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Event processing follows a decoupled model of interaction in space, time, and synchronization. However,
another dimension of semantic coupling also exists and poses a challenge to the scalability of event pro-
cessing systems in highly semantically heterogeneous and dynamic environments such as the Internet of
Things (IoT). Current state-of-the-art approaches of content-based and concept-based event systems require
a significant agreement between event producers and consumers on event schema or an external conceptual
model of event semantics. Thus, they do not address the semantic coupling issue. This article proposes an
approach where participants only agree on a distributional statistical model of semantics represented in a
corpus of text to derive semantic similarity and relatedness. It also proposes an approximate model for relax-
ing the semantic coupling dimension via an approximation-enabled rule language and an approximate event
matcher. The model is formalized as an ensemble of semantic and top-k matchers along with a probability
model for uncertainty management. The model has been empirically validated on large sets of events and
subscriptions synthesized from real-world smart city and energy management systems. Experiments show
that the proposed model achieves more than 95% F;Score of effectiveness and thousands of events/sec of
throughput for medium degrees of approximation while not requiring users to have complete prior knowledge
of event semantics. In semantically loosely-coupled environments, one approximate subscription can com-
pensate for hundreds of exact subscriptions to cover all possibilities in environments which require complete
prior knowledge of event semantics. Results indicate that approximate semantic event processing could play
a promising role in the IoT middleware layer.
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1. INTRODUCTION

The Internet of Things (IoT) builds upon the success story of Internet technologies and
the Web in order to connect physical things to the world wide Internet [Atzori et al.
2010]. It is estimated that 50 billion devices will be connected to the Internet by 2020
[OECD 2012]. In recent years, there has been an increasing number of deployments of
devices connected to the Internet via IoT protocols such as the Constrained Application

This work has been supported in part by Science Foundation Ireland under Grant Number SFI/12/RC/2289
and conducted in the Insight Centre for Data Analytics at the National University of Ireland, Galway.
Authors’ addresses: Souleiman Hasan (corresponding author), National University of Ireland, Galway;
email: souleiman.hasan@insight-centre.org; Edward Curry, National University of Ireland, Galway; email:
edcurry@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2014 ACM 1533-5399/2014/07-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2633684

ACM Transactions on Internet Technology, Vol. 14, No. 1, Article 2, Publication date: July 2014.




2:2 S. Hasan and E. Curry

Event Processing

Space

Time

Synchronization

Event
: Consumer

Event

Semantics
Source

type, attributes, values

Approximate Semantic Event Processing :

Fig. 1. Decoupling dimensions.

Protocol (CoAP). IoT projects such as the SmartSantander smart city project have
deployed tens of thousands of Internet-connected sensor devices in large cities among
Europe [Sanchez et al. 2011]. The sensing capabilities of these devices are wide ranging,
including solar radiation, wind speed and direction, temperature, water flow, noise,
traffic, public transport, rainfall, parking, and others.

Connecting physical objects, or things, to the Internet would enable a plethora of ap-
plications, such as assisted driving, monitoring environmental parameters, augmented
reality, smart and comfortable homes, etec. [Atzori et al. 2010]. A basic requirement for
realizing the IoT is an infrastructure of communication solutions and standards, such
as IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) and CoAP pro-
tocols by the Internet Engineering Task Force (IETF) [Atzori et al. 2010]. There is also
aneed for middleware that can abstract the application developers from the underlying
technologies, which is crucial to the adoption and evolution of IoT applications [Atzori
et al. 2010]. Event-based technology has played an important role in the middleware
space, specifically in Enterprise Application Integration (EAI) [Hohpe and Woolf 2004],
as an enabler for building distributed systems.

Event-based technologies are based on a loosely-coupled interaction model which
supports scalability. Nevertheless, they assume a high level of semantic agreement
between event producers and consumers. This might be challenging for largely het-
erogeneous environments, such as IoT smart buildings and cities, due to difficulties
in establishing such agreements. This article tackles this aspect and proposes an ap-
proximate matching model for single events. It could be suitable in many scenarios,
particularly when partial agreements exist, such as on a measurement unit of inter-
est while leaving most of an event’s payload to be approximated by the matcher. We
think that there is a need to research these event-based technologies to contribute,
among other technologies, in playing the middleware role and enabling applications of
the IoT.

1.1. Background

In the event-based paradigm, event sources fire instantaneous and atomic information
items called events. Event consumers use rules with condition and action parts to detect
events and react to them. Events are the only means of interaction between sources and
consumers. This results in decoupling the production and consumption of events and
thus increasing scalability by “removing explicit dependencies between the interacting
participants” [Eugster et al. 2003]. Event-based systems decouple participants on three
dimensions, as shown in Figure 1.

—Space decoupling suggests that participants do not need to know each other.
—Time decoupling means that participants do not need to be active at the same time.
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Table I. Approaches to Semantic Coupling

Approximate Semantic
Content-Based Concept-Based Matching
Matching exact string boolean semantic matching approximate semantic
matching matching
Semantic term-level full concept-level shared agreement loose agreement
Coupling agreement
Semantics not explicit top-down ontology-based statistical model based on
distributional semantics
Effectiveness 100% depends on the domains and depends on the corpus
(F1Score) number of concept models
Cost defining a large | establishing shared agreement minimal agreement on a
number of rules | on ontologies large textual corpus
Efficiency high medium to high, refer to medium to high, refer to
(throughput) Section 1.2.2 Section 6.4.4

—Synchronization decoupling suggests that event producers and consumers are not
blocked while producing or consuming events [Eugster et al. 2003].

Nevertheless, event-based systems can be at the same time tightly coupled by the
semantics of exchanged events. Traditional deployments of event systems assume a
mutual agreement on event types, attributes, and values, which forms an explicit
dependency between participants. For example, if a smart city event source marks
an event with the type ‘parking space occupied’, all event consumers of this event
would have to use this exact event type in their rules. A new event consumer to the
system cannot use a rule with the term ‘garage spot occupied’ to handle such events.
Within environments with a high level of semantic heterogeneity, the definition and
maintenance of all possible rules becomes difficult for users and might not be feasible.

Events can be represented in various data models, such as ordered tuples, attribute-
value records, hierarchical structured and semi-structured records, and graph data
models [Muhl et al. 2006; Wang et al. 2004]. Attribute-value events are simple and
widely used. They may also be used to convey other types via some adaptation, such
as the use of dotted naming schemes for hierarchical models. Thus we scope the rest of
this article to the attribute-value-based event model.

Event semantic coupling has three common dimensions resulting from mutual agree-
ment on event types, event attributes, and event values. Thus, one core challenge that
needs to be tackled in order to prepare event processing systems for the Internet of
Things is the relaxation of semantic coupling in the paradigm. This challenge forms
the main theme and high-level requirement discussed in this article.

1.2. Current Approaches and Proposed Model
The following categories of approaches can be recognized, as shown in Table 1.

1.2.1. Content-Based Approach. Event sources and consumers use the same event types,
attributes, and values without any extra description of meaning external to the rules
and events. This is the case assumed in traditional content-based publish/subscribe and
event processing systems, such as SIENA [Carzaniga et al. 2000], where the matcher
performs string exact comparison between terms. The approach has high semantic
coupling between parties and works quite well in environments with a low level of
data heterogeneity. However, it is limited as for as scaling out to more heterogeneous
environments due to the effort required to keep the agreement on shared schemata
and to develop a large number of rules according to such an agreement.
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1.2.2. Concept-Based Approach. In this category, participants can use different terms
and values and still expect matchers to be able to match them properly thanks to an
explicit knowledge representation that encodes semantic relationships between terms.
Example knowledge representations are thesauri and ontologies which describe the
meaning of each concept and its properties and relationships with other concepts.
Building and agreeing upon such a knowledge representation suggests an explicit
dependency between parties, not directly but via the conceptual model. Thus, relatively
high semantic coupling and effort for management and maintenance are still required,
as the agreement has to happen on the level of each individual concept.

Given a knowledge representation, a traditional event processing system can be
leveraged by translating incoming events to all possible synonymous and semantically
related events before matching, such as in S-TOPSS [Petrovic et al. 2003]. The trans-
lation process in real time and the large number of translated events can significantly
decrease the throughput of the system. Rewriting and expansion of rules or subscrip-
tions based on the conceptual model can be used instead, as in Zeng and Lei [2004].
However, a significantly large and possibly exponential number of possible rules may
result in low throughput, as shown in Section 6. Nonetheless, these two approaches
hold the merit of possibly sitting on top of currently existing systems. On the other
hand, because underlying systems follow a Boolean model of matching, the resulting
precision and recall might be affected due to the lack of inherent ranking of results.

Besides, matchers can be redesigned to leverage an index based on an ontology and
follow a Boolean matching model, as in Wang et al. [2004], or index for continuous querie
as, in Le-Phuoc et al. [2011]. These approaches can enhance throughput by delaying
the decision of semantic matching until the actual time of matching, thus reducing the
space of possible comparisons. Nonetheless, tying the matcher to a specific conceptual
model limits its re-usability with different models of meaning.

1.2.3. Proposed Approximate Semantic Matching Approach. In the absence of an agreement
on event schema or a conceptual model, participants may loosely agree on topics rep-
resented in large corpora of texts. Such corpora can be used to construct distributional
models of meaning to derive semantic similarity and relatedness based on terms oc-
currence in similar contexts in the corpora [Harris 1954]. Such an approach provides a
loose semantically-coupled paradigm, and distributional models can be built automati-
cally, as opposed to manually-created knowledge representations. Distributional-based
semantic similarity presents a promising compromise to loose semantic coupling and at
the same time have acceptable levels of effectiveness and efficiency. In a previous work
[Hasan et al. 2012], we proposed and set the main lines for the approximate seman-
tic event processing approach. This article extends our previous work with a formal
framework, empirical validation for time efficiency, and insights on several aspects of
the proposed model, such as the effect of the degree of approximation on the model.

1.3. Contributions
The contributions of this article are manifold.

—We present an effective and efficient approximate single-event processing model for
addressing semantic coupling in the Internet of Things.

—We show a formal framework for the proposed model based on an ensemble of se-
mantic and top-k2 matchers in addition to a probability model for uncertainty man-
agement.

—We provide an efficient algorithm for finding top-£ matchings based on evolving
Pareto frontier in a vector space.

—We give an evaluation framework based on synthetic event loads and approximate
subscriptions from real-world IoT deployments.
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The rest of this article is organized as follows. Section 2 describes a motivational
scenario. Section 3 states the requirements and questions tackled. The proposed model
is discussed in Sections 4 and 5. Section 6 details the evaluation methodology and
results. Related work is discussed in Section 7. Section 8 discusses the implications of
the proposed model for future work, and Section 9 concludes.

2. MOTIVATIONAL SCENARIO

Alice is a sustainability officer in a large corporation in the electronics industry. The
organization has many offices and facilities all over its city. Alice’s job is to ensure
that the company sticks to its Corporate Social Responsibility (CSR) programs, such
as saving energy and lowering its overall COy emissions. Most of the company’s build-
ings are equipped with sensor nodes for energy consumption, temperature, and other
environmental parameters.

Alice wants to set up a rule that notifies her when an excessive energy consumption
scenario in public spaces of the buildings is detected. The intended alert should fire
when “energy consumption from heating public halls of the buildings increases.” Such
a scenario may happen when employees tend to open windows if it is warm despite
the fact that the heater is still turned on. This rule can be expressed using an Event
Processing Language (EPL) such as Esper’s language [EsperTech 2013] as follows.

pattern [every a=BuildingsEvents(a.type= ‘heater energy consumption increased’
and a.location=°‘public hall’)].

While the sources of the required information are available from the buildings’ IoT
nodes, the semantics of the events differ from one building to another due to differ-
ent manufacturers of sensors. For instance, events containing terms such as ‘energy
consumption’, ‘energy usage’, and ‘power consumption’ to refer to the same thing.

Alice is not interested in an exact number of such behavioral patterns but rather
in a rough estimate which helps her take action. Alice asks the IT department to
realize the intended detection scenario. The IT department reports that the scenario
requires a large set of rules, such as the preceding one, to be deployed on an existing
event processing engine with all possible variations of semantics in order to cover the
semantic heterogeneity that exists. These rules take time to define and also to maintain
when the environment or the requirements change, such as adding new sensors.

3. REQUIREMENTS AND RESEARCH QUESTIONS
The following user requirements for an IoT event processing engine are identified.

—R]1. Usability of the event processing system by nontechnical users
—R2. Low cost and short time for integrating and accessing IoT devices
—R3. Near real-time and effective event processing of IoT events

Those user requirements can be elaborated into the following high-level research
questions scoped to single-event processing.

—@1I1. How can loose semantic coupling between event sources and consumers be
achieved?

—@2. How can effective and efficient single-event processing with a high detection rate
and throughput within a loosely semantically coupled paradigm be achieved?

This article focuses the discourse on single-event matching, although impacts on related
aspects, such as complex event processing, are also discussed.
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4. APPROXIMATE EVENT PROCESSING MODEL

With respect to the requirements and questions in Section 3, we propose a loosely
semantically-coupled model. The proposed model requires the participants to agree on
a topic or set of topics which are represented as a large corpus of text. The corpus is
then used to build a distributional semantic model for deriving semantic similarity and
relatedness. The model also introduces the tilde ~ semantic approximation operator
to the event processing language. For example, a subscription to energy events, such as
the one required in Section 2, can be expressed as {type= heater energy consumption
increased ~} to let the engine match events of the mentioned type or any other type
semantically related to it. The proposed model is realized based on:

—the use of distributional semantics relatedness measures, such as the Wikipedia-
based Explicit Semantic Analysis (esa), to parametrize the tilde ~ operator;

—a matching model rooted in uncertain schema matching;

—a probability model for uncertainty management.

4.1. Distributional Semantics as a Loosely-Coupled Semantic Model

Distributional semantics is based on the hypothesis that similar and related words
appear in similar contexts [Harris 1954]. Distributional models are quite useful for
the task of assessing semantic similarity and relatedness between terms. A semantic
measure is a function smthat quantifies the similarity/relatedness between two terms.
Typically sm has its values in R. Distributional models can be constructed automat-
ically from statistical cooccurrence of words in a corpus of documents, for example,
the measure based on the Explicit Semantic Analysis (esa) of the Wikipedia corpus.
The formalism of such models as a vector space provides a computationally efficient
framework for calculating similarity scores. Thus, they represent a good fit for the
requirements of loose semantic coupling and real-time performance for event-based
systems.

The IoT event cloud would include events from various domains, which suggests
that domain-agnostic measures have a potential for IoT. We scope this article to the
domain-agnostic distributional semantic measure esa [Gabrilovich and Markovitch
2007], constructed from the Wikipedia corpus as of 20131, because of its relative ease
of construction, as it is based on statistical analysis of unstructured document corpus.
However, the model is generic and suitable for other measures as well.

In a nutshell, Wikipedia-based esa builds an index of words based on the Wikipedia
articles they appear in. A word becomes a vector of Wikipedia titles, and the more
common titles that exist between two words, the more related the words are. For exam-
ple, esa(‘parking’, ‘garage’) > esa(‘parking’, ‘energy’), as the formers appear frequently
in common articles. We assume that semantic measures are external services to the
event engine and that they are constructed independently. This assumption simplifies
the interface between the event engine and the service and makes the embedding of
different services relatively easy.

4.2. Event Flow Model

The event processing engine plays a key role of filtering and making sense out of the
event cloud. Cugola and Margara present an abstract functional model for informa-
tion flow processing systems [2012]. The core components of an event engine in their
model are the event receiver, decider, producer, and event forwarder. Event sources,
consumers, and users interact with the engine through protocols and condition/action
Rules.

Ihttp://en.wikipedia.org/wiki/Wikipedia:Database_download
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Fig. 2. Event flow model (adapted from [Cugola and Margara 2012]).

Figure 2 presents an elaboration of Cugola and Margara’s model. Event sources which
can be human, software, or hardware agents creating events. These events propagate
to the engine and are received by the receiver, which sends the events to the decider.
The decider is responsible for detection of conditions or patterns that hold in single
events or in a set of events according to the condition parts of the rules registered in
the engine. When a condition is detected in the decider, the participating events which
caused the detection are propagated along with the condition to the producer, refer to
A and B in Figure 2.

The producer generates an event as dictated by the action parts of the rules whose
conditions or patterns are detected with possibly binding of placeholders with actual
values from events. The generated events may feed back the receiver and/or propagate
to the forwarder which sends them to the external event consumers which may be
human agents, software applications such as user interfaces, or hardware agents. The
decider keeps in its working memory a history of events which may be eligible to
trigger a detection. The single event matcher detects only single events which match
some filtering conditions, while the complex pattern matcher detects a pattern of events,
such as the sequence of two or more events which have passed single-event matching.

Our proposed model extends the event processing engine as follows.

—Rules are equipped with the tilde ~ semantic approximation operator. Rules which
consist only of a detection part for single events are called subscriptions throughout
the rest of this article.

—The single event matcher is equipped with matching and mapping algorithms to
detect events semantically relevant to approximate subscriptions. The single event
matcher works in two modes
—top-1, which forwards the best mapping between an event and a subscription to

the consumers;

—top-k, which results in a list of top-%£ possible mappings between an event and a
subscription. The top-k£ mappings of various events to various subscriptions go to
the complex pattern matcher.

—The complex pattern matcher performs a probabilistic reasoning to deduce the prob-
abilities of occurrences of the derived events in the action parts of the complex rules.

The focus of this article is on the single event matcher subcomponent of the decider.

4.3. Event Model

The event model used in this work is an attribute-value model, but the discussion is
as relevant to other models, such as hierarchical or graph-based event models. Each
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event is a set of tuples. Each tuple consists of an attribute-value pair. Example 4.1
represents an event complying to the model.

Example 4.1 (Increased Energy Consumption Event). {type: increased energy con-
sumption event, measurement unit: kilowatt per hour, device: computer, desk: desk
112¢, office: room 112, floor: ground floor, zone: building, city: Galway, country: Ire-
land, continent: Europe}.

The formal definition of the event model is as follows: Let E be the set of all events and
let A and V be the sets of possible attributes and values, respectively. Let T be the set
of possible attribute-value pairs, that is, tuples, such that T = {(a,v) :a € AAv e V.
We define two functions Astribute : T — A and Value : T — V, which give the
attribute and value, respectively, when applied to a tuple such that Attribute(a, v) = a
and Value(a, v) = v. An event e € E is a set of tuples where no two distinct tuples can
have the same attribute, as in Equation (1).

e={t:teT AVt,ts €e, bty #to = Attribute(t;) # Attribute(ts)}. 1)

4.4. Language Model

Subscriptions follow a conjunctive query form of attribute-value predicates. Each pred-
icate uses the equality operator to signify exact equality or approximate equality when
indicated. Other Boolean and numeric operators such as ! =, >, and < are kept out
of the language for the sake of simplicity and for focusing the discourse on semantic
matching. Nonetheless, the model can be extended to encompass such operators, as
discussed in Section 5.5.

Each predicate consists of an attribute, a value, and specifications of the semantic
approximation for the attribute and the value. The most notable feature of the language
is the tilde ~ operator, which helps specify the approximation for an attribute/value
when it follows it. The tilde ~ operator also helps specify optionally the semantic
measure to be used for approximation, as shown in Example 4.2.

Example 4.2 (Approximate Subscription). {type = increased energy consumption
event, device = laptop~, room~esa = room 112}.

The author of the subscription in Example 4.2 is interested in an event of exactly the
type ‘increased energy consumption event’. The subscription specifies that the device can
be ‘laptop’ or something related semantically to ‘laptop’ with no specification of what
semantic measure to use, meaning that the default should be used. The subscription
also states that the event room must be room 112°, however, it states that the attribute
‘room’ itself can be semantically relaxed using the esa semantic measure.

The formal definition of the language model is as follows: Let S be the set of sub-
scriptions and let A and V be the sets of possible attributes and values, respectively,
which can be used in a subscription. Typically there are no restrictions on A or V,
and the user is free to use any term or combination of terms. Let SM be the set of all
possible semantic relatedness measures available for approximate subscriptions. Each
predicate is a sextuple which consists of the attribute, the value, whether or not the at-
tribute/value are approximate, and the semantic measure to relax the attribute/value
if applicable. Let P be the set of possible predicates. Thus, P is a subset of a Cartesian
product, as shown in Equation (2).

P={p:p=_(a,v,app,, app,, semy, sem,) € AxV x {0,1} x {0,1} x SM x SM}. (2)

A subscription s € S is a set of predicates such that s = {p : p € P}. We define
two functions Attribute : P — A and Value : P — V, which give the attribute and
value, respectively, when applied to a predicate. We define a Boolean function App} :
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P — {0, 1}, which specifies if the attribute of a predicate p € P must be approximated
if App(p) = app, = 1. We define a function Sem) : P — SM, which specifies for a
predicate p € P the semantic measure Sem,(p) = sem, to be used to approximate its
attribute if the predicate is approximated, that is, if App,(p) = 1. We define functions
Appy;, and Semy, for value approximation in a similar way. An exact subscription is
a special case of approximate subscriptions where all attributes and values are not
approximated.

5. MATCHING

Given an approximate subscription s € S and an event e € E, an approximate seman-
tic single-event matcher M decides on the semantic relevance between s and e. The
relevance results from semantic mapping between attribute-value predicates of s and
attribute-value tuples of e. Example 5.1 shows a possible mapping between the event
in Example 4.1 and the approximate subscription in Example 4.2.

Example 5.1. o = {(type = increased energy consumption event < type: in-
creased energy consumption event), (device = laptop~ esa <> device:computer),
(room~ esa = room 112 <« office: room 112)}.

M works in two modes: the top-1 mode which decides on the most probable mapping
between s and e, and the top-£ mode which decides on the top-k£ probable mappings
to be used later for complex event processing. It has been shown [Gal 2006] that
producing the top-k mappings increases the chance of hitting the correct mapping
due to the statistical monotonicity principle which roughly states that mappings with
higher similarities tend to have higher precisions but with a statistical distribution
such that a mapping with a slightly smaller similarity can have a better precision than
that of higher similarity [Gal 2006]. Uncertain mapping between predicates and tuples
is inherent in both matching modes with probabilities being the final outcome.

The formal definition of the matching model is as follows: Let C = s x e be the
set of all possible correspondences between the predicates of s and the tuples of e.
Ve = (p,t) e C = pesntee T =2 is the power set of C and represents all
the possible mappings between s and e. Let I' : ¥ — {0, 1} be a Boolean constraint
function which defines the validity of a mapping o € X. We adopt in this work ann : 1
cardinality constraint function which allows every predicate to be mapped to one and
only one event tuple. We denote the set of all valid mappings according to I' as Xr.
There are exactly n correspondences in any valid mapping o, where n is the number of
predicates in the subscription s.

For any valid mapping o € Xr, there exists a probability function which quantifies
the probability of every predicate-tuple correspondence (p, t) € o, such as (device =
laptop~ esa < device:computer). The probability of (p,?) is denoted as p(, s, where
Popp € [0, 1]. The probabilities p, s form a probability space P, over all (p,¢) € o, as
shown in Equation (3).

Z Py =1 3)

(p,t)eo

For any valid mapping o € Xr, there exists a probability function which quantifies the
probability of the overall mapping ¢ among other possible mappings. The probability
of o is denoted as p,, where p, € [0, 1]. To realize a matcher such as the matcher M
previously described, we propose an ensemble of matchers, illustrated in Figure 3.

5.1. First-Line Matchers and Similarity Matrices

First-line matchers operate on actual attributes and values of s and e and output simi-
larity matrices according to the semantic measures sm € SM in s. A similarity matrix
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Fig. 3. Matcher model.

M is an n x m matrix, where 7 is the number of predicates in s and m is the number of
tuples in e. Each element ]Wf j of M! represents the degree of similarity between predi-

cate p; € s and tuple ¢; € e according to the matcher /. Typically, ]\Jf ; € R. For instance,

the cell Mflj of the correspondence (device = laptop~ esa <> device:computer) would
be assigned the value 1 by the matcher /; responsible for attribute exact matching.
Another cell Mfzj in another matrix M would be assigned a value <1 by the matcher
ls responsible for value approximate matching.

There are two sets of first-line matchers: matchers which operate on the attributes
of predicates/tuples and those which operate on values. There is an exact matcher for
attributes and an exact matcher for values. These exact matchers handle the predi-
cates’ attributes/values which do not have any approximation specification and ignore
the rest. An exact matcher operates on attributes or values and produces a Boolean
similarity matrix, that is, Z\lf”}““ € {0, 1}. Let the matchers labeled exa and exv be the
attributes and values exact matchers, respectively. Let p; € s, t; € e, Equation (4) shows
how the attributes exact matcher assigns similarities. The same applies to the values’
exact matcher.

0, if App,(p;) = 0 A Attribute(p;) # Attribute(t;),
1, otherwise.

e |

The remaining first-line matchers are approximate matchers, each of which uses one
of the semantic measures used in the subscription. An approximate first-line matcher
handles the predicates’ attributes/values, which are relaxed by its corresponding se-
mantic measure, and ignores the rest. It operates on attributes or values and produces
a similarity matrix, as shown in Equation (5), which explains the behavior of an ap-
proximate attribute matcher [ which corresponds to a semantic measure sm. The same
applies to values’ approximate matchers. Let p; € s, Vt; € e:

U sm(Attribute(p;), Attribute(t;)),
ij = 1,

The inner working and order of first-line matchers can be changed according to opti-
mization strategies, as discussed in Section 5.5.2.

if App}(p;) = 1 A Sem;(p;) = sm,
otherwise.

6))
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5.2. Global Aggregator and the Combined Similarity Matrix

The global aggregator F operates on the resulting similarity matrices from first-line
matchers and produces a single combined similarity matrix M, as shown in Figure 3.
For example, the correspondence (device = laptop~ esa < tool:computer) would be
assigned a similarity value of 0 by the attribute-exact first-line matcher because ‘device’
# ‘tool’, and they are not approximated. It would be assigned a similarity value x > 0
by the value-approximate first-line matcher of esa, as ‘laptop’ is related to ‘computer’,
and they are approximated. The global aggregator shall combine the 0 similarity from
the first matrix with the similarity x from the other matrix and conclude a judgment
of 0 as an overall similarity according to matching semantics, as the correspondence
violates it for attributes.

Matrix M represents an overall judgment on the similarity between the subscrip-
tion’s predicates and the event’s tuples. The global aggregator chosen for the model is
the element-wise matrix multiplication operator o, also called the Hadamard product,
as defined in Equation (6).

=L
M,j:(MloMzo...oML)i,j:l_[m’j' ©
=1

The Hadamard product is commutative and associative. It is also efficient to be imple-
mented, as it can be computed in O(n x m x L) time. The zero and identity elements of
the Hadamard product easily extend from the familiar zero and identity elements of the
multiplication operator x, that is, 0 and 1. This makes it easy to pass information from
the first-line matchers to the aggregator, that is, to neglect or skip a correspondence
(pi, t;) by assigning 0 or 1 as its similarity.

5.3. Top-1 Matcher

In the top-1 matching mode, the top-1 matcher operates over the combined similarity
matrix M. It produces the best mapping o* and the space P,-, which defines the
probabilities of correspondences ¢; € o*. It also produces the space P, which defines the
probability that * is the correct mapping between the subscription s and the event e,
as illustrated in Figure 3. Given the combined similarity matrix M, the best mapping
o* can be computed by choosing the tuple ¢;, which has the maximal similarity for
every predicate p;, as shown in Equation (7).

0" =1(pi, pj):1<i<nAj=argmax(M; ;). (7
J

According to Equation (7), o* can be found in O(n x m) operations. o* contains exactly
n predicate-tuple correspondences under the n : 1 matching semantics.

To create the probability space P,-, Equation (8) defines the n probabilities of the
correspondences (subscription predicate <> event tuple) of o*. That is done by dividing
each (predicate <> tuple) similarity in the mapping by the sum of all similarities so the
sum of probabilities becomes 1. These probabilities can be computed in O(n) time.

pi,ji=£+ﬁ,1§i§n- (8
Zi:l M,J}

To create the probability space P which defines the probability that o* is the correct
mapping between s and e among other possible mappings, there is a need to normalize
the similarity matrix M among other possible matrices. The maximal possible simi-
larity value maxs,, of each measure sm € SM is used, as they are universal among all
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Fig. 4. Top-k by an evolving frontier algorithm.

mappings, so the probability that o* is correct <1. The maximum value of any element
in M is maxg, = [[,ncsm MaXsm. Thus, the probability that o* is correct is defined in
Equation (9) and can be computed in O(n) time.

M ;,
= _ Mg 9
P 2 * Maxg, ©

(pi.tj;)eo*

5.4. Top-k Matcher

In the top-k matching mode, the matcher M produces a ranked list of the best %
mappings o, 0,,...,0; € Xr along with the probability spaces of correspondences
P, and the probability space of mappings P, as illustrated in Figure 3. Given the
combined n x m similarity matrix M between a subscription s and an event e, we
propose an efficient algorithm for finding the top-£ mappings o based on an evolving
Pareto frontier in a vector space, as shown in Figure 4.

Consider the set V of all n-dimensional vectors, where the components of each vector
are tuples of e, thatis, V = {v : v € {1,2, ..., m}"}. Each vector ¥ € V encodes a valid
mapping o € Xr, as shown in Equation (10). We denote this as v <> o.

' =j o (p,t)eo:0ecZr, pestce. (10)

For example, let an approximate subscription be {type = increased energy con-
sumption event,device = laptop~,room~esa = room 112}. Let an event be {type:
increased energy consumption event,office: room 112,device: computer }. Let a map-
ping ¢ = {(type=increased energy consumption event <« type:increased energy
consumption event), (device = laptop~ esa <> device:computer), (room~ esa = room
112 < office: room 112)}. A vector v = (1, 3, 2) corresponds to this mapping between
the subscription’s predicates 1, 2, and 3 to the event’s tuples 1, 3, and 2, respectively.

To quantify a vector, and hence its corresponding mapping, we define an operator
I...l, : V— R given the similarity matrix M, as in Equation (11).

=n
1B, =Y Mj:j=7. (11)
i=1
The more similarity a vector v encodes according to M, the more it becomes ||v]|,,.
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We say that a vector v € V is dominated by a vector z € V if and only if the similarity
encoded by all components of v is greater than or equal to the similarity encoded by the
corresponding components of z with at least one similarity to be greater than and not
equal. That means that the mapping o; <> v is better than the mapping o; < #, and
that [|v]|,, > llz|l,,. We denote this as v < 4. We say that a vector « directly dominates a
vector v if there exists no vector w different from #z and v, where v < w < u. We denote
this as ¥ << u. For instance, v2 << v7 in Figure 4. In terms of similarity, this means
that vy encodes a mapping that has more similarity between predicates and tuples
than the mapping encoded by v7.

The proposed algorithm which we call Top-k by an Evolving Frontier is depicted
in Figure 4. It starts by sorting the rows in the similarity matrix M in descending
order and keeping track of the new locations of tuples in a matrix called My. The best
mapping oy is represented by the elements of the sorted matrix which have j = 1. This
is equivalent to a vector v which is dominated by all other vectors of V. Vector 77 is a
Pareto frontier. A Pareto frontier is a set of vectors which are dominated by all other
non-searched vectors not in the frontier, and which do not dominate each other.

ALGORITHM 1: Top-%£ by an Evolving Frontier

Input: the similarity matrix M, the required number of mappings %
Result: Top-£ mappings ¥,

1 begin

2 Yy «— O;

3 SortedM <— SortRows(M);

4 My <— TupleIndicesOf(Sorted M),

5 Frontier <— & ; /* A priority queue of vectors whose key is ||§||M */
6 v <— (1,1,...,1)

7 Enqueue(vy, Frontier);

8 forl<r <kdo

9 v, <— Head(Frontier); /* Get the best vector v, from head of the queue */
10 Tp «— Sy U0 0 < 0p;

11 Frontier «<— Frontier\v; ; /* Remove v, from head of the queue */
12 D« {d:v, <<d}; /* Set of n vectors directly dominating v, */
13 Enqueue(D, Frontier);

14 end

15 return X;;

16 end

Because the dominance, as we define it, is equivalent to the quality of mapping, then
the best mapping of non-searched mappings must lie on the frontier. The algorithm
works in iterations, and the frontier keeps evolving. When a vector is found to corre-
spond to the best mapping, it is removed from the frontier. All vectors which directly
dominate the removed vector are candidates for search, and thus they are added to
the frontier. Vectors which directly dominate a vector can be found by changing one of
its n components at a time by moving one step rightwards in the rows of the sorted
similarity matrix. As a result, the algorithm is able to find the top-£ best mappings
within k£ iterations, and the search space is kept to a minimum and updated with n
vectors at each iteration. The correctness of the algorithm follows from the previous
discussion. Algorithm 1 shows its main steps.

The frontier is presented as a priority queue of vectors v € V on the key |v],,, so
searching the frontier is quite efficient, as the best vector sits at the head of the queue.
Sorting M in Step 3 has a time complexity of O(n.m.log(m)). Taking the head of the queue
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in Step 9 % times has an overall complexity of O(%). Generating set D in Step 12 & times
has an overall complexity of O(k.n?). Enqueuing n vectors of D in Step 13  times has an
overall complexity of O(n.log(n) + k.log(k) — k). That makes the overall time complexity
of the proposed algorithm proportional to O(n.m.log(m) + n.log(n) + k.n? + k.log(k)).
Creating the probability space P,: of correspondences and the probability space P of
mappings o is achievable in the same way as in the top-1 mode by normalizing M, as
shown in Equations (8) and (9), with the difference being that in the top-k2 mode, there
are k probabilities p,- in P to be calculated.

5.5. Matcher Extensibility

This section tackles the extensibility of the matcher to include Boolean and numeric
operators and to leverage common optimization strategies in event processing.

5.5.1. Boolean and Numeric Operators. The current language, as described in Section 4.4,
is confined to the equality operator. However, Boolean and numeric operators such as
I =, <, <, >, and > can be added as exact first-line value matchers in Figure 3. Let
(temperature> 25) be a predicate and let {location:first floor, temperature:26} be
an event of two tuples. Then an exact matcher for the > operator will produce a Boolean
matrix which contains 0 for the cell which corresponds to the predicate and first tuple,
while it contains 1 for the predicate and the second tuple. If the predicate contains an
approximate attribute, that is, (temperature ~ esa > 25), then the approximate first-
line matcher of attributes produces the similarities for the mappings (‘temperature’<
‘location’) and (‘temperature’<> ‘temperature’). This result will need to be combined
then with the matrix produced by the > operator first-line matcher.

5.5.2. Optimization. A distinguishing aspect of matching in event processing systems is
that there are typically a large number of subscriptions S to be matched against every
event e. There are two main types of optimization strategies which can be recognized
in the literature: leveraging commonalities between subscriptions and changing the
evaluation order of predicates [Fabret et al. 2000; Liu et al. 2008].

Leveraging commonalities is based on the observation that two subscriptionsx,y € S
may share one or more predicates. Thus, it is more efficient to evaluate unique atomic
predicates first and then propagate the results to subscriptions. In our model in Fig-
ure 3, this can be achieved by decomposing registered subscriptions into their predi-
cates before entering the matcher. The set of predicates then forms the entries of the
similarity matrices. The top-1 and top-2 matchers then aggregate the matching results
according to each subscription. This affects the creation of probability spaces which
shall consider only those predicates which are a part of the subscription in question.
We call a matcher equipped with this strategy a commonalities-based matcher.

The idea of ordering the evaluation of predicates stems from interdependencies be-
tween predicates. In our proposed model, we have two distinct types of predicates: exact
and approximate. If an exact predicate of a subscription evaluates to False then there
is no need to evaluate the rest of the subscription’s predicates if they do not belong
to other subscriptions. Thus, we order the execution of first-line matchers by starting
with the exact matchers first. Another observation is that when an approximate at-
tribute/value of a predicate evaluates to 0, then the whole predicate evaluates to 0. We
call a matcher equipped with this strategy an order-based matcher.

6. EVALUATION
This section describes the evaluation methodologies and the experiments’ results.
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Table Il. Base Concepts for Effectiveness Evaluation

Ground Truth Ground Truth
Relevant Events Irrelevant Events
Matcher Relevant Events TP (True Positive) FP (False Positive)
Matcher Irrelevant Events FN (False Negative) | TN (True Negative)

6.1. Evaluation Metrics

Evaluation metrics can be classified into two categories: effectiveness and efficiency
metrics [Bellahsene et al. 2011]. Effectiveness metrics measure the quality of event
matching. A fundamental requirement is the existence of a ground truth which divides
events into relevant and irrelevant with respect to each approximate subscription.
Table II shows the base concepts needed for evaluating effectiveness. For all these
concepts to exist, the resulting events from the matcher must be divisible into two
distinct sets of matcher-relevant and irrelevant events. In the case of the approximate
matcher which assigns probabilities to events with respect to a subscription, the two
sets can be achieved by ranking and cutting off using recall levels. Precision, Recall,
and the combined F;Score have been used for effectiveness evaluation.

Precision measures the proportion of relevant events discovered by the matcher
with respect to all the discovered events such that Precision = TP/(TP + FP). Re-
call measures the proportion of relevant events discovered by the matcher with re-
spect to all the known relevant events from the ground truth such that Recall =
TP/(TP + FN). Precision and recall are calculated for the the whole set of sub-
scriptions S by averaging the precision and recall achieved for all individual sub-
scriptions, respectively. The F;Score equally combines Precision and Recall such
that F1Score = (2 x Precision x Recall)/(Precision + Recall). The metric used for
evaluating time efficiency is the matcher Throughput defined as Throughput =
(Number of processed events)/(Time unit).

6.2. Methodology for Effectiveness Evaluation

The evaluation methodology for effectiveness is based on the methodologies of
the schema matching/mapping community [Do et al. 2003]. The task of schema
matching/mapping is to find the best mapping between a source schema S and a target
schema T'. The common evaluation methodology is based on a real-world workload of
a relatively small number of schemata and manually-decided ground truth mappings
for the baseline [Do et al. 2003]. However, due to the large-scale nature of the Internet
of Things, it is preferable to evaluate with large sets of events and subscriptions. Thus,
specifying the ground truth mappings becomes a challenge.

In recent years, there has been a trend towards synthetic evaluation [Bellahsene
et al. 2011]. Two approaches can be recognized: a top-down approach and a bottom-up
approach. In the top-down approach, a source schema S is used. Then, by systematically
removing and transforming parts of S, it is possible to generate various target schemata
and their corresponding ground truth mappings to S, as in eTuner [Lee et al. 2007].
In the bottom-up approach, pairs of relative small-source and target schemata with
known ground truth mappings, are used. Systematic transformations are then applied
to the schemata and the mappings to generate other pairs with corresponding ground
truth mappings, as in STBenchmark [Alexe et al. 2008].

Within the context of event matching, we have approximate subscriptions and events
instead of source and target schemata. Similarly to the idea in STBenchmark [Alexe
et al. 2008], we start with pairs of exact subscriptions X and events E with known
ground truths which are simply the result of exact matching of events to subscriptions.
We then apply a semantic expansion transformation to the events and subscriptions
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Table Ill. Sensor Capabilities

Sensor Capabilities

solar radiation, particles, speed, wind direction, wind speed, temperature, water flow, atmospheric
pressure, noise, ozone, rainfall, parking, radiation par, co, ground temperature, light, no2, soil mois-
ture tension, relative humidity, energy consumption, cpu usage, memory usage

Final Ground Truth
Psp

Approximate Subscriptions Expanded Events

' Psp.p

Pxs | j
/ Semantic Expansion

~ Approximation |

)
X ® 5
Exact Subscriptions Basic Grouiz(_nsz'ETruth

Seed Events

Fig. 5. Methodology for effectiveness evaluation.

based on thesaurus, similarly to the synonyms transformation based on the Merriam-
Webster thesaurus [Merriam Webster’s 2012] in eTuner [Lee et al. 2007]. Along with
semantic expansion, the ground truth is updated accordingly. The methodology is out-
lined in Figure 5 and detailed in the following sections.

6.2.1. Generation of a Seed Event Set. The seed event set, SE in Figure 5, has been
synthesized based on a set of IoT sensors identical to the ones deployed in the Smart-
Santander smart city project [Sanchez et al. 2011] and the Linked Energy Intelligence
(LEI) dataspace [Curry et al. 2012]. The SmartSantander project proposes a city-scale
experimental research testbed for IoT applications and services based on sensors de-
ployed in a set of European cities. The LEI project targets sensing buildings for energy
savings and management purposes. The used sensor capabilities of both sources are
shown in Table III. A set of car brands from the Yahoo! directory [Yahoo! 2013] has
been used to generate vehicle platforms for mobile sensors. A set of home-based appli-
ances from the BLUED KDD dataset have been used as indoor platforms [Anderson
et al. 2012]. For indoor locations, rooms from the LEI DERI Building has been used
[Cyganiak 2013]. For geographical locations, the SmartSantander project locations as
well as the LEI Galway city have been used. The seed event generation is done by
randomly combining various attributes and values from the aforementioned datasets.
A set of 165 seed events has been used to generate events for the experiments. Example
6.1 represents a resulting seed event generated at this stage.

Example 6.1 (Seed Event). {type: increased energy consumption event, measure-
ment unit: kilowatt per hour, device: laptop, desk: desk 112¢, room: room 112, floor:
ground floor, zone: building, city: Galway, country: Ireland, continent: Europe}.

6.2.2. Generation of an Exact Subscription Set. Exact subscriptions are generated by ran-
domly picking a number of tuples from the seed events and turning them into exact
subscriptions, set Xin Figure 5. Example 6.2 represents an exact subscription of length
3 generated from the seed event in Example 6.1.

Example 6.2 (Exact Subscription). {type=increased energy consumption event,
device=laptop, floor=ground floor}.
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6.2.3. Generation of Ground Truth for Exact Subscriptions and Seed Events. An exact matcher
has been used to find the relevant and irrelevant seed events to exact subscriptions,
function Px_gg in Figure 5. An event is relevant to an exact subscription if every
predicate in the subscription is exactly matched by at least one tuple from the event.

6.2.4. Semantic Expansion of Seed Events. The purpose of semantic expansion of seed
events, transformation Psg_g in Figure 5, is to generate a relatively large amount
of events for evaluation, where the semantic heterogeneity property holds. Thus, the
Merriam-Webster online thesaurus has been used [Merriam-Webster’s 2012], as in
eTuner [Lee et al. 2007]. A set of 50,000 expanded events of length up to 10 tuples has
been generated starting from seed events by replacing one or more terms in an event’s
tuples by synonyms or related terms from the thesaurus. Example 6.3 represents an
event resulting from semantically expanding the seed event in Example 6.1.

Example 6.3 (Event Resulting from Expansion). {type: power consumption fall
event, magnitude unit: kilowatt per hour, apparatus: computer, bureau: bureau
112¢, place: room 112, level: ground level, area: building, metropolitan: Galway,
homeland: Ireland, landmass: Europe}.

6.2.5. Generation of an Approximate Subscription Set. An approximate subscription set, S
in Figure 5, can be generated from an exact subscription set by introducing the tilde ~
operator into one or more predicates in the exact subscription, the transformation Px_g
in Figure 5. This generation can also be guided by: the percentage of predicate parts to
be relaxed by the tilde ~ operator which is called the degree of approximation, and the
semantic measure to be used at the attribute/value part of predicate tuples. Example
6.4 represents an approximate subscription resulting from relaxing 50% of the exact
subscription in 6.2 using the esa semantic measure.

Example 6.4 (Approximate Subscription). {type=increased energy consumption
event~ esa, device~ esa=laptop~ esa, floor=ground floor}.

6.2.6. Generation of Ground Truth for Approximate Subscriptions and Expanded Events. The
goal of this stage is to find the resulting relevance function between approximate
subscriptions and expanded events, function Ps_g in Figure 5. Ps_g is isomorphic
to the basic exact relevance function Px_gg, thus it is an exact relevance function.
As a result, an expanded event is relevant to an approximate subscription if it exactly
matches the subscription or a version of it which results from it by replacing the tilde ~
approximated parts with related terms from the thesaurus.

6.3. Methodology for Efficiency Evaluation

Efficiency evaluation aims to position the proposed approach on the throughput scale
with respect to an approach based on an exact matcher, and namely, rewriting of rules
based on WordNet [Miller 1995] as a knowledge representation followed by an exact
matching. Given a set of approximate subscriptions, each approximate subscription can
be rewritten as a set of conjunctive statements, each of which is a set of attribute-value
pairs resulting by replacing the approximate parts of a subscription with related terms
from the WordNet [Miller 1995] dictionary. Example 6.5 shows a rewritten statement
resulting from the approximate subscription in Example 6.4.

Example 6.5 (Exact Rewritten Statement). {type = increased energy use event, ap-
pliance = portable computer, floor = ground floor}.

6.4. Results

The following sections explain the experiments which study the top-%£ algorithm per-
formance, the effects of optimization, the approximation degree, and the comparison
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with the exact model. All experiments have been conducted on a Windows 7 machine,
with an Intel Core 17-3520 2.90 GHz CPU and 8GB of RAM running JVM 1.7.

6.4.1. Top-k by an Evolving Frontier Algorithm Performance. Figures 6, 7, and 8 show that
the algorithm time performance is polynomial and approximately linear with £ and
the number of event’s tuples m, while it is polynomial and approximately quadratic
with the number of subscription’s predicates n. These findings confirm the anticipated
contribution of n, m, and % to the algorithm complexity analyzed in Section 5.4. They
also show that the proposed algorithm is quite efficient in finding the top-k£ mappings
between a subscription and an event.

6.4.2. Optimization Strategies. This experiment has been conducted with Nine sets of
100-500 approximate subscriptions of 50% degree of approximation with esa. 43%
of the predicates on average are unique in the subscriptions. Figure 9 shows that a
matcher equipped with the commonalities and order optimization strategies outper-
forms a naive matcher for any number of subscriptions with an average optimization of
134%. The commonalities-based matcher and the order-based matcher both outperform
the naive matcher. In the selected sample, the commonalities-based optimization out-
performs the order-based one. That is caused by the relatively high number of shared
predicates (about one shared predicate per each two subscriptions). Besides, 50% degree
of approximation seems to leave little to do to the exact matchers for early elimina-
tion of subscriptions. The higher proportion of shared predicates and the lower degree
of approximation, the better optimization that shall be achieved by commonalities-
based and order-based strategies, respectively. These findings show that the proposed
approximate matching model is naturally and effectively extendible by optimization
strategies commonly used in event processing.

6.4.3. The Effect of the Degree of Approximation. This experiment has been conducted
with 11 sets of increasing degrees of approximation of 100 approximate subscriptions
with esa. Figure 10 shows that the matcher performs quite well with low degrees of
approximation. Effectiveness slightly drops with medium degrees, 90%-100% F;Score
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with degrees up to 90%. It then sharply drops to 40% when the subscriptions become
mostly or fully approximated, >90%, because exact predicates can better discriminate
relevant events, and as they disappear in higher degrees of approximation, it becomes
difficult for the matcher to decide on relevance, and F;Score drops consequently.
Figure 11 shows that throughput decreases sharply from 9,700 events/sec to 5,100
events/sec when approximation starts to appear in subscriptions at around 20% de-
gree of approximation. It then decreases almost linearly from 5,100 events/sec to 1,700
events/sec when the degree increases from 20% to 100%, because approximate predi-
cates, which increasingly appear in higher degrees, are more time consuming to test
than exact comparisons, and throughput decreases as a result. These results suggest
that the best use cases for the proposed model are where small-to-medium degrees of
approximation are expected, with the user having at least a partial knowledge of the
event semantics. We think that this would be the case for many IoT applications.

6.4.4. Comparison to the Exact Model. This experiment has been conducted with Ten sets
of 10-100 approximate subscriptions of 50% degree of approximation with esa. Figure
12 shows that the approximate matching model delivers 94%—97% matching quality,
which is higher than the 89%—-92% delivered by the WordNet-based rewriting approach
equipped with an exact matching model. The rewriting approach outperforms the ap-
proximate model in throughput when the pairwise semantic relatedness scores are
calculated at runtime. However, the approximate matching model based on precom-
puted esa scores outperforms in throughput with around 91,000 events/sec compared
to around 19,100 events/sec on average.

In this experiment, around 16 million pairwise comparisons are needed: less than
100,000 of them, that is, less than 1% of them, need to be calculated just once. Pre-
computation is a valid assumption, as it can happen at the semantic measure side
beforehand or when the system caches newly calculated scores so no recomputation is
required. These results show the validity of an approximate model enhanced with a
loosely coupled semantic model, such as the distributional semantic model, to achieve
good effectiveness and efficiency as opposed to other approaches based on semantically
coupled knowledge representations.

Finally, to achieve 100% of F1Score and a throughput of an exact matcher, there is a
need to manually write all the possible rules which are equivalent to the approximate
rules. To quantify this situation, we measured how many exact rules are required to
compensate for approximate rules, given that the rewriting is done with the ground
truth thesaurus, which is Merriam-Webster. This showed that about 74,000 exact rules
are needed to cover all events compared to a maximum of only 100 rules for the
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approximate matcher. This is a nonfeasible situation in semantically heterogeneous
environments. These figures show a tradeoff between effectiveness and efficiency, on
the first hand, versus semantic loose coupling and ease of use, on the other hand. These
results suggest that the proposed approximate event processing model is suitable for
scenarios such as the IoT with a high level of semantic heterogeneity and where having
complete prior semantic knowledge of events is unfeasible.

7. RELATED WORK

Related work to this article originates from the event processing and schema matching
areas.

7.1. Semantic Event Processing

He et al. presented a model for Web services based on the context of things [2012].
The model uses ontologies and event-detection services to update the state of things
and shows an example use of event processing as well as Web services for the Internet
of Things. A-TOPSS [Liu and Jacobsen 2002] defines an approximate matching model
based on fuzzy functions that specify the degree of membership between an event’s
value and a subscription’s filter but without supporting schema approximation.

S-TOPSS [Petrovic et al. 2003] tackles schema and value semantic matching via the
use of agreed-upon ontologies and a system architecture that generates events other
than the original ones by replacing concepts with taxonomic concepts. S-TOPSS pro-
vides a generic architecture but no concrete model or empirical validation has been
discussed. Besides, replicating events with new concepts has the downside of over-
whelming the system with a large amount of events.

7.2. Uncertainty in Event Processing

A taxonomy for uncertainty in event processing proposed in Wasserkrug et al. [2006]
suggests that uncertainty can be classified in two orthogonal dimensions: element
uncertainty and origin uncertainty. Element uncertainty includes uncertainties about
event occurrence and event attributes. In our model, occurrence uncertainty is repre-
sented by the mappings’ probability space P, and attribute uncertainties are repre-
sented by the correspondences probability space P,. Origin uncertainty deals with the
source of uncertainty which may originate from the event source or from event infer-
ence. Our model suggests another type of origin which is the matching of raw events.
This uncertainty reflects the loose semantic coupling between sources and consumers.
A model for complex event processing over uncertain events is proposed in Wasserkrug
et al. [2008]. Resulting single-event matching with probabilities in our model can prop-
agate to a complex event processing module.

7.3. Uncertain Schema Matching and Top-k

In recent years, uncertain schema-matching research has gained more attention with
the realization that matchers are inherently uncertain [Gal 2011]. Statistically mono-
tonic matchers may assign a slightly lower similarity than it should to mappings
which may be of a specific precision, thus matching with top-£ mappings becomes a
potential solution to this [Gal 2006]. A proposed algorithm in Gal [2006] for the n : 1
mapping constraints has a similar complexity as our algorithm and is based on the
bipartite graphs. Our algorithm follows another formalization based on an evolving
Pareto frontier within a vector space, where every vector is equivalent to a valid map-
ping. Pareto optimum deals with the optimization of multiobjective functions and is
known in database research as skyline query processing [Hose and Vlachou 2012].
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8. FUTURE WORK

The uncertain model of event processing can be extended to allow various types of
approximations to exist in event processing, such as matching events which lack some
contextual information. In a previous work [Hasan et al. 2013], we investigated a
model for improving incomplete events while matching. A suitable extension of the
proposed approximate matcher which can tackle uncertainties about missing values is
subject to future research. Approximate matching of events results in uncertain events,
which then propagate to complex event processing. The pattern matcher should then
propagate uncertainties appropriately to the derived events. Top-k mappings can also
be used for complex event matching, and thus a reasoner with top-% inputs is required
and potentially could deliver a better quality of inference. Future work aims also at
investigating the effect of different types of mapping semantics, suchas1:1andn:n
between subscription predicates and event tuples. It also includes optimizing the time
performance of the matcher through different optimization strategies.

9. CONCLUSIONS

Content-based and concept-based event processing assume a high level of semantic
shared agreement between event producers and consumers. This limits scalability in
highly heterogeneous environments due to the need for a large number of event pro-
cessing rules and the difficulty to guarantee large scale agreements on event semantics.
This article investigates this challenge to the Internet of Things (IoT). It proposes a
model of approximate matching of events based on distributional semantics which
requires loose semantic coupling to a large textual corpus such as Wikipedia. The
model uses ensembles and top-%# matching for uncertainty management. Experiments
show that the proposed model achieves about 95% F;Score of effectiveness and 1,000
events/sec of throughput in environments with a high level of semantic heterogeneity.
The model can contribute to the middleware layer of IoT to support application devel-
opers and to users specifically with low-to-medium prior knowledge of event semantics.
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