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1. Background and introduction

The problem of Riccati stability was introduced in [13] and is motivated by the sta-
bility theory of linear time-delay systems. Formally, a pair (A, B) is said to be Riccati 
stable if there exist P = PT � 0, Q = QT � 0 such that

* Corresponding author at: Dept. of Mathematics and Statistics/Hamilton Institute, Maynooth University, 
Co. Kildare, Ireland.

E-mail address: oliver.mason@mu.ie (O. Mason).
http://dx.doi.org/10.1016/j.laa.2017.08.015
0024-3795/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2017.08.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:oliver.mason@mu.ie
http://dx.doi.org/10.1016/j.laa.2017.08.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2017.08.015&domain=pdf


A. Aleksandrov et al. / Linear Algebra and its Applications 534 (2017) 158–173 159
ATP + PA + Q + PBQ−1BTP ≺ 0, (1)

where M ≺ 0 (M � 0) denotes that the matrix M = MT is negative definite (positive 
definite). Throughout the paper, M � 0 (M � 0) denotes that M is positive semi-definite 
(negative semi-definite). When matrices P , Q satisfying (1) exist they define a quadratic 
Lyapunov-Krasovskii functional establishing stability for the time-delay system

ẋ(t) = Ax(t) + Bx(t− τ), (2)

where τ ≥ 0 can be any fixed nonnegative delay.
A ∈ R

n×n is Metzler if aij ≥ 0 for i �= j; A is nonnegative if aij ≥ 0 for 1 ≤ i, j ≤ n. 
We denote the spectrum of A by σ(A) and the spectral abscissa of A by μ(A): formally,

μ(A) := max{Re(λ) | λ ∈ σ(A)}

and say that A is Hurwitz if μ(A) < 0.
We denote the standard basis of Rn by e1, . . . , en and we use 1n to denote the vector 

in Rn, all of whose entries are equal to one. For A ∈ R
n×n, diag(A) is the vector v in Rn

with vi = aii, 1 ≤ i ≤ n. Sym(n, R) denotes the space of n × n symmetric matrices with 
real entries.

For a real number x, sign(x) is given by +1 if x ≥ 0 and −1 for x < 0 respectively.
For vectors v, w in Rn, we write: v ≥ w if vi ≥ wi for 1 ≤ i ≤ n; v > w if v ≥ w, 

v �= w; v 
 w if vi > wi for 1 ≤ i ≤ n.
When diagonal positive definite solutions P, Q of (1) exist, we say that the pair (A, B)

is diagonally Riccati stable.
A single matrix A ∈ R

n×n, corresponding to a linear time-invariant (LTI) system, 
is diagonally Lyapunov stable (or diagonally stable) if there exists a positive definite 
diagonal matrix D such that ATD + DA ≺ 0.

In [2], a necessary and sufficient condition for a given pair (A, B) of matrices in Rn×n to 
be diagonally Riccati stable was described. This result extended naturally the celebrated 
condition of Barker, Berman and Plemmons for diagonal Lyapunov stability [4,12]. The 
existence of diagonal solutions to (1) allows the construction of Lyapunov-Krasovskii 
functionals of particularly simple form. As with the case of diagonal Lyapunov stability 
for undelayed systems [8], such functionals prove useful in establishing absolute stability 
conditions for classes of nonlinear time-delay systems [2] (see [1] for corresponding work 
on discrete time systems).

Formally, the following result was proven in [2].

Theorem 1.1. Let A, B ∈ R
n×n be given. The following are equivalent.

(i) There exist P � 0, Q � 0 diagonal satisfying (1).
(ii) For every non-zero positive semi-definite
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H =
(
H11 H12
HT

12 H22

)
(3)

in Sym(2n, R) with diag(H11) ≥ diag(H22), the matrix

AH11 + BHT
12

has a negative diagonal entry.

For H of the form (3), we use hab
ij to denote the i, j element of Hab for 1 ≤ a, b ≤ 2, 

1 ≤ i, j ≤ n.
Using Theorem 1.1, necessary and sufficient conditions were derived for diagonal Ric-

cati stability for pairs (A, B) where: (i) A is Metzler and B is nonnegative; (ii) A and B
are both upper (lower) triangular.

In particular, it was shown that in case (i), diagonal Riccati stability is equivalent to 
the condition that A + B is Hurwitz. This established the existence of a diagonal Lya-
punov functional for asymptotically stable positive linear time-delay systems, providing 
a natural extension of a fundamental property of positive linear time-invariant (LTI) 
systems [6]. Furthermore, this fact strengthened the main result of [11] which showed 
that under the same condition (A +B Hurwitz), there exists a diagonal P � 0 and Q � 0
(not necessarily diagonal) satisfying (1).

For linear time-invariant (LTI) systems, the concept of D-stability is related to that of 
diagonal stability [8]. The study of D-stability was originally motivated by applications 
in areas such as Ecology and Economics and, for an LTI system with system matrix A, 
this property amounts to requiring that DA is Hurwitz for every diagonal D � 0. One 
natural way of extending this to the time-delay case is to require that the time-delay 
system with matrices DA, DB is stable for all diagonal D � 0. It is not a difficult 
calculation to see that this will hold if the pair (A, B) is diagonally Riccati stable.

In the current paper, we derive a slight extension of Theorem 1.1 to identify further 
classes of matrices for which simple necessary and sufficient conditions for diagonal Ric-
cati stability can be derived. We will also describe a characterisation of diagonal Riccati 
stability in terms of the so-called Hadamard product, extending a well known result of [9]
for diagonal Lyapunov stability. We will use this alternative characterisation to derive 
necessary and sufficient conditions for diagonal Riccati stability for two classes of pairs 
of matrices in R3×3.

2. Diagonal Riccati stability and Hadamard products

For some of our later results, we will need the following slight extension of Theorem 1.1.

Theorem 2.1. Let A, B ∈ R
n×n be given. The following are equivalent.

(i) There exist P � 0, Q � 0 diagonal satisfying (1).
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(iia) For every non-zero positive semi-definite H given by (3) in Sym(2n, R) with 
diag(H11) = diag(H22), the matrix

AH11 + BHT
12

has a negative diagonal entry.

Proof. It is enough to show that condition (iia) above is equivalent to condition (ii) 
in Theorem 1.1. The implication (ii) ⇒ (iia) is trivial. Assume (iia) and let H satisfy 
diag(H11) ≥ diag(H22). Write e = diag(H11) − diag(H22) and set E to be the corre-
sponding diagonal matrix. Then the matrix

Ĥ = H +
(

0 0
0 E

)

clearly satisfies (iia) and is also positive semi-definite. So we can conclude that

AH11 + BHT
12

has a negative diagonal entry. This completes the proof.

Given two matrices A ∈ R
n×n, B ∈ R

n×n, the Hadamard or Schur product A ◦ B is 
the matrix C with (i, j) entry given by aijbij . In the next result we make use of the Schur 
Product Theorem which states that if A, B ∈ R

n×n are both positive semi-definite, then 
so is A ◦B (see Theorem 7.5.3 of [7]).

Proposition 2.1. Let (A, B) be a diagonally Riccati stable pair and let

S =
(
S11 S12
ST

12 S22

)

be positive semi-definite, with diag(S11) = diag(S22) 
 0. Then the pair (A ◦S11, B◦S12)
is also diagonally Riccati stable.

Proof. Let H be a non-zero positive semi-definite matrix in Sym(2n, R) given by (3). 
It follows from the Schur product theorem that the matrix G = S ◦ H is positive 
semi-definite; as all diagonal entries of S are positive, G is non-zero. Moreover, if 
diag(H11) = diag(H22) and diag(S11) = diag(S22), we also have that for the matrix G, 
diag(G11) = diag(G22). As the pair (A, B) is diagonally Riccati stable, we can conclude 
that AG11 + BGT

12 has a negative diagonal entry.
Clearly, G11 = S11 ◦H11 and G12 = S12 ◦H12. For any i, 1 ≤ i ≤ n,

[A(S11 ◦H11)]ii =
n∑

aij(S11 ◦H11)ji

j=1
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=
n∑

j=1
aijs

11
ji h

11
ji

=
n∑

j=1
aijs

11
ij h

11
ji

=
n∑

j=1
(A ◦ S11)ijh11

ji

= [(A ◦ S11)H11]ii.

A similar calculation reveals that

[B(ST
12 ◦HT

12)]ii =
n∑

j=1
bij(ST

12 ◦HT
12)ji

=
n∑

j=1
bijs

12
ij h

12
ij

=
n∑

j=1
(B ◦ S12)ijh12

ij

= [(B ◦ S12)HT
12]ii.

As AG11 + BGT
12 has a negative diagonal entry, it follows that for some i,

[A(S11 ◦H11)]ii + [B(ST
12 ◦HT

12)]ii < 0

and therefore that

[(A ◦ S11)H11]ii + [(B ◦ S12)HT
12]ii < 0.

It follows from Theorem 2.1 that the pair (A ◦ S11, B ◦ S12) is diagonally Riccati stable 
as claimed.

The main result of this section provides a direct extension of Theorem 1.2 of [9] to 
the setting of diagonal Riccati stability. We first recall that a matrix A in Rn×n is a P 
matrix if every principal minor of P is positive. It is a classical result (see Theorem 6.2.3 
of [5]) that this is equivalent to the condition that for every non-zero x in Rn, there is 
some index i with xi(Ax)i > 0.

Before stating the main result of this section, we recall a basic fact relating Lyapunov 
diagonal stability to the P property for a single matrix [8].

Lemma 2.1. Let A ∈ R
n×n be diagonally stable. Then −A is a P-matrix.
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Theorem 2.2. Let A, B in Rn×n be given. The pair (A, B) is diagonally Riccati stable if 
and only if −(A ◦ S11 + B ◦ S12) is a P-matrix for all

S =
(
S11 S12
ST

12 S22

)
(4)

satisfying S � 0, diag(S11) = diag(S22) 
 0.

Proof. First suppose that (A, B) is a diagonally Riccati stable pair. It follows from 
Proposition 2.1 that for all S satisfying the hypotheses of the theorem, that (A ◦ S11,

B ◦ S12) is also diagonally Riccati stable. This implies that the matrix

L := A ◦ S11 + B ◦ S12

is diagonally Lyapunov stable and hence −L is a P-matrix.
For the converse, let H � 0 be a non-zero matrix in Sym(2n, R) of the form (3) with 

diag(H11) = diag(H22). Define the matrix S ∈ Sym(2n, R) by setting:

sij =

⎧⎪⎪⎨
⎪⎪⎩
hij if i �= j

hii if i = j&hii > 0
1 if i = j&hii = 0.

It can then be verified that S is positive semi-definite and that sii > 0 for 1 ≤ i ≤ 2n. 
Moreover, as diag(H11) = diag(H22), it follows that the same holds for the diagonal 
elements of S so that S satisfies the hypotheses of the theorem. Thus we can conclude 
that

−(A ◦ S11 + B ◦ S12)

is a P-matrix. Now choosing x ∈ R
n with xi = 1 if hii > 0 and xi = 0 if hii = 0 for 

1 ≤ i ≤ n, we conclude that there is some index i with

xi[(A ◦ S11 + B ◦ S12)x]i < 0.

If we expand this we find that

n∑
j=1

aijh
11
ij +

n∑
j=1

bijh
12
ij < 0

or equivalently

(AH11 + BHT
12)ii < 0.
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It follows from Theorem 2.1 that the pair (A, B) is diagonally Riccati stable. This com-
pletes the proof.

For future use, we note an alternative form of the condition for diagonal Riccati 
stability given in Theorem 2.2. We will use the following simple lemma.

Lemma 2.2. Let P ∈ R
n×n be a P-matrix and let D � 0 be a diagonal matrix in Rn×n. 

Then DPD is also a P-matrix.

Proof. Let x �= 0 in Rn be given. Then setting y = Dx, it follows that there is some 
index i with yi(Py)i > 0 as P is a P-matrix. Thus as yi = diixi where dii is the i-th 
diagonal entry of D,

diixi(PDx)i = xi(DPDx)i > 0.

Theorem 2.3. Let A, B in Rn×n be given. The pair (A, B) is diagonally Riccati stable if 
and only if −(A ◦ S11 + B ◦ S12) is a P-matrix for all S � 0 in Sym(2n, R of the form 
(4) with diag(S11) = diag(S22) = 1n.

Proof. Let (A, B) be diagonally Riccati stable. Theorem 2.2 implies that −(A ◦ S11 +
B ◦ S12) is a P-matrix for all S � 0 in Sym(2n, R) with diag(S11) = diag(S22) 
 0 so it 
certainly holds for S where diag(S11) = diag(S22) = 1n.

Conversely, let S � 0 in Sym(2n, R) with diag(S11) = diag(S22) 
 0 be given. Then 
define D ∈ R

n×n to be the diagonal matrix with diagonal given by diag(S11) and consider 
Ŝ given by Ŝ = TST where

T =
(√

D−1 0
0

√
D−1

)
.

It is easy to see that Ŝ � 0 and that diag(Ŝ11) = diag(Ŝ22) = 1n. It follows that

−(A ◦ Ŝ11 + B ◦ Ŝ12)

is a P-matrix. However,

−(A ◦ S11 + B ◦ S12) = −
√
D(A ◦ Ŝ11 + B ◦ Ŝ12)

√
D

and hence −(A ◦ S11 + B ◦ S12) is a P-matrix by Lemma 2.2. It now follows from 
Theorem 2.2 that (A, B) is diagonally Riccati stable. This completes the proof.
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3. Classes of diagonally Riccati stable matrix pairs

In this section, we first note a simple invariance property of diagonal Riccati stability 
and then show how this result can be used to obtain a wide variety of new classes of 
diagonally Riccati stable pairs.

Proposition 3.1. Let (A, B) be diagonally Riccati stable and let D, E be diagonal ma-
trices with diagonal entries dii and eii respectively. If 0 < e2

ii ≤ d2
ii, i = 1, . . . , n, then 

(DAD, DBE) is also diagonally Riccati stable.

Proof. Suppose (A, B) is diagonally Riccati stable and let D, E be diagonal matri-
ces satisfying the hypotheses of the proposition. Note, in particular, that both D and 
E are invertible. Let H be a non-zero positive semi-definite matrix given by (3) with 
diag(H11) ≥ diag(H22). Define Ĥ = D̂HD̂ where

D̂ =
(
D 0
0 E

)
.

Then it is simple to verify that Ĥ � 0 and is non-zero. Moreover, it follows from d2
ii ≥

e2
ii that diag(Ĥ11) ≥ diag(Ĥ22). As (A, B) is diagonally Riccati stable, it follows from 

Theorem 2.1 that there is some negative diagonal entry of AĤ11 + BĤT
12. This means 

that the matrix

A(DH11D) + B(EHT
12D)

has a negative diagonal entry. Multiplying on the left by D and on the right by D−1

doesn’t change the sign of any diagonal entries so we conclude that

(DAD)H11 + (DBE)HT
12

has a negative diagonal entry. Thus (DAD, DBE) is diagonally Riccati stable by Theo-
rem 1.1 as claimed.

We next note that it is also possible to prove the above result directly from the 
inequality (1); moreover, the following alternative argument also explicitly relates the 
diagonal matrices solving (1) for (DAD, DBE) to the solutions for (A, B).

Alternative proof for Proposition 3.1. Let diagonal positive definite matrices P and Q
satisfying (1) be given. Then it follows from the Schur complement [7] that

(
ATP + PA + Q PB

BTP −Q

)
≺ 0.
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A simple conjugacy with the matrix

D̂ =
(
D 0
0 E

)

and a little rearrangement using the fact that diagonal matrices commute shows that

(
(DATD)P + P (DAD) + DQD P (DBE)

(EBTD)P −EQE

)
≺ 0.

However, as e2
ii ≤ d2

ii for 1 ≤ i ≤ n, and Q is diagonal, it now follows that

(
(DATD)P + P (DAD) + DQD P (DBE)

(EBTD)P −DQD

)

�
(

(DATD)P + P (DAD) + DQD P (DBE)
(EBTD)P −EQE

)
≺ 0.

Hence, by Schur complement again, P, DQD, will solve (1) for (DAD, DBE).

The following corollary, which will prove useful in the next subsection is now imme-
diate.

Corollary 3.1. Let A ∈ R
n×n, B ∈ R

n×n be given and let D, E be diagonal matrices 
with dii ∈ {−1, +1}, eii ∈ {−1, +1} for 1 ≤ i ≤ n. The pair (A, B) is diagonally Riccati 
stable if and only if (DAD, DBE) is diagonally Riccati stable.

3.1. Applications

Proposition 3.1 and Corollary 3.1 allow us to readily identify classes of diagonally 
Riccati stable matrix pairs using previous results. We next provide a (far from exhaustive) 
list of such classes. We first introduce some notation necessary for stating our results.

Let a matrix C ∈ R
n×n be given. We denote by Ĉ the matrix with ĉii = cii, ĉij = |cij |

for i �= j, and we use C̄ to denote the matrix with entries c̄ij = |cij | for i, j = 1, . . . , n. 
Note that for any C, the matrix Ĉ is Metzler while C̄ is nonnegative. It is known, [2], 
that for A Metzler and B nonnegative, the pair (A, B) is diagonally Riccati stable if and 
only if A + B is Hurwitz. We next use Corollary 3.1 to describe pairs (A, B) for which 
diagonal Riccati stability is equivalent to the Hurwitz-stability of Â + B̄.

Proposition 3.2. Let A ∈ R
n×n be Metzler and B = ekb

T for some b ∈ R
n and some 

k ∈ {1, . . . , n}. Then (A, B) is diagonally Riccati stable if and only if Â+ B̄ is Hurwitz.
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Proof. Take D = I and define E by setting eii = sign(bi) for 1 ≤ i ≤ n. It is simple to see 
that B̄ = DBE and Â = DAD. The result is now a simple application of Corollary 3.1.

Our next result concerns matrices B of the same form as in the previous proposition 
with sign-symmetric tridiagonal matrices A which need not be Metzler.

Proposition 3.3. Let A ∈ R
n×n be of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 u1 0 · · · 0 0
l1 a2 u2 · · · 0 0
0 l2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 un−1
0 0 0 · · · ln−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where

liui ≥ 0, i = 1, . . . , n− 1.

Let B = ekb
T for some b ∈ R

n and some k ∈ {1, . . . , n}. Then (A, B) is diagonally 
Riccati stable if and only if Â + B̄ is Hurwitz.

Proof. We again use Corollary 3.1. We first define the matrix D by setting d11 = 1 and

dii = sign(li−1)
di−1,i−1

for 2 ≤ i ≤ n. It is then easy to see that Â = DAD. Next we define the diagonal matrix 
E by setting eii = sign(dkkbi) for 1 ≤ i ≤ n. Then B̄ = DBE and it follows again from 
Corollary 3.1 that (A, B) is diagonally Riccati stable if and only if Â + B̄ is Hurwitz.

A similar result also holds for matrices A of the form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0 0
0 a2 0 · · · 0 0
0 0 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 0
c1 c2 c3 · · · cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

Here, consider D given by dnn = 1 and dii = sign(ci) for 1 ≤ i ≤ n − 1. Then DAD = Â

and if we define E as in the proof of Proposition 3.3, we will have B̄ = DBE. Corollary 3.1
implies the following result.
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Proposition 3.4. Consider A in Rn×n given by (6) and B = ekb
T for some b ∈ R

n and 
some k ∈ {1, . . . , n}. The pair (A, B) is diagonally Riccati stable if and only if Â+ B̄ is 
Hurwitz.

Finally for this section, we note that analogous results to those given above can be 
obtained for the case where B is of the form

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 b1 0 · · · 0 0
0 0 b2 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 bn−1
0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

If we choose a diagonal D (with dii = ±1 for 1 ≤ i ≤ n) such that DAD = Â, then 
we can ensure that DBE = B̄ by taking E to be the diagonal matrix with eii =
sign(di−1,i−1bi−1) for 2 ≤ i ≤ n and e11 = 1. Using the simple observation, the following 
result can be established identically to Propositions 3.2, 3.3, 3.4.

Proposition 3.5. Let A in Rn×n be Metzler or in one of the forms (5), (6). If B is of 
the form (7), then the pair (A, B) is diagonally Riccati stable if and only if Â + B̄ is 
Hurwitz.

4. Classes of diagonally Riccati stable 3 × 3 matrix pairs

All of the classes of matrix pairs analysed in the last section have the property that 
there exist diagonal matrices D, E satisfying the hypotheses of Corollary 3.1 such that 
DAD is Metzler and DBE is nonnegative. In this section, we consider classes of matrix 
pairs for which this is not possible and provide necessary and sufficient conditions for 
diagonal Riccati stability for these. Specifically, we derive such results for two classes of 
matrix pairs in R3×3 which can arise in the study of indirect control systems where there 
is a delay in the feedback path (see Chapter 2 of [10] for background on such systems).

Consider the matrices

A =
(
a1 0 0
c1 a2 0
0 c2 a3

)
, B =

(0 0 b1
0 0 b2
0 0 0

)
. (8)

We will need the following technical lemma, which can be readily verified by the 
method of Lagrange multipliers.

Lemma 4.1. Let C, D ∈ R\{0} be given. Consider

F (x, y, z) = Cx + Dyz.
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The value of |F | subject to x, y, z ∈ [−1, 1] and

1 − (x2 + y2 + z2) + 2xyz ≥ 0 (9)

is bounded by max{|C|, |D + C|}.

Proof. If x ∈ {−1, 1}, then it is not difficult to see that y, z are both 0 so that |F | = |C|. 
On the other hand, if either of |y|, |z| is 1, then the other two variables must be zero and 
|F | = 0. From the form of F it is easy to see that the extrema of F (and hence of |F |) 
must be at points where the inequality in (9) is an equality. Thus we can use the method 
of Lagrange multipliers. The Lagrangian is given by

L = Cx + Dyz + λ(1 − (x2 + y2 + z2) + 2xyz).

If we consider the conditions given by ∂L∂y = 0, ∂L∂z = 0, we find that

Dz − 2λy + 2λxz = 0,

Dy − 2λz + 2λxy = 0.

Moreover, the condition given by the partial derivative with respect to x shows that 
λ �= 0. Multiplying the first equation by y, the second by z and subtracting, we see that 
y2 = z2 so that at any extremum, either y = z or y = −z. Using the equality in (9) it 
follows that either x = 1 − 2y2, y = −z or x = 2y2 − 1, y = z. In either of these cases, 
the absolute value of F is given by

|(2C + D)y2 − C|.

As |y| ≤ 1, it follows that |F | is bounded above by max{|C + D|, |C|} as claimed.

Theorem 4.1. Let A and B be given by (8). The pair (A, B) is diagonally Riccati stable 
if and only if:

(i) ai < 0 for 1 ≤ i ≤ 3;
(ii) a2a3 > |b2c2|;
(iii) |a1a2a3| > |c2(b1c1 − a1b2)|.

Proof. We will make use of Theorem 2.3 so let S � 0 in Sym(6, R) be given by

S =
(

U W

WT V

)
(10)

with diag(U) = diag(V ) = 13. It follows easily from the fact that all 2 × 2 principal 
minors of S are nonnegative that for all i, j, |uij | ≤ 1, |wij | ≤ 1. Moreover the matrix 
A ◦ U + B ◦W is given by
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T :=

⎛
⎜⎝ a1 0 w13b1

u21c1 a2 w23b2
0 u32c2 a3

⎞
⎟⎠ . (11)

If (A, B) is diagonally Riccati stable, Theorem 2.3 implies that −T must be a P-matrix for 
the case where the matrix S has U = V = W = 131T

3 and the case where U = V = 131T
3

and W = −U . Checking the minors of order 1, 2 and 3 in these cases yields conditions 
(i), (ii) and (iii).

For the converse, assume that (i), (ii), (iii) hold and let S � 0 of the form (10) be 
given. Then as noted above

|uij | ≤ 1, |wij | ≤ 1∀i, j. (12)

Moreover, if we consider the 3 × 3 submatrix of S formed from rows and columns with 
indices in {1, 2, 6} we see that

1 − (u2
12 + w2

23 + w2
13) + 2u12w13w23 ≥ 0. (13)

It is enough to show that for the matrix T in (11), −T is a P-matrix provided (12), 
(13) are satisfied. We need to check all principal minors of −T are positive. Condition 
(i) implies that this is true for the minors of size 1. The 3 principal minors of size 2 are 
given by

a1a2, a1a3, a2a3 − u32w23b2c2.

Conditions (i) and (ii) together imply that all 3 of these are positive. Finally, the principal 
minor of T size 3 (determinant) is given by

a1a2a3 − w23u32a1b2c2 + w13u21u32b1c1c2

= a1a2a3 + u32c2(w13u21b1c1 − w23a1b2). (14)

If either of b1c1 or a1b2 is zero, then it follows readily from (iii) combined with (i) that 
det(T ) < 0 and that −T is a P-matrix. On the other hand, if both b1c1 and a1b2 are 
non-zero, it follows from Lemma 4.1 that the extremal values of |w13u21b1c1 − w23a1b2|
subject to (12), (13) must be one of |a1b2| or |a1b2 − b1c1|. In the former case, it follows 
from (ii) and (i) that det(T ) < 0, while in the latter, the same conclusion follows from 
combining (i) and (iii). This completes the proof.

For our final result, we consider matrices in R3×3 of the form:

A =
(
a1 0 0
0 a2 0
c1 c2 a3

)
, B =

(0 0 b1
0 0 b2
0 0 0

)
. (15)
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Theorem 4.2. Let A and B be given by (15). The pair (A, B) is diagonally Riccati stable 
if and only if:

(i) ai < 0 for 1 ≤ i ≤ 3;
(ii) a1a3 > |c1b1|;
(iii) a2a3 > |b2c2|;
(iv) |a1a2a3| > |a1b2c2 + b1c1a2|.

Proof. The argument follows a very similar path to that of Theorem 4.1 and again relies 
on Theorem 2.3. Let S � 0 in Sym(6, R) be given by (10) with diag(U) = diag(V ) = 13. 
Once again, it follows that for all i, j, |uij | ≤ 1, |wij | ≤ 1.

In this instance, the matrix A ◦ U + B ◦W is given by

T :=

⎛
⎜⎝ a1 0 w13b1

0 a2 w23b2
u31c1 u32c2 a3

⎞
⎟⎠ . (16)

If (A, B) is diagonally Riccati stable, (i), (ii), (iii), (iv) again follow from Theorem 2.3: 
considering separately the cases corresponding the matrix S where U = V = W = 131T

3
and the case where U = V = 131T

3 and W = −U .
For the converse, we show that −T is a P-matrix where the matrix T is given by (16)

and |uij | ≤ 1, |wij | ≤ 1 for all i, j. Conditions (i), (ii) and (iii) imply that all principal 
minors of T of size 1, 2 are negative, positive respectively. Finally, the principal minor 
of size 3 (determinant) is given by

a1(a2a3 − w23u32b2c2) − w13u31b1c1a2

= a1a2a3 − (u23w23a1b2c2 + w13u13b1c1a2).

If we consider separately the submatrices of S formed from rows/columns with indices 
in {1, 3, 6}, {2, 3, 6} we see that:

1 − w2
33 − (u2

13 + w2
13) + 2w33u13w13 ≥ 0; (17)

1 − w2
33 − (u2

23 + w2
23) + 2w33u23w23 ≥ 0. (18)

As in the proof of Theorem 4.1 we shall examine the extrema of

F (u13, w13, u23, w23) := u23w23a1b2c2 + w13u13b1c1a2

subject to (17), (18) and the additional constraints that all entries of S are in [−1, 1].
We first note that if a1b2c2, b1c1a2 have the same sign, then clearly

|F (u13, w13, u23, w23)| ≤ |a1b2c2 + b1c1a2|.

It follows from (i), (ii), (iii) and (iv) that in this case det(T ) < 0 so −T is a P-matrix.
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Now suppose that a1b2c2, b1c1a2 have opposite signs. For ease of notation, we will 
write C = a1b2c2, D = b1c1a2, α = w33, x = u23, y = w23, z = u13, w = w13. It is not 
difficult to see that at an extremum of F , the inequalities in (17), (18) must be tight as 
otherwise we could increase or decrease the absolute value of F by suitably altering one 
of the pairs (x, y), (z, w) without changing the other.

So we wish to find the extreme values of |F (x, y, z, w)| = |Cxy + Dzw| subject to 
|x| ≤ 1, |y| ≤ 1, |z| ≤ 1, |w| ≤ 1 and

(1 − α2) − (x2 + y2) + 2αxy = 0; (19)

(1 − α2) − (z2 + w2) + 2αzw = 0. (20)

As C and D have opposite signs, if xy, zw have the same sign then |F | ≤ max{|C|, |D|}. 
If we use Lagrange multipliers to find the extrema of Cxy subject to (19) it is not difficult 
to see that either x = y or x = −y. Using (19), the corresponding values of Cxy are given 
by C 1+α

2 , C 1−α
2 . The same conclusion holds for the extrema of Dwz subject to (20) and 

the corresponding values of Dwz are D 1+α
2 , D 1−α

2 . The only case left to consider is 
when xy and zw have opposite signs. It is now easy to see that in this case we also have

|F | ≤ max{|C|, |D|} = max{|a1b2c2|, |b1c1a2|}.

This together with (i), (ii), (iii) implies that det(T ) < 0 and hence −T is a P-matrix in 
this case also. This completes the proof.

5. Conclusions

We have presented an extension of Kraiijevanger’s condition for Lyapunov diagonal 
stability to Riccati stability and time-delay systems. We have also shown how diagonal 
Riccati stability of a time-delay system is invariant under certain transformations on the 
defining matrix pair. These results have then been used to provide simple conditions for 
diagonal stability for certain classes of time-delay systems. In future work, the authors 
wish to use the work presented here to extend results such as those found in [14,3] to 
time-delay systems.
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