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Power Control of an Energy Harvesting Sensor
for Remote State Estimation

Yuzhe Li, Fan Zhang, Daniel E. Quevedo, Vincent Lau, Subhrakanti Dey, and Ling Shi

Abstract—We investigate sensor transmission power
control for remote state estimation. Instead of using a
conventional sensor, a sensor equipped with an energy
harvester which can obtain energy from the external envi-
ronment is utilized. We formulate power control of the en-
ergy harvesting sensor into an infinite time-horizon Markov
decision process (MDP). To deal with the computation com-
plexity associated with this multi-dimensional MDP, a con-
tinuous-time approach and perturbation analysis are used
and a closed-form approximate value function is derived.
Based on the approximation, we obtain a closed-form op-
timal power control solution which has a threshold-based
structure. A numerical example is provided to evaluate the
estimation performance of the optimal solution compared
with other power scheduling schemes.

Index Terms—Energy harvesting, Markov decision
process (MDP), power control, remote state estimation.

I. INTRODUCTION

THE past decade has witnessed the rapid growth of wire-
less sensor networks (WSN) in fundamental research and

practical applications. Due to advantages such as low cost,
ease of installation, and self-power, wireless sensors play an
increasingly important role in many applications, compared
with traditional wired sensors. In a WSN, the sensors are
typically equipped with batteries and expected to work for a
long time [1]. In some applications, the number of sensors
can be quite large (e.g., environment monitoring) or sensors
may be located in dangerous environments [2] (e.g., chemical
industry), which makes the replacement of batteries difficult or
even impossible. Thus, finding a good power control schedule
for the sensors is imperative.

To deal with energy constraints of wireless sensors, two
possible solution categories are often adopted. One way is
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to focus on the outlet of the energy, i.e., to develop more
efficient sensor power control methods to improve the use of the
batteries [3]–[6]. Existing results have demonstrated significant
improvement of sensor lifetime and system performance under
energy constraints using appropriate power control policies.
The problem is, however, still not completely solved as the
battery will eventually run out. At the same time, the optimiza-
tion of sensor lifetime where energy is limited always leads to
sacrifices such as estimation quality or system stability [7].

To overcome this limitation, an alternative way is to put
emphasis on the inlet of the energy, i.e., using sensors equipped
with an energy harvester to replace conventional battery-
powered sensors. The energy harvester can obtain energy from
the external environment (e.g., body heat, solar energy, piezo-
electric energy, wind energy) and convert them into electrical
energy which can be stored and used by the sensor [2]. In
contrast to battery-powered devices, for sensors using this
technology, the energy (but not the energy-rate) is typically
unlimited as the harvester can generate power most of the
time. But unlike the battery-powered sensor, which has known
energy levels for future use, a sensor with energy harvester will
be subject to uncertain future energy levels, as it is affected
by the randomness of the external environment. For example,
as stated in [8], both technical and theoretical challenges are
posed by the inherent uncertainty and variability in wind energy
when integrated into the electricity power grid. Due to the
randomness of the amount of future harvested energy, power
control and battery management require trading current trans-
mission success probabilities for safeguarding against possible
future energy shortage. Therefore, new challenges arise in the
design and analysis of the communication strategy of the energy
harvesting sensor which are summarized as follows.

1) Randomness of Energy Arrivals: For energy harvesting
sensors, the information of the future energy constraints
is not exactly available for the sensor before the harvest-
ing. Therefore, a new approach is needed to handle the
constraints related to the energy arrival randomness.

2) Practical Energy Model: In practice, the energy storage
amount of the sensor is limited, which will introduce a
more complex energy constraint in the stochastic opti-
mization problem. Furthermore, non-i.i.d. and continuous
energy arrivals (e.g., Markovian arrivals of solar energy
described in [9]) are more difficult to deal with.

3) Computation Complexity of High-dimensional MDP:
It is difficult to overcome the computation complexity
and implicit solution form of the MDP problem in remote
estimation with energy harvesting sensor.
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To tackle with these difficulties, in the present work, we con-
sider remote estimation with a wireless sensor having energy
harvesting capability. Our present manuscript extends existing
results to a more general model (non-i.i.d. energy arrival) with
closed-form solution based on the continuous-time approxima-
tion method and the perturbation analysis to reduce the compu-
tation complexity. We derive an approximate optimal solution,
which has a closed-form expression. We will show that, under
the MDP framework, we can improve the performance based
on the continuous-time approximation method in [10] and [11]
and the perturbation analysis in [12]. The main contributions of
this work are summarized as follows.

1) Standard MDP Framework: To handle the challenge
about the randomness of energy arrivals, we prove that
an associated power control design problem can be
formulated into a standard MDP framework with infi-
nite time-horizon and we provide the optimal solution
(Theorem 3.3).

2) Finite Energy Storage Amount Limitation and Non-
i.i.d. Continuous Energy Arrivals: To model the bat-
tery more practically, we consider limited energy storage
amount of the sensor in this work. Furthermore, departing
from [13] which considered discrete and i.i.d. energy
arrivals, our model and solution also apply to non-i.i.d.
and continuous energy arrivals (e.g., Markovian arrivals
of solar energy as described in [9]).

3) Closed-form Approximate Optimal Solution: To deal
with the computation complexity of the high-dimensional
MDP problem, we obtain an approximate optimal solu-
tion under the MDP framework based on the continuous-
time approximation method in [10] and [11] and the
perturbation analysis in [12], which reduces the com-
putation complexity significantly and has a closed-form
expression (Theorem 4.4). The performance of the ap-
proximate optimal solution is also improved compared
with sub-optimal solutions.

The remainder of the paper is organized as follows. Section II
presents the system model and states the main problem of
interest. Section III presents the optimal power schedule under
the MDP framework. Section IV provides the approximate
optimal solution based on the continuous-time approximation
method and the perturbation analysis. Simulations and nu-
merical examples are given in Section V. Section VI draws
conclusions.

Notations: Z denotes the set of integers and N the positive
integers. R is the set of real numbers. Rn is the n-dimensional
Euclidean space. Sn+ (and Sn++) is the set of n by n positive
semi-definite matrices (and positive definite matrices). When
X ∈ Sn+ (and Sn++), we write X � 0 (and X > 0). X � Y if
X − Y ∈ S

n
+. Tr(·) is the trace of a matrix. The superscript

′ stands for transposition. For functions f, f1, f2 with appro-
priate domains, f1 ◦ f2(x) stands for the function composition

f1(f2(x)), and fn(x)
Δ
= f(fn−1(x)), where n ∈ N and with

f0(x)
Δ
= x. δij is the Dirac delta function, i.e., δij equals to

1 when i = j and 0 otherwise. The notation P[·] refers to
probability and E[·] to expectation.

Fig. 1. System architecture.

II. STATE ESTIMATION WITH AN ENERGY HARVESTER

We consider the problem of remotely estimating the state
of the following continuous-time linear time-invariant (LTI)
system:

ẋt = Ãxt + w̃t (1)

where xt ∈ Rnx is the system state vector at time t, w̃t ∈ Rnx

is zero-mean i.i.d. Gaussian with E[w̃t1w̃
′
t2 ] = δt1t2Q̃ (Q̃ � 0).

The initial state x0 is a zero-mean Gaussian random vector with
covariance Π0 � 0 and is uncorrelated with w̃t.

A sensor measures the state xt discretely with sampling time
τ [14]. The state and measurement dynamics of the sampled
discrete-time LTI system can be expressed as follows [15]:

xk+1 =Axk + wk (2)

yk =Cxk + vk (3)

where A = exp(Ãτ), wk =
∫ τ
0 exp(Ãs)w̃[(k + 1)τ − s]ds,

yk ∈ R
ny is the measurement taken by the sensor, vk ∈ R

ny

is zero-mean i.i.d. Gaussian with E[vk(vj)
′]

Δ
= δkjR (R > 0),

E[wk(vj)
′] = 0 ∀ j, k ∈ N. The pair (A,C) is assumed to be

observable and (A,Q1/2) to be controllable.
Remark 2.1: Note that as w̃t is zero-mean i.i.d. Gaussian,

it is straightforward that wk =
∫ τ

0 exp(Ãs)w̃[(k + 1)τ − s]ds
is also zero-mean i.i.d. Gaussian with E[wk(wj)

′] = δkjQ,
where Q =

∫ τ
0 exp(Ãs)Q̃ exp(Ãs)ds. For system (1) and (2),

the Kalman filter is the minimum mean-square error (MMSE)
estimator for the state xk. �

A. Sensor Local State Estimate

As depicted in Fig. 1, the sensor is embedded with an on-
board processor, the so called “smart sensor” [16]. At each
time k, the sensor first locally runs a regular Kalman filter to
produce the MMSE estimate of the state xk based on all the
measurements it collects up to time k and then transmits the
local estimate to the remote estimator.

Denote x̂s
k and P s

k as the sensor’s local MMSE state estimate
and the corresponding estimation error covariance, respec-
tively, i.e.,

x̂s
k =E[xk|y1, y2, . . . , yk] (4)

P s
k =E

[
(xk − x̂s

k) (xk − x̂s
k)

′ |y1, y2, . . . , yk
]
. (5)

Thus the above quantities can be calculated recursively using
standard Kalman filter update equations ([17]), where the re-
cursion starts from x̂s

0 = 0 and P s
0 = Π0 � 0.
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To facilitate our subsequent discussions, define the Lyapunov
and Riccati operators h, g̃ : Sn+ → Sn+

h(X)
Δ
=AXA′ +Q (6)

g̃(X)
Δ
=X −XC ′[CXC ′ +R]

−1
CX. (7)

Since the estimation error covariance of the sensor, P s
k ,

converges to a steady-state value exponentially fast (see [17]),
without loss of generality, we assume that the Kalman filter at
the sensor side has entered the steady state, i.e.,

P s
k = P , k � 1 (8)

whereP is the steady-state error covariance given by the unique
positive semi-definite solution of g̃ ◦ h(X) = X . In the steady-
state of Kalman filter, the Kalman gain will become a constant
K which can be computed offline and programmed into the
sensor. The sensor only needs to compute the state estimate
based on: x̂s

k = Ax̂s
k−1 +K(yk − CAx̂s

k−1). In addition, the
sensor does not need to compute the state estimation error
covariance Pk. Hence the required computational effort is not
overly burdensome for a state-of-the-art sensor node.

B. Wireless Communication Model

After obtaining the local state estimate x̂s
k, the sensor trans-

mits it to the remote estimator over an Additive White Gaussian
Noise (AWGN) channel using Quadrature Amplitude Modula-
tion (QAM). 1 Denote ωk as the transmission power for sending
the QAM symbol at time slot k with duration τ .

Based on the analysis in [18], the approximate relationship
between the symbol error rate (SER) and ωk is given by

SER ≈ exp

(
−β

ωkτ

N0W

)
(9)

where β is a constant which depends on R, N0 is the AWGN
noise power spectral density, and W is the channel band-
width [14]. The communication channel is assumed to be
time-invariant, i.e., β, N0, W , are constants during the entire
communication session.2 In practice, the remote estimator can
detect symbol errors, e.g., via cyclic redundancy check (CRC).
Thus taking account of the SER in the transmission of QAM
symbols, a binary random process {γk}, k ∈ N (which indeed
follows a Bernoulli distribution) can be used to characterize the
equivalent communication channel for x̂s

k between the sensor
and the remote estimator, where:

γk =

{
1, if x̂s

k arrives error-free at time k

0, otherwise (regarded as dropout).
(10)

1Due to its high bandwidth efficiency, QAM is a common modulation
scheme widely used in IEEE 802.11g/n as well as 3G and LTE systems.
Specifically, x̂s

k is quantized into R bits and mapped to one of the 2R available
QAM symbols.

2For time-varying channels, one can also formulate the problem in a similar
way. This is left for future work.

Fig. 2. Battery dynamics with harvested energy rkτ and transmission
power ωkτ .

From (9), we have

P[γk = 0|ωk] = exp

(
−β

ωkτ

N0W

)
Δ
= λωkτ (11)

where λ = exp(−(β/N0W )) ∈ (0, 1).
We assume that the remote estimator will send reliable ACKs

to the sensor to indicate whether it has received the data packet
successfully or not at time k.

C. Energy Harvester

The technology of energy harvesting enables the sensor to
obtain energy from the external environment or other types
of energy sources (e.g., body heat, solar energy, piezoelectric
energy, wind energy) and converting them into electrical energy
which can be stored.

We shall denote the energy harvesting rate (input power of
the energy harvester) at the beginning of time slot k as rk
(Watt), hence, the amount of harvested energy within the time
slot is rkτ (Watt · s, i.e., Joule). We assume rk is a random
variable which follows a general distribution P[rk] depending
on the external environment (we will show later that we do
not have a constraint on the exact distribution of rk, thus the
obtained results are quite general). In addition, the harvesting
process is assumed to be independent of the physical process
(1) and the measurements.

Denote the remaining energy level in the sensor’s battery
at the beginning of time step k as bk. We further consider a
finite energy storage constraint and denote the maximal energy
amount that can be stored under the sampling time τ as bmax =
ωmaxτ where ωmax is the maximum transmission power per
slot. Without loss of generality, we assume that the initial
battery level b1 is 0.

At the end of each time slot, after harvesting the energy rkτ ,
the battery level becomes

b+k
Δ
= min{bk + rkτ, bmax}. (12)

Then the sensor needs to decide the transmission power ωk

used at time k to send the local state estimates to the remote
estimator. After this procedure, the process moves to next time
slot k + 1 and the battery level at the beginning of k + 1 is (as
depicted in Fig. 2)

bk+1 = b+k − ωkτ. (13)

The energy consumption at each time slot cannot exceed the
current available energy in the energy storage. To be more spe
cific, the power consumption ωkτ should satisfy the following
energy availability constraint 0� ωkτ � min{bk + rkτ, bmax}.
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For mathematical convenience, we consider a normalized
energy dynamics (normalized per time slot)

b̃k+1 = b̃+k − ωk (14)

where b̃k+1 = bk+1/τ , b̃+k = b+k /τ = min{b̃k+1 + rk, ωmax}.
As such, the instantaneous power constraint becomes 0 �
ωk � min{b̃k + rk, ωmax}, where the range of the transmission

power ωk is determined by b̃+k and independent of τ .
As mentioned before, different power levels lead to different

dropout rates, and thereby affect the estimation performance.
While keeping the battery partly charged serves to “prepare
for the future,” one should also avoid wasting harvested en-
ergy due to battery capacity limitations. How to deal with the
trade-off between the reservation for future and limited battery
capacity is critical when designing power control protocols.
This motivates the issue of energy management to be studied
in Section III.

D. Remote State Estimation

Denote x̂k and Pk as the remote estimator’s own MMSE
state estimate and the corresponding error covariance based
on all the sensor data packets received up to time step k. The
works [18] and [19] show that they can be calculated via the
following procedure: once the sensor’s local estimate arrives,
the estimator synchronizes x̂k with that of the sensor, i.e., x̂s

k;
otherwise, the remote estimator just predicts x̂k based on its
previous estimate using the system model (2). From (10), the
remote state estimate x̂k thus obeys the recursion

x̂k =

{
x̂s
k, if γk = 1

Ax̂k−1, if γk = 0.
(15)

The corresponding state estimation error covariance Pk

satisfies

Pk =

{
P , if γk = 1

h(Pk−1), if γk = 0.
(16)

III. OPTIMAL TRANSMISSION POWER SCHEDULE

In this section, we define the transmission power control pol-
icy and formulate a sensor transmission power control problem.
We will further give the optimality conditions for solving the
associated stochastic control problem.

A. MDP Formulation

As in [20], we shall investigate energy management by
formulating Problem 3.1 as an MDP problem, which requires
the following definitions.

• State
The ACKs from the remote estimator will enable the

sensor to obtain Pk−1. Accordingly we define the state for
the power management problem at the beginning of time
step k as Φk = (b+k , Pk−1), which consists of the battery

level at the beginning of time step k [see (12)] and the
state estimate error covariance of the previous time step,
Pk−1. Note that here we choose Pk−1 because Pk is still
unknown at the beginning of time step k. The initial state
is denoted as Φ0.

From the recursion of Pk in (16), it is easy to see
that at any time step k2 � k1, Pk2

can be written as
Pk2

= hk2−k1(P ), where k1 is the latest time when
the remote estimator successfully received sensor data.
Since Pk only takes values in the infinitely countable
set {P , h(P ), h2(P ), . . .}, the state space S for Φk can
be expressed as S = {(b+k , Pk−1)}, where b+k ∈ [0, bmax],
Pk−1 ∈ {P, h(P ), . . .}.

• Action
Let F(k) = σ(Φi : i = 0, 1, 2 . . . , k) be the minimum

σ-algebra containing the set Φi : i = 0, 1, 2, . . . , k. At
the beginning of the k-th slot, the sensor determines the
power control action ωk, which is F(k)-adapted at time

slot k. The actions set A can be expressed as A = [0, b̃+k ].
Note that the range of the transmission power ωk is

determined by b̃+k : the normalized energy level in the
battery defined in (14) that is independent of τ .

• Transition Probability
Given the control policy to be obtained, the random

process {Φk} becomes a controlled Markov chain with
a product space S of a continuous real value set and
an infinitely countable set. As the recursion of the state
estimation error covariance in (16) does not depend on
the time index k, Φ is a time-homogeneous process. In
such case, the controlled Markov chain is governed by the
transition kernel T (S, x, a) for S ⊂ S, x ∈ S and a ∈ A.
Denote σ(S) as a Borel σ-algebra on S, then the transition
kernel ([21]) T : σ(S) × S× A → [0, 1] defines {Φk} as
P(Φk+1 ∈ S|Φk, ωk) = T (S,Φk, ωk).

We shall denote T (y, x, a) as the density of the transi-
tion kernel T (S, x, a) =

∫
S T (y, x, a)dy. The derivation

of the closed-form expression for the density of the tran-
sition kernel is provided in Appendix A.

B. Problem of Interest

The objective of the remote estimation is to obtain an ac-
curate state estimate x̂k . To be more specific, the sensor seeks
to minimize the trace of the average expected state estimation
error covariance at the remote estimator

J(θ) = lim sup
T→∞

1

T

T∑
k=1

Tr {E[Pk]} (17)

where θ = {ω1, ω2, . . .} is the transmission power used at each
time step and Tr{E[Pk]} is the per-stage cost. Note that, here
we consider an infinite time-horizon which is a good approach
for long-term running applications.

Due to the energy and battery constraints, we are interested in
finding the optimal transmission power policy θ� for the sensor
that solves the following constrained optimization problem:
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Problem 3.1:

min
θ

J(θ)

s.t. 0 � ωk � min{b̃k + rk, ωmax}, ∀ k ∈ N
+

where θ = {ω1, ω2, . . .}. �
As described in (17), the cost function (objective function)

is the trace of average expected state estimate error covariance.
Denote vk(Φk, ωk) as the single stage cost function for time
step k, Tr{E[Pk]}. This means that as a result of choosing
action ωk when the remote estimator is in state Φk at time
step k, the remote estimator receive a cost vk(Φk, ωk).

Suppose that vk(Φk, ωk|Φk+1) is the cost given Φk+1,
then vk(Φk, ωk) can be expressed as the expected value of
vk(Φk, ωk,Φk+1), which depends on the state of the remote
estimator at time step k and at the next time k + 1

vk(Φk, ωk) =

∫
Φk+1∈S

T (Φk+1,Φk, ωk)vk(Φk, ωk|Φk+1)

=λωkτTr {h(Pk−1)}+[1−λωkτ ]Tr{P}. (18)

Without loss of generality, we assume that the costs can be
calculated by the sensor prior to selecting a particular action.
Define Θ as the policy for the sensor, which is a map from S to
A such that the transmission power is given by ωk = Θ(Φk).

Also denote the expected total cost under a policy Θ up to
time-horizon T when the initial state of the system is Φ0 as

V Θ
T (Φ0)

Δ
= EΘ

Φ0
[
∑T

k=1 vk(Φk, ωk)].
The sensor needs to design the transmission power strategyΘ

such that the estimation error is bounded. To be more specific,
we have the following definition of admissible transmission
power strategies.

Definition 3.2: A transmission power strategy for the sensor
Θ is admissible if the estimation process is stable in the sense
that the expected state estimation error covariance is bounded
for every possible initial state, i.e., limk→∞ EΘ

Φ0
[Tr{Pk}] < ∞,

∀Φ0. �
Based on the results in [9], if the packet loss probability is

relatively high compared to a relatively low energy harvesting
rate, the admissible allocation strategy which stabilizes the
estimation error in the asymptotic limit may not exist. In our
work, we only consider the case when there exists an admissible
policy as per Definition 3.2. More results regarding to the
stability of the power allocation can be found in [9] and [22].

In the following discussion, we will aim to derive the cor-
responding policy assuming its existence. Once we obtain the
policy, we will verify its admissibility of the such a policy, see
Theorem 4.7.

Given the above, the performance metric is chosen as the
average cost of a policy Θ given the initial value Φ0, namely

JΘ(Φ0)
Δ
= lim

T→∞

1

T
V Θ
T (Φ0). (19)

Note that (17) is the cost under a specific transmission power
realization while (19) is the cost under a policy, which specifies
the exact power used for different process state.

Therefore Problem 3.1 can be stated as finding the optimal
admissible policy Θ� to minimize (19), i.e.,

J�(Φ0) = min
Θ

JΘ(Φ0) (20)

and Θ� = argminΘ JΘ(Φ0).

C. Optimality Equation

Based on the theory of MDP [21], [23]–[25], the optimal
policy Θ� is stationary and independent of the initial value (see
[24, Prop. 7.4.1]). Thus the optimality conditions of (20) are
given by the Bellman equation below. Note that to facilitate
the discussion and subsequent calculations, without loss of
generality, we slightly change the expressions of J(θ) and
vk(Φk, ωk) by multiplying them with τ (which will not change
the solution of the following optimization problem).

Theorem 3.3: If there exists a pair (J�, H�(Φk)) satisfying
the following optimality equation (Bellman equation):

J�τ+H�(Φk)= min
ωk∈A

{vk(Φk, ωk)τ + E [H�(Φk+1)|Φk, ωk]}
(21)

and for all admissible strategies Θ, H�(Φk) satisfies the
transversality condition

lim
k→∞

1

k
E
Θ [H�(Φk)|Φ0] = 0 (22)

then the value of this infinite-time horizon minimization prob-
lem is given by J� and the power control policy ω�

k = Θ�(Φk),
which achieves the minimum of the RHS in (21) for a given
state Φk, is the optimal solution. Furthermore, H�(Φk) is the
relative value function. �

The existence of a solution and independence with respect to
initial conditions can be guaranteed under conditions provided
in [9]. Note that (21) is not easy to solve (see also [9], [13]). As
the state set is countably infinite (Pk takes values from hi(P ),
i = 0, 1, 2, . . .) and the action set is continuous, one may solve
it by value iteration after a fine discretization of the state and
action space. This results in an exponential complexity that is
beyond the capability of a state-of-the-art sensor node. The
value function does not have a closed-form solution, which
lacks valuable design insight. In addition, though the solution
can be solved in principle (see [24]), if the system parameters
keep changing during run-time, the sensor may not have the
ability to compute the optimal policy online. This motivates us
to consider how to obtain an approximate solution to this MDP
problem, which can be expressed in a closed-form.

IV. APPROXIMATE OPTIMAL SOLUTION WITH

CLOSED-FORM EXPRESSION

To overcome the computation complexity of the MDP prob-
lem stated in Section III, in this section, we provide a closed-
form approximate solution to the optimality equation in (21).
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A. Continuous-Time Approximation

Using the continuous-time approximation method in [10] and
[11] and the perturbation analysis in [12], we can obtain a
closed-form approximation of the original optimality equation
(21) and the performance gap between the approximate solution
and the optimal solution.

As in digital communication scenarios, τ is quite small (e.g.,
in practical communications system like LTE, the generic radio
frame has a time duration of 10 ms) and it is much smaller
compared to the system (the linear plant under consideration)
time constant in practice, we can expand the state Φk+1 in the
function in (21) as Taylor series around the state of the last
time slot Φk and obtain the approximation. We first calculate
the approximation of right-hand side of (21).

Remark 4.1: For convenience, in the following discus-
sion, we only investigate the case that rk is i.i.d. distrib-
uted. We will show later that when rk is non-i.i.d. distributed
(e.g., Markovian), the main results and derivations will not
change except that the state needs to be suitably augmented to
include rk . �

Theorem 4.2: Suppose that there exists a pair (J,H)
satisfying:

1) the two-variable partial differential equation (PDE)

J = min
ωk

{
− β

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
−∇b+k

H
(
b+k , Pk−1

)}
ωk

+∇b+k
H
(
b+k , Pk−1

)
E[rk+1]

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+Tr{Pk−1} (23)

where ∇b+k
and ∇Pk−1

are the partial derivatives with re-

spect to the first and the second variable of H(b+k , Pk−1).
The partial derivative of a scalar function with respect to
a matrix (∇Pk−1

) is defined in the Appendix, see (28);
2) the value function H(b+k , Pk−1) is piecewise affine with

respect to Pk−1 and the coefficients of its partial deriva-
tives of different orders with respect to b+k are uniformly
bounded.

Then, for any state Φk, we have H�(Φk)−H(Φk) = O(τ).
Proof: See Appendix B. �

Theorem 4.2 implies that when the above two conditions are
satisfied, H(Φk) can serve as an approximation to the optimal
relative value functionH�(Φk) with approximation errorO(τ),
i.e., when τ → 0, H�(Φk) → H(Φk).

Furthermore, denote Θ� and Θ̄� as the optimal policies for
the Bellman (21) and the approximate Bellman (23), respec-
tively. The corresponding objective values under each policy
are represented by J� and J̄�. We have the following result
about the performance gap.

Theorem 4.3: Given the optimal admissible policy Θ̄� for
the approximate Bellman (23), the performance gap between
J� and J̄� is given by J� − J̄� = O(τ).

Proof: See Appendix C. �
Therefore, based on Theorem 4.2 and 4.3, we can solve the

PDE equation in (23) instead of solving the optimality equation
in (21) to obtain an approximate relative function and optimal
policy with performance gap bounded by O(τ). This reduces
the computation complexity significantly.

In the following subsection, we aim to solve the PDE in (23)
to obtain the closed-form solution based on well-established
PDE theories.

B. Closed-Form Approximate Value Function

In this subsection, we solve the multi-dimensional PDE (23)
posed in Theorem 4.2 and obtain the approximate asymptotic
relative value function H(Φk) and the approximate optimal
power schedule which are given by the following theorem.

Theorem 4.4 [Asymptotic Solution of the PDE in (23)]:
The approximate asymptotic solution of the relative value func-
tion to the PDE in (23) and satisfying the conditions in Theorem
4.2 is given by

H
(
b+k , Pk−1

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1

(
b+k , Pk−1

)
,

if Ξ1

(
b+k , Pk−1

)
� 0 &&Ξ2

(
b+k , Pk−1

)
� 0

H2

(
b+k , Pk−1

)
,

if Ξ1

(
b+k , Pk−1

)
> 0&&Ξ2

(
b+k , Pk−1

)
> 0

1
2

[
H1

(
b+k , Pk−1

)
+H2

(
b+k , Pk−1

)]
,

otherwise

where

Hi

(
b+k , Pk−1

)
= Tr

{
Fi

(
b+k
)
Pk−1

}
+Gi(b

+
k ), i = 1, 2

F1(b
+
k ), F2(b

+
k ) ∈ Rn×n and G1(b

+
k ), G2(b

+
k ) ∈ R are contin-

uous functions of b+k given by (48), (49), (51) and (52), respec-
tively, in Appendix D, and Ξ1(b

+
k , Pk−1) and Ξ2(b

+
k , Pk−1) are

operators regarding to H1(b
+
k , Pk−1) andH2(b

+
k , Pk−1) defined

in (53) in Appendix D.
The approximate optimal transmission power schedule Θ̄�

associated to H has an event-based threshold structure of the
following form:

ω�
k =

{
max{ωk ∈ Ak} = b̃+k , if Ξ

(
b+k , Pk−1

)
� 0

0, otherwise.
(24)

where Ξ(b+k , Pk−1) is an operator regarding to H(b+k , Pk−1)
and defined as

Ξ
(
b+k , Pk−1

) Δ
= − β

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
−∇b+k

H
(
b+k , Pk−1

)
. (25)

Proof: See Appendix D. �
Remark 4.5: Note that in the proof to theorem 4.2 in

Appendix B and its following discussion, the approximation in
(29) is based on the assumption thatωk is independent of τ , thus
can be extracted from O(τ2). This is because the transmission
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power ωk is determined by b̃+k : the normalized energy level in
the battery defined in (14) that is independent of τ .

Remark 4.6: Note that the condition in (24) also depends
on the parameter C2 = E[rk+1] as in (46), i.e., the expected
harvested energy in the next time slot. When rk is i.i.d distrib-
uted, C2 can be regarded as a given parameter as in the proof.
However, we do not need to impose restrictions on the exact
distribution or other properties of rk+1. The solution applies to
all scenarios of stationary arrival sequences of harvested energy,
including i.i.d. distribution or (hidden) Markov chain model. As
stated in Remark 4.1, we just need to augment the hidden state
and the corresponding state transition probability with rk, then
replace the distribution of rk+1 with conditional distribution,
e.g., replace E[rk+1] with E[rk+1|rk] or E[rk+1|ek], where ek
is the environment state at time k as in [20]. We will illustrate
the details in the simulation part below. �

After obtaining the closed-form approximate value function
H and the associated approximate optimal transmission power
schedule, we now need to verify its admissibility of the corre-
sponding transmission power schedule. The following theorem
summarizes the results.

Theorem 4.7: Suppose the following conditions are satis-
fied:

1) E[Fi(rkτ)] > 1, i = 1, 2, where Fi(rkτ) is given by (48)
and (51);

2) P[γk = 0|ωk = rk] = E[λrkτ ] < (ρ/‖A‖2), for some
ρ ∈ [0, 1) and ‖A‖ is the largest eigenvalue of A.

Then under the approximate optimal transmission power
schedule Θ̄� associated to H in (24), the process is stable, i.e.,
the the corresponding transmission power schedule is admissi-
ble as defined in Definition 3.2.

Proof: See Appendix E. �
Remark 4.8: Intuitively, the two conditions in Theorem 4.7

specify the requirements on the average arrival rate of the
harvested energy and the packet loss probability. Specifically,
condition 2) is similar to the critical value of the packet dropout
rate in Kalman filtering with intermittent observations [26]. �

In the next section, we will specify a distribution of rk to
show the implementation and performance of the approximate
solution.

V. EXAMPLE AND SIMULATION

In this section, we provide a numerical example to evaluate
the estimation performance of the approximate optimal solution
and compare the solution with other power schedules.

We consider the Markov chain model described in [20],
where there are two states of the external environment: G
denotes the good condition (e.g., windy, sunny, etc.) and B
denotes the bad condition which may alternate at every time
step. At time k, the environment condition state is denoted as
ek and the transition of the two condition states between two
time steps follows a Markov chain model (Fig. 3):

The transition probabilities are described by P(ek+1 =
G|ek = G) = p̂00 = 0.7, P(ek+1 = B|ek = G) = p̂01 = 0.3,
P(ek+1 = G|ek = B) = p̂10 = 0.2, P(ek+1 = B|ek = B) =
p̂11 = 0.8. Due to the battery capacity limitation, when rkτ >

Fig. 3. Markov chain model of environment condition.

Fig. 4. Estimation performance comparison of θ�, θ1, θ2 and θ3.

bmax, we can regard it as rkτ = bmax and add up all the
corresponding probabilities as P[rkτ = bmax]. Under different
environment conditions, rkτ follows different distributions:
rkτ |ek=B ∼ Uniform(0, 2) and rkτ |ek=G ∼ Uniform(0, 3).

Define Jk(θ) = (1/k)
∑k

i=1 Tr(E[Pi]) as the empirical ap-
proximation (via 100 000 Monte Carlo simulations) of J(θ)
[see (17)] at every time instant k. As stated in Remark 4.1,
here we need to add rk to the state and corresponding state
transition probability, and replace the distribution of rk+1 with
conditional distribution, e.g., replace E[rk+1] with E[rk+1|ek].

We consider four sensor power schedules for comparison: θ�

is the optimal solution to the original Bellman equation (21)
(note that as the state in our work is continuous, we can only
calculate the optimal solution numerically by discretization
with incremental size of 0.05), θ1 is our proposed approximate
optimal solution, θ2 is the sub-optimal one proposed in [20]

ωkτ =

{
min{bk + rkτ, R0}, if ek = G

min{bk + rkτ, R1}, if ek = B

where the parameters to be designed R0 = 1, and R1 = 2 as in
[20], and θ3 is the “greedy” method, i.e., ωk = rk, which refers
to using all the harvested energy rkτ to send the data packet at
each time step. A scalar system is investigated with parameters:
A = 1.1, C = 0.7, R = Q = 0.8, λ = 0.7 and bmax = 3. The
simulation results are shown in Fig. 4. Similar to the results
in [20], the “greedy” method has a better performance only
in the first several time steps, which is because the “greedy”
method used all the harvested energy instead of reserving some
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for the future. Our proposed approximate optimal method θ1
has a better estimation performance than its counterparts and
the gap between θ1 and θ� is close.

VI. CONCLUSION

We investigated remote state estimation with an energy har-
vesting sensor. We formulated the power control of the har-
vesting sensor into an infinite time-horizon MDP problem. The
continuous-time approach and perturbation analysis was used
and a closed-form approximate value function was derived to
deal with the high-dimensional MDP computation complexity.
Based on the approximation, we also obtained a closed-form
optimal power solution with a threshold-based structure. Nu-
merical examples illustrated the implementation of the optimal
solution and demonstrated the performance improvement of the
estimation performance compared with other power schedules.

APPENDIX

A. Closed-Form Expression for the Transition Kernel
Density

Assume that at time k, the state is Φk = (b+k , Pk−1). Though
Pk can take value from a countably infinite set, once Pk−1 is
given, based on the recursion in (16), there are only two possible
states for Pk : h(Pk−1) and P , associated to γk = 0 and γk =
1, respectively.

After the sensor chooses the transmission power ωk and
sends the data packet carrying x̂s

k, we can calculate the prob-
ability densities for different values of Pk.

Suppose Φk+1 = (b+k+1, Pk). Clearly, when Pk 
= P and
h(Pk−1), we have T ((b+k+1, Pk), (b

+
k , Pk−1), ωk) = 0.

For the case Pk equals P or h(Pk−1), since b+k+1=min{b+k −
ωkτ + rk+1τ, bmax}, based on the battery level recursion in
(13), when rk+1τ � bmax − (b+k ωkτ) and b+k+1 � bmax, i.e.,
the power will not exceed the maximum power level of the bat-
tery at the beginning of next time slot, we have T ((b+k+1,

h(Pk−1)), (b
+
k , Pk−1), ωk)=λωkτf [rk+1=b+k+1−(b+k −ωkτ)],

and T ((b+k+1, P ), (b+k , Pk−1), ωk)=(1−λωkτ )f [rk+1=b+k+1−
(b+k − ωkτ)], where f [rk+1 = X ] is the probability den-
sity of rk+1 evaluated at X . Similarly, when rk+1τ >
bmax − (b+k + ωkτ) and b+k+1 = bmax, (i.e., the power will
exceed the maximum level of the battery at the beginning of
next time slot), we can directly calculate the probabilities of
these state transitions: P((b+k+1, h(Pk−1))|(b+k , Pk−1), ωk) =∫ bmax

bmax−(b+k +ωkτ)
λωkτf [rk+1=(X/τ)]dX , and P((b+k+1,P )|(b+k ,

Pk−1), ωk) =
∫ bmax

bmax−(b+k +ωkτ)
[1− λωkτ ]f [rk+1 = (X/τ)]dX .

B. Proof to Theorem 4.2

Proof: We first derive the expressions of terms in the
Bellman equation in (21) using Taylor expansion and pertur-
bation analysis.

1) Expressions of h(X), H(Φk+1) and vk(Φk, ωk)

Using Taylor Expansion: Recall that: A = exp(Ãτ), and Q =∫ τ

0 exp(Ãs)Q̃ exp(Ãs)ds, based on the definition of Lyapunov
operator h(X) in (6) and the Taylor expansion of the exponen-

tial function, we have the equivalent expression of Lyapunov
operator h(X) with respect to τ

h(X)=AXA′ +Q

= exp(Ãτ)X exp(Ãτ)′ +

τ∫
0

exp(Ãs)Q̃ exp(Ãs)ds

=
[
I + Ãτ +O(τ2)

]
X
[
I + Ãτ +O(τ2)

]′
+

τ∫
0

(I + Ãs)Q̃(I + Ãs)ds

=X+ÃτX+XÃ′τ+

τ∫
0

(Q̃+ÃsQ̃+Q̃Ã′s)ds+XO(τ2)

=X + (ÃX +XÃ′ + Q̃)τ +XO(τ2). (26)

Remark A.1: Note that the above expression can be regarded
as an equivalent expression using Taylor expansion respect to τ
given other variables. The notation O(τ2) represents the high-
order terms of τ with system parameters (e.g., Ã, Q̃). �

Based on the perturbation analysis in [11] and [12], when τ
is small, we have rk+1τ − ωkτ � bmax − b+k and b+k − ωkτ +
rk+1τ � bmax, i.e., the power will not exceed the maximum
power level of the battery at the beginning of next time slot.
Therefore, the equation b+k+1=min{b+k − ωkτ + rk+1τ, bmax}
is equivalent to

b+k+1 = b+k + (rk+1 − ωk)τ. (27)

In the following discussion, for convenience, we will use Ψ
to denote a general smooth function to represent all the residual
cross terms consisting of Φk, H(Φk) and ωk (we will show
later that the exact forms of such terms are not needed and
Ψ can also represent the combination of multiple Ψ terms).
Combining (26) and (27), we obtain the Taylor expansion of
H(b+k+1, h(Pk−1)) around the point (b+k , Pk−1) as

H
(
b+k+1, h(Pk−1)

)
= H

(
b+k , Pk−1

)
+∇b+k

H
(
b+k , Pk−1

) (
b+k+1 − b+k

)
+Tr

{
∇Pk−1

H
(
b+k , Pk−1

)
(h(Pk−1)− Pk−1)

}
+Ψ(Φk, H(Φk), ωk)O(τ2)

= H
(
b+k , Pk−1

)
+∇b+k

H
(
b+k , Pk−1

)
(rk+1 − ωk)τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)τ
}

+Ψ(Φk, H(Φk), ωk)O(τ2)

H
(
b+k+1, P

)
= H

(
b+k , P

)
+∇b+k

H
(
b+k , P

) (
b+k+1 − b+k

)
+Ψ(Φk, H(Φk), ωk)O(τ2)

= H
(
b+k , P

)
+∇b+k

H
(
b+k , P

)
(rk+1 − ωk)τ

+Ψ(Φk, H(Φk), ωk)O(τ2)

where ∇b+k
and ∇Pk−1

are the partial derivatives with respect

to the first and the second variable of H(b+k , Pk−1). Note that
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∇Pk−1
is the derivative of a scalar function H(b+k , Pk−1) with

respect to a matrix variable Pk−1, which is defined as

∇Pk−1
=

[
∂H

(
b+k , Pk−1

)
∂Pk−1ij

]
nx×nx

(28)

where Pk−1ij denote the elements of the matrix Pk−1.
Remark A.2: Based on the previous Taylor expansions, sup-

posing that H(Φk) satisfies the second condition in Theorem
4.2, since the value function H(b+k , Pk−1) is piecewise affine
with respect to Pk−1, we can observe that Ψ(Φk, H(Φk), ωk)
consists of linear combination of terms of H or the coef-
ficients of the derivatives of H multiplied by functions of
Pk−1 with order one, i.e., in the form of Ψ(Φk, H(Φk), ωk) =∑∞

i=1 Tr{ηi∇i
b+k
H(Φk)τ

i}, where certain ωk, b+k and other

constant or bounded system parameters are omitted in the
coefficients for simplicity. In addition, as the partial derivatives
of different orders with respect to b+k are bounded, the omitted
coefficients are also bounded. �

Note that

P[γk =0|ωk]

= exp

(
−β

ωkτ

N0W

)
=1− β

ωkτ

N0W
+ Ψ(ωk)O(τ2) (29)

and P[γk = 1|ωk] = 1− exp(−β(ωkτ/N0W )) = β(ωkτ/
N0W ) + Ψ(ωk)O(τ2), where the approximations are based
on the fact that ωk is independent of τ , thus can be extracted
from the O(τ2). This is because the transmission power ωk is

determined by b̃+k : the normalized energy level in the battery
defined in (14) that is independent of τ . Conditioning on
whether the data packet arrived successfully or not, we have

H
(
b+k+1, h(Pk−1)

)
P[γk = 0]

= H
(
b+k+1, h(Pk−1)

)(
1− β

ωkτ

N0W
+Ψ(ωk)O(τ2)

)
= H

(
b+k , Pk−1

)
+∇b+k

H
(
b+k , Pk−1

)
(rk+1 − ωk)τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)τ
}

− β
ωkτ

N0W
H
(
b+k , Pk−1

)
+ Ψ(Φk, H(Φk), ωk)O(τ2)

and H(b+k+1, P )P[γk = 1]= β(ωkτ/N0W )H(b+k , P )+Ψ(Φk,
H(Φk), ωk)O(τ2). Therefore, the approximation of right-hand
side of (21) can be written as

E [H(Φk+1)|Φk, ωk, rk+1]

= E
[
H
(
b+k+1, h(Pk−1)

)
P[γk = 0]

+ H
(
b+k+1, P

)
P[γk = 1]|b+k , Pk−1, ωk, rk+1

]
= H

(
b+k , Pk−1

)
+∇b+k

H
(
b+k , Pk−1

)
(rk+1 − ωk)τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)τ
}

− β
ωkτ

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
+ E [Ψ (Φk, H(Φk), ωk)]O(τ2). (30)

Based on (30) and taking expectation over rk+1, we have

E [H(Φk+1)|Φk, ωk]

=

∞∫
X=0

E [H(Φk+1)|Φk, ωk, rk+1]P

[
rk+1 =

X

τ

]
dX

= H
(
b+k , Pk−1

)
+∇b+k

H
(
b+k , Pk−1

)
{E[rk+1]− ωk} τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)τ
}

− β
ωkτ

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
+ E [Ψ (Φk, H(Φk), ωk)]O(τ2). (31)

Similarly, the approximation of vk(Φk, ωk) in (18) can be
written as

vk(Φk, ωk)

= λωkτTr {h(Pk−1)}+ [1− λωkτ ]Tr{P}

= exp

(
−β

ωkτ

N0W

)
Tr {h(Pk−1)}

+

[
1− exp

(
−β

ωkτ

N0W

)]
Tr{P}

= Tr
{
Pk−1 +

(
ÃPk−1 + Pk−1Ã

′ + Q̃
)
τ
}

− β
ωkτ

N0W
Tr{Pk−1 − P}+ Pk−1O(τ2). (32)

After obtaining the approximate expression for terms in the
Bellman (21), we are now ready to investigate the relation-
ship between the original Bellman (21) and the approximate
Bellman (23) in Theorem 4.2.

2) Relationship Between Bellman Equation (21)
and (23): To facilitate our subsequent discussion, based on
the Bellman (21), we denote

Υ�(J,H,Φk, ωk)

Δ
=

1

τ
{vk(Φk, ωk)τ+E [H(Φk+1)|Φk, ωk]−H(Φk)}−J

(33)

We can substitute E[H(Φk+1)|Φk, ωk] and vk(Φk, ωk) in
(33) with (31) and (32) to obtain

Υ�(J,H,Φk, ωk)

= Tr{Pk−1} − β
ωk

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
+Tr

{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+∇b+k
H
(
b+k , Pk−1

)
(E[rk+1]− ωk)− J

+ E [Ψ (Φk, H(Φk), ωk)]O(τ)

=

{
− β

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
− ∇b+k

H
(
b+k , Pk−1

)}
ωk+∇mH

(
b+k , Pk−1

)
E[rk+1]

+ Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+Tr{Pk−1} − J + E [Ψ (Φk, H(Φk), ωk)]O(τ). (34)
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Similar to Υ�(J,H,Φk, ωk), based on the approximate
Bellman (23), we denote

Υ(J,H,Φk, ωk)

Δ
=

{
− β

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
−∇b+k

H
(
b+k , Pk−1

)}
ωk

+∇b+k
H
(
b+k , Pk−1

)
E[rk+1]

+ Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+Tr{Pk−1} − J. (35)

Combing (33) and (35), we can rewrite (34) as

Υ�(J,H,Φk,ωk)=Υ(J,H,Φk,ωk)+E[Ψ(Φk,H(Φk),ωk)]O(τ).
(36)

Based on the above discussion, we have the following result.
Lemma A.3: Assume that the pair (J�, H�) satisfies the

Bellman (21) and the transversality condition in (22), and that
the pair (J,H) satisfies the approximate Bellman equation in
(23) and the transversality condition in (22). Then for any state
Φk we have

1) minωk
Υ�(J�, H�,Φk, ωk) = 0,

2) minωk
Υ(J,H,Φk, ωk) = 0,

3) minωk
Υ�(J,H,Φk, ωk) = O(τ).

Proof: Based on (21) and (23), the first two conclusions
are straightforward to verify. For the third conclusion, using the
relationship in (36), we have

min
ωk

Υ�(J,H,Φk, ωk)

= min
ωk

{Υ(J,H,Φk, ωk) + E [Ψ (Φk, H(Φk), ωk)]O(τ)}

� min
ωk

Υ(J,H,Φk, ωk)+min
ωk

E [Ψ (Φk, H(Φk), ωk)]O(τ)

= 0 +min
ωk

E [Ψ (Φk, H(Φk), ωk)]O(τ)

= min
ωk

E [Ψ (Φk, H(Φk), ωk)]O(τ).

On the other hand

min
ωk

Υ�(J,H,Φk, ωk)

= min
ωk

{Υ(J,H,Φk, ωk) + E [Ψ (Φk, H(Φk), ωk)]O(τ)}

� min
ωk

Υ(J,H,Φk, ωk) + E
[
Ψ
(
Φk, H(Φk), ω

−
k

)]
O(τ)

= E
[
Ψ
(
Φk, H(Φk), ω

−
k

)]
O(τ)

where ω−
k = argminωk

Υ(J,H,Φk, ωk).
Since H(Φk) is assumed to satisfy the second condition in

Theorem 4.2, the finite summations of power functions with
respect to Pk−1 are bounded as stated in Remark A.2. Then
we have

E [Ψ (Φk, H, ωk)] =E

[ ∞∑
i=1

Tr
{
ηi∇i

b+k
H(Φk)τ

i
}]

�E

[ ∞∑
i=1

Tr
{
Mτ iPk−1

}]

=E

[
Mτ

1− τ
Tr{Pk−1}

]

where M is the uniform bound of the coefficients of the
derivatives ofH with resect to b+k and other corresponding coef-
ficients. Under the admissible strategy defined in Definition 3.2,
E[Tr{Pk−1}] is bounded. Consequently, we have Υ�(J,H,
Φk) = O(τ), ∀Φk. �

3) Difference Between H�(Φk) and H(Φk): Based on
Lemma A.3, we can prove the main result of Theorem 4.2
concerning the difference between H�(Φk) and H(Φk). Sup-
pose that the pairs (J�, H�) and (J,H) satisfy the conditions
in Lemma A.3, respectively, then we have Υ�(J,H,Φk) =
O(τ), ∀Φk. When τ → 0, Υ�(J,H,Φk) → 0, ∀Φk, i.e., the
pair (J,H) satisfies the conditions in the Bellman (21). As
the pair (J�, H�) is the unique solution to the Bellman
(21), we have H�(Φk) = H(Φk) when τ → 0, i.e., H�(Φk)−
H(Φk) = O(τ). �

C. Proof to Theorem 4.3

To facilitate the following discussion, we denote:

Υ(H,Φk, ωk)
Δ
=Υ(J,H,Φk, ωk) + J (37)

Υ�(H,Φk, ωk)
Δ
=Υ�(J,H,Φk, ωk) + J

=Υ(H,Φk, ωk) +O(τ). (38)

Based on Lemma A.3, it is straightforward that

min
ωk

Υ(H,Φk, ωk) = Υ(H,Φk, ω̄
�) (39)

and J� = minωk
Υ�(H,Φk, ωk) = Υ�(H�,Φk, ω

�) = Υ(H�,
Φk, ω

�
k) +O(τ), where ω̄� and ω� are the optimal power under

policy Θ̄� and Θ�, respectively.
On the other hand, given the optimal admissible policy Θ̄�

for the approximate Bellman (23), we have

E
Θ̄�

[E [H�(Φk+1)|Φk, ωk]] =E
Θ̄�

[H�(Φk+1)|Φk]

=E
Θ̄�

[H�(Φk+1)]

=E
Θ̄�

[H�(Φk)] (40)

where the different time index in Φ only represents different
states of the process. Based on (19) and the above discussion,
the corresponding objective value J̄� under Θ̄� can be calcu-
lated as follows:

J̄� = lim
T→∞

1

T
E
Θ̄�

[
T∑

k=1

vk(Φk, ωk)

]

=E
Θ̄�

[vk(Φk, ω̄
�)]

=E
Θ̄�

[
vk (Φk, ω̄

�)+
1

τ
(E [H�(Φk+1)|Φk, ω̄

�]−H�(Φk))

]
=E

Θ̄�

[Υ�(H,Φk, ω̄
�)]

=E
Θ̄�

[Υ(H�,Φk, ω̄
�) +O(τ)]

�E
Θ̄�

[Υ(H,Φk, ω
�) +O(τ)] .
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Therefore, due to the Lipschitz continuity of operator
Υ(H,Φk, ωk) [24], we have

J� − J̄� =E
Θ̄�

[Υ(H,Φk, ω
�)−Υ(H,Φk, ω

�) +O(τ)]

�α‖H� −H‖+O(τ) = O(τ)

where α is some constant and ‖ · ‖ is any norm.

D. Proof to Theorem 4.4

1) Approximate Optimal Transmission Power
Solution: Since we have Ξ(b+k , Pk−1) =
−(β/N0W )[H(b+k , Pk−1)−H(b+k , P )]−∇b+k

H(b+k , Pk−1),
we can rewrite J in (23) in a simpler form

J = min
ωk

{
Ξ
(
b+k , Pk−1

)}
ωk

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+∇b+k
H
(
b+k , Pk−1

)
E[rk+1] + Tr{Pk−1}. (41)

Lemma A.4: The relative function H(b+k , Pk−1) has follow-
ing properties:

1) H(b+k , Pk−1) > H(b+k , P ), ∀Pk−1 � P ,
2) ∇b+k

H(b+k , Pk−1) � 0.

Proof: As H(b+k , Pk−1) is the relative value function
representing the optimal expected average state estimation error
covariance value obtained starting from the state (b+k , Pk−1). As
more energy and lower initial error covariance are always bene-
ficial (proved in [18]), it is straightforward that H(b+k , Pk−1) is
monotonic increasing with Pk−1 and decreasing with b+k , which
finishes the proof. �

Based on Lemma A.4, we have −(β/N0W )[H(b+k , Pk−1)−
H(b+k , P )] � 0 and −∇b+k

H(b+k , Pk−1) � 0. Therefore,

Ξ(b+k , Pk−1) is not necessarily positive or negative for all b+k
and Pk−1.

Based on value of the function Ξ(b+k , Pk−1), we can obtain
an event-based threshold structure optimal solution to (34) in
the following form:

ω�
k =

{
max{ωk ∈ Ak} = b̃+k , if Ξ

(
b+k , Pk−1

)
� 0

0, otherwise.
(42)

To be more specific, the approximate optimal transmission
power of Problem 3.1 is given by (24).

Next we need to obtain the closed-form expression for the
relative value function H by solving the PDE in (23). Substitut-
ing the ωk in (23) with ω�

k in (42), when Ξ(b+k , Pk−1) � 0, we
can get

J = − βb+k
N0Wτ

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
−∇b+k

H
(
b+k , Pk−1

) b+k
τ

+∇b+k
H
(
b+k , Pk−1

)
E[rk+1]

+ Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+Tr{Pk−1}. (43)

Otherwise, we have

J =∇b+k
H
(
b+k , Pk−1

)
E[rk+1]

+ Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1 + Pk−1Ã

′ + Q̃)
}

+Tr{Pk−1}. (44)

2) Solution to (43): To solve (43), we first assume that
the relative value function H(b+k , Pk−1) has a solution in the
form of

H1(m,L) = Tr {F1(m)L}+G1(m) (45)

where F1(m) ∈ Rn×n and G1(m) ∈ R are continuous
functions.

Substituting the general solution into (43), we can obtain that

J =Tr

{[
C1mF1(m)− 1

τ
mḞ1(m) + C2Ḟ1(m)

+ F1(m)Ã+ Ã′F1(m) + I

]
L

}
+ Tr

{
−C1mF1(m)P + F1(m)Q̃

}
− 1

τ
mĠ1(m) + C2Ġ1(m) (46)

where C1
Δ
= −(β/N0W ), C2

Δ
= E[rk+1] and Ġ1(m), Ḟ1(m)

are the first-order derivatives of corresponding functions.
First, we solve the part with L and require the following equa-

tion holding for any m and L: C1mF1(m)− (1/τ)mḞ1(m) +

C2Ḟ1(m)+F1(m)Ã+ Ã′F1(m)+I = 0, i.e., C1mf1(m)ij −
(1/τ)mḟ1(m)ij+C2ḟ1(m)ij+

∑n
r=1 arjf1(m)ir+

∑n
r=1 ari

f1(m)rj + δij = 0, i, j = 1, 2, . . . , n, where f1(m)ij , ḟ1(m)ij
and aij are the elements of corresponding matrices.

By using the method of dominant balance (MDB) [12], we
can obtain the asymptotic solution of f1(m)ij

f1(m)ij =

(
C2 −

1

τ
m

)C1C2τ
2+aijδijτ

exp(C1mτ) (47)

thus we have

F1(m) = {f1(m)ij} (48)

where f1(m)ij is given in (47).
For the second part without L in (46), similarly we re-

quire that: Tr{−C1mF1(m)P + F1(m)Q̃}−(1/τ)mĠ1(m)+
C2Ġ1(m) = J . We can write the above PDE into elements:
−C1Tr{P}mf1(m)ij−(1/τ)mnδijĠ1(m)+C2nδijĠ1(m)+∑n

r=1 qrjf1(m)ir = nδijJ , where Q̃ = {qij}. To deal with
the sum of functions in the above PDE, we can separate it
into two parts: −C1Tr{P}mf1(m)ij − (1/τ)mnδijĠ1(m) +

C2nδijĠ1(m) = 0 and − (1 /τ)mĠ1(m) + C2Ġ1(m) +
qrjf1(m)ir = nδijJ , where i, j, r = 1, 2, . . . , n and the
solution of G1(m) is the sum of the solutions to the above two
PDEs. Using MDB we can obtain the solutions for each PDE:
G11(m) = (1/n)C1C2Tr{P} log(C2τ −m)− C1(m/n) and
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G12(m)ij =
∫
(C1b

+
jim/(C2τ −m))f1(m)ijdm. Therefore,

we have

G1(m) = G11(m) +

n∑
i=1

n∑
j=1

[G12(m)ij ] . (49)

Note that we do not need solve the indefinite integrals above. As
we will show later, we only need a closed-form expression of
the derivative of G(m). Given the above approximate solution
of (43) is given by (48) and (49).

3) Solution to (44): To solve (44), we can also assume the
relative value function H(b+k , Pk−1) has a solution is in the
form of

H2(m,L) = Tr {F2(m)L}+G2(m) (50)

where F2(m) ∈ Rn×n and G2(m) ∈ R are continuous func-
tions. Following the same procedure as for the case con-
sidered above, we first require that C2Ḟ2(m) + F2(m)Ã+

Ã′F2(m) + Q̃ = 0. Then using the MDB method, we have the
asymptotic solution of f̃2(m)ij

f2(m)ij =

{
C1 exp

(
−aijm

C2

)
− qij

aij
, if i 
= j

C1 − qijm
C2

, if i = j.

Therefore, F2(m) is given by

F2(m) =
{
f̃2(m)ij

}
. (51)

For the second part of (44) without L, similarly, we require
Tr{C2Ġ1(m)F̃1(m)Q̃} = J , and obtain

G2(m) = G21(m) +

n∑
i=1

n∑
j=1

[G22(m)ij ] (52)

where G21(m)=(m/C2), G22(m)ij =
∫
−(qji/C2)f2(m)ijdm.

Clearly, the solutions obtained for H satisfies the two condi-
tions in Theorem 4.2.

4) Combination of Solutions to (43) and (44): The approxi-
mate solution of the relative value function H(b+k , Pk−1) to (23)
is given by the combination of solutions to (43) and (44). The
threshold condition (42) for choosing the transmission power
implies that H(b+k , Pk−1) has a piecewise structure to fit these
two solutions together

H(m,L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(m,L),

if Ξ1(m,L)�0 &&Ξ2(m,L)�0

H2(m,L),

if Ξ1(m,L)>0&&Ξ2(m,L)>0
1
2 [H1(m,L)+H2(m,L)] ,

otherwise

(53)

where Ξ1 and Ξ2 are operators defined as in (25) except
replacing H with H1 in (45) and H2 in (50), respectively.

E. Proof to Theorem 4.7

To investigate the stability of Pk under the proposed approx-
imate optimal transmission power schedule associated to H in

(53), first we define a Lyapunov function as L(b+k , Pk−1)
Δ
=

H(b+k , Pk−1), the conditional Lyapunov drift as dL(Pk−1) =

EΘ̄�
[L(b+k+1, Pk)−L(b+k , Pk−1)|Pk−1], and the conditional state

estimation error covariance drift as d(Pk−1) = EΘ̄�
[Tr{Pk −

Pk−1}|Pk−1].
Now we want to investigate the relation between dL(Pk−1)

and d(Pk−1). On one hand, when Pk−1 becomes large, given
Pk−1, we have

dL(Pk−1)

= E
Θ̄� [

L
(
b+k+1, Pk

)
− L

(
b+k , Pk−1

)
|Pk−1

]
= E

Θ̄� [
H
(
b+k+1, Pk

)
−H

(
b+k , Pk−1

)
|Pk−1

]
= E

b+k

[
E
Θ̄� [

H
(
b+k+1, Pk

)
−H

(
b+k , Pk−1

)
|Pk−1, b

+
k

]]
= E

b+k

[
E
Θ̄� [

Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(Pk − Pk−1)

}
+ Ψ(Φk, H(Φk), ωk)O(τ)|Pk−1 , b

+
k

] ]
� E

b+k

[
E
Θ̄�[

Tr
{
∇Pk−1

H
(
b+k ,Pk−1

)
(Pk−Pk−1)

}
|Pk−1, b

+
k

]]
� E

b+k
[
∇Pk−1

H
(
b+k ,Pk−1

)
|b+k

]
E
Θ̄�

[Tr{(Pk−Pk−1)}|Pk−1]

� E
Θ̄�

[Tr {Pk − Pk−1} |Pk−1] = (Pk−1)

where the first inequality holds for certain positive constant C
and is due to the properties of the relative value function H (in-
creasing with Pk and decreasing with b+k ), the second inequality
is based on the inequalities for the trace of matrix product in
[27] and the third inequality holds when ∇Pk−1

H(b+k , Pk−1) =

F (b+k ) satisfies the condition 1) of this theorem.
Now we consider a simple “greedy” policy as Θg : ωk =

b̃+k = rk . Clearly, based on the results in [9], when condition
2) of this theorem holds, the greedy policy is admissible in the
sense that Pk is bounded.

On the other hand, the Lyapunov drift when Pk becomes
large is given by

dL(Pk−1)

= E
Θ̄� [

H
(
b+k+1, Pk

)
−H

(
b+k , Pk−1

)
|Pk−1

]
= E

Θ̄�
[
∇b+k

H
(
b+k , Pk−1

)
{E[rk+1]− ωk} τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1+Pk−1Ã

′+Q̃)τ
}

− β
ωkτ

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
+E [Ψ (Φk, H(Φk), ωk)]O(τ2)|Pk−1

]
� E

Θg

[
∇b+k

H
(
b+k , Pk−1

)
{E[rk+1]− ωk} τ

+Tr
{
∇Pk−1

H
(
b+k , Pk−1

)
(ÃPk−1+Pk−1Ã

′+Q̃)τ
}

− β
ωkτ

N0W

[
H
(
b+k , Pk−1

)
−H

(
b+k , P

)]
+E [Ψ (Φk, H(Φk), ωk)]O(τ2)|Pk−1

]
� Jτ − E

Θg [vk(Φk, ωk)τ ]

= Jτ − E
Θg

[
λωkτTr {h(Pk−1)} − [1− λωkτ ]Tr{P}

]
< 0

where the first and the second inequality follow from the
definition of Υ�(J,H,Φk, ωk) in (33) and (34), vk(Φk, ωk)
in (32) and the result in Lemma A.3 that Θ̄� minimizes
Υ�(J,H,Φk, ωk) rather than Θg (but Θg is a stablizing policy
making the RHS of the first inequality bounded). The third
inequality holds when Pk−1 becomes large.
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Combining the above two inequalities between dL(Pk−1)
and d(Pk−1) yields

d(Pk−1) � dL(Pk−1) < 0 (54)

Based on the Lyapunov theory [28], the negative state drift in
(54) ensures the stability of {Pk}, i.e., the admissibility of our
proposed policy Θ̄�.
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