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1. Introduction

Data privacy has been of interest to researchers in computer science [1,8], statistics, 
cryptography [7] and law [5] for decades. The recent emergence of ‘Big Data’, while 
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offering significant potential benefits to business and society, poses very real risks to 
personal privacy; this naturally has led to increased interest in questions pertaining to 
data privacy. The concept of Differential Privacy, introduced by C. Dwork in 2006 [11], 
has emerged as a popular theoretical paradigm in privacy research within the computer 
science community and has been applied to various different types of data and queries 
[10].

We are interested in the geometry of matrix polytopes arising in the study of differen-
tial privacy for categorical or finite-valued datasets. More formally, we consider databases 
d ∈ DN where the set D is finite and can, without loss of generality, be taken to be 
{1, . . . , n}. Each entry in d, di, corresponds to data contributed by an individual; the 
base set D describes all the values that data entries can take.

The problem we consider is motivated by the construction of differentially private sani-
tisations, where we are interested in releasing a private, sanitised version of a database d. 
A sanitisation is defined by a set of random variables Xd taking values in DN for every 
d ∈ D. Loosely speaking, Xd describes a noisy version of the original d designed to 
protect the privacy of individual data contributors.

The differential privacy model specifies two privacy parameters, ε ≥ 0 and 0 ≤ δ ≤ 1. 
For any two databases d, d′ ∈ DN that differ in one row only, (ε, δ)-differential privacy 
requires

P(Xd ∈ A) ≤ eεP(Xd′ ∈ A) + δ, (1)

for all A ⊆ DN .
In essence, differential privacy ensures that answers to queries on a database cannot 

change greatly when one person’s information in a database is altered.
The above definition considers global privacy with the mechanism defined on a com-

plete database. Global mechanisms can readily be constructed using locally private 
mechanisms, where subjects perturb/sanitise their own data locally before providing 
it to a central database upon which queries are answered [9]. The concept of local pri-
vacy first appeared over 50 years ago as a way to eliminate bias in surveying [19] and is 
known in other contexts as input perturbation or randomised response [19,12]. A rigorous 
mathematical framework has been developed which guarantees global differential privacy 
when local differential privacy methods are applied [14].

We refer to local mechanisms as 1-dimensional mechanisms, as they take a single 
row of a database as an input, and output another (perturbed/noisy) row. In our con-
text, a 1-dimensional mechanism is specified by giving an appropriate probability mass 
function pi for every i ∈ D = {1, . . . , n}. More compactly, a 1-dimensional mechanism is 
defined by a stochastic matrix A ∈ R

n×n where aij denotes the probability of outputting 
j when the input, or real data, is i. The requirement for local differential privacy is then 
given by:

aij ≤ eεakj + δ (2)
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for all i, j, k. These constraints, taken together with the stochastic and nonnegativity 
constraints, define the local differential privacy polytope. We shall consider the simplified 
case of strict differential privacy (which is what was originally introduced by Dwork) 
where δ = 0 here.

In practice, we are interested in finding a mechanism (i.e. a matrix in this polytope) 
which is optimal for some utility function. Understanding the geometry of the polytope 
guides the design of such mechanisms. For instance, if the utility function happens to 
be linear, then the optimal mechanism occurs at an extreme point of the polytope. The 
search for optimal mechanisms in differential privacy has been studied by a number of 
authors [17,18,16]. Local differential privacy has been studied recently in the paper [9], 
while extremal local differential privacy mechanisms were considered in [15]. Of course, 
polytopes of stochastic matrices and doubly stochastic matrices have been studied in the 
past [3,6]; a thorough overview of this line of research can be found in Chapters 8 and 9 
of the monograph [4]. An alternative study on geometrical aspects of differential privacy 
can be found in [13].

The basic layout of the paper is as follows. In Section 2 we introduce preliminary 
definitions of polytopes, extreme points, the concept of differential privacy and the poly-
tope with which we will be working. In Section 3 we look at some elementary results 
for extreme points of this polytope, and in Section 4 we present our main results. In 
Section 5 we examine a number of special cases for extreme points, and finish with some 
concluding remarks in Section 6.

2. Notation and background

To begin, let us introduce the major notation and standard definitions to be used 
in our results. For a matrix A ∈ R

n×n and 1 ≤ i ≤ n, we will use A(i) to denote the 
ith column of A. AT denotes the usual matrix transpose. We denote by 1 the (column) 
vector of all ones where the dimension will typically be clear from context. We denote 
by ei, 1 ≤ i ≤ n, the ith standard basis vector of Rn.

2.1. Polyhedra

In this paper, we adopt the following definitions for polyhedra and polytopes

Definition 1. Let 〈·, ·〉 : V × V → R be an inner product on a real vector space V , and 
let 

{
c(1), . . . , c(q+l)} ⊆ V and b ∈ R

q+l be given. A convex polyhedron P ⊆ V is defined 
as:

P =
{
v ∈ V :

〈c(i), v〉 = bi, ∀ 1 ≤ i ≤ q,

〈c(q+i), v〉 ≤ bq+i, ∀ 1 ≤ i ≤ l.

}
. (3)

An inequality constraint is said to be tight or active on a point v if 〈c(q+i), v〉 = bq+i.
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Definition 2. A convex polytope in a vector space V is the convex hull of a finite collection 
of points in V .

P = conv(v1, . . . , vk), (4)

where vi ∈ V for all i.

It is well known that all polytopes are polyhedra, but only bounded polyhedra are 
polytopes.

An extreme point of a polyhedron cannot be written as the convex combination of 
any other points in the polyhedron.

Definition 3 (Extreme point). Let P ⊆ R
n be a convex polyhedron. A point v ∈ P is an 

extreme point of P if w, z ∈ P, 1
2 (w + z) = v, implies w = z = v.

We denote by ex(P) the set of all extreme points of a polyhedron P.
Our primary interest is in characterising the extreme points of the local differential 

privacy polyhedron. The following theorem from convex geometry shall prove useful in 
this regard [2].

Theorem 1. Let P ⊆ V be a polyhedron, and consider a point v ∈ P. Denote by the 
set Iv ⊆ {1, . . . , l} the indices of the inequality constraints that are tight on v (i.e. 
〈c(q+i), v〉 = bq+i for all i ∈ Iv and 〈c(q+i), v〉 < bq+i for all i ∈ {1, . . . , l} \ Iv). Then 
v ∈ ex(P) if and only if

span
({

c(1), . . . , c(q)
}
∪
{
c(q+i) : i ∈ Iv

})
= V.

Essentially, this result tells us that v is an extreme point of P if and only if there are 
n linearly independent constraints tight on v where n is the dimension of V .

2.2. Differential privacy

As in the Introduction, we take the set D = {1, . . . , n} to be the domain of the rows 
of our database (i.e. each subject contributes a value of D to the database). For local 
differential privacy to be satisfied, we require:

P(Xi ∈ I) ≤ eεP(Xk ∈ I) + δ,

for all i, k ∈ {1, . . . , n} and for all I ⊂ D.
For the purpose of this paper, we only consider the case of strict or non-relaxed 

differential privacy, where δ = 0. In this case, the requirement simplifies to

P(Xi = j) ≤ eεP(Xk = j),

for all i, j, k ∈ {1, . . . , n}.
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If we let A ∈ R
n×n be given by,

aij = P(Xi = j)

then A defines a valid ε-differential privacy mechanism if and only if the following con-
ditions hold:

∑
j

aij = 1, 1 ≤ i ≤ n, (5a)

aij ≥ 0, 1 ≤ i, j ≤ n, (5b)

aij ≤ eεakj , 1 ≤ i, j, k ≤ n. (5c)

We now define the ε-differential privacy polytope, comprised of all matrices satisfying 
the above constraints.

Definition 4 (Differential Privacy Polytope). Fix n ∈ N and ε ≥ 0. The ε-differential 
privacy polytope, D ⊂ R

n×n, is defined as follows:

D =

⎧⎪⎨
⎪⎩A ∈ R

n×n :

∑
j aij = 1, ∀ 1 ≤ i ≤ n,

aij ≥ 0, ∀ 1 ≤ i, j ≤ n,

aij ≤ eεakj , ∀ 1 ≤ i, j, k ≤ n.

⎫⎪⎬
⎪⎭ . (6)

The non-negativity and stochastic constraints ensure D is bounded. Therefore it is a 
polytope.

Note. As the constraint aij ≤ eεakj must hold for all i, j, k, we require e−εakj ≤ aij ≤
eεakj for each i, j, k. Equivalently, maxi aij ≤ eε mini aij for all j.

Remark. If ε = 0, then for A to be in D, we require that aij = akj for all i, j, k.

Using the Hilbert Schmidt inner product

〈X,Y 〉 = tr(XTY ),

together with the matrices eieTj , ei1T , eieTj = eεeke
T
j , it is not a difficult exercise to 

represent the constraints defining D in the form given in Definition 1.

3. Preliminary results

In this section, we present several preliminary results on the structure of the set D
and its extreme points. We first note that the nonnegativity constraint in the definition 
of D is redundant in the case where ε > 0.
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Lemma 1. Fix ε > 0. Let v ∈ R
n satisfy vi ≤ eεvj for all i, j. Then v ≥ 0.

Proof. Let vi < 0 for some i. Then, for each j, we have:

e−εvi ≤ vj ≤ eεvi

⇒ e−εvi ≤ eεvi

⇒ e−ε ≥ eε

⇒ ε ≤ 0

By hypothesis ε > 0. Hence, we must have vi ≥ 0 for each i. �
Our next lemma notes that if the differential privacy constraint is tight on two ele-

ments in a column, then those two elements must be the minimum and maximum entries 
of that column.

Lemma 2. Let v ∈ R
n be a vector with vi ≤ eεvj for all 1 ≤ i, j ≤ n. Suppose there exists 

at least one pair i, j where vi = eεvj. Then mink vk = vj and maxk vk = vi.

Proof. Suppose there exists vl such that vl > vi. Then, vl > eεvj , contradicting the dif-
ferential privacy constraints. Similarly, if vl < vj , then eεvl < vi. The result follows. �

Several of our results will relate the extreme points A of D to the non-zero columns 
in A. With this in mind, we formally define

γ(A) = {i ∈ {1, . . . , n} : A(i) = 0}.

So that γ(A) consists of the indices of the non-zero columns of A and 1 ≤ |γ(A)| ≤ n

gives the number of non-zero columns in A.
Our next result concerns the rank of the extreme points of D; first we note the simple 

observation that rank(A) ≤ |γ(A)| for all A.

Theorem 2. Let A ∈ ex(D). Then

rank(A) = |γ(A)|.

Proof. Suppose A ∈ ex(D). As noted before, rank(A) ≤ |γ(A)|. If A has only one 
non-zero column, then clearly rank(A) = 1 = |γ(A)|.

Let |γ(A)| > 1 and suppose rank(A) < |γ(A)|. Then there exists η ∈ R
n, η = 0 and 

ηi = 0 for all i /∈ γ(A) (i.e. whenever A(i) = 0), such that 
∑

i ηiA
(i) = 0.

Let B = A diag(η). By construction, B1 = 0.
Consider C = A − ΔB, D = A + ΔB, where 0 < Δ < 1 . Then,
maxi |ηi|
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1. C and D are stochastic, as A is stochastic and B1 = 0;
2. since aij ≤ eεakj and (1 ± Δηj) > 0 for all i, j, k, it follows that cij ≤ eεckj , 

dij ≤ eεdkj ; and
3. C, D ≥ 0.

Hence, C and D are in D and C = D as B = 0.
However, 1

2 (C + D) = A, so A /∈ ex(D), a contradiction. Therefore, for every A ∈
ex(D), rank(A) = |γ(A)|. �

We shall often make implicit use of the following simple corollary to the above result; 
essentially it states that for an extreme point A with at least 2 non-zero columns, none 
of these columns can have all their entries equal.

Corollary 1. Let A ∈ ex(D) satisfy |γ(A)| ≥ 2. Then there is no i ∈ γ(A), k ∈ R with 
A(i) = k1.

It is clear from the definition that D is closed under row/column permutations. Our 
next result notes that this same invariance property also holds for extreme points.

Proposition 1. Let A ∈ D and let P1, P2 ∈ {0, 1}n×n be permutation matrices. Then 
P1AP2 ∈ D. Furthermore, A ∈ ex(D) if and only if P1AP2 ∈ ex(D).

3.1. Tight constraints

We now examine the implications of Theorem 1 for the extreme points of D. We first 
note a simple fact concerning the number of linearly independent differential privacy 
constraints that can be tight on an element of D.

In the next result, we use Cdp
j to denote the set of all tight differential privacy con-

straints acting on the jth column of a matrix A. Formally, given A, this consists of all 
constraints such that aij − eεakj = 0 where 1 ≤ i, k ≤ n.

Theorem 3. Let A ∈ D be given. Then, dim(span(Cdp
j )) = n if and only if aij = 0 for 

each i ∈ {1, . . . , n}.

Proof. If we make the obvious identification of the jth column of A with a column 
vector, A(j) in Rn, then each constraint in Cdp

j can be identified with a vector of the 
form (0, . . . , 1, 0, . . . , −eε, 0, . . . , 0)T where the 1 occurs in the ith position and eε occurs 
in the kth position. If dim(span(Cdp

j )) = n, there are n linearly independent vectors 
v1, . . . , vn such that vTi A(j) = 0 for 1 ≤ i ≤ n so it follows trivially that A(j) = 0.

For the converse, it is enough to note that A(j) = 0 implies that every differential 
privacy constraint acting on the jth column is tight and that there are n linearly inde-
pendent such constraints. To see this consider the matrix T with: tii = 1 for 1 ≤ i ≤ n; 
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ti+1,i = −eε for 1 ≤ i < n; t1n = −eε; tjk = 0 otherwise. It can readily be verified that 
T is non-singular. �
Remark. A direct consequence of Theorem 3 is that dim(span(Cdp

j )) ≤ n − 1 for any 
j ∈ γ(A).

Our later characterisations of the extreme points of D shall rely on the following 
concept of loose entries.

Definition 5 (Loose entries of a matrix). Given A ∈ D, define

λ(A) =
{

(i, j) : aij /∈
{
eε min

k
akj , e

−ε max
k

akj
}}

.

For a matrix A ∈ D, we say the entry aij is loose if (i, j) ∈ λ(A).

It follows from Lemma 2 that for any (i, j) there exists a k such that aij = e±εakj if 
and only if (i, j) /∈ λ(A).

Example 1. Let ε = ln(2) and

A = 1
7

⎛
⎜⎝ 4 1 2

3 2 2
2 1 4

⎞
⎟⎠ .

Then λ(A) = {(2, 1)}, since 3 /∈ {4, 2}.

Our next result bounds the number of loose entries of an extreme point in terms of 
the number of non-zero columns.

Theorem 4. Let A ∈ ex(D) with |γ(A)| ≥ 2. Then,

|λ(A)| ≤ n− |γ(A)|.

Proof. Let A ∈ ex(D) and consider the following sets of constraints active on A. We 
define

Cdp =
⋃

j∈γ(A)

Cdp
j

to be the set of tight differential privacy constraints acting on the columns in γ(A). Note 
the following readily verifiable facts:
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(i) for j /∈ γ(A), every differential privacy constraint acting on column j is tight;
(ii) the n stochastic constraints are tight;
(iii) as |γ(A)| ≥ 2, no non-zero column of A is of the form k1 where k ∈ R.

It follows from (ii) and Theorem 1 that the number of tight, linearly independent dif-
ferential privacy constraints on A must be n2 −n. Furthermore, Theorem 3 implies that 
there are n linearly independent differential privacy constraints active on each of the 
n −|γ(A)| zero columns of A. It is not difficult to see that constraints acting on different 
columns must be linearly independent and hence there are a total of (n − |γ(A)|)n lin-
early independent tight differentially private constraints arising from the zero columns 
of A. Putting all of this together, we see that there must be

n2 − n− (n− |γ(A)|)n = n|γ(A)| − n

tight differential privacy constraints acting on the non-zero columns of A. Formally:

|Cdp| ≥ n|γ(A)| − n. (7)

From point (iii) above there are no non-zero columns in which all entries are constant; 
it follows that for each j ∈ γ(A),

|{i : (i, j) /∈ λ(A)}| ≥ |Cdp
j | + 1.

If we let lj denote the number of loose entries in column j, the previous inequality can 
be rewritten as

|Cdp
j | ≤ n− lj − 1.

Combining this with (7) we see that

n|γ(A)| − n ≤
∑

j∈γ(A)

|Cdp
j |

≤
∑

j∈γ(A)

n− lj − 1

= n|γ(A)| − |λ(A)| − |γ(A)|.

A simple rearrangement now shows that

|λ(A)| ≤ n− |γ(A)|

as claimed. �
Note. When |γ(A)| = 1, |λ(A)| = n.
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To conclude this sub-section, we take a look at the following result for later use, which 
states that at most one loose entry can appear in any row of an extreme point.

Lemma 3. Let A ∈ ex(D). No row of A has more than one loose entry (i.e. there exist 
no two distinct pairs (i1, j1), (i1, j2) ∈ λ(A) with j1 = j2).

Proof. Let A ∈ ex(D), and assume without loss of generality that (1, 1), (1, 2) ∈ λ(A). 
Let

Δ = min
{

max
i

ai1 − a11, a11 − min
i

ai1,max
i

ai2 − a12, a12 − min
i

ai2

}
.

Hence, A ± Δ(E11 − E12) ∈ D.
However, A = 1

2 ((A + ΔE11 − ΔE12) + (A − ΔE11 + ΔE12)), hence, A /∈ ex(D), 
a contradiction and so the result follows. �

Finally, for this section we present a number of other results that will add further 
insight to the behaviour and structure of D and its extreme points. The next piece of 
notation will prove useful later.

For A ∈ D, we define the vector m′ ∈ R
n where m′

j = 1
mini aij

for any j ∈ γ(A) and 

m′
j = 0 otherwise. We then denote by Ã the matrix given by:

Ã = A diag(m′). (8)

Then, for any A ∈ D, ãij ∈ [1, eε] for any j ∈ γ(A), and ãij = 0 otherwise.
Hence,

Ã diag
1≤j≤n

(
min
i

aij

)
= A.

Note. γ(A) = γ(Ã) and λ(A) = λ(Ã).

We now show that for any extreme point A, Ã cannot have a row with equal non-zero 
values.

Lemma 4. Let A ∈ ex(D) with |γ(A)| > 1. Then for each row i, there exist two non-zero 
columns j, k ∈ γ(A) such that ãij = ãik.

Proof. We prove this by contradiction. Firstly, suppose there exists a row i such that 
ãij = ãik for all j, k ∈ γ(A). By Lemma 3, each row cannot have more than one loose 
element, therefore either ãij = 1 or ãij = eε.

Let m ∈ R
n be defined by mj = mini aij . Then A = Ãdiag(m).

Suppose ãij = 1, hence 
∑

k∈γ(A) mk = 1. By Theorem 4, each column j has at least one 
pair (i, k) such that aij = eεakj , hence there exists a row i∗ such that ãi∗j = eε. However, 
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ãi∗k ≥ 1 for every k ∈ γ(A), so 
∑

k∈γ(A) ãi∗kmk > 1, contradicting the stochasticity 
of A.

A similar argument holds for ãij = eε. The result follows. �
4. Extreme points for fixed values of |γ(A)|

In this section, we characterise extreme points with a specified number of non-zero 
columns. We note that extreme points with one and two non-zero columns are limited to 
a specific form, while Section 4.3 deals with extreme points with any number of non-zero 
columns.

4.1. Extreme points with one column non-zero

The first case to consider is that of a single non-zero column in the matrix. Due to the 
stochastic constraints, there are only n such matrices, and as Theorem 5 below states, 
each one of these matrices is an extreme point.

Theorem 5 (|γ(A)| = 1). Let Ei ∈ R
n×n be given by Ei = 1eTi for 1 ≤ i ≤ n and define 

the set D̃′ as:

D̃′ = {E1, . . . , En} .

Then D̃′ ⊆ ex(D).
Furthermore, A ∈ ex(D), |γ(A)| = 1 implies that A ∈ D̃′.

Proof. Suppose Ei = 1
2 (B +C) for B, C in D. As B, C are both nonnegative, it follows 

immediately that all columns of B and C apart from the ith column are zero. B and C
are also both stochastic which immediately implies that B = C = 1eTi .

Note that if A ∈ D with |γ(A)| = 1, then A = Ei for some i. Hence, if A ∈ ex(D)
with |γ(A)| = 1, it follows that A ∈ D̃′. �

The points in D̃′ are extreme points in all cases, regardless of ε. Furthermore, in the 
trivial case of ε = 0, the set D̃′ are the only extreme points.

Corollary 2. Let ε = 0. Then,

ex(D) = D̃′.

Proof. Let ε = 0. Then, for all A ∈ D, we have akj ≤ aij ≤ akj , hence aij = akj
for all i, j, k, i.e. entries in the same column are equal. It now follows immediately 
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from Corollary 1 that if A is an extreme point, γ(A) = 1 and hence that A ∈ D̃′ as 
claimed. �
4.2. Extreme points with two columns non-zero

Next, we consider the case of two non-zero columns. Although Theorem 4 allows for 
many loose entries to occur in these extreme points, Theorem 6 below states that no 
loose entries are possible.

Theorem 6 (|γ(A)| = 2). Let A ∈ ex(D) where |γ(A)| = 2. Then A has no loose entries.

Proof. Without loss of generality, assume that γ(A) = {1, 2}. Define m ∈ R
n by mj =

mini aij for 1 ≤ j ≤ n and define Ã so that A = Ãdiag(m). Then ãij ∈ [1, eε] ∪ {0} for 
1 ≤ i, j ≤ n.

By Theorem 4, |λ(A)| ≤ n − 2, so there exist at least two rows with no loose entries. 
Let row k be one of these rows. Then ãk1, ̃ak2 ∈ {1, eε}, but by Lemma 4, ãk1 = ãk2. We 
can assume that ãk1 = eε and ãk2 = 1 (otherwise just swap columns 1 and 2). As A is 
stochastic,

m1e
ε + m2 = 1. (9a)

By Lemma 3, for all rows j, at least one of ãj1, ãj2 must be in {1, eε}. Moreover, in 
order to satisfy (9a), ãj1 = eε if and only if ãj2 = 1.

Suppose therefore that there exists a row j where ãj1 ∈ (1, eε) corresponding to a 
loose entry in A. It follows from (9a) that ãj2 = eε. Hence

1 = m1ãj1 + m2e
ε

> m1 + m2e
ε.

(9b)

It follows from Corollary 1 that there is some j∗ such that ãj∗1 = 1, implying

1 = m1 + m2ãj∗2

≤ m1 + m2e
ε,

contradicting (9b). Therefore there are no loose entries in the first column.
Now suppose there exists a row j where ãj2 ∈ (1, eε). As above, it follows that ãj1 = 1. 

Hence,

1 = m1 + m2ãj2

< m1 + m2e
ε.

(9c)

As before, it follows from Corollary 1 that there is some j∗ such that ãj∗2 = eε, 
hence,
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1 = m1ãj∗1 + m2e
ε

≥ m1 + m2e
ε,

contradicting (9c). Therefore there are no loose entries in the second column.
Hence |λ(A)| = 0. �
Using this result along with Lemma 4, we can describe the two non-zero columns.

Corollary 3. Let A ∈ ex(D) with |γ(A)| = 2. Let γ(A) = {j, k} and Ã be given by (8). 
Then, for every 1 ≤ i ≤ n, we have

(ãij , ãik) ∈ {(1, eε), (eε, 1)}. (10)

Proof. By Theorem 6, ãij ∈ {1, eε} and ãik ∈ {1, eε} for each 1 ≤ i ≤ n.
By Lemma 4, we must have ãij = ãik for each i. So, ãij = eε if and only if ãik = 1, 

and ãij = 1 if and only if ãik = eε. �
The follow example illustrates the consequence of Corollary 3.

Example 2. Every extreme point A ∈ ex(D) with |γ(A)| = 2 must be of the form shown 
in (10), and furthermore both non-zero columns of Ã must contain at least one 1 and 
one eε.

Let n = 4 and A ∈ ex(D) with |γ(A)| = 2. One example of such an A is as follows:

A = 1
1 + eε

⎛
⎜⎜⎜⎝

1 0 eε 0
1 0 eε 0
eε 0 1 0
1 0 eε 0

⎞
⎟⎟⎟⎠ ∈ ex(D).

4.3. Extreme points with every element constrained

The next definition is necessary before we can state Theorem 7 which is the main 
result of the paper.

Definition 6. Let D̃ ⊂ D be defined as follows:

D̃ = {A ∈ D | rank(A) = |γ(A)|, λ(A) = ∅}. (11)

The set D̃ contains matrices with between 2 and n non-zero columns, which satisfy 
the rank condition of Theorem 2 and have no loose entries (i.e. ãij ∈ {0, 1, eε} for each 
i, j). We now show that every one of these matrices is an extreme point of D.
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Theorem 7. Let ε > 0. Then,

D̃ ⊂ ex(D).

Proof. Let A ∈ D̃ and let B, C ∈ D where 1
2 (B +C) = A. Define mj = mini aij for each 

j ∈ {1, . . . , n} (note that mj = 0 for each j /∈ γ(A), and aij ∈ {mj , eεmj} for each i, j
since λ(A) = ∅).

Let Δj = 1
2 maxi |bij − cij | for each j ∈ γ(A). As B and C are nonnegative, it is not 

hard to see that:

Δj = 0, ∀ j /∈ γ(A). (12a)

We shall show that the same conclusion must also hold for j ∈ γ(A). To this end, 
let j∗ ∈ γ(A) be given where Δj∗ > 0. Assume without loss of generality that bi1j∗ =
ai1j∗ + Δj∗ for some i1 (if not, swap B and C).

We claim that ai1j∗ = mj∗ . Suppose otherwise. Then there exists i2 where ai2j∗ =
eεmj∗ . However, since 1

2(B + C) = A, we have ci1j∗ = 2ai1j∗ − bi1j∗ = ai1j∗ − Δj∗ , and 
since C ∈ D, we have

ci2j∗ ≤ eεci1j∗

= eεai1j∗ − eεΔj∗

= ai2j∗ − eεΔj∗

By the definition of Δj∗ , we must have ci2j∗ ≥ ai2j∗ − Δj∗ . Hence it would follow that 
Δj∗ ≥ eεΔj∗ , a contradiction since ε > 0. Thus, ai1j∗ = eεmj∗ as claimed (i.e. the max 
change occurs on the max element of the column).

We now know that bi1j∗ = eεmj∗ + Δj∗ . Let

Ij∗ = {i : aij∗ = mj∗}.

Then for every i ∈ Ij∗ , since B ∈ D, we get eεmj∗ + Δj∗ = bi1j∗ ≤ eεbij∗ , hence

bij∗ ≥ mj∗ + e−εΔj∗ . (12b)

Also, for every i ∈ Ij∗ , since C ∈ D,

ci1j∗ = eεmj∗ − Δj∗

≤ eεcij∗

= ee(2aij∗ − bij∗)

= 2eεmj∗ − eεbij∗ ,

hence eεmj∗ − Δj∗ ≤ 2eεmj∗ − eεbij∗ , or rewriting,

bij∗ ≤ mj∗ + e−εΔj∗ . (12c)
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Hence, from (12b) and (12c),

bij∗ = mj∗ + e−εΔj∗

= aij∗ + e−εΔj∗ ,
(12d)

for every i ∈ Ij∗ .
It follows readily that for every i ∈ Ij∗ , cij∗ = mj∗ − e−εΔj∗ .
We next consider indices i /∈ Ij∗ . Choose some i2 ∈ Ij∗ . For all i /∈ Ij∗ , aij∗ = eεmj∗ , 

then

bij∗ ≤ eεbi2j∗ = eεmj∗ + Δj∗ , (12e)

and

cij∗ = 2aij∗ − bij∗

= 2eεmj∗ − bij∗

≤ eεci2j∗

= eεmj∗ − Δj∗ ,

which can be rewritten as

bij∗ ≥ eεmj∗ + Δj∗ . (12f)

Hence, from (12e) and (12f),

bij∗ = eεmj∗ + Δj∗

= aij∗ + Δj∗ ,
(12g)

for all i /∈ Ij∗ .
Putting everything together, it follows from (12a), (12d) and (12g),

bij =

⎧⎪⎪⎨
⎪⎪⎩

0, j /∈ γ(A),
mj + e−εgjΔj , j ∈ γ(A), i ∈ Ij

eεmj + gjΔj , j ∈ γ(A), i /∈ Ij

where gj ∈ {−1, 1}, for all j ∈ γ(A).
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Similarly, since B + C = 2A,

cij =

⎧⎪⎪⎨
⎪⎪⎩

0, j /∈ γ(A),
mj − e−εgjΔj , j ∈ γ(A), i ∈ Ij

eεmj − gjΔj , j ∈ γ(A), i /∈ Ij .

Rewriting in terms of Ã (given by (8)), bij = aij + gje
−ε aij

mj
Δj = aij + gje

−εãijΔj

and cij = aij − gje
−εãijΔj for all i, j.

Hence,

B = A + e−εÃ diag
1≤j≤n

(gjΔj)

C = A− e−εÃ diag
1≤j≤n

(gjΔj).

Since A, B are stochastic, we require

e−εÃ diag
1≤j≤n

(gjΔj)1 = 0.

This equation defines a linear relationship between the columns of Ã. Moreover, we 
know that Δj = 0 for j /∈ γ(A). If Δj = 0 for any j ∈ γ(A), it would imply that 
the non-zero columns of Ã and hence those of A are linearly dependent, contradicting 
the assumption that rank(A) = |γ(A)|. It follows that Δj = 0 for all j and hence that 
B = C = A. This completes the proof. �

Furthermore, the set D̃ contains all extreme points of D which have no loose entries.

Corollary 4. Let A ∈ D with λ(A) = ∅. Then, A ∈ ex(D) if and only if A ∈ D̃.

Proof. “⇒”: Let A ∈ ex(D) with λ(A) = ∅. By Theorem 2, rank(A) = |γ(A)|, hence 
A ∈ D̃.

“⇐”: A ∈ D̃ ⇒ A ∈ ex(D) by Theorem 7. �
4.4. Extreme points with all columns non-zero

From an application point of view, it is entirely reasonable to only consider matrices 
(and the resulting response mechanism) with no zero columns.

Having a zero column in a matrix that defines a response mechanism means that 
the mechanism never releases a particular (or multiple) values as its output. In many 
circumstances, this feature will not be required of a mechanism.

Using Theorem 7, we now present the following corollary, which gives a complete 
characterisation of extreme points without zero columns.
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Corollary 5. Let A ∈ D, with |γ(A)| = n. Then, A ∈ ex(D) if and only if A ∈ D̃
Equivalently,

{A ∈ ex(D) : |γ(A)| = n} = {A ∈ D̃ : |γ(A)| = n}.

Proof. “⇒”: Let A ∈ ex(D) have n non-zero columns. Then, rank(A) = n by Theorem 2
and λ(A) = ∅ by Theorem 4.

“⇐”: Let A ∈ D such that rank(A) = n and λ(A) = ∅. Then A ∈ ex(D) by Theo-
rem 7. �

We now have necessary and sufficient conditions for finding and determining extreme 
points with n non-zero columns.

5. Discussion

We now take a brief look at a number of useful and interesting consequences of the 
results given in Sections 3 and 4.

ex(D) for small n: From Theorems 5 and 7, we know that D̃′ ∪ D̃ ⊆ ex(D); with the 
addition of Theorem 6 we can make further observations for small n.

Theorem 8. Let n ≤ 3, then

ex(D) = D̃′ ∪ D̃.

Extreme points for n = 4: We therefore have a complete characterisation of all extreme 
points up to n = 3. While we lack a formal proof, extensive computer simulations 
suggest it is also true for n = 4 leading to the following conjecture.
Let n ≤ 4: then

ex(D) = D̃′ ∪ D̃.

ex(D) for n ≥ 5: When n = 5, our previous results allow us to characterise all extreme 
points A for which |γ(A)| = 1, 2, 5. However, when |γ(A)| = 4, we can find extreme 
points with loose entries.
The following point A ∈ D can be shown to be an extreme point of D by using 
Theorem 1.

A = 1
3 + 2eε

⎛
⎜⎜⎜⎜⎜⎝

1 1 2eε 1 0
eε 1 2 eε 0
eε eε 2 1 0
1 eε 2 eε 0
1 1 1 + eε eε 0

⎞
⎟⎟⎟⎟⎟⎠ .



N. Holohan et al. / Linear Algebra and its Applications 534 (2017) 78–96 95
Fitting with Theorem 4, A has only a single loose entry (λ(A) = {(5, 3)}), while we 
also observe that rank(A) = 4, satisfying Theorem 2.
We therefore have A ∈ ex(D), but A /∈ D̃′ ∪ D̃. Hence, D̃′ ∪ D̃ ⊂ ex(D) in general.

6. Conclusion

We have studied the differential privacy polytope of n × n matrices and described a 
suite of results characterising its extreme points. In particular, our results describe com-
pletely the extreme points of this polytope containing 1, 2 and n non-zero columns. The 
last fact is of particular practical significance as most implementations of differentially 
private mechanisms are likely to have no zero columns; this is because a zero column 
corresponds to a value of the dataset D that is never released by the mechanism. Future 
work could focus on characterising extreme points with other values of |γ(A)|; alternative 
directions for work include considering other convex geometric aspects of the polytope 
D such as the structure of its dual set for example.
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