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Sensor Scheduling |

n Variance Based Event

Triggered Estimation with Packet Drops

Alex S. Leong, Subhrakanti

Abstract—This paper considers a remote state estimation
problem with multiple sensors observing a dynamical proces
where sensors transmit local state estimates over an indepeéent
and identically distributed (i.i.d.) packet dropping channel to
a remote estimator. At every discrete time instant, the remte
estimator decides whether each sensor should transmit or no
with each sensor transmission incurring a fixed energy cosfThe
channel is shared such that collisions will occur if more tha
one sensor transmits at a time. Performance is quantified vian
optimization problem that minimizes a convex combination &
the expected estimation error covariance at the remote estiator
and expected energy usage across the sensors. For transrnoss
schedules dependent only on the estimation error covariaecat
the remote estimator, this work establishes structural reslts on
the optimal scheduling which show that 1) for unstable systas,
if the error covariance is large then a sensor will always be
scheduled to transmit, and 2) there is a threshold-type behaour
in switching from one sensor transmitting to another. Spealizing
to the single sensor case, these structural results demorete
that a threshold policy (i.e. transmit if the error covariance
exceeds a certain threshold and don't transmit otherwise) s
optimal. We also consider the situation where sensors tramsit
measurements instead of state estimates, and establishisttural
results including the optimality of threshold policies for the single
sensor, scalar case. These results provide a theoreticakitification
for the use of such threshold policies in variance based even
triggered estimation. Numerical studies confirm the qualiative
behaviour predicted by our structural results. An extensio of
the structural results to Markovian packet drops is also outined.

|. INTRODUCTION

The concept of event triggered estimation of dynamical sys-

Dey, and Daniel E. Quevedo

when a sensor should transmit have been proposed in the
literature, such as if the estimation errat [3]) [S]) [7.0]1
error in predicted output [6],[[13], other functions of the
estimation error[[4],[11],[112], or the error covariance,[9
exceeds a given threshold. These transmission policies oft
lead to energy savings. However, the motivation for using
these rules are usually based on heuristics. Another gap in
current literature on event triggered estimation is thastiyo

the idealized case, where all transmissions (when schaédule
are received at the remote estimator, is considered. Packet
drops [19], which are unavoidable when using a wireless
communication medium, are neglected in these works, save
for some works in event triggered contrbl [1€], [18].

In a different line of research, sensor scheduling probjems
where one wants to determine a schedule such that at each time
instant, one or more sensors are chosen to transmit in arder t
minimize an expected error covariance performance measure
have been extensively studied, see €.gl [20]-[24]. However
these schedules are often constructed ahead of time in an
offine manner and do not take into account random packet
drops or variations in the state estimates, i.e. are notteven
triggered. Covariance based switching for scheduling betw
two sensors was investigated [n_[25]. Structural resultsewe
derived for infinite horizon sensor scheduling problem&i |
[27], which showed that optimal schedules are independent o
initial conditions and can be approximated arbitrarilyselty
with periodic schedules of finite length, with [26] also exde
ing these results to networks with packet drops.

Summary of Contributionsin this paper, we consider a

tems, where sensor measurements or state estimates are sépt!ti-sensor event triggered estimation problem withd...

a remote estimator/controller only when certain eventsigc

has gained significant recent attention. By transmittingy on

when necessary, as dictated by performance objectives,

cPacket drops, and derive structural properties on the @ptim

transmission schedule. In particular, the main contrangiof
etras paper are:

such as when the estimation quality at the remote estimatoe !N contrast to previous works on event-triggered estima-

has deteriorated sufficiently, potential savings in enerspge

can be achieved, which are important in networked estimatio

and control applications.

Related Work Event triggered estimation has been inves-
tigated in e.g. [[R]-H[13], while event triggered control has
also been studied in e.d. [14]=[18]. Many rules for deciding
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European Control Conference, Linz, Austiia [1].

A. Leong and D. Quevedo are with the Department of Electrigat
gineering (EIM-E), Paderborn University, 33098 Paderbd@ermany. E-
mail: alex.leongQupb.de, dquevedo@Rieee.org.S. Dey is withthe
Department of Engineering Science, Uppsala Universitypdaf, Sweden. E-
mail: Subhra.Dey@signal.uu.se.

This work was supported by the Australian Research Coumderigrants
DE120102012 and DP120101122.

tion, we allow for the more practical situation where
sensor transmissions experience random packet drops.

o Rather than specifying the form of the transmission
schedule a priori, in this work the transmission decisions
are determined by solving an optimization problem that
minimizes a convex combination of the expected error
covariance and expected energy usage.

o We derivestructural resultson the form of the subsequent
optimal transmission schedule. For transmission sched-
ules which decide whether to transmit local state esti-
mates based only on knowledge of the error covariance
at the remote estimator, our analysis shows that 1) for
unstable systems, if the error covariance is large, then
a sensor will always be scheduled to transmit, and 2)
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there is a threshold-type behaviour in switching from on

sensor transmitting to another. Sensor 1
o Specializing these structural results to the single sens

case shows that ¢éreshold policy where the sensor

transmits if the error covariance exceeds a threshold a Yik

does not transmit otherwise, is optimal. This result h¢ : ) '

also been proved different techniques in our conferen : iPacket Remote | Xk

contribution [1], and, in a related setup, in_[28]. Fo |rocess : + Dropping +#{ Estimator [~

. . Xy : P
noiseless measurements and no packet drops, sim \ . AL . L
1

Yk

Feedback, v, x

Local KF

oS S
X Pk

structural results were derived using majorization theol SensorM_ .
for scalar [29] and vectoi [30] systems respectively. Local KF
« In the situation where sensor measurements (rather tt K Pu) |
local estimates) are transmitted, related structuralliesu Feedback, Vi«
are derived, in particular the optimality of threshold
policies in the single sensor, scalar case. These strlictura
results provide a theoretical justification for the use dfig. 1. System model
such variance based threshold policies in event triggered
estimation. However, for vector systems, we provide
counterexamples to show that in general threshold-tygevariances
policies are not optimal. A5 2
« The structural results are extended to Markovian pack(g,\:mjk‘k_1 N Elrklm 0. ym sl
drops, where we show that for a single sensor there existxfn,klk = Elzk|ym,0; - - Ym k]
in general two different threshol(_js, depending on Whet_hqti@fm‘k_1 2 E[(wg — ffn,k|k_1)($k — ;@fn,k‘k_l)T
packets were dropped or received at the previous time
instant.

|.1/m.,0, B 7ym,kfl]
s Ay A8 A8 T
The remainder of this paper is organized as follows. Section Pt = BU@h = E )@ = S i) gm0yt
[Mpresents the system model, while the optimization proisie can be computed using the standard Kalman filtering equsation
are formulated in Sectidn]Il. Structural results on theimpt at sensorsn = 1,..., M. For the results in Sectiofs|[I[-]V,
transmission scheduling are derived in Sectibns JV-A arwie will assume that each paird, C,,) is detectable and the
VBl The special case of a single sensor is then studigdir (A,Q'/?) is stabilizable. In Sectiofi]V we will relax
in Section[IV-C. The situation where sensor measuremeiiiés assumption when we consider transmission of sensor
are transmitted is studied in Sectibd V. Numerical studiegieasurements, and consequently only detectability of the
including comparisons of our approach with schemes whepeerall system is required. Let;, be the steady state value
transmission decisions are made using current sensor mea®,, ;,_,, and P, be the steady state value 8f, , ., as
surements, are presented in Secfioh VI. An extension of dur— oo, which both exist due to the detectability assumptions.
structural results to Markovian packet drops is outlined in Let v, € {0,1},m = 1,..., M be decision variables
Section VI]. such that,, , = 1 if and only if Z; , , is to be transmitted
to the remote estimator at tinie Transmitting state estimates
when there are packet drops generally gives better estimati

Il. SYSTEM MODEL AND REMOTE ESTIMATION ScHEMEs ~ Performance than transmitting measurements [31], [32§, an
in the case of a single sensor is the best non-causal strategy

A diagram of the system model is shown in Fijy. 1. Consid€83]. We will focus on the situation whene,, .. are computed

a discrete time process at the remote estimator at tinke— 1 and communicated to the
sensors without error via feedback links before transimisat
Tre1 = Axg 4wy (1) the nexttime instant[] see SectiofTI=C on how to take into

account losses in the feedback links. Since our interest lie

wherex;, € R" andwy, is i.i.d. Gaussian with zero mean and" decision r_ngkmg at the remote estimator, we shall assume
éhat the decisions,, ; do not depend on the current value of
xi (or functions ofx, such as measurements and local state
estimates). In particular, in this paper we will assume that,

depends only on the error covariance at the remote estimator
2 " . . .

similar to the variance based triggering schemes bf [9], see

covariance). There areM sensors, with each sensor havin
measurements

Ymk = Con®p + U, me{l,...,M}

. : , Sectior(1Il.
where y,, , € R" and v, is Gaussian with zero mean
and covariance?,,. The noise processgsuy }, {vm i}, m = 1This requires synchronization between each sensor andethete esti-
1,..., M are assumed to be mutually independent. mator, though not between individual sensors. Note thatiieless commu-

Each h . | bili d nications, online computation of powers at the base statibich is then fed
ach sensor has some computational capability and Gl to the mobile transmitters is commonly done in pracf8#, at time

run a local Kalman filter. The local state estimates and errgales on the order of milli-seconds.



At time instances whew,, ;, = 1, sensorm transmits its + ik AK i o (I = K5, 1 Cit) P (1= K 3 1 Cr) T AT

local state lestima;\l}éfgklk ov(;er a pac_k(-:k‘)tldroppiﬂgtﬁ;:nnel.lLet 1Q, m#in
Yoy =1,..., e random variables suc k= B s s T T
if the transmission from senson at time k is successfully Prn s = AL = K5 O ) Prn (1 = K 1 Cn)” AT + @,

received by the remote estimator, ang , = 0 otherwise. It m,n>0,m#n 3
is assumed that the channel is shared such that if more tiean e - LA P OT(CnPE . CT 4+ Ru)Lis the
sensor transmits at any time, then collisions will occurugh m, _mklk—1"m m,klk—1"—m
. . - local Kalman filter gain of sensom at time k, K = 1
Ym,kx = 0 and-,_ = 0 with probability one if bothv,, ,, = i p Poss i — K% Co)T — (I — K5 . C )P)T N
.k = 1. We will assume thaf~,, .} are i.i.d. Bernoulli with Flle—1 = 20m kAT Bap o ) AT B k) Ok
sk i) (= K3, Co) P2 (T = K Con)” + K R I3, =

m,k T

P(ymp =1) = Am, m=1,...,M. Pyjk—1 — Pom (I — K5, ,.Ci)", and K j, = (Pk\k—l -

See Sectiof V]I for some results with Markovian packet droppom W(I—K3,  Co)T Peje1—Posi i (1- K LCo)T—(I—
th,kcﬁ)Pgm,k + (I~ K%,kcm)P%,mk—l(I_ Kf%,kcm)T +

A. Optimal Remote Estimator -

1
s . sT H H
At instances where,,, ;. = 1, it is assumed that the remoteK’ﬁ»kRme»k otherwise. The last three equations|i (3)

estimator knows whether the transmission was successfulc8lmpute the quantities:
not, i.e., th_e remote est|mator knows the vadugy.. Wh|le if . Pom ik 2 E[(zx — 1)@k — j?fn,k\k_l)Tﬂk]
vm i = 0, since sensom is not scheduled to transmit at this

L _ &S _ A T
time, the corresponding,, » is assumed to be of no use to Pk = El(ek = 27, pjp—1) (@6 = Zrjp-1)" [Zs]

the remote estimator. We can define Prn i = El(zy, — &5 kie—1) Tk — :%fl7k|k_1)T|Ik]
A
Lo S{V1,05 -+ VLI VLOYLO, - - 5 VLIV LRy for m,n =1,..., M, where we note thaP, » = PJ ,, and
A8 -8
V1,071,087 0]05 - - s VLEVLEDT gl -+ - - ) Ponk = B} pp-1-
VM0 - > UM k> VMOYM,05 - - - s UMLKY M. If no sensors are scheduled to transmit at timehen the
s s state estimates and error covariances are simply updated by

VM,0YM,0% pr 0100+ + + Uﬂf,kVA'f,k$M7k|k}

. . . . 7 = Az T = Tp(p_
as the information set available to the remote estimator at *+1I* klk>  klk = “klk—1

time k. Denote the state estimates and error covariances dti+1jx = APyr A" + Q.  Pij = Pr—1,

the remote estimator by: Pomp+1 = APy (I— K ,C) AT +Q, m=1,....M
T = Elwg|Zy) @
i1k 2 Elzgi1|Ta) The derivation of th(_a optimal estimator equatiois [3)-(dh c
Pap 2 El(zs — i) (o — a) 1] be found in AppendiXA.
Pos s 2 E[(zp1 — i) (Trsr — fk+1\k)T|Ik]- Remark 11.1. In (3), the termsPy,, x+1 and P, k+1 for

m,n # m also need to be computed, since the scheduled
If a sensorm € {1,..., M} has been scheduled by thesensory will in general change over time.

remote estimator to transmit at tim:@ then the state estimates

and error covariances at the remote estimator are updated as ) _
B. Suboptimal Remote Estimator

follows:
R R The estimator equation§](3) are optimal, but difficult to an-
Tptak = Ak alyze and derive structural results for. A suboptimal eatin
Tk = Tr—1 + Yk Koo (B3 ke — Lrjp—1) that often performs well is a constant gain estimator, whias
Peyip = APk|kAT +Q the form [3) but withK, replace(_j by the constant galty;, _
Pok = (I — v 1 Ko )P, (I = 7 Ko ) " whenever sensoifn € {1,..., M} is scheduled to transmit.
kil = Voh kil ) Skl k-1 ik m’; . Suppose the constant gais,,,m = 1,...,M are chosen
+ Yo,k (L =ik Koo ) Posn i (I — K, 1O )™ K g, using a similar procedure t6_[32], whet®, Py, K,,,) is a
+ Yok EKon k(T = K 1.0 Py o (T =i i Bie) fixed point of the following set of equations:
+ Yk Kk (T = I3,k Cin ) Py et [ = K3 1) 'K P = Mg A(I — K P(I — K)TAT + (1 — M) APAT
+ Yo ko 1 K R K K + A A(T = Kpp) Popn (T — K5,C, )" KT AT
Posne+1 = A= Yin o Kin i) Porn o (I — K, 1. Crin) T AT + A AK (I — K&,Cr) Popn (I — K )T AT
i o A, (1= K 1O P g (1 = K5, 1, Cn) T AT F A AR (I — K2,C ) P3(I — K2,Cp) "KL AT
+ Q + Vi w AR o Ky R K3 AT + A ARy K5 Ry KETKE AT +Q
Pom i1 = A =i 1Ko o) Pom o (I — K3y . C )T AT Pom = A(I = My K Pom (I — K},Cp )T AT

+ M AK (I — KS,C )P (I — K20, T AT
2Since collisions occur if more than one sensor transmithesame time, m m mCm) 7;1( - mCm)
we clearly should not schedule more than one sensor to titasma time. +Q+ M AKWK, Ry K A



TABLE |
T T
Km = (P - POm(I - Kfncm) ) (P - POm(I - Kfncm) E[Py)] FOR DIFFERENT RANDOMLY GENERATED SETS OF PARAMETERS

_ s T s DS s T
(1= Ky, Con ) Py + (I = K5, O ) P, (= K, O [ Opt. [ Subopt.| Tx. Meas.|| Opt. | Subopt.| Tx. Meas. |

-1

+ KSRy KfnT) 7 ) 3.1410] 3.2216 | 3.0441 || 2.0906] 3.0736 | 3.0705

30206 4.1434 | 4.0254 || 3.4654 | 3.6203 | 35358

. _ _ . 36410 3.6000 | 3.8116 || 43822 4.6340 | 4.7211
A T T —1

with K7, = P7.C (CoPrCpy + Ri) ' being the steady 370561 33040 | 33117 || 3.0704 | 32737 | 3.2766

state local Kalman gain of senset. The equations {5) are [4.9104| 5.0146 | 5.1417 || 5.5227 | 5.6810 | 5.7757

obtained by averaging oveg; . in the recursion forP,;, (as i-iggg i;gg% i;gg g-gggg i-g%i i-gggg
well as the associated quantiti€b,;, . and i, x) in @), and 3 gs>r—'568 30877 (32849 [ 33567 | 33775
taking the steady state. 2.9210 | 3.0015 | 2.9704 || 7.0825| 7.4793 | 7.8819

Then we have the following result: 37504 | 3.9277 | 3.9376 || 3.9697 | 4.1427 | 4.1661

Theorem I1.2. Suppose thatd is either (i) stable, or (i)

H 1 —
unstable but withA,, > 1 — max; o (A2 M = L., M, Remark 11.3. For the case of a single sensoM( = 1), the

where 0;(4) is an eigenvalue ofd. Then for eachm €  qogimator [6) corresponds to the optimal estimator, seg, e.
{1,..., M}, amongst all possible constant gairs,, sat- [31], [32]

isfying max; |0;(A(I — M Kn))| < 1, there is a unique
fixed point (K, Pom, P) to the set of equationg](5) with _
Ky =1, Py,, = P£,, and P being the unique solution to theC. Imperfect Feedback Links

equationP = (1—\,,) APAT+Q+ X\, A(I—K},Cpp) Py, (I — We have assumed that the feedback links are perfect, which
K5,Co) T AT + X AKS R, KT AT models the most commonly encountered situation where the
Proof: See AppendiXB m 'emote estimator has more resources than the sensors and

By TheorerIL2, and in particular the fact that, — I can transmit on the feedback links with very low probability
' of error, e.g., the remote estimator can use more energy or

for eachm € {1,..., M}, the constant gain estimat®y, with : o . . .
gains chosen by solvingl(5) is easily seen to simplify to tHeA" implement soph|.st|cated channel codlr)g..But intarglsti .
following: imperfect feedback links can also be readily incorporateal i
our framework.
Fafe :{ A%k;ukq s VmkYmk =0 Recall that at each discrete time instaint the remote
L,k k s VmkUmk =1 estimator feeds back the valu€s, ;....,var,) to notify

(6) which sensors should transmit, with at most ang;, = 1
in order to avoid collisions. If the feedback command is,lost
then the sensofn that may have been scheduled to transmit
where at time £ will no longer do so, while the other sensors
f(X) 2 AXAT 1+ Q. (7)  not scheduled to transmit still remain silent. Thus, from an

For the case of two sensors estimating independent Gal%%t_imation perspective,.a dropout in Fhe feedback signal is
Markov systems, a similar estimator g (6) was also studied gquivalent to a dropout in the forward link from the sensor to
[23]. We now give some examples comparing the performan@? remote estimator. Assume that the feedback link from the

of the suboptimal estimatolf(6) with the optimal estimaf@: ( '€MOte estimator to sensor is an i'.ib;d' packet dropping link
Consider a two sensor system with parameters with packet reception probabilith/’,m = 1,..., M, with
the packet drops occurring independently of the forwarkislin

A— [ L1 0.2 ] Q=1 (8) from the sensors to the remote estimator. Then for the sensor
02 08 m that is scheduled to transmit, the situation is mathemati-

The other parameters are randomly generafgdand C, are cally equivalent to this sensor transmitting successfulith

1 %2 matrices with entries drawn from the uniform distributiorProbability A, \’. Thus, the case of imperfect feedback links
U(0.5,2), Ry and R, are scalars drawn fronv(1,10), A, can be modelled as the case of perfect feedback links with

P — f(Pkfl\kfl) y VmkYmk =0
Hk P;Lk“g sy Um,kYm,k = 1

and \, are drawn froni/(0.5,1). The sensor that transmits islower packet reception probabilities, \}?,m = 1,..., M.
randomly chosen, with each sensor equally likely to be amose
Table[ givesE[P;] for the optimal (Opt.) and suboptimal  [Il. OPTIMIZATION OF TRANSMISSION SCHEDULING

(Subopt.) estimators fa20 different randomly generated sets In this section we will formulate optimization problems
of parameters, wher&[F};] are obtained by taking the time, jetermining the transmission schedules, that mininaize
average over a Monte Carlo simulation of length 100000. W& ex combination of the expected error covariance and ex-
also give values oE[ ] for the case where measurementSg g energy usage, and describe some numerical tecknique
are transmitted (Tx. Meas.), which will be studied in Settiog, ¢5|ing them. Structural properties of the optimal sioins

VI We see that the suboptimal estimator often gives go%i these problems will then be derived in Seciion IV.
performance when compared to the optimal estimator. Define the countable set

Due to its simplicity which makes it amenable to analysis,
and its good performance in many cases, we will concentrafe® {f”(le_’k‘kﬂm =1,...,.M,n=0,1,...,k=1,2,...},
on the estimato{6) in SectiofsI-IV. 9)



where f"(.) is the n-fold composition of f(.), with the

convention thatf’(X) = X. Then it is clear from[{6) thas _ i )

consists of all possible values éfdk at the remote estimator. where f(.) is dgﬁned in (7). i . _
Note that if the local Kalman filters are operating in steady L€t the functions/y.(.) : S — R be defined recursively as:

state, therS simplifies to Jr1(P)=0
S:{plvf(pl)an(pl)v'-'7'-'7p1\r{7f(p1\4)af2(pﬂf)a'"}' ~ . M
(10) Ji(P) = (Vlmu;M B{ Z Vm H (L = vn)AmtrPy, g
""" m=1 n#m

As foreshadowed in~Secti I, we will consider transmissio M
poligies wherev,, .(Pr—1jx—1),m = 1,..., M depends only (1 — Z Vi H (1= 1) Am trf(P)}
on P,_1|x—1, similar to [9]. From the way in which the error m=1  n#m
covariances at the remote estimator are updated[see ¢8), su M M
policies will not depend om, cf. [11]. To take into account + (1—p3) Z Vin Em + Z Ui H (1= ) A T2 (P ki)
energy usage, we will assume a transmission codf,pffor m=1 m=1  n#m
each scheduled transmission from sensdi.e., whenv,, ,, = M
1) We will consider the following finite horizon (of horizon -+ (1 =Y vm J[JO- un))\m)JkH(f(P))},
K) optimization problem: m=1  n#m

k=K, K-1,...,1 (12)

Problem [(IL) can then solved using the dynamic pro-
gramming algorithm by computing/y (P,_1x—1) for k =

_ in ZE{E[&VPM F0-8)Y vmrEn K,K —1,....1, providing the opt|n1al(u1,k,...,uM7k) -
{aeevan)} 7= — argmin/y (P,_qx—1). Further calle; = (0,0,...,0), e; =
A

K M
min E|BtrPy, + (1 — Vm.k Em
{Wreswar )} £ [ﬁ b { B)mz::l ! ]

_ (1,0,...,0),e2 £ (0,1,0,...,0),...,epr £ (0,...,0,1)
P0|07Ik—177/1,ka---aVM,k]] and

Vé {907617...761\4}. (13)

K M

T e ZE{E [ﬂtrPM +(1=8) Y vmiBm  Then it is clear that the minimization il (12) can be carried

’ S k=L m=1 out over the set (with cardinality M + 1) instead of the
P11y Vigs - UALE ] larger set{0,1}™ (with cardinality 2*7).

Note that the finite horizon probleni (11) can be solved
(11) exactly via explicit enumeration, since for a given initﬁéJw,

for some design parameter € (0,1), where the last line the number of possible values 8%, k = 1,..., K, is finite.
holds sinceP, _,j;_, is a deterministic function o, and When the problem has been solved (which only needs to be
Ti 1, andpklk is a function Ofif)k—l\k—la VL. - Vs, @nd done once and. offline), a_“lookup table” will be con.struct_e(.j a
Viks- - - Y1k Problem[[TL) minimizes a convex combinatiofh® remote estimator which allows for the transmit decision
of the trace of the expected error covariance at the reméte. (for different error covariances) to be easily determined
estimator and the expected sum of transmission energiesbféal time. _ o _
the sensors. Due to collisions when more than one sensor i¥Ve Will also consider the infinite horizon problem:
scheduled to transmit, we have

K
. . 1 ~
min lim sup % kg_lE[IE [BtI’PHk +(1-0)

E[trpk|k|pk—1\k—1a Vlks ey VM,k] {(vi,kvm k) K—o0
M o (14)
= Zymyk H(l_un.,k) [Amtrpri,k|k+(1_/\m)trf(Pk—l\k—l)} X Z I/mykEm Pk—1|k—17V1,k, < VUMK
m=1 n#m m=1
M .
. where we now assume that the local Kalman filters are operat-
* (1_ Z_: Ym.k H (1_Vn,k)>trf(P]g—1|k—1) ing in the steady state regime, Wiy, ,,, = P, Vk. Problem
o m=l n#m (I4) is a Markov decision process (MDP) based stochastic
B Z (1- AP control problem with (vy x,...,var k) as the “action” and
- —~ Vm.k Vn k) AmU Lo |k Py_1jp—1 as the "state” at timé:A The Bellman equation for
"= :;ém problem [1#) is
- (1 = Vmp || (1= Vn,k)/\m>trf(15k—l|k—1) . M -
mzzl nl;!n p+ h(P) = min ﬂ{ Z Um H (1 - Vn))\mtrpm
V1, vMm)EV 1 natm

3The transmission cosE,, could represent the energy use in each trans-
mission, but can also be regarded as a tuning parameter tad@rgome 4In (@), “limsup” is used instead of “lim” since in some MDFsetlimit
control on how often different sensors will transmit, ergreasingE,, will  may not exist. However, if the conditions of TheorEm il & aatisfied then
make sensofn less likely to transmit. the limit will exist.



M ~ . . .
~ Let P; € SV be a fixed state (which can be chosen arbitrar-
+ (1 B Z Ym (- U"))\m) } ily). The relative value iteration algorithm is then givey b
computing:

M M
+(1=B) Y vmBm + Y vm [[ (1= ) Amh(P) hiser (P) £ Vit (P) = Viga (Py) (17)

o for! =0,1,2,.... Asl — oo, we haveh;(P) — h(P),VP e
n (1 ~S o J[0- Vn))\m)h(f(f’))} @as) SV, with h(.) satisfying the Bellman equatior {15). In
practice, the algorithn{I1) terminates once the differences
_ _ _ hit1(P) — hy(P) become smaller than a desired level of
where is the optimal average cost per stage @d is the  5ccyracy:. One then compares the solutions obtainedVas
differential cost or relative value function [35, pp.3888. jycreases to determine an appropriate valud dér truncation

For the infinite horizon problen{.(14), existence of optimat the state spacs, see Chapter 8 of [36] for further details.
stationary policies can be ensured via the following result

Theorem 1ll.1. Suppose thatd is either (i) stable, or (i) IV. STRUCTURAL PROPERTIES OF OPTIMAL

unstable but with),, > 1 — maX”ClH(A)P for at least one _ TRA_NSM'SS'ON SC_HE_DU'_"NG
m € {1,...,M}, whereo;(A) is an eigenvalue ofi. Then Numerical solutions to the optimization problerhs](11) and
there exist a constanp and a functioni(.) satisfying the (4) via dynamic programming or solving MDPs do not
Bellman equation{d5). provide much insight into the form of the optimal solution.
) In this section, we will derive some structural results on
Proof: See AppendiX L. B the optimal solutions to the finite horizon probleml(11) and

Remark 1Il.2. In the case of a single sensor and unstabie infinite horizon problen{{14) in Sectiohs IV-A ahd IV-B
A, the condition\; > 1 — —— |117'(A)|2 in Theorem[TIT.1 respe_ctlvely_. To be more specific, we WI|| prove that if theoer
corresponds to the necessary and sufficient condition fepvariance is large, then a sensor will always be schedoled t
estimator stability when the sensor transmits local estama transmit (for unstablel), and show threshold-type behaviour
over an i.i.d. packet dropping link, see [31], [32]. in switching from one sensor to another. In Section ]V-C,

) ) ) we specialize these results to demonstrate that, in the case
Remark 111.3. Dynamic programming techniques have alsgf a single sensor, a threshold policy is optimal, and derive
been used to design event triggered estimation schemeSgifyple analytical expressions for the expected energyeusag
e.g., E]—[S]. However, these works assume a priori that thgnq expected error covariance.
transmission policy is of threshold-type, whereas here@etd  preliminaries For symmetric matricest and Y, we say
make this assumption but instead prove in Sedfion IV that theyt X < v if v — X is positive semi-definite, and < Y
optimal policy is of threshold-type. if Y — X is positive definite. In general; < ” only gives a

As a consequence of Theorem 1.1, Problefml (14) caprtial ordering on the sef defined in[(9). LetS denote the
be solved using methods such as the relative value iterat®ff Of all positive semi-definite matrices. In this sectio,
algorithm [35, p.391]. In computations, since the statecepaWill say that a function/”(.) : S — R is increasingif

is (countably) infinite, one can first truncafein (I0) to X <Y = F(X)<F(Y). (18)
SYEAPLf(P),..., fNTHP), Po, f(P2), ..., fYTH(P2),  Note that[IB) does not take into account the situations evher
v Pap f(Pag), . fNTY (P ), neither X < Y norY < X holds under the partial order
(16) “ S 7 .

which will cover all possible error covariances with up¥o-1  Lemma IV.1. The functiontrf(X) = tr(AX A" + Q) is an
successive packet drops or non-transmissions. We themeseificreasing function ofX'.

relative value iteration algorithm to solve the resultingjté
state space MDP problem, as follows: For a givéndefine
for 1 =0,1,2,... the value functiond/(.) : SV — R by:

Proof: This is easily seen from the definition. |

A. Finite Horizon Costs

- M _ Lemma IV.2. The functionsJ,(P) defined in [(IR) are in-
Viga(P) £ (v, D {5[ > v [T (0= v)AntrPy creasing functions of>.

v1,...,vM)EV o ot

M Proof: The proof is by induction. The case 0k ()
+(1- U 1— )M\, )t f(P is clear. Now assume thafx 1(P), Jx(P),. .., Jer1(P)
( Z H( ) ) it )} are increasing functions aP. Then J,(P) given in [12) is

increasing inP by LemmdIV1 and the induction hypothesis,

M M
+(1-=5) Z Von B + Z Vi H (1 —v)AmVi(P,,) noting that(l - fo:l Vi [ Lzm (1 = yn)/\m) > 0. [ |
m=1 m=1  n#m Since the minimization in[{12) is over the sgtgiven in

+ (1 - i Um H (1- Vn)/\m)W(f(p))

n#m

m=1 n#m

(@I3), J.(P) can also be expressed as:
} Ji(P) = min {ﬂ[/\ltrpls,mk + (1= AUf(P)]+ (1—pB)E



+ M i1 (P ) + (1= M) g (F(P)), increases, so thdl{R1) is always positive for sufficieralgé
P. On the other hand, for stablé, we could encounter the
situation where sensors are never scheduled to transrhig if t

BAMIPy i + (1 — Mt f(P)] 4 (1 — B)E costs of transmissiof,, are large, since now ff P) is always
' s - bounded (where the bound could depend on the initial error
+ )\MJ/C+1(PM,IC|/€) + (1 - A]W)Jk'i‘l (f(P))7 Covariance).
gtrf(p)+Jk+1(f(]5))}_ (19) Theorem[IV3B(ii) and expressiod_([19) further show that
the optimal schedule exhibits threshold-type behaviour in
Theorem IV.3. (i) The functions defined by switching from one sensor to another: If for sorfe sensor

. tr iy P))—BIALPS o +(1—A m is scheduled to transmit, while for some largef, sensor
Pm (P ) puf(® ) e ()= Al okl ( ) n (with n # m) is scheduled to transmit, then sensorwill

x trf(P)]—(1-8) B =X Jks1 (g, ) = (1= Am) T ( )wot transmity?” > P’. Note however that Theorem V.3 may

form=1,...,M, k=1,...,K, are increasing functions of not cover all possible situations, since the Segiven by 9)
P. is in general not a totally ordered set.
(i) Define For scalar systems (or systems with scalar statesnd

s - hence scala]f’k‘k), the setS is totally ordered, and Theorem
Y k(P) £ BARIP;, g+ (L= A0 f(P)] + (1= B)Em [y and [19) can be used to provide a fairly complete char-
+ Am Sk 1 (P, i) + (1 — M) Jrs1 (f(P)) acterizatiof] For example, in the situation with two sensors,

have:
form =1,....M, k = 1,..., K. Suppose that for someWe ave

m,ne{l,...,M}, and P, P’ € S with P’ > P, we have  Corollary IV.4. For a scalar system with two sensors, for
eachk € {1,..., K}, the behaviour of the optimal; , and
U (P) < Yn i (P) and o (P) 2 i (P)- - (20) v3 . falls into exactly one of the following four scenarios:
Then forP” > P’, we havewm_,k(P”) > wn,k(P”). (i) There exists aP{h,C , such thatvy, = 0 VP, k=1,
vip = 0for Py < PNy, and i, = 1 for
s Pk 1|k—1 > P1 k—1+
Ok (P) = BAmt [ (P) + A i1 (f(P)) = [BAmtrP;, K|k (i) There exists aPchk , such thatvy, = 0 NP 11,

Proof: (i) We can simplify the functions to

+ (1 =B)Em + AnJri1 (B, )] vip = 0 for Poqpy < Py, andws, = 1 for

(21) Pk 1|k 1>P2]€1
which are increasing i by Lemmag§ 1Vl an@IV]2. (iii) There exists somé’l k1 and P, such thatvs, =0
(i) Rewrite (20) as for Py ey < Py, v3, = 1 for ng L < Peqppr <

~ - Pth andvr, =1 for Py, > P0
(1= Am)[BUF(P) + Tia ((P))] |\1/ kTLere ex:s]tcs someh z‘;md ph ) kssjch thatv; 0
+ BARt Py i+ (1= B) B + A Jis 1 (B i) ) bt 2 k=
K|k mN mJk+ m,k[k (22) for Pk k-1 < Plk 1 Vlk =1 for P{k 1 < Pk k-1 <
< (L= A)[Brf(P) + Jura (F(P))] P, andvy, =1for Bo_y_q > P .

+ BAIE, i + (1= B)En + An i ( "k|k) From numerical simulations, one finds that each of the

and above four scenarios can occur (for different parameter val
(1= Am) (B (P') + i (F(P) Ues). see Sectid) VI,
+ Aty k|k+( = BV Em A+ AT (B i) (23) B. Infinite Horizon Costs
> (1= M) [BUf(P') + Jeya (F(P))] For the infinite horizon probleni{14), we have the following
+ B, e+ (1= B)En + An i1 (P jpre)- counterpart to Theorefm 1V.3.
Since P’ > P, expressions[{(22J-(23) and Lemnfas V.1 antdemma IV.5. (i) The functions defined by
imply that \,,, < \,,. Thus, forP” > P’ we have b (B) 2 BHrf(P) + h(f(P)) — BAmtrPo + (1 — A trf(P)]
(1- )[Btrf(ﬁ”) + o1 (f(P))] — (1= B)Em — Anh(Pr) — (1 = An)R(f(P))
+BARU By kg + (1= B) Em 4 Am Jiet1 (P pye) for m = 1,..., M, are increasing functions aP.
> (1= M) B f(P") + Jera (f(P"))] (ii) Define
+ BAUES e+ (1= B)En + Andit1 (P i) U (P) 2 BAntrPy, + (1 = At f(P)] + (1 — B)En,
u + /\mh(pm) + (1 - )\m)h(f(ﬁ)))

Theoreni V.8 characterizes some structural propemelseoft hat f
optimal transmission schedule over a finite horizon. Theord®" ™ =1,..., M. Su?poset atfor some,n € {1,..., M},
[V3(i) and expression[{19) allow one to conclude that fo?ndp P § with P> P, we havey),,(P) < wn( ) and
unstable4 and sufflcllently.lar_geP one will always schedule  stpe sets is also totally ordered in the vector system, single sensor
a sensor to transmit. This is becaus¢(ff) — oo as P situation in steady state, see Secfion IV-C.



Um(P') > ¥, (P'). Then for P” > P', we havey,,(P") > ]
P (P"). Using [19), Theorenls M8, 1U5, and LemmaV.7, we then

Proof: Recalling the relative value iteration algorithmcolr:ﬁ[:ggfa the following threshold behaviour of the optimal

(I32), one can show using similar arguments as in the proofsocf
Theoren{1V3, that the properties in Theorm1V.3 also holtheorem IV.8. (i) In the single sensor case, the optimal
when Ji41(.) is replaced withi(.). Sinceh,(P) — h(P) as solution to the finite horizon probleri{11) is of the form:
[ — oo, the result follows. [ | .

In the infinite horizon situation, any thresholds (which for UE — 0, Prap—1 < Plz—l\k—l
the finite horizon situation are generally time-varyingibme k 1, Peapg—2 P,Eh_”k_l
constant, i.e. do not depend é&nThus for example, with the

scalar system, two sensor situation considered in Coyolider some thresholds?" |, |,k = 1,...,K, where the
V2] one may replace”", | and P{", | with P and P{" thresholds may be infinite (meaning thgt=0,vF; _yjx—1 €
respectively, see also Theorém IV.8. S) when A is stable.

) (ii) In the single sensor case, the optimal solution to tHaite
Remark IV.6. The structural results derived above allow forhorizon problem([{T4) is of the form:

significant reductions in the amount of computation reqiire

to solve problem$(11) anf{[14). For example, by Thedrenh IV.3 Jr 0 , Prqpr <P (25)
or [\V5, if for someP one hasv;, = 1, and for a larger P’ FTU 1, Peqper = PO

one hasy;, = 0, then one can automatically sef, = 0 for h

all P” > P'. See also[[37] for a related discussion. for some constant threshol&™, where the threshold may be

When the covariance matrices are not comparable in tfiafinite whenA is stable.
positive semi-definite ordering, then the full dynamic paog- Remark IV.9. In TheorenIVB, we could ha"@ih—ukq
ming or value |terat_|on _algonthm will need to be run in orderpth equal to P, in which casev; = 1L,YPe_ 11 €S,
to solve the optimization problems. Nevertheless, when the
remote estimator[{6) is used the computational complesity Remark 1V.10. As mentioned in the Introduction, Theorem
not prohibitive. In the case where the local Kalman filterséa [V.8 was proved in our conference contribution [1] using the
converged to steady state, which is likely when the horizon theory of submodular functions. Under a related setup that
is large or if we're interested in the infinite horizon, thetdse Minimizes an expected error covariance measure subject to
space”S simplifies to[[ID), which in numerical approaches i@ constraint on the communication rate, the optimality of
truncated to the se§”™ defined in[(ZB). The cardinality ¢V threshold policies over an infinite horizon was also proved
is N M, which is not exponential in the number of sensbfs using different techniques in_[28].
or the horizonK. Furthermore, the “action space¥} defined
in (I3) has cardinalityM + 1, which is also linear inM.

or

Thus in the single sensor case the optimal policy is a
threshold policy on the error covariance. This also allows u
to derive simple analytical expressions for the expectedgn
C. Single Sensor Case usage and expected error covariance for the single senser ca

In this subsection we will focus on a vector system witQVer an infinite horizon. A similar analysis can be carriedl ou
{o« the finite horizon situation but the expressions will berm

a single sensor, and where the local Kalman filter operal ] N -
in steady state, to further characterize the optimal smistto COMPplicated due to the thresholdy” |, in Theoren{IV:8

problems[(Ti) and(14). For notational simplicity, we witbp being time-varying in ge?e_ral. 0
the subscript “1” from quantities such as, Pr, Py 151 Lett € N be such thaf*(P) = P™ € S, seel(2b). Note that

Recall the seS defined by[[D), which in the multi-sensor casé Will depend on the value of chosen in probleni(14). Then

is not totally ordered in general. For the single sensor trasethe evolution of the error covariance at the remote estimato

steady stateS becomes: can be modelled as the (infinite) Markov chain shown in Fig.
L _ [2, where staté of the Markov chain corresponds to the value
SE£{P,f(P), f*(P),...}. (24)  fi(P),i=0,1,2,..., with fO(P) £ P.

Lemma IV.7. In the single sensor case, there is a total
ordering on the elements & given by

P<f(P)<fA(P)<....

Proof: We use induction. We have thg{P) > P from,
e.g., [38]. Now assume thgt*(P) > f»~1(P). Then

FUENP) = f(MP)) = F(f*HP) = [(P)

where the inequality comes from LemimalV.1 and the indulg 5 Markov chain for threshold bol
tion hypothesis. Hence, by induction, '9. 2. Markov ehain for threshold policy

P<f(P)<fA(P)<.... The transition probability matri® for the Markov chain



can be written as: descriptions of the model and optimization problem below

ro 1 0o ... ... T will be kept brief, in order to proceed quickly to the struetu
0o 0 1 0 ... results.
P=|0 ... 0. 1 0 | . A. System Model
A0 L 0 1-X 0 The process and measurements follow the same model as
A0 L 0 1-x 0 .. in @-(@). Instead of assuming that the individual sensors
. . are detectable, we will now merely assume thdt C) is
} _ . _ ~ detectable, where £ [ ¢ ... ]T is the matrix
_ For/\ e_(o, 1), one can easily v_ern‘y that this Ma_rkov chgl_rmformed by stacking:, . .., Cas on top of each other.
is irreducible, aperiodic, and with all states being pusiti | gt vmi € {0,1},m = 1,...,M be decision variables
recurrent. Then the stationary distribution such thatv,, , = 1 if the measuremeny, ;, (rather than the
r=[m m T ... ™ T T2 . |, local state estimate) is to be transmitted to the remoteeasbi

at timek, andv,, , = 0 if there is no transmission. As before
where ; is the stationary probability of the Markov chain(see Fig[lL), the transmit decisions, ;. are to be decided at
being in statej, exists and can be computed using the relatiahe remote estimator and assumed to only depend on the error

m = 7P. We find after some calculations that = 79, j = covariance at the remote estimator.
L...,t,and7; = (1 -\ "*m,j =t+1,t+2,...,and SO At the remote estimator, if no sensors are scheduled to
1 A transmit, then the state estimates and error covarianees ar
T =TT /A N1 updated by[(4). If sensoh. € {1,..., M} has been scheduled

by the remote estimator to transmit at timethen the state

Hence estimates and error covariances at the remote estimator are
A . .
T , j=0,...,t now updated as follows:
TIT Az =t 1t 42 X .
e 0 J=tHLi+2. Tppr)h = Ak
We can now derive analytical expressions for the ex- @k = Trjp—1 + Vi k Kk (Urn ke — ConZpp—1) (28)
pected energy usage and expected error covariance. ForPk+1|k :APWATJFQ
the expected energy usage, since the sensor transmits only
A Pri = Puon—1 — Ve Ko 1 Coin Projjo—
when the Markov chain is in statest + 1,..., an energy Flke = Thlk—1 7 Tim ke R, kS Skl -1
amount of £ is used in reaching the states corresponding {ghere K, , 2 Py 1CE (CinPai—1CL + Ry) ™', We can
— — — > - m - m
P, f*F1(P), f**2(P),.... Hence thus write:
E[energ)}': E[7T0+7Tt+1+ﬂ't+2+...] 4 _ Ailﬂk—l s U, kVm,k =0
=Em[l+1-A+(1-X)*+...] (26) LIk A1 FAK k (Ymok — CinZifim1) s Vi g Ymk = 1
_Em __F P F(Pyjk=1) VmkYmk =0
A AM+1° Rk Im(Prjk=1) > VmxYmpk =1,
(29)

For the expected error covariance, we have
E[trPy ] = motr(P) + mtr(f(P)) + matr(f2(P)) + ... (27) where f(X) = AX AT + Q as before, and
which can be computed numerically. Under the assumptigp, (X) £ AXAT —AXCT (C,, XCT +R,,)) 'C, X AT +Q,

thatA > 1— m E[tr Py;.] will be finite, by a similar (30)
argument as that used in the proof of Theofemlill.1. form = 1,...,M. In (29) the recursions are given in terms
of #j4% and Py, rather thaniy;, and Py, since the
V. TRANSMITTING MEASUREMENTS resulting expressions are more convenient to work with.

In this section we will study the situation where sensor
measurements instead of local state estimates are tréa@smig. Optimization of Transmission Scheduling
to the remote estimator. In particular, we wish to derive . . -
structural results on the optimal transmission schedule. A We consider transmission pOI'C'eB’””“(P’“.‘k.‘l)’m .:
advantage with transmitting measurements is that deﬁdit;tabl":"_M.that depenq only onPy—y. The finite horizon
at each sensor is not required, but just the detectability Qgptimization problem is:
the overall system[9]. In addition, local Kalman filtering a K M
the individual sensors is not required. The optimal remote min ZE{E [BtrPka +(1-75) Z Vi k Em
estimator when sending measurements also has a simplé?’l'k """ vmie)} o m=1
form than the optimal remote estimator derived[ih (3) when
sending state estimates (though not as simple as the somi@bpti
estimator [(6)), which makes it amenable to analysis. Our (31)

Pyjg—1,v1 k- VM k




10

where we can compute
(i) F(f(P))— F(gm(P)) is an increasing function aP, for

EltrP, Prg_1, ey
| A,Ifl‘k' e m=1,..., M.
= Z Vi, k H (1 = vn k) A0 Gi (Prj—1) Proof: (i) We prove this by induction. Firstly, {d®) = P
m=1 n#m has the form[(33)/(P) = A2P + Q has the form[(33), and
M
+ (1 - v [ - un,k)Am)trf(Pklk_l) P a2pio. XCnP? _ (ARn+CrQ)P+RnQ
=l i 9m(P) O~ G piR,, C2 P+ Ry
with f(.) defined in [7) andy,,(.) defined in [(3D). Let the o5 the form[(34) SiNC€A2R,, + C2Q) Ry — RnQC2, =
functionsJi(.) be defined as: A2R2 > 0. " "
Jr1(P) =0 Now assume thatF(.), which is a composition of the

M functions f(.),g1(.),...,9m(.),id(.), has the form of ei-
Ju(P)=  min {g[ Z Ui H (1 = 1) Amtrgm (P) ther [33) or [3%). Then we will show thaf(F(P)) and

(v1,evan) €V S q(F(P)),l =1,...,M also has the form of eithef (B3) or
M (34). For notational convenience, let us write
1-— m 1 —vp) A JIrf(P _
+( mz::ly nll( oo 11 f(P)=aP+b
M M _
for somea, b > 0, and
+ (1_[3) Z Vi B+ Z Vm H (1_Vn)Aka+1(gm(P)) B
m=1 m=1 n#m dp+ b
M alP) =75 +d
+(1- Vm (1= vn)Am ) Je1 (f(P)) ¢ - _
( mz_:l nl;!n ) for somea, b, ¢, d > 0 with ad—b¢ > 0, which can be achieved
=K K—1 1. (32) as shown at the beginning of the proof.

If 7(.) has the form[{(33), then
Problem [(31l) can be solved using the dynamic programming B

algorithm by computing/y (Pyx—1) for k = K, K —1,...,1, f(F(P)) =a(aP +b)+b
with the optimal(vy ., ..., vy, ) = argmingi (Pyjx—1)- .
The infinite horizon problem can be formulated in a simildg of the form [38), and
manner but will be omitted for brevity. a(aP +b) +b _ aaP+ ab+ b

F(P)) = ) _ o
a(F(P) caP+b)+d caP+cb+d

C. Structural Properties of Optimal Transmission Schetyli
Much of this subsection is devoted to proving Theofem V.Ras the form[(34), sinceu(cb+d) — (ab+b)ca = a(ad—be) >

which is the counterpart of Theorelm 1V.3(i) for scalar syss.

tems, and in particular establishes the optimality of thoéd  If 7(.) has the form[(34), then

policies in the single sensor, scalar case. However, forovec _ _

systems we wil give a counterexample (Exanipld V.4) to show  (r(p) — a(aP +b) Th— (aa + be)P + ab + bd

that, in general, the optimal policy is not a simple thredhol cP+d cP+d

policy. The counterpart of Theorelm TV.3(ii) also turns oat thas the formi(34), sincia-+be)d— (ab-+bd)c = a(ad—be) >

be false when measurements are transmitted, and we will g eFinaIIy
another counterexample (ExamplelV.5) to illustrate this. ' '
The following results will assume scalar systems, thus a (ap+b) b - _ - _
A,Cpn, Q, R, and P are all scalar. G(F(P)) = cP+d _ (@a+be)P +ab+bd
, L e(abtd) 4+ g (ca+de)P +cb+dd
Lemma V.1. Let 7(.) be a function formed by composition (in (cp+d)
3vrr113éroerder) of any of the function&(.), g1(.), ..., gam(.),id(.) has the form{{4), sincéia - bc) (eb + dd) — (ab + bd) (ca +
A202 p dc) = (ad — be)(ad — be) > 0.

(i) By part (i), we know thatF(.) is either of the form[(33)

f(P)£A’P+Q, gm(P)£ A’P+Q— ;
CiP + R or (33). If 7(.) has the form[{33), then

andid(.) is the identity function. Then:

(iy F(.) is either of the affine form F(f(P)) = Fgm(P)) = a(f(P) = gm(P))
F(P) =aP +b, for somea,b > 0 (33) will be an increasing function oP, since
or the linear fractional form A202 p2
aP+ b | 1) =9mP) = 5
F(P) = Prd for somea, b, ¢, d > 0 with ad — be > 0. m m
C

(34) can be easily checked to be an increasing functioi® of



If 7(.) has the form[{(34), then it can be verified after some
algebra that
d _d (af(P)+b agm(P)+b
15 FUP)=Flan(P))= 35 (4o - 00
_ (ad—bc)A2C2P(d+cQ)(C2P(d+cQ)+2(d+c(AP+Q))Ry)

(d+ c(A2P + Q)2 (C2,P(d + Q) + (d + c(A2P + Q))Ry)”
>0
since ad — be > 0. Hence F(f(P)) — F(gm(P)) is an
increasing function ofP. |

Theorem V.2. The functions

Gm(P) 2 Bf(P)+Tir1(f(P)) = BAmgm (P)+
_(1_5)Em_/\mjk+1(gm(P))_

.....

(1=An)f(P)]
(1=Am) Jr+1(f(P))
Mk=1,..., K, are increasing functions of

Proof: The functions are equivalent to

b (P) = DAl f(P) = gm(P)] = (1= B o0
+ ATk 1 (F(P)) = Jip1 (9m (P))]-
As stated in the proof of Lemnia V.1(iiy;(P) — g.»(P) can

be easily verified to be an increasing function Bf Thus
TheorenT V2 will be proved if we can show th#t(f(P)) —
Ji(gm(P)) is an increasing function oP for all k£ andm.
In fact, we will prove the stronger statement (see Re-
mark \V3) that J,(F(f(P))) — Jk(F(gm(P))) is an in-
creasing function ofP for all £ and m, where F(.) is
a function formed by composition of any of the functions
d(.). The proof is by induction. The
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M
—> u [T = v)NiTisr (9u(F(gm(P'))))
I

=1 n;ﬁ
1

S [T = )X Jia (F(F (g (P')))

=1 n#l

- /
~

l
v [J@ = vn) Mg (F(F(P)))
=1 nl

1-— ZV[ H(l — I/n))\l)f

=1 n#l

g

+

/

(F(P))]

S

— Z v H(l — V)N Tk (g (F(f(P))))
=1  n#l

= (1= u T = A e (FFP))

=
+ ﬁ[ﬁ;w 1;[l<1 — V) Ng (F (g (P)))

(- ; [0 vl ) £ (Flgm(P)))]

- f 110 = shia 0 Fom(PY)

(- z 1o un»z)JkH(f(f(gm(P))))}.

(36)

ALIOI g ()i In the minimization of above, if the optimal
;:ﬁn?fejﬁgt(foéy(g); Ji41(F(gm(-))) = 0'is clear. Now (vi,. .., vi,) = e (recall thelz?giation of (d3)), then P
T (F(F(P)) = Jp (F(gm(P))) Je(F(f(P)) = Tr(F(gm(P")))
— T (F(F(P))) + Ji (F(gm(P))) > 0 — Je(F(f(P))) + Je(F(gm (P)))
holds fork' = K + 1, K, . .., k+ 1. We have > BLA(FU(ED) = f(Flgm(P))
ARG = TFlon () — F(FP)) + f(Flgm(P)))]
( m + T 1 (f(F(FP))) = Tr1 (f(F(gm(P))))

NE
AS
—~
i

|

=
S~—"
2
kS
=

g
~—
~—
~—

= D1 (f(F(F(P)))) + Jrt1 (f (F(gm(P)))) = 0

where the last inequality holds by LemmalV.1 (ii), the induc-
tion hypothesis, and the fact thib F(.) is a composition of
M functions of the formf(.), g1
the optimal (v, ..., Vi) = el = 1,..., M, then by a
similar argument

()yeees g (.),id(.). If instead

+ i v [ = va) N T (9 (F(F(P))) Te(F(f(F))) = Ji(Fgm(P))
=1 Al — J(F(f(P))) + Ji(F(gm(P)))
M > B g (F(fF(P)) = gi(F(gm (P’
+ (1= u T1A = wN) e (FEFP)) i[ifﬁfﬁjfﬁp))))f gﬁ;((gi(;) )>)})

M
=8 u T = va)Aa (Flgm(P)

=1 n#l
1

+ (1= u TI0 = v ) S (Flgn(P)))

=1

_|_
+ 81 = X) [f(F(fF(P)) = f(F(gm(P)))
— f(F(f(P) + f
+ M [Trg 1 (gr(F(f(P)) = Tis1 (90 (F(gm (P’
— Jk1(@(F(f(P)))) +
+ (1= 2) [T (F(F(F(P) = Tia (F(F(gm(P")))
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— Tt 1 (f(F(f(P)))) + Jrsr (f (Fgm(P))))] =0 Recall the property implied by Theorem1V.3(ii), namely
(37) that if for someP, sensorm is scheduled to transmit, while

Remark V.3. The reason for proving in Theoref V.2 thd®' SOme largerP’, sensorn (with n 7 m) is scheduled to

stronger statement thatly (F(f(P))) — Ju(F(gm(P))) is transmit, then senson will not transmitvVP” > P’. As illus-
an increasing function ofP, is that if we carry out the trated below, this property does not hold when measurements

arguments in [(36) using just(f(P")) — Ji(gm(P')) — are transmitted, even for scalar systems.
Ji(f(P)) + Ji(gm(P)), then in [3F) we end up need-Example V.5. Consider a system with 2 sensors, with pa-
ing to show statements such adiii(i(f(P')) — rametersd = 1.1, ¢, = 1.0y = 1, Ry = 1,Ry = 2,

Ji11(91(gm(P"))) = Je41 (g1 (f(P)) + Tk 1(9i(gm(P))) 20 Q = 0.1, Ay = 0.6,\s = 0.7, By = 0.17,E» = 0.1,

and Ji 41 (f(f(P")) = Jes1 (f(gm(P")) = Jes1 (F(f(P)))+ B = 0.5. Again look at the casé = K. Then comparing the

Ji+1(f(gm(P))) > 0, neither of which are covered by thefunctionsSf(P), B(A1g1(P) + (1 — M) f(P)) + (1 — B)Exy,

weaker induction hypothesis thdt: (f(P’)) — Je (9m (P’)) = and S(Aag2(P) + (1 — A2) f(P)) + (1 — B)E» (corresponding

i (f(P))+J (gm(P)) > 0 holds fork’ = K+1, K, ..., k+ respectively to the cases when no sensor transmits, sensor

L. 1 transmits and sensor 2 transmits), we can verify that the
optimal strategy is for no sensor to transmit whign< 0.5485,

Theorem[\2 is the counterpart of Theordm1V.3(), f0§ensor_2 to transmit whef5485 < P < 0.8642, sensor 1 t_o
estimation schemes where measurements are transmitted. [F@SMit wher).8642 < P < 3.9005, but sensor 2 will again
ferring back to[@BR) 3£ (P)+Ji.1(f(P)) is the cost function transmit whenr = 3.9005.
when no sensors transmit, whifé\,,, .., (P)+(1-\,, ) f (P)]+
(1=B)Em + AT s1(gm(P)) + (1 = X)) Sy 1 (f(P)) is the  D. Transmitting State Estimates or Measurements
cost function when sensan transmits. Theorefi M2 thereby
establishes that the cost difference between not transqitt
and sensofn transmitting increases witf?, and in particular
implies the optimality of threshold policies in the singénsor,
scalar case. This provides a theoretical justification for t
variance based triggering strategy proposed_in [9].

There are advantages and disadvantages to both scenarios
of transmitting state estimates or measurements, which we
will summarize in this subsection. Sending measurements
is more practical when the sensor has limited computation
capabilities. Furthermore, detectability at individuahsors is

E ‘ i it Il Kk f Kal flteri not required. However, as mentioned in Secfidn 11, trantmgit
or vector systems, 1t 1S well known from Baiman WennGy o astimates outperforms sending of measurements. From
that when measurements are transmitted, the error coeariai o\ | “\we can see that the optimal estimator when sending
matrices are only partially ordered. One might hope th '

I . ggtimates outperforms sending of measurements in all cases
;Tse?sreﬁe\,\ggssél”aiotlﬁefcm)‘z)l\llgv?/ti;); Scﬁjig?éf;rzgeggsgj\mhile the suboptimal estimator also outperforms the sendin
' Bf measurements in many cases.
Example V.4. Consider the cask = K andM = 1 sensor,so  The optimization problems in the infinite horizon situation
that we are interested in the functidn {35) wiffx1(.) = 0: are also less computationally intensive in the case whate st
estimates are transmitted and the remote estimaltor (6 us
P1.x (P) = BMULF(P) = g1(P)] = (1 = B)Ey As mentioned in Remark1V6, the sét has a simplé gf)rm
= BAU[APCT (CLPOT + R)T'C1PAT] = (1= B)E1. in steady state, which in practice can be easily truncated

Suppose we have a system with parameters to a finite setS". On the other hand, when measurements
11 02 are transmitted, the set of all possible values of the error
A= { 0'2 0.8 } , Oy = [ 1 —-0.9 } , covariance is difficult to determine in the infinite horizaase.
’ ’ Hence it is difficult to discretize the set of all positive dem
Q=1, Ry =1. Let definite matrices (which the error covariance matrices bl
_ 78398 7.3915 , 785 7.40 a subset of) efficiently, and the computational complexity o
P=P= [ 73915 7.7127 } , P= [ 740 7.80 ] * the associated optimization problems can be very high.

Then one can easily verify th&’ > P, but that
trfAP'CT (C,P'CT + Ry)*C P’ AT] = 1.1970
tr[APCT (C, PCT + Ry)~'C1PAT] = 1.2862 . .
<t HGPCY + )Gy ) ’ We consider an example with parameters
so the functionp, x (P) is not an increasing function aP.
For vector systems with scalar measurements, a threshold 4 — { 110.2
policy was considered in[]9], where a sensat would 02 08

transmit if C,, PC exceeded a threshold. Sind® > P in which case
impliesC,,, P'CL > C,, PCL, the above example also shows {

VI. NUMERICAL STUDIES
A. Single Sensor

},C_[l 1],Q=1,R=1,

1.3762 —0.9014

that such a threshold policy is in general not optimal when P= 09014 1.1867 |-

measurements are transmitted (under our problem fornarati
of minimizing a convex combination of the expected errdihe packet reception probability is chosen to)e 0.8, and
covariance and expected energy usage). the transmission energy coBt= 1.
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We first consider the finite horizon problem, witki = 5 6
and 8 = 0.05, and with the local Kalman filter operating
in steady state. Figg] 3 amdl 4 plots respectively the optimal
vi andvi (i.e. k = 1 and k = 2) for different values of af
f™(P), which we recall represents the different values that
the error covariance can take. In agreement with Theorem
we observe a threshold behaviour in the optimal In 2f
this example we havé’y), = f*(P) and P}, = f*(P); the
thresholds are in general different for different values:of

1 6 6 6 o6 o o o B
S Fig. 6. Infinite horizon. Threshol®™ vs g, with ft(P) = P™,
®» o o ‘
0 1 2 3 4 5 6 7 8 9 10
n
@
Fig. 3. Finite horizon,K = 5. v for different values off™(P). sl
= 71 °
&,z 6
1 6 6 o6 &6 &6 &6 o =, o
wogl
* o
N 4 °
3r [
0 L
0 1 2 3 4 5 6 7 8 9 2 . L L - L L L
0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
n
E[energy]

. - . _ . . B
Fig. 4. Finite horizon K’ = 5. v3 for different values off™(P). Fig. 7. Infinite horizon. Expected error covariance vs exgg@nergy.

We next consider the infinite horizon problem, with=

0.05. Fig.[3 plots the optimal; for different values Off’;(l?), for different values ofP;,_j;_;, with transmission energies
Whe_re we again see a threshold behaviour, vlﬂi'h:_f (P). E, = 1, = 1. The behaviour corresponds to scenario (i)
In Fig.[8 we plot the values of the thresholds for different Vaof CorollarylV4. Fig.[9 plots the optima¥; , andw; , for

1f ' ' 6 6 o6 o o o o
1if 0oo oo dbo 00’ oo o ¢ "o
x LR
N
= <05 At
® 9 ° . . . . . ] OO AAAA AA AA AA. AA  AA A
0 1 2 3 4 5 6 7 8 9
n 2 4 6 8 10 12 14 16 18 20
P
k-1lk-1

Fig. 5. Infinite horizon.v;; for different values off™(P). . o ) )
Fig. 8. Infinite horizonv{ ;, andv; . for different values ofP, ;1.

) o .. BEi=1E=1
ues ofg. As g increases, the relative importance of minimizing

the error covariance (vs the energy usage) is increased, thu
one should transmit more often, leading to decreasing salue

of the thresholds. AN
Finally, in Fig.[7 we plot the trace of the expected error *x 05 A zi
covariance vs the expected energy, obtained by solving the
infinite horizon problem for different values g¢f, with the om0 AA AA AA,L AL A4 L4
values computed using the expressidng (26) (27). Note S pkjk_l oo
that the plot is discrete as< N in (26) and [(2V), see also
Fig,E, Fig. 9. Infinite horizon,yi,C and ué"k for different values ofP _1),_1.

Ey=1,E, =04

B. Multiple Sensors different values ofP,_y;_, but with transmission energies
We first consider a two sensor, scalar system with parafi; = 1, F, = 0.4. With these parameters, the behaviour
etersA =1.1,C, =15,Co =1, Q =1, Ry = R, = 1, corresponds to scenario (iii) of Corolldry 1V.4. The reniam
A1 = 0.8, A = 0.6. We solve the infinite horizon prob- scenarios (ii) and (iv) of Corollafy TM4 can be illustratby,
lem with 3 = 0.2. Fig. [§ plots the optimaby , andv;, e.g., swapping the parameter values of sensors 1 and 2.
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C. Performance Comparison 0

o O scheduling at remote estimator

Here we will compare the performance of our approach with | —— threshold on diference i state estimates, ound robin| |
a scheme similar to that investigated|in [5] (see &lso [104) t
transmits when the difference between the state estimates a 7r
sensorm and the remote estimator exceeds a thresﬂmﬂ =
In order to avoid collisions, which from simulation expere o
will greatly deteriorate performance, we allow each sertsor =
transmit (if it exceeds the threshold,,) once everyM time
steps in a round-robin fashion. Specifically,

%o

~ . 3t o o 1
1, ||‘Tfn,k—l|k—1 — Tp—1|| > T o
U,k = and it is sensofn’s turn to transmit 2 ——
. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 , otherwise E[total energy]

(38)
. . . Fig. 10. Infinite horizon, two sensors. Expected error davere vs expected
wherez;, is the remote estimate at tinke total energy.

When the decisions,, ; depend on the state estimates, the
optimal estimator is generally nonlinear [€], [11]. In thairg

of (@), we consider a suboptimal estimatar given by estimator doesn’t require feedback of the remote estimates
i _ but only feedback of the decision variables ;, which takes
ip=d Tmklk o VmkTmk = (39) Vvalues of either 0 or 1 (i.e., one bit of information).
A¥p_1 otherwise
With this scheme the decision on whether to transmit VII. M ARKOVIAN PACKET DROPS

is made by the sensor (rather than the remote estimator)g, far we have considered ii.d packet drops. In this

The sensor has access to its local state estimate, but as@ion we briefly outline how our results extend to the
requires knowledge of the remote estimate. In the smglscrrenCase when state estimates are transmitted and the packet

case, the sensor can reconstruct the remote estimale |,q5 processes are Markovian. For notational simplicitg, w
provided the values of;—; are fed back to the sensor beforgggyict ourselves to the single sensor situation with teall

transmission at timé&. However, in the multlple sensor casq<a|man filter Operating in steady state, where the packest los

simply feeding backy, k-1 is not enough for the Sensors,ocesefy, 1 is a Markov chain, with transition probabilities

to reconstruct the remote estimate, and it appears that DL Py, = Ojy_y = 1) andq 2 P(yx = Llyes = 0)
requires the entire state estimatg_, to be fed back to the 1o hopapilitieg) andg are also known as, respectively, the
sensors in order to implemement this scheme. Thus the scheQig, e and recovery rates [39]. We shall consider transiois
(38)-(39) is not intended as a practical scheme for the mu'HecisionSVk(Pk_Hk_l,yk,l) dependent only onP;_y;_,

sensor case, but is only used here for performance compariaﬂd ~e_1, in which case the remote estimator equations will
with our approach that schedules transmit decisions at @L‘ﬂl have the form

remote estimator.

We consider the two sensor, vector system with parameters T = { TR o ke =1

1.1 0.2 A‘%kfl\kfl , ke =0
A=y ox ] e=l1s s)e=1 1), N
. - bk AP i1 AT+ Q , vk =0.

Q = I,R, = Ry = 1. The packet reception probabilities . i _

are \; = 08, A, = 0.6, and the transmission energies | "€ finite horizon problem becomes:

are £y = 1,Ey; = 0.4. In Fig. [0 we plot the trace of K

the expected error covariance vs the expected total ener inZIE [ﬁtrPk‘k +(1- ﬁ)ukE|Pk,1|k,1,7k_1,uk} (40)

obtained by solving the infinite horizon problem ¥14) for 3 et

different values of3. We compare the performance with thgg, somes € (0, 1), where now

scheme [(38)E(39) for different values of the thresholds

and Ty, with 7; = T5. For smaller expected energies, the E[trPrjx|Pe—1jx—1, k-1, Vk]

scheme of [(38)E(39) performs better due to the utilization = v, (ve_1(1 — p) + (1 — ye—1)g)trP

of additional information in the local state estimates, but _ _ .

as stated before requires feedback of the full remote state + (1= ve(e—1(1 = p) + (1 = yo-1) @)U f (Pr—1jp—1)-

estimates in order to implement. The approach proposed liRe infinite horizon problem is:

Sectiond Il performs better when a smaller expectedrerr K

covariance specification (with corresponding higher etgc min lim supizE[ﬂtrpklkJr(l_5)VkE|pk_”k_l Vi1 Vk] )
. . . K ’ ’

energy) is required. Furthermore, scheduling at the remoftes} K—oo 8= 1)

6The scheme is not exactly the same a<in [5] since here we atsider The following results can be derived:
random packet drops.
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Lemma VII.1. Let the functions/i(-,-) : S x {0,1} — R be remote estimator and the expected energy across the sensors
defined recursively fok = 1,..., K as: we have derived structural properties on the form of the
_ optimal solution, when either local state estimates or @ens
Jr41(P,y) =0 . -
measurements are transmitted. In particular, our reshtie/ s
Je(Py) = ménl {B[u —p)+ (1 —y)g)trP that in the single sensor case a threshold policy is optimal.
vel01} Possible extensions of this work include the consideration

+ (1 =v(y(1=p) + (1 =)t f(P)] event triggered estimation with energy harvesting cajizgsl
+ (1 =BWE +v(y(1 —p)+ (1 —7)q)Jer1(P, 1) at the sensors$ [30], [40], channels where multiple sensams c
transmit at the same time, and efficient ways to solve the
(1 vy =p)+ (1~ )q»Jk“(f( )’O)}' optimal transmission scheduling problem in the case when
and the functiond.}(-,-) : Sx {0,1} = R,k =1,..., K and Measurements are transmitted.

Lo(,): Sx{0,1} = R,k=1,...,K as:
Ly (P,v) & B [p(1=p)rP+(1-v(1-p)irf(P)]
+ (1= BWE + (1 - p)Jea (P, 1)
+ (1 =v(1 = p)) 2 (f(P),0)
LY(P,v) £ B [vgtrP + (1 — va)tr(f(P))]
+ (1 = BWE + vqJyi1 (P, 1) A. Derivation of Optimal Estimator Equations] (3)
+ (1 = vq)Jis1(f(P),0).
Then the functionsL}(P,1) — Li(P,0) and LY(P,1) —
LY(P,0) are decreasing functions d?.

Proof: Similar to Lemmd&IV.2, we can show thd (P, 1)

APPENDIX

Note first that for the local Kalman filters at the sensors,
we haveVm € {1,..., M},

andJi (P, 0) are both increasing functions &. One can also Ty k1 ik = AL ik (42)
easily verify that T kil = T kib—1 + Kok (Ymk — Oy k1)

Ly (P, 1)~ Ly (P,0)

= B(1—p)trP+(1-B)E +(1—p)Jx+1(P, 1) from which one can obtain

=B =ptrf(P) = (1 = p)Je+1(f(P),0)
and i ) Th1 — Ty i1k
LY(P,1) = LY(P,0) = BqtrP + (1 = B)E + qJp41(P, 1) = AL = K3 1 Con) (@ — 5 gyio1) + 0 — AKS, 1 0m
= Batrf(P) — qJr41(f(P),0) (43)

which can both be shown to be decreasing function® ofl
Lemmd VIl implies that in the finite horizon problef{40),
for eachk € 1 ., K} there exist two (in general different)
thresholdsP,™, -t andP,zhf‘k L €S, k=1,...,K, such
that wheny,_; = 1 thenv; = 0 if and only if P,_y,—; <

Pl \; and wheny,_; = 0 thenu; = 0 if and only if

Pr_qjp—1 <Pth?‘k 1
For the infinite horizon probleni_(#1), arguing in a similar

manner as in the proof of LemniaV.5, the optimal policwhen sensorn € {1,..., M} is scheduled to transmit. We

will be such that wheny,_; = 1 then u; = 0 if and only can write

if Pe_q—1 < P™'; and wheny,_; = 0 theny; = 0 if

and only if P,_y,—1 < PO for some constant thresholds

Pl and PO € S. Similar to RemarkKIVB, knowing that T++1 ~ Tk+1]k

the optimal policy is a threshold policy can lead to significa = Azx + wk — AZkjk—1 — Vin kALK k(25 g — Tjp-1)

computational savings when solving problemns] (40) (41) AL — Y o K i) (1, — By ) + wy,

The remote estimator has the form

Try1e = AZppp
. . s .
Tk = Trpp—1 + Vi b Fon i (85 g — Tafp—1)

+ Yon o ARk (T — 235 ki)

VIII. CONCLUSION A "
This paper has studied an event based remote estimation (7 = o, B ) (@ = Thpi—) + i

problem using multiple sensors, with sensor transmissions+~;, x AK, i (I—K%,kcm)(%—ifh,k\k_l)—K;%,kvm,k}
over a shared packet dropping channel, where at most one (44)
sensor may transmit at a time. By considering an optimiza-
tion problem for transmission scheduling that minimizes a
convex combination of the expected error covariance at tiere the last line comes frofi (42). Defideby (48). Using
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i A(I - ’}/m)ka)k) 0 cee ’}/m)kAKm7k(I - Kfﬁykcm) ce 0 T
0 A(I = K3,C1) 0 . 0
A= 0 A(I - K3, ,,Cin) 0 ' (45)
L 0 A(I — K]S\LkC]w)
(44) and [(4B), consider the augmented system that Ky, p = I if
- . 1 - . 1 Prjk—1—Posm (1= K5, 1 Cin)T —(I— K&, .Ci ) P
Tt — T |k T — Ty Klk—1 o #l ek ) S( ok S) ok
Tt =27 p )k T — &7 I + (= K35 kCin) P, e (L — K 1 Om) " + K5 e Rin K
; = Pys—1 — Porn (I — K} ,Cin)"
Thi1 =L, 1|k =A e AN * : o and
: : I Kpp = (Pk — Pow k(1 — K%7kCﬁI)T) (Pk — Posn i
KR VNI B R VR x (I — K3 1.00)T — (I — K5 ,Cin) P
[ Yo b AR i,k K3 1] [0 ] s s S ) o\
0 . AKS + (I = K3, 5 Cin) P, (I — Km)ka)T + Km,kRmeTk)
: 0 otherwise.
+ AK'_3 Vs ke : vkt The equationg{4) when no sensors are scheduled to transmit
'm”“ ’ can be obtained by e.g. setting, , = 0 in (3).
L 0 i L 0 B. Proof of Theoreri 1112
[0 ] We first note that ifK,, = I, then the first equation of}5)
0 becomes
: P =(1—M\y)APAT + Q + My AKS, Ry (K3 AT
A F A A(I = K2,C)PE (I — K3,Cp) " AT
0 = V(1= An) APV (1= X)) ATHQ+ AN AKE R, (K5 TAT
L AKR + A A(I = K3,C)P5 (I — K5,C)T AT,

which is a Lyapunov equation, that has a unique solufibn

Let us use the shorthant, = Fy,.—.. Then we have the y oy o ") s stable, or (i)A is unstable but with

recursion given in[(46). The recursions 6%, Po, k, Prn,k

in the optimal estimator equatiorls] (3) can then be extracted Ay > 1— 1 _
from (@8) and[(4b). It remains to determine the optimal gains max; |o; (A)[2
Ky k- Whenq, . = 0, we haveP,, = Py irrespective of  Next, we will show that the second equation bf (5) also
K k. Wheny,; . = 1, we have has a solutionP,,, = P, irrespective of the value ok,
. We begin by recalling the following expressions for the erro
P = (I =K k) P (I = Ky )" + (= Ko k) Posn k covariance and Kalman gain for the local Kalman filter at
X (1=K, 1 Cin) 'K o4 Kok (I =I5, . Cin) Py (1= Ko i) S€NSOMN:
+ K1 = K3y 1 Con) Py oI — K5 o) K By, = APy AT+ Q- AP Cl (Co Py, O 4 Ryn) O Py AT
+ K o K3, R KT K K, = PO (ConPrCr + Rin) ™ 7)
= Kk (Pr — Posni(I — K5, ,.Ci)" — (I — K&, ,.C) P & ..
”“( k= Porie( g Cn)” = ( ) Forn Since we can usé (#7) to show that
s . s _ s N\ _ _ —
= Kk O ) P g (1= K i Con) AP (1= K2,Co)TAT4Q = APS AT— AP5CT KT AT+Q
+K51,kRmK§1T,k)K£,k =APs AT AP:CL(C, P CE+R,,) PO PEAT+Q=P;,

o+ Koo (= Pt (T= K, 1 Con) Pl 1) and )
K:5CpPs (I — K507 — K5 RK:T

= K:CPs — K50, P CT KT — K8 RKST

mTmTTm

+ (= Put Pom(I— K3, )T ) K+ P

s ps ~T sT s s 1T 1-sT
ChoosingK , , to minimize the expression fap,;, e.g. by =K, (Cn P, Cp+ Ry ) K3y — K5 Co P Cr K
differentiating P, with respect tok; ;. (see [41]), we find — K3 RK:T =0,



Pryq Po1,k+1
Pior+1 Prigtr
Pryo k1 Putkt

Q ... Q
o s T

Q ... Q

0 0

0 AK;, R KL AT
+ . .

0 0

we have

A(I=Xpy KPS (I— K2, Co ) TAT4 M AK, (T - K2,C)
x P (I—K50n) AT+ Q+ N\ AK K5, Ry KT AT

=AP; (I-K5Cn)"TAT+Q— N AK,,, [ Ps, (I - K5,Cr) T
—(I-K3Cp) P (I- K5 Cr) " — K3 Ry K3 AT

=AP; (I — K5 Cn)T A" + Q — My AK,, [K5,C P2,

[ Yin,k

Pon k1
Piar i1

Purar i+t

0

Vi kAR, R K31 K AT 0

0

0 0
0 0
et

0 0

x (I —K5Cn)" — K5 RKST|AT = P,

Thus the equation

Pom = A(I = M\n K ) Po (I — K2,C, )T AT

+ A AK,, (I — K5,C)P3 (I — K5,C)T AT

+ Q4 M AK,, K2 R, KT AT

has P, = P2 as a fixed point (irrespective of the valu
of K,,). Since for the local Kalman filtermax; |o;(A(I —
1, and by assumptionmax;|o;(A(I —
AmK))| < 1, uniqueness of the fixed poin,, = P
can be shown by a similar argument as in p.65[of [42].

It remains to show thak(,, = I. With P, = P2, we now

K5.Cm))| - <

have from [(b) that

AK o 1o K, R KD KL AT 0
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Py Poi .k Poar,k
Pior Pk Piyk T
Pyox Puik - Pumk
.. ’Yﬁz,kAKﬁz,kK%,kRme#:kAT 0
0 ... 0 .. 0
R : 46
AKS, R 5T, AT ..0| @8
0 ... 0 . 0]
0 0
0 0
0 ... AKj RuKil AT

C. Proof of Theorerfi 1IT]1

We will verify the conditions (CAV*1) and (CAV*2) given
in Corollary 7.5.10 of[[3B], which guarantee the existente o
solutions to the Bellman equation for average cost problems
with countably infinite state space. Condition (CAV*1) says
that there exists a standard poﬁay such that the recurrent
class R, of the Markov chain induced by is equal to the
whole state spacg. Condition (CAV*2) says that gively >
0, the setDy = {i € S|c(i,a) < U for somea} is finite,
where ¢(i,a) is the cost at each stage when in statend
using actiona.

We first restrict ourselves to the case of a single sensor
To verify (CAV*1), let d be the policy that always transmits,
i.e. vy, = 1,VEk. Let statei of the induced Markov chain
correspond to the valu¢’(P,,),i = 0,1,2,..., where we
JefinefO(P) £ P,,. The state diagram of the induced Markov
chain is given in Fid_Il1, with state spade= {0,1,2,...}.

K, = (P — P (I - Kanm)T) (P — P (I - K5C)T

— (I = K},Cn) Py, + (I = K3,Cn) Py (1 = K;,Cn) T

1
+ KfanKfnT) .

Similar to above, we can show that

— (I = K5Cm) Py + (I — K5,Cn) P (I — K5,C) T

+ K5 R, KT
=—(I - K:Cp)P;

m

and hence

K, = (P—P3 (I-K2,C) ) (P—P5 (I-K2,C,)T) L =1

CLEST + K3 R K3 =0

m>Tm

Fig. 11.

Markov chain for policy of always transmitting

Let z = 0. Then the expected first passage time from state
1 to statez =0 is

Tie = Am+2(1= X)) A +3(1= A A+ - = — < 0.

Am
The expected cost of a first passage from statestatez = 0
“d is astandard policyif there exists a state such that the expected first

passage time; . from i to z satisfiesr; ., < oo,Vi € S, and the expected
first passage cost; . from i to z satisfiesc; . < oo,Vi € S.
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is [9]
Ci. = BUrf'(Pn) + (1 — B)E,, + (1 — A )C(i41),0
= Btrf'(Pp) + (1 - ﬂ)E + (1= ) [Btrf ™ (P) (0]
+ (1—ﬁ)Em] +(1=Ap)? [Btrf 2 (Pr)+(1=B) Ep] +. ”
1—-8)E,,
_ﬁz 1 — A\p)Mtrf (P, )+7( Ai) .
(48) 2]

For stable A, the infinite series above always converges.
To show convergence of the infinite series for unstalle [13]
note that the scenario where senso@always transmits to the
remote estimator, with packet reception probabilty, corre-
sponds to the situation studied in [31], [32]. By computihg t
stationary probabilities of the Markov chain in Hig] 11, vanc
show that the expected error covariafigé), | can be written [15]
asE[Pyi] = >0 o(1 — An)" A f"(P). From the stability
results of [31], [32], we know thakE[Py ;] is bounded if and [16]
only if A,, >1— Thus

521—
e Zl_

wheni,, > 1 — Ii

Henced is a standar pohcy Furthermore, one can see frof]
Fig. 11 that the positive recurrent clagg; of the induced
Markov chain is equal t&, which verifies (CAV*1).

Since the cost per stag€i,a) corresponds tcﬁtrPMk +
(1—B)vm 1 Enm, condition (CAV*2) can also be easily verified.
This thus proves the existence of solutions to the infini{e
horizon problem in the case of a single sensor

For the general case with multiple sensors, if at least OPZ !
sensorm’ satisfies),,,, > 1 — m then solutions to
the infinite horizon problem will exist, since restricting this
sensorm’ already guarantees the existence of solutions.

[14]

1
max; |o;(A)]%"

[17]
ntrfz-i—n( m)

[18]
VANt fT(P,,) < 00 2ol

[21]

[24]
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