilevel Networks

ERGMs are becoming increasingly common in studies of inter- and intra-organizational relations

(Lusher, Koskinen, & Robins, 2013). The ERGM framework allows investigating the development

of networks and, mainly, structural ‘‘patterns and precursors of network formation’’ (Carpenter

et al., 2012, p. 1340). For instance, Srivastava and Banaji (2011) apply ERGMs to assess the asso-

ciation between self-related cognition and tendency to collaborate in a biotechnology company.

MERGMs (Wang, Robins, Pattison, & Lazega, 2013) are a new class of ERGMs specifically

designed for the analysis of multilevel social networks. They are currently the only available method

for the analysis of multilevel networks.

ERGMs—and MERGMs—have a common origin in logistic regression but differ markedly from

standard logistic regression techniques typically used to model network ties. While standard regres-

sion models require independence of observations, ERGMs are designed for network data, whose

observations (i.e., the ties) are linked by complex interdependencies (Pattison & Robins, 2002).

ERGMs provide a more direct methodological solution to the lack of independence problem that

is unavoidable in network data (Snijders et al., 2006). The purpose of ERGMs is not to control endo-

genous interdependence between tie variables but, rather, to model directly the underlying mechan-

isms responsible for observed interdependencies among network ties.

Multilevel Network Data

MERGMs have been derived for cross-sectional analysis of tie variables. They are less useful if

one is interested in modeling nonrelational behavioral variables or in identifying how different

levels account for variance in individual behavior. In their current version, MERGMs may be

specified only for two-level networks. Like ERGMs from which they are derived, MERGMs are

models for complete (rather than ego-centered) networks (Lusher et al., 2013). The central ques-

tion that MERGMs may help to address is: How are relations between lower-level actors (e.g.,

organizational members) affected by the presence of connections between higher-level actors

(e.g., organizational subunits) containing them? To the extent that relations between organiza-

tional subunits are mandated (or ‘‘formal’’) and relations between organizational members are

emergent (or ‘‘informal’’), MERGMs may be adopted to address questions about the extent to

which latter kind of relations in organizations are actually independent from the former. Accord-

ing to McEvily, Soda, and Tortoriello (2014), this is an important question that is rarely asked in

empirical studies of social networks in organizations. This is the case, in part, because appropriate

analytical approaches have been unavailable until very recently.

The setting that is typically appropriate for an analysis of multilevel networks involves a

multiunit organization whose members are affiliated to at least one subunit—where subunits

may be divisions, functions, work teams, projects, or subsidiaries. Organizations are of differ-

ent size. In published papers based on ERGMs, the number of network actors ranges from

very small—around 30 (Snijders et al., 2006)—to fairly large—around 1,700 (Goodreau,

2007).

Network relations of interest are defined among organizational members and among organi-

zational subunits and may have several contents. In the example that we present in the follow-

ing section of the paper, organizational members are managers of a multiunit organization,
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organizational subunits are the subsidiary units of the organization, network ties among mem-

bers are an informal communication relation on work-related matters, while network ties among

subunits are a hierarchical subordination relation. Examples of relations among organizational

members include also advice seeking/giving, trust, and knowledge searching, transferring, and

sharing. Examples of relations among organizational subunits include workflow, reporting, and

various types of resource dependencies.

Multilevel network analysis starts with the identification of a set of lower-level actors P (e.g.,

organizational members), an affiliation set U (e.g., organizational subunits), and observations of net-

work ties (R) within and between elements of these sets. Suppose that P is the set of organizational

members and that B is a binary social relation defined between them (where B stands for relations

defined between lower-level actors). Suppose, further, that U is a set of organizational subunits and

that A is a binary relation defined between them (where A stands for relations defined between

higher-level actors). Finally, suppose that X (¼P � U) is a bipartite binary association between ele-

ments of P and elements of U (where X stands for relations defined between actors across different

levels). Then a multilevel network is simply a tuple M ¼ [P, U, B, A, X]. To fix ideas, in the case

study we develop in the empirical part of the study P is the set of top managers in a multiunit group

and B is the network of informal communication observed between them. U is the set of subsidiary

companies to which the different managers are affiliated, and A is a relation of hierarchical subor-

dination defined between the subsidiaries. Finally, X is a binary cross-level relation affiliating man-

agers to subsidiary companies.

In the empirical example we develop next, we also collected data on attributes that may affect the

likelihood of observing network relations within and across network levels.

Figure 1 reports a network diagram of the data we analyze in the empirical part of the arti-

cle. Squares are subsidiary companies (U). Circles are managers (P). Dashed black ties are

Figure 1. Multilevel empirical network. Squares denote organizational subunits – subsidiary companies (U) in
our data –. Circles denote individuals – managers (P) in our data –. Dashed black ties are relations of hierarchical
subordination between pairs of subunits (A). Solid black ties are informal communication relations between pairs
of individuals (B). Grey ties are affiliation relations of individuals to subunits (X).
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relations of hierarchical subordination between pairs of subsidiary companies (A). Solid

black ties are informal communication relations between pairs of managers (B). An arrow

signals the direction of the network tie. Grey links are affiliation ties of managers to subsid-

iaries (X).

Model Definition and Notation

Assume that M is a multilevel network consisting of i ¼ 1, . . . j, . . . , v lower-level actors (P)

and l ¼ 1, . . . k, . . . , u higher-level actors (U). Mij—the generic network tie between i and

j—is conceived as a random variable with observed value mij. Mij ¼ 1 if there is a tie from

i to j and Mij ¼ 0 otherwise.

MERGMs model the probability that a tie from i to j exists (so, a binary response variable) as a

linear function—in logit form—of predictors. Each predictor corresponds to a network configura-

tion—namely, a small subset of ties involving i, and capturing a relational mechanism (or social pro-

cess, as a synonym) going on around i and assumed to generate the predicted tie mij.

The MERGM formulation looks similar to binary logistic regression, with the main difference

that the same tie is present on both sides of the equation and in multiple predictors.2 Each config-

uration may be associated with a parameter that can be estimated from data. This is a crucial differ-

ence between MERGMs and HLMs with random (varying across higher-level actors) or fixed

(constant across higher-level actors) effects. HLMs can control for generic forms of dependence but

cannot model them directly (Hofmann, 1997). For example, HLMs can control for the lack of depen-

dence induced by social mechanisms, such as—for example—reciprocity or transitivity. HLMs,

however, cannot model these mechanisms directly.

MERGMs may be specified as:

Pr M ¼ mjY ¼ yð Þ ¼ 1

k yð Þ exp
X

Q

aQzT
Q mð Þ þ yQzT

Q m; yð Þ
n o

ð1Þ

where:

� M is the set of all possible multilevel networks of size (v � u) and m is the observed network.

M can be thought of as the matrix of all the random variables Mij, with observed value m.

� Y is a set of vectors of individual- and subunit-specific characteristics and y is the

observed set.

� Q indicates the potential network configurations—as discussed in the next section (Robins,

Elliott, & Pattison, 2001). The summation S is over all different configurations included in

the model.

� zQ mð Þ ¼
P
m

Q
Mij2Q

mij are structural and zQ m; yð Þ ¼
P
m

Q
Mij2Q

mijyi are covariate network statistics

corresponding to configuration Q. The statistics count, for each actor in the network, the num-

ber of configurations of each type in which the actor is involved—for example, the number of

reciprocal ties including actor i.

� aQ are structural and yQ covariate parameters corresponding to configuration Q. The para-

meters can be interpreted as ‘‘conditional’’ log-odds of logistic regression and converted

into odds and binary probabilities. A large and positive (negative) parameter estimate

implies that the network contains more (less) configurations of that kind than those

expected by chance. According to the tie interdependence assumption, a possible tie

between two actors i and j is assumed to be contingent—formally, ‘‘conditionally depen-

dent’’—on any other tie involving i or j. The same assumption applies, therefore, to the sta-

tistics involving i and j. Also each parameter cannot be interpreted as an independent
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predictor but is conceived as ‘‘conditional on (the presence and value of) the others’’

(Robins, Snijders, Wang, Handcock, & Pattison, 2007).

� k(y)Q is a normalizing constant included to ensure that the sum of probabilities in (1) over all

possible m equals 1.

Equation 1 describes a general probability distribution of networks. It assumes that the probabil-

ity of observing the empirical multilevel network structure depends on a small set of configurations,

typically included according to theoretical assumptions on actor relational behavior in the context

under examination (Wang, Robins, Pattison, & Lazega, 2013).

Network Configurations Within and Across Levels

Structural configurations are a distinctive feature of ERGMs and consist of a small subset of ties

(Snijders et al., 2006). The analytical objective of ERGMs is to estimate the incidence of these con-

figurations on the probability of observing network ties between two actors. These configurations

represent the interdependences between ties that standard statistical models usually ignore by either

treating them as part of the error term (and then correcting generically the standard errors) or includ-

ing them as individual attributes—such as, for example, centrality, reciprocity, or brokerage mea-

sures (Li, 2013). None of these common model building strategies can capture the underlying

mechanisms of tie formation that ERGMs explicitly specify.

The vector of structural statistics zQ(m) may include three level-specific configurations:

1a. Lower-level configurations investigate relations within the lower-level network B, namely,

zQ(b), accounting for various characteristics of the interaction between individuals (Snijders

et al., 2006). Published organization research based on ERGMs typically includes the spe-

cification of these configurations only (Srivastava & Banaji, 2011). The configurations used

in the empirical exercise are reported later in the paper in Table 4.

The higher-level configurations are the core part of MERGMs (Wang, Robins, Pattison, &

Lazega, 2013). These configurations model relations between hierarchical levels and are:

2a. Configurations accounting for the group effect—namely, the tendency of organizational

members assigned to the same subunit(s) to interact with one another. Formally, these sta-

tistics link the network X to the lower-level network B—namely, zQ(b, x).

3a. Configurations ‘‘express[ing] tendencies for structural [configurations] to be associated

across both levels simultaneously’’ (Wang, Robins, Pattison, & Lazega, 2013, p. 99). These

configurations involve all the three networks—namely, zQ(a, x, b) – and are labeled as

‘‘cross-level’’ because include both lower-level and higher-level ties. These configurations

allow probabilistic assessment of whether the position of organizational members in the

interpersonal network or the ties between organizational members may be linked to the

position of their subunits in the interunit network or to the ties between subunits.

The higher-level configurations used in the empirical exercise are reported later in the paper in

Table 5.

Covariate configurations include actor characteristics (Robins et al., 2001; Wang, Robins, Patti-

son, Lazega, & Jourda, 2013), specified as attributes of each actor or similarities between pairs of

connected actors. Similarly to the vector of structural configurations, the vector of covariate config-

urations zQ(m, y) includes:

1b. Configurations accounting for the influence of organizational member (yB) attributes on

interaction in network B—namely, zQ(b, yB). These configurations may be specified to test
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whether organizational members are more likely to interact with others if they have some

attributes or are similar to others in some attributes.

2b. Configurations accounting for the interdependence between lower-level and affiliation net-

works—namely, zQ(b, x, yB). These configurations may be specified to test whether orga-

nizational members assigned to the same subunit are more likely to interact with one

another if they have or are similar in some attributes.

3b. Configurations accounting for the influence of subunit attributes or organizational member

attributes on the interdependence between lower- and higher-level ties—namely, zQ(a, b, x,

yA, yB). These configurations may be specified to test whether the association between inter-

personal and interunit ties mentioned previously are more likely when organizational mem-

bers or subunits have some attributes or are similar, respectively, to other organizational

members/subunits in some attributes.

The lower- and higher-level covariate configurations used in the empirical exercise are reported

later in the paper in Table 6.

Empirical Illustration

In the next section, we situate the model just discussed in the context of an analysis of knowledge

sharing in a multiunit industrial company with five organizational subunits (subsidiary units or sub-

sidiaries from now on). This organizational setting provides ideal testing grounds for the analysis of

multilevel networks because: (a) Subsidiaries are designed to be repositories of specialized knowl-

edge, (b) individuals across subsidiaries establish informal networks of communication relations to

mobilize knowledge resources across organizational boundaries and have access to diversified

knowledge, and (c) subsidiaries are connected by hierarchical reporting relations, which represent

the formal organizational structure (Argote, McEvily, & Reagans, 2003; Tushman, 1977).

The main goal of the analysis is to assess how the formal organizational structure sustains (or

constrains) information sharing across organizational boundaries. More specifically we ask: How

autonomous are boundary spanning ties? In other words, does informal interpersonal interaction

span subsidiary boundaries independent of the formal hierarchy of relations existing between sub-

sidiaries? Does the position (and therefore the role) of a subsidiary within the formal organizational

structure make its members particularly active or attractive in informal interaction and thus contrib-

ute to explain individuals’ position (and role) in information sharing? Finally, how do patterns of

hierarchical relations linking the subsidiaries affect interpersonal interaction? These questions are

at the heart of current research investigating the coupling/decoupling of formal and informal

relations (Kleinbaum, Stuart, & Tushman, 2013; McEvily et al., 2014) and trying to link properties

of social networks to relevant organizational outcomes like innovation and performance (Burt,

2004; Dokko, Kane, & Tortoriello, 2014; Tsai, 2001). As we demonstrate in the empirical exam-

ple that we present next, these questions can be answered convincingly only by assuming—and

testing—specific forms of multilevel network relations linking individuals, organizational subu-

nits, and individuals and organizational subunits.

Research Design

Data

We studied an international multiunit industrial group active in the design, manufacturing, and sale

of leisure motor yachts. The group consists of subsidiary units, and each organizational member is

unambiguously and uniquely assigned to one subsidiary. Since the subsidiaries act as quasi-

independent companies and occupy different market positions, coordination and collaboration
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across the boundaries of subsidiaries are crucial, especially for members working in the same func-

tional areas. Boundary-spanning interaction would allow members in different subsidiary units to

share information on technical solutions, potential customers, or competitors.

We examined informal relations of interpersonal communication among the 47 members of

the group top-management team (P).3 Each participant was administered a questionnaire, con-

taining the list of names of the other 46 managers, and was asked to report the presence of

personal communication ties (McCulloh, Armstrong, & Johnson, 2013). The question was framed

in terms of advice—at least on a daily frequency—on work-related matters (e.g., information

about dealers, competitors, production delays). We obtained a 100% response rate. We arranged

the data in matrix B (47 � 47): the generic cell bij ¼ 1 if manager i communicates with manager j

on work-related matters on a daily basis at least.

Hierarchical relations between subsidiaries (U) were reconstructed by asking the corporate

CEO to indicate ‘‘who reports to whom.’’ We provided him with the names of the 47 partici-

pants arranged in the rows and in the columns of a square matrix. We asked him to indicate

whenever the column person reported to the row person. For example, if the ‘‘Chief engineer’’

(column) j in subsidiary k reported to the ‘‘Chief Corporate Engineer’’ (row) i in subsidiary l,

then aij ¼ 1. In this case, i would be hierarchically superordinate to j (i!j). We arranged these

data into the matrix between the subsidiaries,4 A (6 � 6): the generic cell alk ¼ 1 if subsidiary l

is hierarchically superordinate to subsidiary k, namely, if there is at least one manager j in k

reporting to a manager i in l.

We linked managers to subsidiaries in the (managers by subsidiary) matrix of containment rela-

tions X (47 � 6): the generic cell xil ¼ 1 if manager i belongs to subsidiary l.

Finally, we used B, A, and X to build M ¼ [P, U, A, B, X].

A different section of the questionnaire was designed to elicit demographic and organizational

information that was used to construct the control variables included in our empirical model spec-

ifications. Table 2 and Table 3 report the basic descriptive statistics computed, respectively, for the

interpersonal network and for the control variables.

Empirical Model Specification

To model interpersonal interaction, we specify a set of configurations that, according to theory, are

likely to shape a communication network (class 1a displayed in Table 4).

Density accounts for the general propensity of managers toward communicating with others.

Because building and maintaining many relations is costly, this tendency is usually negative. Reci-

procity tests the likelihood that two managers reciprocate relations, exchanging information with

one another. Popularity spread examines the likelihood that few managers are particularly popu-

lar—namely, are chosen as communication partners and receive diversified information from many

Table 2. Basic Network Descriptive Statistics for the Interpersonal Network.

Statistics Values

Density 0.08
Number of ties 164
Mean in-/out-degree 3.49
Standard deviation in-/out-degree 1.85-2.65
Minimum in-/out-degree 0
Maximum in-/out-degree 6-10
Number of reciprocated pairs 55
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others. Activity spread accounts for the tendency of managers to be particularly active—namely, to

communicate with many others, contributing to information spreading.

Closure configurations test the propensity of managers to form subgroups (Snijders et al., 2006)

and are generally associated to redundant information. Transitive closure implies that managers are

more likely to communicate with colleagues if they share multiple communication partners. Cyclic

closure tests whether information sharing occurs within subgroups without any expectation of being

reciprocated. Finally, 2-paths tests the likelihood that the same managers are sought and seek col-

leagues as communication partners. Since these individuals would connect those from whom they

receive information to those to whom they give information, 2-paths could be interpreted as ten-

dency against forming subgroups.

Structural higher-level configurations (Table 5) are the focus of multilevel modeling exercises.

Affiliation based closure—2a in the previous list—tests whether managers are more likely to talk

to colleagues affiliated to the same subsidiary—namely, propensity against boundary spanning.

Cross-level assortativity statistics—class 3a—test the tendency of managers active/popular in the

communication network to be affiliated to active/popular subsidiaries in the hierarchical network.

Cross-level in-degree assortativity tests whether managers sought as communication partners by

many colleagues are likely to be affiliated to subsidiaries receiving many ties in the formal

Table 3. Basic Descriptive Statistics for Individual and Subunit Covariates.

Relative Frequency (%) Mean (SD)

Individual attributes
Function (i.e., membership in organizational function)

CEO 12.8
Engineering 12.8
Finance 14.9
Marketing 8.5
Production 25.5
Others 25.5

Gender
Female 14.9
Male 85.1

Grade (i.e., level of task performed)
Clerk 12.8
Operations manager 34.0
Manager 42.6
Consultant 10.6

Nationality
Italian 87.2
Others 12.8

Tenure (i.e., number of years since an organizational member joined
the group)

8.1 (7.5)

Subunit attributes
Country (i.e., country where a subunit is based)

Italy 66.6
US 16.7
International (i.e., no country based) 16.7

Role
Corporate 16.7
Others 83.3

Size (i.e., number of members of each subunit) 7.8 (4.8)
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organizational network—namely, hierarchically subordinate subsidiaries. Cross-level out-degree

assortativity accounts for the opposite effect—namely, the likelihood that managers sharing infor-

mation with many colleagues are affiliated to subsidiaries, to which many others have to report (i.e.,

hierarchically superordinate).

Cross-level alignment configurations—class 3a—account for the propensity of members of dif-

ferent subsidiaries to talk to each other if their subsidiaries are connected. Hence, these configura-

tions capture the likelihood that informal ties spanning boundaries defined around subsidiaries are

sustained by formal organizational ties. Cross-level alignment entrainment implies that interperso-

nal ties follow the hierarchical ordering imposed by the formal structure, thus controlling for a tight

coupling between formal and informal relations (McEvily et al., 2014). Managers are likely to talk to

colleagues affiliated to subsidiaries that are hierarchically dependent on their own subsidiary. The

exchange version controls for a loose coupling and can be interpreted as managers’ propensity

toward inverting the hierarchy, building communication ties with colleagues affiliated to hierarchi-

cally superordinate subsidiaries. The exchange reciprocal B configuration accounts for managers’

likelihood to reduce the hierarchical distance building reciprocal ties with colleagues affiliated to

subsidiaries with which a hierarchical link exists.

Finally, we specify a set of covariate configurations (see Table 6). For interpersonal communi-

cation, we include the Covariate match statistic—class 1b. It tests whether managers are more likely

Table 4. Exponential Random Graph Models (ERGMs) Lower-Level Structural Configurations.

Configuration Representation Qualitative Interpretation

Density Tendency of organizational members to communicate with
colleagues

Reciprocity Tendency of organizational members to communicate with
reciprocating colleagues

Activity spread Tendency of organizational members to be active—namely, to
communicate with many colleagues

Popularity spread Tendency of organizational members to be popular—namely, to be
sought as communication partners by many colleagues

2-paths Basic tendency of organizational members to communicate with
and to be sought as communication partners by colleagues

Transitive closure Tendency of organizational members to communicate with
colleagues of colleagues

Cyclic closure Tendency of organizational members to communicate with
colleagues in small groups without any expectation of being
reciprocated

Note: Circles denote individuals, and black links denote (informal) communication relations between pairs of individuals.
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to communicate with colleagues similar to them with respect to various personal (gender, national-

ity) and work-related (function, company grade, and tenure) attributes.

The covariate matching process is also investigated for multilevel interdependences—class 3b.

Cross-level alignment individual covariate match enters the model as entrainment, exchange, and

exchange reciprocal B configurations for individual grade and membership in organizational func-

tion. These configurations verify whether various types of association between lower- and higher-

level ties are more likely when managers are similar with respect to the specified attribute.

Finally, we specify cross-level alignment entrainment and cross-level alignment exchange sub-

unit covariate match also for subsidiaries’ country, role, and size.

Model Estimation and Evaluation

To account for the interdependence between ties, the estimation of MERGM parameters relies on

Monte Carlo Markov Chain Maximum Likelihood (MCMCML) – a simulation-based technique

(Hunter & Handcock, 2006; Snijders, 2002).

Table 5. Multilevel Exponential Random Graph Models (MERGMs) Higher-Level Structural Configurations.

Configuration Representation Qualitative Interpretation

Affiliation based closure Tendency of organizational members to communicate with
colleagues based on common membership in subunits

Cross-level in-degree
assortativity

Tendency of popular organizational members in communication
network to be affiliated to popular (i.e., hierarchically
subordinate) subunits in interunit network

Cross-level out-degree
assortativity

Tendency of active organizational members in communication
network to be affiliated to active (i.e., hierarchically
superordinate) subunits in interunit network

Cross-level alignment
entrainment

Tendency of organizational members to communicate with
colleagues affiliated to subunits hierarchically subordinate to
their subunit

Cross-level alignment
exchange

Tendency of organizational members to communicate with
colleagues affiliated to subunits hierarchically superordinate to
their subunit

Cross-level alignment
exchange reciprocal B

Tendency of organizational members to communicate with
reciprocating colleagues affiliated to subunits with which a
hierarchical relation exists

Note: Circles denote individuals and squares denote organizational subunits (subsidiaries in our case). Solid black links denote
(informal) communication relations between pairs of individuals, while dashed black links denote (hierarchical) subordination
relations ties between pairs of subunits. Grey links (between circles and squares) denote affiliation ties of individuals to
subunits (containment relations).
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The key idea of MCMCML is to simulate a distribution of random graphs from a set of starting

parameter values, which are estimated from the data, and to refine the estimated parameter values by

comparing this distribution with the observed graph. The Monte Carlo simulation procedure estab-

lishes a Markov chain of graphs that, under suitable conditions, will converge to the stationary

desired exponential random graph distribution. Various algorithms can be used to produce such a

Markov chain. The most popular are the Gibbs sampling and the Metropolis-Hastings algorithm

(Snijders, 2002).

In detail, the observed network m is assumed as a single observation of a distribution of ran-

dom networks M with the same number of actors of m, namely, (v � u). In the case study, for

example, the number of lower-level actors (v) is 47, the number of higher-level actors (u) is 6,

and the set of possible networks is (u � [u – 1] � u � v � v � [v – 1]) ¼ 18,290,520. Each net-

work is assigned a probability of occurrence, depending on the model predictors and related para-

meters. Hence, the range of possible networks and their probability of realization under the model

are represented by a probability distribution. The networks that most resemble the observed net-

work have a higher probability of occurrence. The iterative estimation process, uses the observed

network as a guide and consists in selecting parameter values that reproduce the observed net-

work well, applying a maximum likelihood estimation criterion. To progressively approximate

the likelihood and refine the parameter estimates, a number of networks are sampled from the

Table 6. Exponential Random Graph Models (ERGMs) and Multilevel Exponential Random Graph Models
(MERGMs) Lower- and Higher-Level Covariate Configurations.

Configuration Representation Qualitative interpretation

Covariate match Tendency of organizational members to communicate
with colleagues with the same value of a covariate

Cross-level alignment entrainment
individual covariate match

Tendency of organizational members with a given value
of a covariate to communicate with colleagues with
the same value of the covariate and affiliated to
subunits hierarchically subordinate to their subunit

Cross-level alignment exchange
individual covariate match

Tendency of organizational members with a given value
of a covariate to communicate with colleagues with
the same value of the covariate and affiliated to
subunits hierarchically superordinate to their subunit

Cross-level alignment exchange
reciprocal B individual covariate
match

Tendency of organizational members with a given value
of a covariate to communicate with reciprocating
colleagues with the same value of the covariate and
affiliated to subunits with which a hierarchical
relation exists

Cross-level alignment entrainment
subunit covariate match

Tendency of organizational members affiliated to
subunits with a given value of a covariate to
communicate with colleagues affiliated to subunits
with the same value of the covariate and
hierarchically subordinate to their subunit

Cross-level alignment exchange
subunit covariate match

Tendency of organizational members affiliated to
subunits with a given value of a covariate to
communicate with colleagues affiliated to subunits
with the same value of the covariate and
hierarchically superordinate to their subunit

Note: Black denotes an individual or a subunit with a relevant attribute.
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space of possible networks of size (v � u), using the probability distribution (with the initial para-

meter estimates) and compared to the observed network.

The process is repeated until the estimates stabilize (Robins et al., 2007). To evaluate stabilization

of the estimates, after each estimation run, a sample of networks is simulated using the model esti-

mates and compared to the observed networks. This is done by computing a t ratio for each estimated

statistic. This t ratio consists in the difference between the observed statistic and the mean statistic

from the simulated networks, divided by the standard deviation. An absolute t ratio value smaller

than 0.1 indicates that the corresponding statistic is well captured by the empirical model and that

the parameter estimate converges to the true value. All t ratio values of the included statistics smaller

than 0.1 suggest that the model converges and is capable of reproducing the selected effects.

A similar procedure is used also to evaluate the overall goodness of fit of the convergent model—

and to compare alternative model specifications. The distribution of graphs implied by the model is

simulated using the parameter estimates as initial values. Then a number of network features is

selected, and the goodness of fit is assessed by comparing the observed values to the estimated

distribution of that feature implied by the model itself (Goodreau, 2007; Hunter, Goodreau, &

Handcock, 2008). The first type of features are MERGM configurations not included in the model,

which are tested in order to verify whether the set of included statistics suffices to explain which

tendencies shape the network. The second type involves structural properties of the observed graph,

which are tested to verify whether the estimated configurations are capable of reproducing the

overall observed network structure. Structural properties include various aspects of the degree

distributions—namely, distributions of the number of ties sent and received by each actor—and the

clustering coefficients—namely, coefficients for the density of groups of three connected actors in

the network (Wasserman & Faust, 1994).

Finally, the model fit is assessed using the t ratios. Since ERGMs are relatively new and complex

models, specific statistical tests have still to be developed. The fit assessment is based on a rule of

thumb (Hunter et al., 2008; Robins & Lusher, 2013): an absolute value of the t ratio close to zero, or

at least smaller than 2, indicates that the model reproduces the corresponding statistic well. This rule

is adopted when comparing alternative model specifications or nested models. The same network

features are selected and tested for the estimated models and the corresponding t ratios are com-

puted. Then the model that is capable of reproducing the most network features while ensuring the

smallest t ratio values is considered to fit the observed network best.

Estimates and goodness-of-fit diagnostics are produced using the software MPNet (Wang,

Robins, Pattison, & Lazega, 2013), a freely available software specifically designed for MERGMs

(see the appendix for details).

Analysis

Results

Table 7 reports estimates and associated standard errors of the model parameters. They all refer to

convergent models. Similarly to a logistic regression model, the estimates may be interpreted as log-

odds for the presence of a network tie between two actors versus its absence.

We specify three models ordered in terms of increasing complexity. Model 1 is a baseline or tie

independent model, similar to logistic regression. This model includes the intercept (i.e., Density)

and the covariate configurations for the interpersonal network, assuming that the likelihood of obser-

ving ties is explained by individual characteristics only. Model 2 is the single-level network model.

It includes structural and covariate configurations for the interpersonal network. Model 2 allows us

to introduce the general ERGM framework and to comment on conclusions that could be drawn from

analyzing informal interpersonal communication only, ignoring the hierarchical relations between
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the subsidiaries. Model 3 is the multilevel network model. It includes multilevel configurations and

examines the interdependence between formal intersubsidiary ties and informal interaction. Since

Model 3 is our full model, we comment on this, highlighting the differences with Model 1 and 2.

Accounting for higher-level configurations (Model 3) modifies the values of many lower-level

parameters and increases the values of the corresponding standard errors. Like in standard regression,

multilevel modeling allows better assessing the predictors’ variation (Bryk & Raudenbush, 1992).

As it is typically the case in empirical network data, the Density parameter is negative to indi-

cate that communication ties are costly to establish. This tendency is much stronger in Model 3

than in Models 2 and 1 (respectively, –7.52, –3.41, and –2.31). The odds of one organizational

member communicating with another versus not communicating decrease from (e–2.31) ¼ 0.10

in Model 1 to (e–3.41)¼ 0.03 in Model 2 and (e–7.52)¼ 0.001 in Model 3. The corresponding binary

Table 7. Exponential Random Graph Models (ERGMs) and Multilevel Exponential Random Graph Models
(MERGMs) Estimates of Interpersonal and Interunit Networks.

Model 1
Tie independent
Network Model

par. (SE)

Model 2
Lower-Level

Network Model
par. (SE)

Model 3
Multilevel

Network Model
par. (SE)

Lower-level effects
Density –2.31 (0.21)* –3.41 (0.44)* –7.52 (1.19)*
Reciprocity 3.13 (0.46)* 2.62 (0.51)*
2-paths –0.28 (0.07)* –0.19 (0.07)*
Popularity spread (l ¼ 4) –0.11 (0.18) –0.08 (0.23)
Activity spread (l ¼ 4) 0.35 (0.15)* 0.50 (0.17)*
Transitive closure (l ¼ 2) 1.28 (0.20)* 0.79 (0.21)*
Cyclic closure (l ¼ 2) –0.02 (0.19) –0.16 (0.20)
Function match 0.24 (0.21) 0.14 (0.14) 0.38 (0.22)
Gender match –0.77 (0.76) –0.51 (0.57) 0.05 (0.81)
Grade match 0.53 (0.16)* 0.23 (0.09)* 0.03 (0.22)
Nationality match 0.12 (0.20) –0.06 (0.14) 0.58 (0.34)
Tenure match –0.03 (0.01)* –0.02 (0.01)* 0.13 (0.17)

Higher-level effects
Affiliation based closure 2.74 (0.67)*
Cross-level in-degree assortativity 1.17 (0.48)*
Cross-level out-degree assortativity 0.21 (0.17)
Cross-level alignment entrainment 0.50 (2.93)
Cross-level alignment exchange 2.76 (3.61)
Cross-level alignment exchange reciprocal B 2.14 (0.93)*
Alignment entrainment subunit country match –0.33 (0.92)
Alignment exchange subunit country match –1.58 (1.33)
Alignment entrainment subunit role match –0.44 (2.88)
Alignment exchange subunit role match –3.46 (3.67)
Alignment entrainment subunit size match –0.09 (0.23)
Alignment exchange subunit size match –0.20 (0.28)
Alignment entrainment organizational member function match 2.12 (0.95)*
Alignment exchange organizational member function match 1.90 (1.31)
Alignment exchange reciprocal B organizational member function match –4.31 (1.97)*
Alignment entrainment organizational member grade match –1.06 (1.13)
Alignment exchange organizational member grade match 1.46 (1.45)
Alignment exchange reciprocal B organizational member grade match 0.01 (2.18)

*Indicates the ratio of statistic to standard error is greater than 2 (two-sided tests). Standard errors in parentheses.
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probabilities are (e–2.31/[1þ e–2.31]) ¼ 9.03% in Model 1, (e–3.41/[1þ e–3.41]) ¼ 3.20% in Model 2,

and only (e–7.52/[1þ e–7.52]) ¼ 0.05% in Model 3. This indicates that once we account for the for-

mal structure (Model 3), there is almost no chance of observing ‘‘random’’ communication ties—

namely, ties that are not part of more complex network substructures.

The significantly positive value of the Reciprocity parameter (3.13 in Model 2 and 2.62 in Model

3) indicates that managers are likely to build mutual ties and to share information on a not hierarch-

ical basis. This propensity, however, slightly decreases in magnitude from Model 2 to Model 3. In

detail, the odds that managers reciprocate a communication relation against not reciprocating it is

equal to (e3.13) ¼ 22.87 in Model 2 and (e2.62) ¼ 13.74 in Model 3. The corresponding binary prob-

abilities are (e3.13/[1þ e3.13])¼ 95.81% in Model 2 and (e2.62/[1þ e2.62])¼ 93.21% in Model 3, sug-

gesting a very strong propensity toward reciprocating communication relations. The positive effect

of Activity spread (0.50) suggests the presence of a restricted number of managers particularly active

in communicating with many colleagues.5 These managers rely on many others as sources of infor-

mation and are likely to diversify their range of available knowledge. The combination of a positive

Transitive closure—decreasing from Model 2 to Model 3 (1.28 and 0.79, respectively) – and a neg-

ative, although not significant, Cyclic closure parameter (–0.16), indicates that managers tend to

interact in small subgroups. Akin to a bonding social capital perspective, available information is

likely to be redundant and its spread controlled by few members of the subgroups. The significantly

negative 2-paths (–0.19) enforces this result, outlining that managers are unlikely to spread informa-

tion across different groups. Since 2-paths indicates also that the same individuals receive and share

information, the negative parameter suggests the existence of a division of roles.

The parameters of several higher-level configurations are significant, indicating an association

between information sharing among managers and the hierarchical structure, and suggesting possi-

ble mechanisms responsible for such association.

The significantly positive Affiliation based closure parameter (2.74) indicates that managers are

likely to communicate with colleagues in the same subsidiary. This result captures the well-known

tendency of organizational subunit boundaries to restrict the range of relations and information

available for managers (Reagans & McEvily, 2003). The significantly positive Cross-level in-

degree assortativity parameter (1.17) suggests that managers more sought after by colleagues as

communication partners are affiliated to subsidiaries that have to report to several others—namely,

hierarchically subordinate. Hence, information is likely to flow from members of subordinate to

members of superordinate subunits. The positive Cross-level alignment exchange reciprocal B

(2.14) outlines that managers are likely to build mutual relations to others with different affiliation

and hierarchical level. The managers span their subsidiary boundaries in sharing information when

the interpersonal ties are sustained by hierarchical dependence ties between the subsidiaries. The

formal interunit relation provides managers with opportunity to meet and share information (Klein-

baum et al., 2013). Combined with the statistically nonsignificant Cross-level alignment entrainment

and exchange parameters, the Cross-level alignment exchange reciprocal B emphasizes the impor-

tance of mutual relations as a key driver of boundary spanning.

The significance of the individual covariates changes across model specifications. The Grade and

Tenure match configurations are significant in the first two models but disappear in Model 3. When

we ignore the higher-level network, we find that managers are likely to interact with colleagues sim-

ilar in terms of status (as measured by job grade) and experience (as measured by tenure).

When the organizational hierarchical structure is accounted for (Model 3), these individual

characteristics no longer have a significant effect on the presence of communication ties between

individuals. In Model 3, the propensity toward interacting with similar colleagues seems to operate

only through organizational structure. Contrary to the tendency illustrated previously, the positive

Cross-level alignment entrainment function match (2.12) suggests that managers in the same func-

tional area tend to talk to colleagues affiliated to subsidiaries that hierarchically depend on their
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own subsidiary. Membership in the same professional function encourages the establishment of

boundary spanning ties that preserve the hierarchical ordering. This effect of intersubsidiary hier-

archy within the same functional area is confirmed by the negative Cross-level alignment

exchange reciprocal B function match parameter (–4.31).

Model Evaluation

We conclude our analysis by testing the ability of the estimated models to reproduce salient char-

acteristics of the observed network as a whole. We find that this ability is significantly higher for

the multilevel network model.

We follow recommended best practices in the analysis of ERGMs (Hunter et al., 2008) and pro-

duce a sample of 1,000 graphs drawn from the random graph distribution simulated based on the

empirical estimates. We extract these graphs from a simulated distribution of graphs after

1,000,000 iterations and after a 100,000-iteration burn-in phase.6 Since both networks X and A are

considered exogenous in the estimation process, the goodness-of-fit check focuses on the interper-

sonal network and on its network features.

As we discussed, any feature of interest in the observed graph can be compared to the distribution

of such features in the model. To make the three models comparable (see Table 7), we select the

same network features for testing. In detail, being our models nested, we pick up the features of

interest for the complete model (Model 3) and check how many of them are well fitted also by sim-

pler models (Model 1 and Model 2). We use the t ratio to detect the location of the observed feature

in this distribution. Absolute values larger than 2 suggest that the observed graph differs from the

distribution implied by the model in the corresponding feature (Hunter et al., 2008). Hence, the

model is not capable of capturing the feature. Indeed, the closer to zero the t ratio values, the better

the fit. Table 8 reports comparisons for a variety of crucial characteristics of the interpersonal net-

work B: features of the distributions of incoming and outgoing ties—namely, indegree and outde-

gree distributions—as well as a set of coefficients controlling for the existence of subgroups of

three connected actors—generalized clustering coefficients (GCC; Luce & Perry, 1949). According

to the direction of ties, the generalized clustering coefficient may take different forms. Following the

empirical model specification, we control for the transitive (i.e., transitive closure) and cyclic (i.e.,

cyclic closure) forms. The t ratio values show that the multilevel network model (Model 3) captures

much better than the others these features of the observed networks.

In detail, for Model 1, three of the six t ratio values reported in Table 8 are significantly larger

than the threshold 2 in absolute magnitude. Consequently, it is not possible to reproduce the network

features well without accounting for the local interdependence structures implied by ERGMs.

Hence, this result points to the usefulness of the ERGM framework. For Models 2 and 3, all the t

ratio values are significantly smaller than the threshold. Indeed, Model 3 provides much more accu-

rate estimates of all the network characteristics, as most t ratio values become closer to zero.

We investigate goodness of fit also on the set of MERGM configurations not parameterized in the

estimated models. Since we do not have any a priori assumptions on which configurations the

empirical models should be capable of capturing, we test all the structural and covariate statistics

that can be included to modeling the interpersonal network as well as the interaction across levels.

For brevity, we do not report the observed and simulated mean of each statistic as well as the related t

ratio value, but we just comment on the results. Also in this case, we find that Model 3 ensures a

significant improvement in the fit for the most statistics: it reproduces 97 out of the 99 statistics that

can be specified (i.e., the corresponding absolute t ratio values are smaller than 2). Models 1 and 2

have a considerably poorer fit: they reproduce only 44 and 64 statistics, respectively.
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Conclusions

In this article, we have presented newly derived multilevel exponential random graph models for the

analysis of multilevel networks in organizations (Wang, Robins, Pattison, & Lazega, 2013). More

specifically, we have: (1) framed MERGMs as one feasible analytical strategy to represent multile-

vel mechanisms of network tie formation, (2) illustrated the distinctive analytical insights that these

models provide on the multilevel dependencies inherent in social networks within organizations, and

(3) discussed how such insights may contribute to a more detailed understanding of the relations

between formal structure and informal networks in organizations.

We have emphasized the specification and estimation of parameters corresponding to local con-

figurations of network ties across levels. MERGMs are the only models that afford direct estimation

of such parameters. This emphasis clearly marks the fundamental difference between the class of

multilevel models for social networks (Li, 2013) and the class of multilevel social network models

that MERGMs represent. Multilevel models for networks can control for network dependencies in

observations across levels, but they offer only limited assistance in developing and testing hypoth-

esis about the specific forms that multilevel interdependences might take in any specific data set.

The main analytical objective of multilevel network models is to represent these interdependencies

directly and explicitly. Detecting specific forms assumed by the interdependence of the relational

behavior of lower-level actors on the relational behavior of the higher-level actors in which

lower-level actors are members, MERGMs allow assessing lower-level actors’ autonomy and real

contribution to their position in the interpersonal network structure.

We have illustrated the empirical value of MERGMs examining information sharing relations among

members of the top management team within a multiunit organization. Using data we have collected on

relations of hierarchical subordination and informal communication between the managers, we have

shown how MERGMs may be specified to address a number of core concerns in multilevel organiza-

tional analysis. We focused our discussion on the tendency of informal information sharing relations

to cross-cut the formal subunit boundaries. We have documented specific ways in which boundary cross-

ing ties are sustained by hierarchical organizational structure (Reagans & McEvily, 2003).

We have shown, further, that multilevel network models take us beyond the empirical regularities

documented in received organization research. We have indicated various ways in which ties

between subsidiaries can affect interpersonal sharing of information. In doing so, we have suggested

that well-known properties of informal social networks (i.e., actor centrality, reciprocity of ties) may

Table 8. Goodness-of-Fit Diagnostics for Selected Structural Network Properties.

Statistics Model 1 Model 2 Model 3

Observed

Simulated
Mean
(SE)

t
ratio

Simulated
Mean
(SE)

t
ratio

Simulated
Mean
(SE)

t
ratio

Standard deviation in-degree
distribution

1.85 1.92 (0.21) –0.34 1.84 (0.19) 0.05 1.85 (0.18) –0.00

Skewness in-degree distribution –0.20 0.45 (0.33) –1.95 –0.01 (0.29) –0.66 0.01 (0.26) –0.77
Standard deviation out-degree

distribution
2.65 1.92 (0.21) 3.46 2.50 (0.25) 0.61 2.55 (0.27) 0.38

Skewness out-degree distribution 0.69 0.42 (0.31) 0.86 0.25 (0.29) 1.52 0.44 (0.33) 0.74
GCC Transitive closure 0.49 0.08 (0.01) 29.27 0.46 (0.05) 0.81 0.50 (0.05) –0.14
GCC Cyclic closure 0.42 0.08 (0.02) 16.91 0.40 (0.05) 0.37 0.44 (0.05) –0.33

Note: Standard errors in parentheses.
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actually depend on the properties of the settings in which interaction occurs—and not just on the

characteristics of the individuals involved in interaction (Lomi & Stadtfeld, 2014). We reported

results showing that the most popular managers in the communication network are member in the

most popular subsidiaries. This seems to be particularly salient in our study because it suggests that

‘‘centrality’’—one of the most common network measures used in empirical studies of organiza-

tional behavior (Brass & Burkhardt, 1992), leadership (Balkundi & Kilduff, 2006), and human

resources management (Sparrowe, Liden, Wayne, & Kraimer, 2001)—comes also from membership

in central subsidiaries rather than individual attributes or even network positions. If replicated, this

result might lead to a systematic reevaluation of the meaning and causal standing of centrality and

other popular network constructs that are extensively used in organizational research.

We have shown, finally, that boundary-spanning ties tend to be supported by and co-occur with

formal relations between the subsidiaries. Managers in different subsidiaries are unlikely to entertain

informal relations with one another unless the subsidiaries are themselves connected. When sup-

ported by formal ties, informal ties between managers are characterized by significant tendencies

toward reciprocity. This is, therefore, the key mechanism that allows informal interaction to span

formal boundaries.

In closing, it seems appropriate to acknowledge the main limitations of the modeling approach that

we have proposed. These limitations suggest caution in the interpretation of the results we have

reported but also indicate clear directions for future research. First, MERGMs are not general-

purpose regression-like models. They are a specialized class of models developed for assessing inter-

dependences between binary tie variables. They are valuable only to the extent that the issue being

addressed requires explicit modeling of the mechanisms generating interdependences between network

ties. The relatively limited range of data structures that may be used to estimate MERGMs is compen-

sated, in part, by the unique possibility afforded by MERGMs to model explicitly endogenous tie inter-

dependence mechanisms that in more established hierarchical linear models can only be corrected for

generically. To broaden the appeal and applicability of MERGMs, future research will have to extend

the basic setup that we have described in this article to more general and flexile data structures.

Second, MERGMs share most of the limitations of the ERGM class of models from which they

derive. The main of such limitations is probably that MERGMs are models for cross-sectional data.

This limits our understanding of the specific mechanisms underlying the formation and change of

network structures in organizations. At best, estimated values of MERGM parameters represent

cross-sectional traces of causal mechanisms underlying the interdependence structures observed

in the data. The cross-sectional nature of MERGMs also limits our ability to tease out the separate

effects on the formation of network ties of individual (exogenous) characteristics of the actors (peo-

ple in our case) and of the endogenously determined positions they occupy in the network of social

and communication relations. Stochastic actor-oriented models for dynamic multilevel networks are

probably more useful to address such questions (Snijders, Lomi, & Torlò, 2013). Research extending

ERGMs to longitudinal data is promising, but it is only moving its first steps (Koskinen & Lomi,

2013). Another limitation concerns the scant assistance offered by standard statistical testing proce-

dures, especially in respect to model selection and goodness-of-fit assessment. As we have empha-

sized, the peculiar characteristics of the MERGM framework—the interdependence between

observations (i.e., ties) and, therefore, between statistics and related parameters—implies that standard

statistical testing cannot be applied directly to MERGM class of models and is poorly informative. We

have illustrated, nonetheless, that the rules of thumb—on which fit assessment currently relies—allow

successfully comparing alternative model specifications (and nested models) and selecting the model

that best reproduces the empirical network. Similar considerations apply to the comparison among

parameters, which is a well-known issue in ERGM studies—at the heart of current research on this

class of models. Testing the difference between parameters within and across models is currently not

possible. Parameter strength may be interpreted only in the context of an empirical specification, and
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the contribution of each parameter has to be interpreted with everything else assumed equal. Bayesian

exponential random graph models (BERGMs) are being developed to provide a probabilistic frame-

work for comparing models and model parameters (Caimo & Lomi, 2015).

In spite of these limitations, we think that the results we have presented clearly demonstrate the

benefits of accounting for potential multilevel mechanisms when modeling social networks. For

researchers interested in social networks in organizations, the models for multilevel networks that

we have discussed and illustrated provide a useful addition to the set of more general multilevel

models currently adopted in organizational research.

Appendix

Multilevel exponential random graph models are estimated using MPNet (http://sna.unimelb.edu.au/

PNet), a free software with a user-friendly interface.

Creating Input Files (Data)

In order to perform the analysis with MPNet, the input data have to be prepared and saved in the

correct format. A general specification consists of the three network files and a few attribute files

at least. All the files are in text format.

Network data. A separate text file has to be created for each network. The file consists in a square

binary matrix for network A and B, and a rectangular binary matrix for network X. For instance, the

matrices used in our empirical exercise are as follows:

A is a square matrix of size (6 � 6). Its generic entry alk takes value 1 if the row element (sub-

sidiary) l is hierarchically superordinate to the column element (subsidiary) k and 0 otherwise. The

diagonal values are set at 0 by default.

B is a square matrix of size (47� 47). Its generic entry bij takes value 1 if the row element (man-

ager) i communicates with the column element (manager) j and 0 otherwise. The diagonal values are

set at 0 by default.

X is a rectangular matrix of size (47 � 6). Its generic entry xil takes value 1 if the row element

(manager) i is affiliated to the column element (subsidiary) l and 0 otherwise.

Actor data. A separate attribute text file has to be created for each set of actors and each type of attri-

butes (binary, categorical, continuous).

Each set contains as many rows as the number of elements (subsidiary, manager) and as many

columns as the number of attributes.

Running the Analysis

Specifying and estimating MERGMs requires performing a set of steps. Once the data files have been

uploaded into MPNet, the effects that are expected to affect the multilevel network structure have to be

selected. Usually, models are estimated in order of increasing complexity. It is advisable to start with a

very simple model and make it more complex adding few effects in each run. First, a lower-level

model is specified, estimated, and tested. Then, multilevel effects are added. After each run and before

more complex models can be fitted, the model convergence has to be checked. In detail:

1. Import the input text files in MPNet.

2. Select which lower-level effects to include in the model specification. The selection is driven

by theoretical hypotheses about the relational behaviors which are expected to characterize

the relation investigated.
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3. Specify the MCMCML parameter values (i.e., number of subphases for iterations in the esti-

mation process, maximum estimation runs, sample size of networks simulated at step 5) and

start an estimation run. The MCMC algorithm is set internally and cannot be changed.

4. Check the covariance of effects in the output file. Like in standard regression models, a par-

ticularly high covariance between pairs of effects may indicate that they capture the same

relational behavior and may inflate the p value of even important effects. It is advisable to

consider whether to delete some of them.

5. Check the model convergence in the output file. A model is considered fully convergent if

the absolute values of the t ratios for all the included effects are smaller than 0.1. This step

is performed internally in MPNet. The number of iterations is set at 500 by default. To gain

convergence, it is possible to fine-tune the MCMCML parameter values (i.e., number of sub-

phases in the estimation process, maximum estimation runs, etc. can be increased) and repeat

the estimation.

6. Once a fully convergent model is obtained, update the estimates.

7. Check the goodness of fit of the model, according to the procedure illustrated in the article.

Like in standard MCMCML estimation procedure, the sample size of the simulated networks

to extract as well as the overall number of iterations and the number of iterations in the

‘‘burn-in’’ period have to be specified. Following best practices in ERGM estimation, these

MCMCML parameter values are usually set to the default values mentioned in the article.

The results of the goodness-of-fit check are reported in the goodness-of-fit file.

8. Include further sets of effects and repeat Steps 3 through 7 until a successful model is obtained.

More details on the list of effects that can be specified as well as on the estimation and testing

procedures are reported in the PNet and MPNet manuals (http://sna.unimelb.edu.au/PNet).

Additional Points

If one is interested in assessing the effect of shared—possibly multiple—affiliations to noncon-

nected subunits on lower-level interaction within and between subunits, the higher-level network

need not be included. Cross-level configurations are not tested.
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Notes

1. In non-experimental studies based on sampling, ignoring nonindependence could result in: (1) too small an

estimate of standard errors associated with model parameters and, as a consequence, the detection of an

effect which is not significant (Type I error); (2) too little power of statistical tests and, as a consequence,

a failure to detect an effect which is significant (Type II error).

2. For example, the tie bij can be included in either a reciprocal dyad with the tie bji, or a triangle with the ties

bjh and bih.

3. Five consultants were also included in the list because of the direct and personal relations with the president-

founder of the group and because of their crucial role in boat design. In the text we will refer to the 47
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respondents generically as managers unless the distinction between managers and consultants is essential to

the argument.

4. Our ‘‘bottom-up’’ approach to reconstructing the intraorganizational hierarchy between the subsidiary units

has a high degree of nominal validity because all the relations of subordination flow from the corporate cen-

ter (which is superordinate) to the subsidiaries. Our approach also allows us, however, to discover hierarch-

ical relations between subsidiaries. See Figure 1.

5. The parameter l takes value 4, which corresponds to a highly skewed out-degree distribution. Thus, a small

number of very active organizational members coexist with a majority of others who are likely to interact

with few colleagues (Hunter, 2007; Hunter & Handcock, 2006).

6. The burn-in refers to the practice of disregarding (and throwing away) the initial portion of t steps or iterations

of a Markov chain sample, so that the effect of the initial values on the estimation process is minimized. This

portion of t steps is indicated as burn-in period. After the burn-in period, the Markov chain is run normally and

each iteration is used in the MCMC calculations. The burn-in period is common to many MCMC algorithms.
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