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Efficient Zero-Forcing Precoder Design for Weighted
Sum-Rate Maximization With Per-Antenna
Power Constraint
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Abstract—This paper proposes an efficient (semi-closed-form) zero-
forcing (ZF) precoder design for the weighted sum-rate maximization prob-
lem under per-antenna power constraint (PAPC). Existing approaches for
this problem are based on either interior-point methods that do not favor-
ably scale with the problem size or subgradient methods that are widely
known to converge slowly. To address these shortcomings, our proposed
method is derived from three elements: minimax duality, alternating op-
timization (AQO), and successive convex approximation (SCA). Specifically,
the minimax duality is invoked to transform the considered problem into an
equivalent minimax problem, for which we then recruit AO and SCA to find
a saddle point, which enables us to take advantages of closed-form expres-
sions and hence achieve fast convergence rate. Moreover, the complexity of
the proposed method scales linearly with the number of users, compared
to cubically for the standard interior-point methods. We provide an ana-
lytical proof for the convergence of the proposed method and numerical
results to demonstrate its superior performance over existing approaches.
Our proposed method offers a powerful tool to characterize the achiev-
able rate region of ZF schemes under PAPC for massive multiple-input
multiple-output.

Index Terms—Alternating optimization, closed-form, MIMQO, minimax
duality, successive convex approximation, zero-forcing.

I. INTRODUCTION

For a Gaussian multiple-input multiple-output (MIMO)
broadcast channel (BC), dirty paper coding (DPC) was proved
to achieve the full capacity region [1]. However, it is very chal-
lenging to apply DPC in reality due to its nonlinear encoding
and decoding nature. As a result, linear precoding strategies
such as block diagonalization (BD) or zero-forcing (ZF) [2], [3]
which can strike a good balance between the achievable rate
region and complexity has drawn much attention in the design
of multi-user MIMO systems, especially from a viewpoint of
massive MIMO.

One of the most fundamental problems in wireless commu-
nications design is the weighted sum-rate maximization (WS-
RMax). In this regard, the vast majority of previous studies
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consider a sum power constraint (SPC) across all the transmit
antennas. Despite its simplicity and mathematical tractability,
SPC is too ideal to be applied in practical MIMO transceivers.
This is because each transmit antenna has its own power am-
plifier, hence per-antenna power constraint (PAPC) is more re-
alistic. The PAPC consideration in MIMO systems has recently
been investigated extensively in the literature, e.g., [3]-[10].
In relation to ZF methods, an interesting result in [3] showed
that the pseudo-inverse-based precoder is no longer optimal for
PAPC. Furthermore, the authors in [3] transformed the sum-rate
maximization (SRMax) problem under PAPC into a determinant
maximization (MAXDET) program, which was then solved by
off-the-shelf convex solvers. To the best of our knowledge, the
first attempt to solve the WSRMax problem by closed-form
expressions was made in [11]. However, this is achieved by
a dual subgradient method which generally suffers from slow
convergence.

This paper proposes a semi-closed-form solution to the WS-
RMax problem subject to PAPC for ZF method. Unlike the
dual subgradient approach in [11] which was derived directly
in the BC, we first convert the BC’ s WSRMax problem into
a minimax problem in its dual multiple access channel (MAC)
by leveraging the duality of BC and MAC channels. Our main
contributions include the following:

e We recruit the alternating optimization (AO) and succes-
sive convex approximation (SCA) methods to derive an
iterative algorithm to find a saddle-point for the minimax
problem. These two optimization techniques are combined
in such a way that monotonic convergence is achieved. To
the best of our knowledge, such novel combination of AO
and SCA has not been reported elsewhere.

® By exploiting the specific structure of the considered prob-
lem, we can solve the subproblem at each iteration of the
proposed method by water-filling-like algorithms. Thus,
the proposed method can deal with the ZF precoder design
in large-scale MIMO systems that are beyond the capabil-
ity of state-of-the-art convex solvers.

® We numerically demonstrate that the proposed algorithm
can converge much faster compared to existing approaches.

e We show that the proposed algorithm can be easily
modified to treat other types of power constraint and
can also be generalized to cope with other precoding
methods.

Notation: Standard notations are used in this paper. Bold
lower and upper case letters represent vectors and matrices,
respectively. I defines an identity matrix, of which the size can
be easily inferred from the context; C* > denotes the space
of M x N complex matrices; H and H” are Hermitian and
normal transpose of H, respectively; H; ; is the (7, j)th entry
of H; |H| is the determinant of H; rank(H) stands for the
rank of H; diag(x) denotes the diagonal matrix with diagonal
elements being x and E[.] is the expectation value of a random
variable; diag(H), where H is a square matrix, returns the vector
of diagonal elements of H. Furthermore, we denote [x] . =
max(z,0), || - || to be the Euclidean norm.

II. SYSTEM MODEL

Consider a K-user MIMO BC where the base station and
each user have N and M), antennas, respectively. Let Hj, be the
channel matrix for user k. Then, the received signal at user k is
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given as

yi = Hisp + ) Hys; + 2 (1)
J#k

where sy, is the downlink signal and z;, CA/(0, I, ) refers to the
noise for the kth user. For linear ZF precoding, we can express
sk as s, = Ryxy,, where Ry, and xj, CN(0, I, ) denote the pre-
coding matrix and information-bearing signal, respectively. For
user k, the interference from other users in the system is sup-
pressed by designing Ry, such that H; R, = Oforall j # k. The
WSRMax problem for ZF precoding with PAPC is formulated
as [11]

K

imi - log [T+ H, X, HY
111{2%11;101}16 ;wk og [T+ H; X, Hj |
subjectto  HL; X, HI! =0, Vj #k

K

D [Xilii <Py i=12,...N
k=1

where X, = E[s;s] = R, R is the input covariance matrix
for user k, P; is the power constraint on antenna ¢, and wy, is the
positive weighting factor assigned to the kth user. In the above
formulation we have omitted the rank constraint rank(Xy,) <
M;, but this step does not affect the optimality as proved in [11].
We also remark that this rank constraint will be automatically
satisfied the proposed solution presented next.

III. PROPOSED ALGORITHM

A. Algorithm Description

In this section, we derive an efficient algorithm to solve (2)
using minimax duality, AO, and SCA. Assuming that N >
S° Mj, — min{ M}, let Hj, be the channel matrix of all users,
except for user k, i.e., Hy = [H{ ... H  H .. HI,
and By, be a basis of the null space of H;.. Then (2) reduces to
the following problem

K

maximize Z wy, log |T+ HkBk.f(kaH}:q
X, =0} k=1
K
subject to Y [ByX;BY];; < Pi=1,...,N. (3

k=1

For the special case of SRMax problem (i.e., w; = w; =
-~wg ), (3) becomes a MAXDET program as mentioned in
[3]. We further note that for this special case, (3) can be recast
as a semidefinite program. For the general case of WSRMax
problem, the optimization package SDPT3 is a dedicated solver.
However, solving (3) by generic convex solvers is not practi-
cally appealing for a large number of antennas N and/or a large
number of users K. A closed-form solution for (3) was proposed
in [11], but it was found by leveraging the subgradient method
whose convergence rate is typically slow.

To overcome the aforementioned drawbacks, by extending
Theorem 2 of [12], we first transform (3) into a minimax problem
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in the dual MAC as
K TS T
. |BkHABk —+ HkHXka|
.1
A0 (X, -0} D wilog IBIAB,|

k=1
K
subject to Ztr(Xk) = P;tr(AP) = P, A : diagonal

k=1
(4)

where H;, = H,,B,. Then the optimal solution X’,; of (3) is
given by

X = (B A'By) UL VI XV, U (B A'By) 7 (5)

where {X;} and A" are a saddle-point of (4), and
Uy, EkaH is the economy-size singular value decomposition
of (B A*By)~"/?HI. A proof of this transformation is given
in Appendix A.

The problem now is to find a saddle-point of (4). For a general
minimax optimization, one may alternate between minimization
and maximization but the convergence of such a method is not
guaranteed. A more common approach to tackle (4) is based
on Newton’s method, e.g., [8]. However, the complexity of this
method increases rapidly with the problem size. In the sequel,
we show that (4) can be solved efficiently by combining AO and
SCA to derive closed-form expressions.

Let {X} } be the optimal value of the following maximization
in the nth iteration

K
max Z wy log B A"By, + IjIkHXkI:Ik|
=1

.
st > w(Xp)=P;Xp =0,k=1,....K  (6)
k=1

Note that the above problem admits the water-filling solution
which is skipped here for the sake of brevity.

Now, we turn our attention to the minimization of A for
given {XJ }. To achieve monotonic convergence, instead of
minimizing the objective of (4), we construct and then minimize
an upper bound of it. This step is inspired by the concept of SCA
which has received growing attention recently. To this end, we
recall the following inequality which results from the concavity
of the log-determinant function [13, p. 73]

log B AB;. + Hj! X Hy| < log |®] |
+tr(B,®,"Bi (A — A")) (7

where ®] 2 BI/A"B; + H X! H;, and &, 2 (®}).
Thus, in the (1 + 1)th iteration of the proposed algorithm, A" *!
is the solution to the following problem

K
min Y wy (tr(B; &, "B A) — log [B{f AB|)
k=1
s.t. tr(AP) = P, A : diagonal; A = 0 (8)

We remark that the inequality in (7) is not entirely new. In
fact it has been appeared in previous studies such as [14]-[16].
Our contributions in this regard are twofold. Firstly, the use of
(7) allows us to analytically prove that the proposed algorithm
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Algorithm 1: The proposed gradient projection algorithm
for solving (9).
Imput: Ao, m =0,¢; > 0,71 =1+ €.
1 repeat
2 Calculate the gradient g,, = =V f(A,;,) =
oo wy diag(By, (B diag(x,,)By) 'B) — a.

3 Choose an appropriate positive scalar p,, and create
A = A:_m + Pm gm . B
4 Project A, onto O to obtain A, .
5 Choose appropriate step size v, using the Armijo rule
[17]

and set X, 11 = Ay + Vi (A — A ).
6 m:=m+ 1.
7 until 7 = |vf()~m)T ()‘m-H - A'm)| < €]
Qutput: A, as the optimal solution to (9).

Algorithm 2: Proposed algorithm for solving (3).

Input: A := A’ n:=0,¢ > 00m=14¢
1 Repeat
2 Apply the water-filling algorithm to solve (6). Denote
the
optimal solution by {X7 }.
For each k, set &} = (BkH A"B; + HkHXZHk).
Find A" ! using Algorithm 1.
n:=n+1._ B
until 7, = [f(A",X") — f(A" ', X" )| <
Output {X7? }£ | and apply the BC-MAC transformation
to

AN B W

compute optimal { X7}/ .

converges monotonically to a saddle-point of (4). Secondly,
we show that (8) can be solved by closed-form expressions as
follows.

Since A is diagonal, (8) reduces to the following problem

K

. T H 3:
— E log |B;; A)B
mlr)}lerénze a A 2 Wy 10g | k dlag( ) k‘ (9)

where o = 31wy, (diag(B®;"BY)) and © 2 {p”A =
P; X > 0}. From the above, we observe that (i) © is a sim-
plex, and (ii) projection onto a simplex can be computed by
a water-filling-like algorithm as shown shortly. These observa-
tions lead to the proposed gradient projection method to solve
(9), which is outlined in Algorithm 1.

In Algorithm 1, the subscript m denotes the iteration index.
The main operation of Algorithm 1 is the projection of A,,, onto
© which can be formulated as

minimize  [|]A — A, ||?

p'A=P;1L>0. (10)

It is easy to see that (10) can be solved efficiently by water-
filling-like algorithm. Note that when an equal power constraint
is considered, ©® becomes a canonical simplex for which more
efficient algorithms for projection are available [18]. Moreover,
Algorithm 1 can be easily modified into a conjugate gradient
projection method. The overall algorithm to solve the WSRMax
problem for ZF precoding with PAPC is summarized in Algo-
rithm 2, and its convergence proof is provided in the Appendix.
Note that the residual error 7, is only computed for n > 1.

subject to
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Fig. 1. Convergence result of Algorithm 1 for finding A', A2, A3, and A*.
The total power is P = 10 dBW. We simply set p,, = 1 during the whole
iterative process.

B. Complexity Analysis

In this section, we provide the complexity analysis of the
proposed algorithm in terms of the number of flops. The flop
count for related operations is taken from [19] and [20]. For
convenience, we assume that all the receivers have the same
number of antennas i.e., My = M. To solve the SDP problem
for K covariance matrices of N x N by the interior-point-
based approach (e.g., [3]), the complexity is O(K3>N°®) [13],
[21]. As explained earlier, Algorithm 2 performs the water-
filling algorithm and eigenvalue decomposition to solve (6),
which  needs K(N — (K —1)M)>+ K(4(N — (K —
M)*M — 8(N — (K — 1)M)M?) flops [20]. To find A,
Algorithm 1 requires K (N — (K — 1)M)? flops for gradient
computation (cf. line 2), while the complexity of the projection
on a simplex (cf. line 4) and of other steps is negligible, and
therefore is ignored. Thus, the total per-iteration complexity
of Algorithm 2 is O(K N?) flops. For the same problem, the
subgradient-based method in [11] has a similar per-iteration
complexity. However, the subgradient method is generally
known for slow convergence, and thus potentially results in
higher overall computation time that is investigated in the next
section.

IV. NUMERICAL RESULTS

This section numerically evaluates the performance of the
proposed algorithms. The step size p,, in Algorithm 1 is fixed
at p,, = 1, which is empirically found to achieve fastest con-
vergence rate for all the considered simulation scenarios. The

initial value A° in Algorithm 2 is set to the identity matrix for
all simulations unless otherwise stated. The power constraint
is set equally for all the transmit antennas, i.e., P, = P/N, for
1 =1,..., N. Other relevant simulation parameters are speci-
fied for each setup. The codes are built in MATLAB and exe-
cuted on a 64-bit desktop that supports 8§ Gbyte RAM and Intel
CORE i7.

In the first simulation, we investigate the convergence
behavior of Algorithm 1. To find A", we use A""! as
the input of Algorithm 1. As can be seen in Fig. 1,
Algorithm 1 achieves monotonic convergence as a re-
sult of employing the gradient projection method. Also,
Algorithm 1 converges faster and obtains superlinear conver-
gence rate after some first iterations. The reason is that when
A" is close to optimal, the gradient projection method tends to
converge superlinearly [22].

Next, we compare the convergence rate of Algorithm 2 and
the method in [11] for two different initial points: one taken as
all-one vector and the other generated randomly. For fair com-
parison, the residual error for both methods is defined as the
difference between the value of the current objective and the
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Fig. 2. Convergence comparison of different iterative methods with N = 8,

M =2and K = 4.

TABLE I
AVERAGE RUN TIME (SECONDS) COMPARISON FOR P = 10 DBW,
M=2K=38
No. of Tx. antennas N 16 32 64 128
SRMax Algorithm 2 0.097 3.84 115.79  175.96
[11] 0.85 61092 > 1hr X
SDPT3 0.32 11.36 X X
MOSEK 0.23 11.01 > 1 hr X
WSRMax Algorithm 2 0.10 2.24 92.47 147.18
[11] 1.02 89.27 > 1 hr X
SDPT3 0.32 7.99 X X

The run time is averaged over 1000 channel realizations.

globally optimal one obtained by YALMIP [25] with MOSEK
[23] as internal solver. We can clearly see in Fig. 2 that Al-
gorithm 2 always achieves monotonic convergence which is in
complete agreement with our proof in the Appendix. Moreover,
Algorithm 2 converges much faster than the subgradient method
in [11] for both cases.

To obtain a more comprehensive comparison, we report the
average run time for solving (3) by several approaches over
1000 channel realizations. As mentioned earlier, we can use
generic convex solvers to solve (3) optimally. Here we com-
pare Algorithm 2 to MOSEK [23] and SDPT3 [24] through
the parser YALMIP [25]. In Table I, ‘X’ stands for either a
computer crash or extremely large computation time. Table I
clearly shows that Algorithm 2 requires the lowest computation
time. Recall that in the aforementioned complexity analysis Al-
gorithm 2 and [11] have similar per-iteration complexity order.
However, the subgradient-based algorithm needs much more
time to solve (3), due to slow convergence rate as illustrated in
Fig. 2. Off-the-shelf solvers i.e., MOSEK and SDPT3 work rel-
atively effectively for small IV, but fail for large V. This result
can be explained by the fact that interior-point-based solvers
do not scale well with the problem size. Note that our simu-
lation codes are built on MATLAB environment which is by
no means real-time implementation. Thus the run time reported
in Table I is mainly for relative benchmarking purpose. Real-
time implementation of the proposed algorithm is beyond the
scope of the paper and is left as future work. However, it is
normally expected that embedded implementation can speed up
the efficiency of a MATLAB code by several orders of mag-
nitude. We further remark that the coherence time in massive
MIMO systems is much larger than that in conventional ones
due to the channel hardening effect [27], [28]. Thus these two
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Fig. 3. Sum rate of linear precoding (ZF, EGT, MRT) versus nonlinear pre-

coding (DPC) in massive MIMO system with PAPC, K = 4 users, M =1
antenna.

facts may indicate good embedded implementation of the pro-
posed algorithm is likely suitable for real-time massive MIMO
applications.

Finally we utilize Algorithm 2 to evaluate the sum-rate per-
formance of ZF methods in a massive MIMO setting [26].
Small-scale fading in massive MIMO systems tends to be de-
terministic due to the so-called channel hardening effect [27],
[28], and thus a popular strategy to optimize performance is to
perform power control merely accounting for large-scale fad-
ing. An example using this design philosophy was presented
in [10], where a precoding scheme based on the principle of
equal gain transmission (EGT) was proposed under PAPC. We
remark that Algorithm 2 takes into account the both small- and
large-scale fading when computing optimal ZF precoders, and
thus offers the best performance. Our purpose in the last numer-
ical experiment is to quantify how channel hardening affects the
performance of large-scale MIMO in the particular case of ZF
precoding. Towards this end we consider a single-cell under the
default typical urban micro-cell B1 WINNER II channel model
[29]. The base station is located at the center of the cell and 4
single-antenna users are distributed with a distance ranging from
70 meters to 212 meters around the base station. Moreover, we
only take path loss into account and ignore the shadowing. The
transmit power and the noise power are set to 30 dBm and -94
dBm over a bandwidth of 100 MHz, respectively. The results
were averaged over 1000 channel realizations.

Fig. 3 plots the sum rate as a function of the number of
transmit antennas. As can be seen clearly, when both large-
and small-scale fadings are considered, ZF achieves a sum-rate
performance very close to that of DPC, especially when N is
very large. In fact, this observation again confirms the widely
known fact that ZF is a much-lower complexity alternative to
DPC. In Fig. 3 we also report the sum rate of the well-known
maximal ratio transmission (MRT) scheme subject to PAPC.
It is clear from Fig. 3 that if simple linear methods such as
EGT and MRT are employed, there is still a big gap between
their performance and that of optimal ZF precoding even for a
relatively large number of antennas. This observation basically
implies that small-scale fading is still beneficial and may be
taken into account in future practical massive MIMO designs.

V. CONCLUSION

We have solved the WSRMax problem for ZF methods sub-
ject to PAPC. The proposed algorithm is based on the BC-MAC
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duality together with AO and SCA. We have carried out numer-
ical experiments to demonstrate the superior performance of the
proposed algorithm over existing approaches. For considered
large-scale scenarios, the proposed method is able to compute
the optimal solution after relatively short time, while other meth-
ods of comparison fail or take much longer time. Consequently,
our proposed method provides a powerful tool to character-
ize the achievable rate region of ZF schemes under PAPC for
large-scale MIMO systems. In particular, we have utilized the
proposed method to evaluate the performance of known simpler
linear algorithms such as EGT and MRT that mainly focus on
large-scale fading. It has been shown that the performance of
these simpler methods is quite far from optimal. Our conclu-
sion is that small-scale fading should be accounted for to take
full advantage of massive MIMO. We remark that the proposed
algorithm can be easily modified to deal with the general case
of MIMO optimization with multiple transmit covariance con-
straints [30]. In this case, the resulting minimax problem in the
dual MAC has the same structure as (4). A thorough study on
this regards is left as future work.

APPENDIX A
DUALITY TRANSFORMATION PROOF

The duality transformation in (4) can be proved using the same argu-
ments as those in [12]. First, we write the partial Lagrangian function
of (3) as

~ I{ ~ ~ ~ ~
LAXi} A) =) (wy log [T+ H X HY | — r(C, X))
k=1

+ u(AP) (1)

where C, = B ABy,, A = diag(a1,as, ..., a,...,ay). Let X, =
C;/zf(k C,lc/z. Then £({X;}, A) is equal to
. K B B
LOEX}HA) = (wy log [T+ H,CV?X ¢V PHY |
k=1

—tw(X;)) + tr(AP). (12)

Denote Uy, 3, V7 to be the singular value decomposition of H, C, ' 2,

ie, U, X, VI = IjIkC,:l/z. By the so-called channel flipping effect,
we can express the dual objective as

K

B/ AB, + H X, ;|

X201 B ABy|
— (X)) + tr(AP) (13)
where X, = V, U X, U, VI’ Now the dual problem of (3) is
min max 3 (wy log IB7AB;, + HI X, H; |
AZ0 X320 1 B AB,|
—tr(Xy)) + tr(AP). (14)

By introducing new optimization variable 6 > 0, we can rewrite the
above problem as

B AB, +H) X, Hy|
B/ AB,|

min  max Y., wy log — 0P + tr(AP)

Az0.6>0 (X, }-0 '
subjectto S°5_ tr(X) < 6P.
15)
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Note that we can again change the optimization variables as

_ X, A

Xk:T;A:F. (16)
Thus, (15) is equivalent to
. K B AB,+H! X H,|
v 1 k Tk
min max >y Wk log = —Frry 17)

subjectto S°F_ tw(X;) < P;tr(AP) < P.

which is the form given in (4) and thus completes the proof.

APPENDIX B
CONVERGENCE PROOF OF ALGORITHM 2

Let us define Q 2 {A|A : diagonal, A = 0,tr((AP) = P} and
X = {X;|X; = O,Zletr()_(k) =P k=1,...,K.}. We note that
the sets {2 and X are compact convex. We first show that Algorithm
2 yields a decreasing objective f(A",{X2}) following similar argu-
ments in [15], [16]. Since A" s the optimal solution to the mini-
mization problem (8), the inequality below holds

K K
S X} ) = 3wy (log |9 | — log BY A" By ) = 3w
k=1 k=1
<log @7+ tr(B, ;"B (A" — A")) — log\BfA”“Bk\).
(18)

In addition, log |Bf AB;, + HY X, Hy|is jointly concave with A and
X, and note that X, is the optimal solution to (6), we can easily prove
that
X
wy (1og 7|+ (B ®;" B (A" — A"))
k=1

- log|BkHA"“Bk|>

K
>S  wy (log IBY A"+'B, +HY X! H, | —log [BY A" ' B, |> .
k=1

FATFLRETY)
(19)

Combining (22) and (23) results in

K

FA" X = > w <log @7 |+ tr(B,®;" B (A" — A"))
k=1

(a) _
—log B/ A" 'By|) = F(A"T (X[,
20

We remark that the inequality (a) is strict if A" # A" ', Thus, the
sequence { f(A", {X2})} is strictly decreasing unless it is convergent.
Moreover, the continuity of f(-) and the compactness of X and €2 imply
Tim f(A"{X}}) = (A" (X} ).

Now let { (A", {X}7})} be the subsequence converging to the limit
point. Next we shall show that {(A™ 1 {X} ')} — (A", {X;}).
In fact, it is sufficient to prove that A" ™' — A* which can be done
by contradiction. Assume the contrary that A" "' does not converge
to A”. Consequently, there exists a d > 0 such that

dgd”z — |‘A’li+l _A71,|‘7an (21)
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where || - || stands for arbitrary norm. We have
PO AXEY) S F(AY 4 d T A (X))
< F(A™ 4 6dT" 1 A" {X}1}),¥6 € [0, 1]
< P(A"GA™ (X)) = FA" (X0 )
(22)

where F(A" 1 A (X2 }) = S w, (log | @] | + (B, ;"
B (A" — A")) —log B A"i"'By|). Letting & — oo leads to

FA AXY) = F(A* 4 8dT*; A, {X5 1), 6 € [0, 1]. (23)
Furthermore
P(A™ 5 A (X} = fAM (X
< FA"HL XD S FATTL AT (XG0 ))
< F(A; A" {X]1)), VA € Q. (24)
Letting k — oo we obtain
F(A* A" {X.}) < F(A; A, {X.}),VA € Q (25)

which further implies that A* is the minimizer of F(;; A", {X}}).
Since A" ! = argminF (A; A", {X}'}) it follows that

A
FA" A X)) < F(AA™ {XP ), VA €Q. (26)
Letting £ — oo implies
F(A A {XE)) < F(A A {X)), VA € Q. (27)
That is
(VAF(A; A {X ) aza, W —A) > 0,YW € (28)

where (.) denotes the inner product. Recall that I'(+; A, {X,}) is the
first order of f(A,{Xy}). Thus it is easy to see that

VaF(A A X a-ar = V(A {X}) (29)
and thus (28) is equivalent to
(Vaf(A*{X;1), W — A*) > 0,YW € Q. (30)
In the same way we can show that
(Vx, [(A"{X;}), Ay = X}) <0,VA, € X. 31)

Two above inequalities imply that (A*, {X} }) is a saddle point of (4),
which completes the proof.
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