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A Game-Theoretic Approach to
Fake-Acknowledgment Attack on

Cyber-Physical Systems
Yuzhe Li, Daniel E. Quevedo, Subhrakanti Dey, and Ling Shi

Abstract—A class of malicious attacks against remote state esti-
mation in cyber-physical systems is considered. A sensor adopts an
acknowledgement (ACK)-based online power schedule to improve
the remote state estimation performance under limited resources.
To launch malicious attacks, the attacker can modify the ACKs
from the remote estimator and convey fake information to the sen-
sor, thereby misleading the sensor with subsequent performance
degradation. One feasible attack pattern is proposed and the cor-
responding effect on the estimation performance is derived analyt-
ically. Due to the ACKs being unreliable, the sensor needs to decide
at each instant, whether to trust the ACK information or not and
adapt the transmission schedule accordingly. In the meanwhile,
there is also a tradeoff for the attacker between attacking and not
attacking when the modification of ACKs is costly. To investigate
the optimal strategies for both the sensor and the attacker, a game-
theoretic framework is built and the equilibrium for both sides is
studied.

Index Terms—Cyber-physical systems, fake-ACK attack, game
theory.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPS) have attracted much
interest from both academic and industrial communities in

the past few years. A wide spectrum of applications of CPS can
be found in areas such as smart grid, intelligent transportation
and environment monitoring [1] with the integration of sensing,
control, communication and computation. In most CPS infras-
tructures, wireless sensors are key components with advantages
such as low cost, easy installation, self-power [2], when com-
pared with traditional wired sensors. Therefore, wireless sensors
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have been increasingly equipped in CPS to replace wired ones.
New issues due to their special characteristics, however, arise
naturally [3], [4].

The first issue is how to allocate the transmission energy of
the sensors efficiently. Since most wireless sensors use on-board
batteries which are difficult to replace, and these sensors are
typically expected to work for several years without battery re-
placement, energy conservation is critical [5]–[7]. The work [8]
designs multi-sensor scheduling and transmit power policies
to adapt to the random wireless channel environment oppor-
tunistically. In [9], the authors consider the sensor scheduling
problem of whether it should send its data to a remote estima-
tor or not in the presence of communication energy constraints.
The optimal offline sensor schedule is derived, where the term
“offline” means that the sensor designs its strategy before the
process starting, i.e., independent of the state of the process.
In [10]–[12], the authors extend the result of [9] and propose a
so-called “online” sensor power schedule by utilizing the real-
time information of the process. One typical category of online
information used here is the acknowledgement (ACK) packet
from the remote estimator, indicating whether the data packet
from the sensor arrives successfully or not. The ACK-based on-
line power schedule gives rise to full-state information setups
and only requires sending a 1-bit ACK packet. Not surprisingly,
it improves the estimation performance significantly [11] com-
pared with offline schedules.

Another issue when using wireless sensor modes is that, as
the communication is through a wireless channel, these sensors
are more vulnerable to cyber security threats, which leads to
security and privacy concerns in CPS. In some safety-critical
infrastructures, the wide use of CPS increases the risks and
severities of such attacks. For example, as the largest and most
complex CPS in the future, any severe attack on smart grids may
have significant impacts on national economy and security or
may even lead to loss of human life [13]. Therefore, the security
issue is of fundamental importance to ensure the safe operation
of CPS and are commonly investigated in the literature [14]–
[17]. Cyber-Physical attacks can affect the integrity, availability
and confidentiality in CPS [16]. Examples range from decep-
tion based attacks such as false-data-injection [18], sensor and
actuator attacks, replay attacks [19], and also denial of service
attacks [20]. Documented defence mechanisms can range from
attack identification and detection, intrusion detection as well
as physical watermarking of valid control signals [14].
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In this context of CPS security, it should be noted that al-
though the online power schedule proposed in [11] improves
the estimation performance, the simple structure of the ACK
packet employed therein makes it a more reachable (and likely)
alternative for an adversary. By modifying the information on
the arrivals of previous packets, the attacker may mislead the
sensor and affect the estimation performance. Therefore, eluci-
dating possible attack patterns and how they will affect the esti-
mation performance are important to help us improve the design
of CPS. This motivates us to investigate potential classes of ma-
licious attacks against ACK-based remote state estimation based
on the framework developed in [11]. In our previous work [21],
a possible periodic attack pattern is proposed. The correspond-
ing effect on the estimation performance under this attacking
pattern is decided based on its capability to block ACKs. When
the capability is quite limited, the attacker can block almost no
ACKs and the online sensor schedule will operate normally. As
a consequence, keeping the online schedule in such case will
still guarantee a better performance than the offline schedule.
On the other hand, when the attacker has sufficient capability
and can block almost all the transmissions of the ACKs, it will
make the estimation performance of the online sensor schedule
under attack even worse than the offline schedule. In this case,
the reasonable choice for the sensor is to adopt the offline sched-
ule rather than keeping the online schedule. Since the proposed
attack pattern in [21] will reduce the arrival rate of the ACKs
significantly and the arrival rate of the ACKs without attacks is
known [11], the sensor can distinguish whether the transmission
of the ACKs are blocked by calculating the actual arrival rate
and may choose to switch to offline schedule, hence it will no
longer be affected by the attacker when the actual arrival rate is
abnormal. In such cases where both the sensor and the attacker
are more intelligent, it is worth investigating how the attacker
can re-design their attacking pattern to avoid being detected.
Similarly, when the sensor cannot detect the existence of the at-
tacker any longer, it will need to decide whether or not to switch
from online schedule to offline one without 100% confidence as
in [21]. As a consequence, it is straightforward that, under cer-
tain conditions, the attacker may not launch the costly attacks
since the sensor may adopt the offline schedule at the same
time. The above line of thought motivates us to investigate the
problem of the attack-switch game between the attacker and the
sensor in a game-theoretic framework. The main contributions
of the current work are summarized as follows:

1) We propose an analytical expression (Definition 4.1) to
quantify feasible attacking patterns of the intelligent at-
tacker without being detected by the sensor.

2) Instead of limiting the capability of the attacker described
in [21], we extend the constraint model to assume that
launching attacks are costly.

3) We build an attack-switch game between the attacker and
the sensor in a game-theoretic framework when both sides
involve and obtain the closed-form solution of the optimal
actions for both sides in the state of Nash equilibrium.

The remainder of the work is organized as follows. Section II
presents the system framework and states the main problem
of interest. Section III provides some preliminaries about the
optimal offline schedule and an online schedule. The analysis

Fig. 1. System block diagram.

of our proposed feasible fake-ACK attack pattern is given in
Section IV. The attack-switch game between the attacker and
the sensor are investigated in Section V. Numerical examples
and simulations are demonstrated in Section VI. Section VII
provides some concluding remarks.

Notations: Z denotes the set of all integers and N the pos-
itive integers. R is the set of real numbers. Rn is the n-
dimensional Euclidean space. Sn

+ (and Sn
++ ) is the set of n by

n positive semi-definite matrices (and positive definite matri-
ces). When X ∈ Sn

+ (and Sn
++ ), we write X � 0 (and X > 0)

and X � Y if X − Y ∈ Sn
+ . The curled inequality symbols

� and � (and their strict forms � and ≺) are used to de-
note generalized componentwise inequalities between vectors:
for vectors a = [a1 , a2 , . . . , an ]′,b = [b1 , b2 , . . . , bn ]′, we write
a � b if ai � bi , for i = 1, 2, . . . , n. 1 denotes vector with all
entries one. Tr(·) is the trace of a matrix. The superscript ′

stands for transposition. For functions g, h with appropriate do-
mains, g ◦ h(x) stands for the function composition g

(
h(x)

)
,

and hn (x) � h
(
hn−1(x)

)
, where n ∈ N and with h0(x) � x.

δij is the Dirac delta function, i.e., δij equals to 1 when i = j,
and 0 otherwise. The notation P [·] refers to probability and E[·]
to expectation. The subscript “k” is used as time index.

II. PROBLEM SETUP

A. System Model

Our interest lies in the security of a remote state estimation
system as depicted in Fig. 1. Here we consider a general discrete-
time linear time-invariant (LTI) process of the form:

xk+1 = Axk + wk , (1)

ys
k = Cxk + vk , (2)

where k ∈ N, xk ∈ Rnx is the process state vector at time
k, ys

k ∈ Rny is the measurement taken by the sensor, wk ∈
Rnx and vk ∈ Rny are zero-mean i.i.d. Gaussian noises
with E[wkw′

j ] = δkjQ (Q � 0), E[vkvj
′] = δkjR (R > 0),

E[wkvj
′] = 0 ∀j, k ∈ N. The initial state x0 is a zero-mean

Gaussian random vector uncorrelated with wk and vk with co-
variance Π0 � 0. The pair (A,C) is assumed to be detectable
and (A,Q1/2) is stabilizable.

We consider a so-called “smart sensor” as described in [22],
which first locally estimates the state xk based on all the mea-
surements it has collected up to time k and then transmits its
local estimate to the remote estimator.

Denote x̂s
k and Ps

k as the sensor’s local minimum mean-
squared error (MMSE) estimate of the state xk and the
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corresponding error covariance:

x̂s
k = E[xk |ys

1 , y
s
2 , . . . , y

s
k ], (3)

P̂ s
k = E[(xk − x̂s

k )(xk − x̂s
k )′|ys

1 , y
s
2 , . . . , y

s
k ], (4)

which can be calculated by a standard Kalman filter.
As the estimation error covariance of the Kalman filter con-

verges to a unique value from any initial condition ([23]), with-
out loss of generality, we assume that the Kalman filter at the
sensor side has entered the steady state and simplify our subse-
quent discussion by setting:

Ps
k = P , k � 1, (5)

where P is the steady-state error covariance. For notational ease,
we define the Lyapunov and Riccati operators h, g̃ : Sn

+ → Sn
+

as:

h(X) � AXA′ + Q,

g̃(X) � X − XC ′[CXC ′ + R]−1CX.

Then P is given by the unique positive semi-definite solution
of g̃ ◦ h(X) = X (see [23]).

B. Remote State Estimation

After obtaining x̂s
k , the sensor will transmit this vector as a

data packet to the remote estimator. Due to fading and interfer-
ence, random data drops will occur. As modelled in [9], [11],
we assume that the sensor has two transmission power levels to
choose from: when using a higher energy Δ, the packet will al-
ways arrive to the remote estimator; when using a lower energy
δ, packets are dropped at the rate 1 − λ, with λ ∈ (0, 1). Note
that we can also extend the result to multiple power levels or
even continuous power levels in the future work. In the current
work, we will start from the two-level model and aim to obtain
some inspiring results. To simplify the following discussion, we
denote the sensor power schedule as:

θ = {γ1 , γ2 , . . . , γk , . . .}, (6)

where γk = 1 or 0 represents that the sensor chooses energy Δ
or δ, respectively, at time step k.

As a consequence, the transmission of x̂s
k between the sen-

sor and the remote estimator can be characterized by a binary
random process {λk}, k ∈ N:

λk =

{
1, if x̂s

k arrives at time k,

0, otherwise (regarded as dropout).

Therefore, we have:

P [λk = 1] =

{
1, if γk = 1,

λ, if γk = 0,
(7)

and

P [λk = 0] = 1 − P [λk = 1]. (8)

Denote x̂k and Pk as the remote estimator’s own MMSE state
estimate and the corresponding error covariance based on all the

sensor data packets received up to time step k. The remote state
estimate x̂k obeys the recursion:

x̂k =

{
x̂s

k , if λk = 1,

Ax̂k−1 , if λk = 0.
(9)

The corresponding state estimation error covariance Pk

satisfies:

Pk =

{
P , if λk = 1,

h(Pk−1), if λk = 0.
(10)

Intuitively, higher transmission power leads to better estima-
tion performance. However, in practice, the sensor has a limited
energy budget, which motivates us to consider the following
optimization problem for the sensor:

Problem 2.1:

min
θ

J(θ) � lim sup
T →∞

1
T

T∑

k=1

Tr (E[Pk ]) ,

s.t. Φ(θ) � lim sup
T →∞

1
T

T∑

k=1

E [γkΔ + (1 − γk )δ] � Ψ,

where Ψ is the average energy constraint for the sensor.
Remark 2.2: We assume that Δ, δ, and Ψ are all positive

rational numbers satisfying δ < Ψ < Δ. Note that by setting
λ = 0, the two-level power model can be regarded as a gener-
alization of the sensor scheduling problem of sending the data
packet or not.

The above problem was already considered in [21]. If a ma-
licious attacker exists, however, the situation will become more
involved, motivating our current work. For the attacker, the aim
is to deteriorate the estimation quality, i.e., maximize the cost
function J(θ) by choosing an appropriate attack strategy. We
will describe the revised objective and the constraint model with
more details in Sections IV and V.

III. POWER SCHEDULES WITHOUT ATTACKS

In this section, we will revisit some existing results about opti-
mal offline schedules and an ACK-based online power schedule
when there is no attacker.

A. Optimal Offline Schedule

When the sensor designs its power schedule without utilizing
any online information, the optimal solution to the problem
stated in Section II is provided by the following result:

Theorem 3.1 (Optimal Offline Schedule [9]): Suppose that
p and q are two co-prime integers satisfying p

q = Ψ−δ
Δ−δ . Then

the optimal offline power schedule θ�
off to Problem 2.1 over a

period q can be constructed in the following form:

(1 0 · · · 0︸ ︷︷ ︸
s0 +1times

) · · · (1 0 · · · 0︸ ︷︷ ︸
s0 +1times

)

︸ ︷︷ ︸
n times

(1 0 · · · 0︸ ︷︷ ︸
s0 times

) · · · (1 0 · · · 0︸ ︷︷ ︸
s0 times

)

︸ ︷︷ ︸
m times
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where 1 and 0 denote the designed value for γk in (6), m =
q − p(s0 + 1), n = p(s0 + 2) − q, and s0 is the largest integer
such that s0 � q

p − 1.
Under the above optimal offline schedule θ�

off, we have the
following closed-form results about the corresponding energy
consumption and estimation performance.

Proposition 3.2 ([9]): When θ�
off is used, the average energy

cost is given by

Φ(θ�
off) =

(m + n)Δ + (ms0 + ns0 + m)δ
ms0 + ns0 + 2m + n

= Ψ,

and

J(θ�
off) =

1
m(s0 + 2) + n(s0 + 1)

· Tr
{

m
[
1 + λ(s0 + 1)]P + n

[
1 + λs0)]P

+ m

s0 +1∑

i=1

[
1 + λ(s0 + 1 − i)

]
(1 − λ)ihi(P )

+ n

s0∑

i=1

[
1 + λ(s0 − i)

]
(1 − λ)ihi(P )

}
. (11)

B. Online Power Schedule

The offline power schedules given above are designed before
the system is running without using the realtime measurement or
state information. In [12], the authors showed that the utilization
of online information can improve the estimation performance
while requiring less energy consumption. To further improve the
estimation performance, an online power schedule θon based on
the ACKs from the remote estimator was recently proposed
in [11] as follows: the remote estimator generates 1-bit ACKs
(= λk ) to indicate whether the data packet arrived successfully
or not. An event-detector at the remote estimator’s side then
collects and stores the ACKs in its memory. Without loss of
generality, assume the sensor uses Δ at the first time step. The
memory is set to 11, . . . , 11 initially and the detector randomly
chooses to activate z0-bit memory with a given probability μ, or
(z0 + 1)-bit memory with probability η = 1 − μ. At every time
step, the memory shifts all bits one bit to the Most Significant
Bit (MSB) direction with the existing MSB being deleted and
the incoming ACK stored in the Least Significant Bit (LSB).
When the memory becomes 00, . . . , 00, the detector sends an
aggregated-ACK to inform the sensor to use high power in the
following time step. In the meanwhile, the memory is set to
11, . . . , 11 again (see Fig. 2).

Remark 3.3: Note that the design of the parameter μ in the
online sensor schedule θon is to tune the activated memory length
between z0 and z0 + 1 in the event-detector to satisfy the energy
constraint. When the energy constraint is in simple fraction
form, e.g., 1

2 or 1
3 , a fixed length activated memory with z0 is

sufficient. Without loss of generality, we shall assume that the
event-detector adopts a fixed activated memory with length z0
to facilitate the discussion and simplify the notation below.

Fig. 2. System architecture under online sensor schedule.

Under the online schedule θon described above, the corre-
sponding estimation performance is characterised by the fol-
lowing theorem:

Theorem 3.4 (Theorem 4.5 in [11]): When using the online
power schedule θon,

J(θon) =
λ

1 − (1 − λ)z0 +1 · Tr

[
z0∑

i=0

(1 − λ)ihi(P )

]

. (12)

Compared with the optimal offline schedule in Section III-A
and under a given energy constraint , the online schedule θon

gives a better estimation performance (see Theorem 5.3 of [11]):
J(θon) < J(θ�

off).

IV. FEASIBLE FAKE-ACKNOWLEDGEMENT ATTACK

As stated before, the ACK-based online power schedule can
improve the estimation performance compared with the offline
schedule. However, the simple structure of the 1-bit aggregated-
ACK packet makes it a more reachable (and likely) alternative
for an adversary, under both integrity attacks and DoS attacks.
In this section, we propose a possible attack pattern for the at-
tacker and investigate the corresponding effect on the estimation
performance analytically.

A. Feasible Attacks

In our previous work [21], a periodic attack pattern is investi-
gated. The attack pattern in [21], denoted as ωc , requires an extra
counter to keep track of the accumulated number of attacks. In-
terestingly, as the arrival rate of the aggregated-ACKs without
attacks is known in [11], the sensor may check the actual arrival
rate of the aggregated-ACKs to ensure the normal operation of
the system. As a result, the sensor may aim to switch to an of-
fline schedule and no longer be affected by the attacker when
the actual arrival rate is abnormal.

The above discussion motivates the attacker to design its
attacking pattern to maintain the original arrival rate. We assume
that the verification conducted by the sensor is only to check the
average arrival rate of the aggregated-ACKs. As a consequence,
the attacker will adopt the following so-called “feasible” attack
pattern which keeps the average arrival rate of the aggregated-
ACKs.
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Fig. 3. Comparison between θon and θon|ωf .

Definition 4.1: Define the average arrival rate of the
aggregated-ACKs as Γ � limT →+∞

t0
T , where t0 is the num-

ber of occurrences that the sensor receives aggregated-ACKs
from time step 1 to T .

A fake-ACK attack pattern for the attacker ω is “feasible” if
the average arrival rate of the aggregated-ACKs under ω remains
unchanged from the one without attacks, i.e.,

Γ(θon|ω) = Γ(θon|no attack). (13)

Remark 4.2: In the context of a two-player static game, it is
reasonable that the sensor will decide its transmission scheme
before the process begin and may not verify the data or only con-
duct simple detection procedures for the received aggregated-
ACKs. In a practical setup, the sensor may only examine the
arrival rate of aggregated-ACKs by choosing a window size T
sufficiently enough to approximate the exact value of Γ and com-
pare it with the theoretic value. We assume that other statistics
of the arrival sequence of aggregated-ACKs will not be checked
due to energy saving concerns.

Based on Definition 4.1, we propose the following attack
pattern ωf : when the aggregated-ACK is sent as the event hap-
pens, the attacker simply adopts an DoS attack to prevent the
transmission of the packet. In order to maintain constant arrival
rate of aggregated-ACKs, the attacker will send fake aggregated-
ACKs to the sensor with the same probability p0 at every time
step when there is no aggregated-ACK from the event detector.
The value of p0 is chosen to meet (13), which will be discussed
later in Proposition 4.4.

Example 4.3: A simple example is provided to illustrate how
this attack pattern works. Assume that z0 = 2. One possible
realization and comparison between the online schedule θon

without attack and the one under attack θon|ωf is shown in
Fig. 3 (The long arrows represent the arrival packets while the
short ones are for the dropped packets.). In the realization of θon

without attack, the second and the third aggregated-ACK are
sent due to two (z0 = 2) consecutive packet losses. When there
is an attacker following the attack pattern ωf , it will attack all

the original aggregated-ACKs, and randomly send fake ACKs
with probability p0 at instants when there is no aggregated-ACK
from the event detector (e.g., at the second time step in θon|ωf ).

B. Performance Analysis

Denote the estimation performance of θon under the proposed
attack pattern as J(θon|ωf ). We will investigate the analytical
form of J(θon|ωf ) in the sequel.

Note that due to the recursion (10), the covariance Pk takes
values in the infinitely countable set {P , h(P ), h2(P ), . . .} and
only depends on the state of previous time step, i.e., Pk−1 .
Therefore, we have a simple expression for Pk as:

Pk = hτk (P ),

where τk ∈ N is denoted as the holding time since the most
recent time when the remote estimator successfully received the
data from the sensor:

τk � k − max
1�t�k

{t : λt = 1}. (14)

Define Sk � τk + 1 as the state of the estimation process at
time step k. It is easy to verify that τk satisfies the following
Markovian recursion:

τk =

{
0, if λk = 1,

τk−1 + 1, if λk = 0,
(15)

and the process {Sk} constitutes a countably infinite stationary
Markov chain. Define the corresponding state transition proba-
bility matrix with countably infinite dimensions as:

Ts � {Tij}, Tij = P [Sk+1 = j|Sk = i].

Based on the mechanism of the online sensor schedule θon

and the attack pattern ωf , we can derive an expression for Tij as
follows:

1) At time step k + 1, when the memory satisfies the trigger-
ing condition, i.e., τk mod z0 = 0 (i − 1 mod z0 = 0)
and τk �= 0, the aggregated-ACK will be sent and the at-
tack will be launched to block the transmission. Then the
sensor will use lower power δ (i.e., γk+1 = 0). From (7)
and (8), we have

Tij =

⎧
⎪⎪⎨

⎪⎪⎩

λ, if j = 1,

1 − λ, if j = i + 1,

0, otherwise;

2) At time step k + 1, when τk mod z0 �= 0 (i − 1
mod z0 �= 0) or τk = 0, the aggregated-ACK will not be
sent and the fake ACK will be sent with probability p0 .
Then the sensor will use higher power Δ (i.e., γk+1 = 1)
with probability p0 and lower power δ (i.e., γk+1 = 0)
with prababilty 1 − p0 . Similarly, we have

Tij =

⎧
⎪⎨

⎪⎩

p0 + λ(1 − p0), if j = 1,

(1 − λ)(1 − p0), if j = i + 1,

0, otherwise.
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From the above discussion, we can obtain the expression of
the transition matrix Ts , which will be in a periodic pattern.
An illustrative example of Ts when z0 = 2 is provided in equa-
tion (16) are shown at the bottom of this page.

Based on well-established ergodic Markov chain theory [24],
{Sk} has a stationary probability distribution, which is denoted
as:

Π = [π0 , π1 , π2 , . . .]
′ , πi � P [τk = i].

To calculate the stationary probability distribution, we need
to solve the following equations:

{
TsΠ = Π,
∑+∞

i=0 πi = 1.
(17)

Though the dimensions of Π and Ts are infinite, due to the
periodic property of Ts , we can solve (17) as follows.

Based on the expression of Tij and the illustration in (16),
there are only two non-zero elements in each column of Ts : the
first one is in the first row of each column and the second one
is in the (i + 1)-th row for the i-th column. Therefore, the first
equation in (17) gives the recursive relations for i > 0:

πi+1 =

{
(1 − λ)(1 − p0)πi, if i mod z0 �= 0,

(1 − λ)πi, if i mod z0 = 0.

Then it is easy to derive the general form of πi for i > 0 as:

πi = (1 − λ)i(1 − p0)i−j π0 , (18)

where j = 
 i−1
z0

�.
Thus replacing (18) into the second equation of (17) gives:

π0 +
+∞∑

i=0

[
(1 − λ)z0 (1 − p0)z0 −1]i

⎛

⎝
z0∑

j=1

(1 − λ)j (1 − p0)j

⎞

⎠π0 = 1,

and we can obtain:

π0 =
[1 − (1 − λ)(1 − p0)]

[
1 − (1 − λ)z0 (1 − p0)z0 −1

]

1 − (1 − λ)z0 (1 − p0)z0 −1 + p0(1 − λ)z0 +1(1 − p0)z0
.

(19)

On the other hand, when ωf is feasible, i.e.,

Γ(θon|ωf ) = Γ(θon|no attack),

the probability π0 can be calculated in an alternative way as:

π0 = P [Δ|ωf ] + λP [δ|ωf ]

= Γ(θon|ωf ) + λ
(
1 − Γ(θon|ωf )

)

= Γ(θon|no attack) + λ
(
1 − Γ(θon|no attack)

)
.

Since Γ(θon|no attack) is given as (see [11]):

Γ(θon|no attack) =
λ(1 − λ)z0

1 − (1 − λ)z0 +1 ,

we have

π0 =
λ

1 − (1 − λ)z0 +1 . (20)

The closed-form expressions for the stationary distribution of
the state are given by (20) and (18). The estimation performance
of θon under the proposed fake-ACK attack ωf is thus given by1:

J(θon|ωf ) = lim sup
T →∞

1
T

T∑

k=1

Tr (E[Pk ]) (21)

= lim sup
k→∞

Tr (E[Pk ]) =
+∞∑

i=0

πiTr
(
hi(P )

)
.

In order to choose the value of p0 to meet the feasible attack
pattern condition (13), we have the following result.

Proposition 4.4: The proposed attack pattern ωf is feasible,
i.e., Γ(θon|ωf ) = Γ(θon|no attack), when p0 satisfies the follow-
ing condition:

p0

[
1 − (1 − λ)z0 (1 − p0)z0 −2

1 − (1 − λ)z0 (1 − p0)z0 −1 π0

]
=

λ(1 − λ)z0

1 − (1 − λ)z0 +1 .

(22)
Proof: As the fake-ACK is sent with probability p0 only

when no aggregated-ACK is sent from the event detector,

1Note that a necessary and sufficient condition for boundedness of J (θon|ωf )
is given by ρ(A)(1 − λ)(1 − p0 ) < 1, where ρ(A) is the spectral radius of A.

Ts =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0 + λ(1 − p0) p0 + λ(1 − p0) λ p0 + λ(1 − p0) λ p0 + λ(1 − p0) λ · · ·
(1 − λ)(1 − p0) 0 0 0 0 0 0 · · ·

0 (1 − λ)(1 − p0) 0 0 0 0 0 · · ·
0 0 1 − λ 0 0 0 0 · · ·
0 0 0 (1 − λ)(1 − p0) 0 0 0 · · ·
0 0 0 0 1 − λ 0 0 · · ·
0 0 0 0 0 (1 − λ)(1 − p0) 0 · · ·
0 0 0 0 0 0 1 − λ · · ·
...

...
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)
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we have

Γ(θon|ωf ) = p0

(

1 −
+∞∑

i

πiz0

)

= p0

(

1 −
+∞∑

i

πiz0

)

= p0

[
1 − (1 − λ)z0 (1 − p0)z0 −2

1 − (1 − λ)z0 (1 − p0)z0 −1 π0

]
.

Since Γ(θon|no attack) = λ(1−λ)z 0

1−(1−λ)z 0 + 1 , the value of p0 to meet
the feasible attack pattern condition is obvious given by solv-
ing (22).

V. ATTACK-SWITCH GAME BETWEEN THE ATTACKER

AND THE SENSOR

In this section, we formulate an attack-switch game between
the attacker and the sensor and investigate the optimal responses
for both sides when they involve in this game-theoretic frame-
work. We will show that the equilibrium of the sensor-attacker
game will have different forms based on the capability of the
attacker.

A. Game-Theoretic Framework

As stated in [21], the proportion of aggregated-ACKs that
can be attacked under the attacking pattern ωc will determine
the effect on the estimation performance. When the capability
is quite limited, the attacker can block almost no aggregated-
ACK and the online sensor schedule will operate normally. As a
consequence, keeping the online schedule in such case will still
guarantee a better performance than the offline schedule θ�

off. On
the other hand, when the attacker has sufficient capability and
can block almost all the transmissions of the aggregated-ACKs,
it will result in the sensor using the low power δ within the
entire time-horizon and the estimation performance of the online
sensor schedule under attack ωc is proved to be even worse than
the offline schedule ([21]). In such cases, a reasonable choice
for the sensor is to adopt the offline schedule rather than keeping
the online schedule.

We assume that to detect the existence of the attacker, the sen-
sor compares the arrival rate of aggregated-ACKs with the theo-
retical arrival rate. The would enable the sensor to estimate the
capability of the attacker and decide whether to switch from the
online schedule to the offline schedule.

However, when the attack pattern proposed in our current
work, ωf , is adopted, as the feasible pattern has Γ(θon|ω) =
Γ(θon|no attack), the sensor cannot detect the existence of the
attacker any longer. Now the sensor will need to decide whether
or not to switch from online schedule to offline one without
100% confidence as in [21]. On the other hand, instead of limit-
ing the capability of the attacker, we extend the constraint model
to assume that launching attacks are costly (the original capa-
bility model in [21] can be regarded as a special case of our
present formulation with infinite cost on extra attacks). In such
a situation, it is straightforward that, under certain conditions,
the attacker may not launch the (costly) attacks since the sensor
may adopt the offline schedule at the same time. In the follow-
ing part, we aim to investigate the optimal strategies for both
the sensor and the attacker simultaneously in such a situation.

To be more precise, we next summarize the elements of such
two-player game as follows:

1) Player: The sensor and the attacker;
2) Action: As discussed before, the sensor needs to decide

whether it adopts the online schedule θon (denoted as ac-
tion σ(1)) or switches to the offline schedule θ�

off (denoted
as action σ(2)). Similarly, the attacker needs to choose the
attack pattern ωf (denoted as action ε(1)) or not to attack
(denoted as action ε(2));

3) Payoff: The objective of the sensor is to minimize the trace
of the expected average state estimation error covariance.
Define the payoff for the sensor as:

VS (σ, ε) � − lim sup
T →∞

1
T

T∑

k=1

Tr (E[Pk ]) ,

hence the sensor seeks to maximize the payoff VS (σ, ε).
Based on the discussion before, we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

VS

(
σ(1), ε(1)

)
= −J(θon|ωf ),

VS

(
σ(1), ε(2)

)
= −J(θon),

VS

(
σ(2), ε(1)

)
= −J(θ�

off),

VS

(
σ(2), ε(2)

)
= −J(θ�

off),

(23)

where J(θon|ωf ), J(θon) and J(θ�
off) are given in (21), (12)

and (11), respectively. As for the attacker, its objective is
essentially the opposite except for taking the attacking
cost into account. Accordingly, define the payoff for the
attacker as:

VA (σ, ε) � lim sup
T →∞

1
T

T∑

k=1

Tr (E[Pk ]) − Γ(θon|ωf )Ω,

where Ω represents the cost of launching one attack in ωf .
Similarly, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

VA

(
σ(1), ε(1)

)
= J(θon|ωf ) − Γ(θon|ωf )Ω,

VA

(
σ(1), ε(2)

)
= J(θon),

VA

(
σ(2), ε(1)

)
= J(θ�

off) − Γ(θon|ωf )Ω,

VA

(
σ(2), ε(2)

)
= J(θ�

off).

(24)

B. Nash Equilibrium

To analyze the optimal actions for both sides in the state
of equilibrium, we first recall the following concepts on Nash
Equilibrium [25], [26].

Definition 5.1: A player’s strategy refers to the players’s plan
or policy that will determine all the actions to take during the
game.

A pure strategy provides a complete definition of how a player
will play a game.

A mixed strategy is an assignment of probability to each pure
strategy in the strategy set, which allows the player to randomly
select a pure strategy.

A strategy profile (strategy combination) is a set of strategies
for each player which fully specifies all actions in a game.

Remark 5.2: We can regard the pure strategy as a degenerate
case of the mixed strategy, where the particular pure strategy
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is selected with probability 1 and every other strategy with
probability 0.

Definition 5.3: If in a game, each player has chosen a strategy
and no player can benefit by changing his own strategy while the
other players keep theirs unchanged, then the current strategy
profile constitutes a Nash equilibrium.

Define the best response for one player as the strategy which
gives the most payoff, given other players’ strategies. Then the
Nash equilibrium is the point at which each player in a game
has selected the best response (or one of the best responses)
to the other players’ strategies. To be more specific, a Nash
equilibrium in this attack-switch game is a pair of strategies
(σ�, ε�) such that:

VS (σ�, ε�) � VS (σ, ε�), ∀σ, VA (σ�, ε�) � VA (σ�, ε), ∀ε.

In some cases, there may exist no Nash equilibrium in terms
of purely using the available actions i.e., pure strategy Nash
equilibrium. In [25], Nash defined the mixed strategy Nash equi-
librium, which also include the pure strategy Nash equilibrium
as a special case.

Theorem 5.4 ([25]): For any game with a finite set of actions,
there exists at least one mixed strategy Nash equilibrium in the
game.

From the Definition 5.3, to seek the maximization of their
payoffs whilst being aware of the existence of their opponents,
it is easy to conclude that the optimal responses for both the
sensor and the attacker constitute a Nash equilibrium. Simple
analysis (e.g., based on (24), when the sensor choose σ(1),
the attacker will choose ε(1) if Ω is small; when the sensor
choose σ(2), the attacker will choose ε(2)) reveals that there
may not always exist a pure strategy Nash equilibrium. However,
due to the finite action sets for both sides, a mixed strategy Nash
equilibrium exists. We have the following conclusion about the
optimal responses for both sides.

Theorem 5.5: When the attacker adopts feasible an attacking
pattern as defined in Definition 4.1, the optimal responses for
the sensor and the attacker (σ�, ε�) exist in the form of a mixed
strategy Nash equilibrium.

1) When Γ(θon|ωf )Ω < J(θon|ωf ) − J(θon), (σ�, ε�) is
given by:

σ� =

⎧
⎪⎪⎨

⎪⎪⎩

σ(1), with probability
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
,

σ(2), with probability1 − Γ(θon|ωf )Ω
J(θon|ωf ) − J(θon)

,

and

ε� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε(1), with probability
J(θ�

off) − J(θon)
J(θon|ωf ) − J(θon)

,

ε(2), with probability1 − J(θ�
off) − J(θon)

J(θon|ωf ) − J(θon)
,

with the payoff for both sides given by:

VS (σ�, ε�) = −J(θ�
off),

and

VA (σ�, ε�) = J(θ�
off) − Γ(θon|ωf )Ω

J(θ�
off) − J(θon)

J(θon|ωf ) − J(θon)
;

2) When Γ(θon|ωf )Ω � J(θon|ωf ) − J(θon), one obtains the
pure strategy (σ�, ε�) =

(
σ(1), ε(2)

)
, with the payoff for both

sides given by:

VS (σ�, ε�) = −J(θon), VA (σ�, ε�) = J(θon).

Proof: To calculate the mixed strategy Nash equilibrium,
suppose that the mixed strategy for the sensor is σmix =(
P [σ(1)], P [σ(2)]

)
, i.e.,

σmix =

{
σ(1), with probabilityP [σ(1)],

σ(2), with probabilityP [σ(2)],

where P [σ(2)] = 1 − P [σ(1)]. Similarly, the mixed strategy for
the attacker is assumed to be εmix =

(
P [ε(1)], P [ε(2)]

)
. Given

the attacker’s strategy εmix, the expected payoff for the sensor
under σmix is:

VS (σmix, εmix) = P [σ(1)](VS (σ(1), ε(1))P [ε(1)]

+ VS

(
σ(1), ε(2)

)
P [ε(2)])

+ P [σ(2)](VS (σ(2), ε(1))P [ε(1)]

+ VS (σ(2), ε(2))P [ε(2)]).

According to (23), to maximize VS (σmix, εmix), the best re-
sponse for the sensor can be calculated as:

P � [σ(1)|εmix] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if P [ε(1)] <
J(θ�

off) − J(θon)
J(θon|ωf ) − J(θon)

,

0, if P [ε(1)] >
J(θ�

off) − J(θon)
J(θon|ωf ) − J(θon)

,

[0, 1], if P [ε(1)] =
J(θ�

off) − J(θon)
J(θon|ωf ) − J(θon)

,

(25)
and

P � [σ(2)|εmix] = 1 − P � [σ(1)|εmix]. (26)

Following the same procedure, we can calculate the best re-
sponse for the attacker based on the value of Γ(θon|ωf )Ω.

1) When Γ(θon|ωf )Ω < J(θon|ωf ) − J(θon), i.e., the cost of
launching attack is relatively small, we have:

P � [ε(1)|σmix] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if P [σ(1)] >
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
,

0, if P [σ(1)] <
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
,

[0, 1], if P [σ(1)] =
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
,

(27)
and

P � [ε(2)|σmix] = 1 − P � [ε(1)|σmix]. (28)

Note that P �[ε(1)|σmix] = [0, 1] when

P [σ(1)] =
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
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denotes that the sensor can choose its mixed strategy arbitrarily
to obtain maximal payoffs in such a case.

Combing (25), (26), (27) and (28), we can solve the unique
mixed strategy Nash equilibrium (σ�

mix, ε
�
mix) as:

σ�
mix :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P � [σ(1)] =
Γ(θon|ωf )Ω

J(θon|ωf ) − J(θon)
,

P � [σ(2)] = 1 − Γ(θon|ωf )Ω
J(θon|ωf ) − J(θon)

,

and

ε�
mix :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P � [ε(1)] =
J(θ�

off) − J(θon)
J(θon|ωf ) − J(θon)

,

P � [ε(2)] = 1 − J(θ�
off) − J(θon)

J(θon|ωf ) − J(θon)
.

Therefore, when Γ(θon|ωf )Ω < J(θon|ωf ) − J(θon), i.e., the
cost of launching an attack is relatively small, the optimal re-
sponses for the sensor and the attacker (σ�, ε�) exist in the form
of a mixed strategy Nash equilibrium: (σ�, ε�) = (σ�

mix, ε
�
mix).

2) On the other hand, when Γ(θon|ωf )Ω � J(θon|ωf ) −
J(θon), we have:

{
P � [ε(1)|σmix] = 0,

P � [ε(2)|σmix] = 1,
(29)

i.e., the best response for the attacker is always ε(2), i.e., not
attacking, no matter what the sensor’s strategy is. In such case,
based on (25), the best response for the sensor is σ(1), i.e., to
keep the online schedule θon.

Consequently, when Γ(θon|ωf )Ω > J(θon|ωf ) − J(θon), the
optimal responses for the sensor and the attacker (σ�, ε�) ex-
ists in the form of pure strategy Nash equilibrium (σ�, ε�) =(
σ(1), ε(2)

)
. The payoffs for both sides can be calculated

accordingly. �
Remark 5.6: The results in Theorem 5.5 can be interpreted

as follows: as a result of the game, both sides will adopt a mixed
strategy that randomly chooses actions to obtain better payoffs.
When the cost of launching attacks is small, the attacker has
more incentive to attack, while the sensor is more willing to
adopt the offline schedule, which is intuitive. On the other hand,
as the attacking cost becomes larger, the optimal strategy for the
attacker is to reduce the probability of attacking, until a pure
strategy is obtained. The sensor will draw a similar conclusion.
Such conclusions may help the sensor to better understand the
behaviors of the attacker and evaluate the corresponding effects
on the estimation performance.

Remark 5.7: Note that the framework and results developed
in this section only require the attacking pattern to be feasible,
as defined in Definition 4.1. Therefore, they also apply to a
more general set of attacking patterns, provided the feasibility
condition in Definition 4.1 is satisfied.

VI. SIMULATION STUDY

In this section, we provide numerical examples to illustrate
the main results.

Fig. 4. Comparison between θ�
off and θon.

Consider a scalar system with parameters A = 1.01, C = 0.7,
R = Q = 1, λ = 0.5. Suppose that the energy constraint for the
sensor is given by Ψ = 1

7 Δ + 6
7 δ, i.e., the sensor can use the

higher power Δ with a proportion of 1 out of every 7. Based on
Theorem 3.1, it is easy to verify that the optimal offline schedule
is given in a periodic form of {1000000, 1000000, . . .} with
performance J(θ�

off) = 1.7609. Given the energy constraint for
the sensor, the parameter for the online schedule θon is z0 = 2
with performance J(θon) = 1.5895.

Define Jk (θ) = 1
k

∑k
i=1 (E[Pi ]) as the empirical approxi-

mation (via 100000 Monte Carlo simulations) of J(θ) at every
time instant k. As shown in Fig. 4, when there is no attack, the
estimation performance J(θon) is better than the performance
using the offline schedule θ�

off. Note that Pk under θ�
off fluctuates

periodically due to the special pattern of θ�
off.

However, when there exists an attacker adopting the attacking
pattern ωf , the estimation performance of the online schedule
θon under the attack, i.e., J(θon|ωf ), is worse even than the op-
timal offline schedule θ�

off. This may indeed motivate the sensor
to switch from the online schedule to the offline one to obtain
better estimation performance as considered in the present work.
Given the parameters λ = 0.5 and z0 = 2, from (22), we have
p0 = 0.0716. Fig. 5 shows the comparison of the estimation
performance of θ�

off, θon, and θon|ωf to support our results: since
J(θon|ωf ) > J(θ�

off), the sensor can obtain a better estimation
performance by choosing θ�

off rather than θon under the attack.
Under the game-theoretic framework, the results of The-

orem 5.5 provide the optimal strategies for both the sen-
sor and the attacker. Given the parameter in this simulation
section, the threshold for Ω is given by J (θon|ωf )−J (θon)

Γ(θon|ωf ) =
1.9295−1.5895

0.1429 = 2.3793. For example, when Ω = 3 > 2.3793,
we have (σ�, ε�) =

(
σ(1), ε(2)

)
. When Ω = 1 < 2.3793, we

have:

σ�
mix :

{
P � [σ(1)] = 0.4203,

P � [σ(2)] = 0.5797,
ε�

mix :

{
P � [ε(1)] = 0.5041,

P � [ε(2)] = 0.4959.
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Fig. 5. Comparison of the estimation performance of θ�
off, θon, and θon|ωf .

VII. CONCLUSION

In this work, a potential class of malicious attacks on a re-
mote state estimation setup was studied. We proposed an attack
strategy which can modify aggregated-ACKs from the remote
estimator and convey fake information to the sensor without
being detected. The corresponding effect on the estimation per-
formance was analyzed based on well-established Markov chain
theory. To investigate the optimal strategies for both the sensor
and the attacker in the attack-switch game, a game-theoretic
framework was introduced and the equilibrium for both sides
was analyzed. Future work includes investigating the security
issues in a multi-sensor scenario and the case with the partici-
pation of the remote estimator.
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