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Abstract—Estimation of carrier frequency offset (CFO) is a
challenging task in practical systems specifically in the uplink
of multiuser systems where multiple CFOs are present in the
received signal. Massive MIMO as a multiuser technique has
recently attracted a great deal of attention among researchers.
However, to the best of our knowledge, there is no study looking
into the joint estimation of CFOs and wireless channel in or-
thogonal frequency division multiplexing (OFDM) based massive
MIMO systems. Therefore, in this paper, we propose joint
estimation of multiple CFOs and the users’ channel responses
based on the maximum likelihood (ML) criteria in such systems.
We propose to use the zadoff-chu (ZC) training sequences to
reduce the implementation complexity. Additionally, utilization
of ZC sequences for training simplifies the multidimensional grid
search problem of estimating multiple CFOs and converts it into
a set of line search problems, i.e., one line search problem per
user. Also this sequence has a low peak to average ratio (PAPR).
Finally, we show the efficacy of our proposed algorithm through
numerical simulations.

I. INTRODUCTION

In the recent past, massive multiple input multiple output
(MIMO), as a strong candidate technology for the fifth genera-
tion wireless networks (5G), has become the center of attention
among many researchers in both industry and academia,
[1]–[5]. Massive MIMO is a multiuser technology allowing
simultaneous utilization of the available time-frequency re-
sources by all the active users, [1]. This leads to a significant
improvement in the capacity of the multiuser networks. In
massive MIMO, the base station (BS) is equipped with a large
number of antennas at the BS, i.e., in the order of hundreds,
serving few tens of single antenna mobile terminals (MTs).
Different users’ signals at the BS are distinguished through the
corresponding channel responses between each MT antenna
and the BS antennas. As the number of the BS antennas grows
large, the effects of both noise and multiuser interference
(MUI) average out through utilization of the simplest detection

methods such as maximum ratio combining (MRC), [1]. These
assumptions are only valid when we have perfect knowledge
of the channel responses at the base station and all the users
are perfectly synchronized with the base station. However, in
practice, synchronization errors appear in the received signal
at the BS and can hamper the communication if they are not
corrected.

Similar to [1], in this paper, we consider orthogonal fre-
quency division multiplexing (OFDM) for data transmission.
However, one of the main drawbacks of OFDM is its sensitiv-
ity to carrier frequency offset (CFO) especially in the uplink
of multiuser networks where multiple CFOs are present in
the received signal at the BS, [6]–[8]. This shortcoming is
inherited to OFDM-based massive MIMO systems demanding
accurate frequency synchronization. The CFOs are caused
by the local oscillator misalignments and Doppler frequency
shifts of different users due to the mobility. This breaks orthog-
onality among the subcarriers and leads to a great amount of
inter-carrier interference (ICI), necessitating CFO estimation
and/or correction before performing channel estimation and
equalization.

In the uplink of the conventional orthogonal frequency
division multiple access (OFDMA) systems, CFO estimation
is a multidimensional grid search and hence very complex,
[6], [8]. Additionally, correction of multiple CFOs in such
systems is a computationally demanding task especially when
the number of active users grows large, [8], [9]. The prob-
lem of CFO estimation and compensation in OFDM-based
systems with spatial multiplexing, where a given subcarrier
can be used by multiple users at the same time, become
even more challenging. There exist a few works addressing
the CFO and channel estimation problem in the literature.
In [10], the authors propose a semi-blind method to simul-
taneously estimate multiple CFOs and channel responses in
a multiuser MIMO setup. However, they only consider zero-978-1-5090-3435-2/16/$31.00 2016 IEEE
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padded OFDM (ZP-OFDM). A suboptimal method for CFO
estimation has been proposed by using constant amplitude zero
autocorrelation (CAZAC) training sequences in [11]. As an
early work on CFO estimation in massive MIMO, the authors
in [12] propose an maximum likelihood (ML)-based CFO
estimator where they use an approximation for the purpose of
complexity reduction. However, their solution requires a multi-
dimensional grid search and thus is expected to have a high
complexity. In [13], a pilot-based CFO estimation technique
has been proposed for single carrier massive MIMO. However,
the pilot sequence which has been used in this method leads
to a high peak to average power ratio (PAPR). This requires
linear power amplifier (PA) to work in its linear region which
generally makes it power inefficient.

Based on the above discussion, the existing CFO estima-
tion techniques in the literature either consider single carrier
communications, [13] or a flat fading channel over the whole
transmission band [12]. Hence, to the best of our knowledge,
there is no study addressing CFO estimation and compen-
sation problem in massive MIMO based on OFDM while
considering wireless channel estimation. To this end, in this
paper, we propose a joint estimation of multiple CFOs and
the users’ channel responses based on the ML criteria in
the uplink of an OFDM-based massive MIMO system. To
reduce the computational complexity of the CFO and Channel
estimation, we propose using the zadoff-chu (ZC) training
sequences. The choice of ZC sequences for training reduces
the multidimensional grid search problem of multiple CFO
estimation into a set of line search problems, i.e., one per
user. Opposed to [11] where two OFDM symbols are utilized
to transmit the ZC sequences and only CFO estimation is
performed, in our solution the ZC sequences occupy only
one OFDM symbol while enabling both CFO and channel
estimation. Moreover, since the ZC sequences have a constant
amplitude, such a choice for the training signals does not lead
to the PAPR problem, [14], opposed to [13]. Our simulation
results corroborate the effectiveness of the proposed CFO
and channel estimation and compensation techniques in this
paper. To further evaluate the performance of our proposed
technique, we compare the bit error rate (BER) performance
of our proposed technique with the fully synchronous case
where perfect knowledge of the channel responses is available
at the base station.

The rest of this paper is organized as follows. In Section II,
we present the massive MIMO system model. Our proposed
CFO and channel estimation algorithm together with the CFO
correction and equalization is discussed in Section III. The
performance of our proposed technique is evaluated in Section
IV through simulation results. Finally, the conclusions of the
paper are drawn in Section V.

Notation: Matrices, vectors and scalar quantities are denoted
by boldface uppercase, boldface lowercase and normal letters,
respectively. Superscripts (.)H, (.)T and (.)−1 denote Hermi-
tian, transpose, and the inverse of a matrix, respectively. IN is
an N ×N identity matrix, F is the N -point discrete Fourier
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Fig. 1. Massive MIMO system setup.

transform (DFT) matrix and � denotes circular subtraction
operation. Finally, D = diag(a) is a diagonal matrix whose
diagonal elements are formed by the elements of the vector a.

II. SYSTEM MODEL

We consider a single cell massive MIMO setup where U
single-antenna MTs are simultaneously communicating with
Mr antennas at the BS in a time division duplexing (TDD)
manner (Fig. 1). Throughout the paper, we consider Mr to
be much larger than the number of users, i.e., Mr � U . As
Fig. 1 suggests, we assume a collocated antenna architecture
where all the BS antennas are synchronized with respect to
each other. Thus, the CFOs between each MT and all the
Mr BS antennas have the same value. Independent frequency-
selective channel responses are considered between the MT
and BS antennas. We assume the channel length of L > 1 for
all the channel responses.

Let the time-domain discrete signal transmitted by the uth
MT denoted as xu[n] and n the time-sample index within the
range −Ncp ≤ n ≤ N − 1 where Ncp is the cyclic prefix
(CP) length and N is the total number of subcarriers. After
removing CP, the time domain discrete signal received at the
mth BS antenna can be denoted as

ym[n] =
U−1∑
u=0

exp(
j2πεun

N
)
L−1∑
`=0

hum[`]xu[n− `] + νm[n], (1)

where 0 ≤ n ≤ N−1, −0.5 < εu < 0.5 is the fractional CFO
normalized to the subcarrier spacing, νm[n] is the zero-mean
additive white Gaussian noise (AWGN) with the variance of
σ2
ν . hum[n] is the channel impulse response between the uth

MT and the mth BS antenna with length L ≤ Ncp.
According to (1), the received signal vector ym =

[ym[0], ym[1], · · · , ym[N − 1]]T at the BS antenna m can be
formulated as

ym =
U−1∑
u=0

ΨuΛuhum + νm, (2)
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where νm = [νm[0], νm[1], ..., νm[N − 1]]
T is the AWGN

vector, the N ×N phase rotation matrix Ψu is

Ψu = diag[exp(jψu[0]), · · · , exp(jψu[N − 1])], (3)

ψu[i] = 2πεui/N , and the vector

hum =
[
hum[0], hum[1], · · · , hum[L− 1]

]T
, (4)

includes the channel impulse response samples between the
uth MT antenna and the BS antenna m. The N × L matrix

Λu =


xu[0] xu[N − 1] · · · xu[N − L+ 1]

xu[1] xu[0] · · · xu[N − L+ 2]
...

...
. . .

...
xu[N − 1] xu[N − 2] · · · xu[N − L]

 ,
(5)

contains the first L columns of a circulant matrix whose first
column includes the first N samples of the received signal
at antenna m after discarding the CP. Finally, (2) can be
rearranged as

ym = Γh̃m + νm, (6)

where

Γ = [Ψ0Λ0, Ψ1Λ1, · · · , ΨU−1ΛU−1]N×UL, (7)

and
h̃m = [(h0

m)T, (h1
m)T, · · · , (hU−1m )T]T. (8)

III. PROPOSED FREQUENCY SYNCHRONIZATION
TECHNIQUE

Frequency synchronization is a crucial task in the uplink
transmission since the received signal at the BS is the combi-
nation of different users’ signals affected by different wireless
channels and CFOs [6]–[8]. In the following subsections, first
a joint data-aided CFO and channel estimation is proposed,
and then CFO compensation as well as channel equalization
are discussed.

A. Joint CFO and channel estimation

In this subsection, we propose a joint CFO and channel
estimation algorithm using ZC training sequences. To this end,
we apply ML estimation criteria to equation (6) for the mth
antenna. We assume that the training signals transmitted from
different MTs are known at the base station. Therefore, the
logarithm of the conditional probability density function (pdf)
of ym, given εm and hm, can be written as

ln p(ym|εm,hum) = Θ0 −Θ1[ym − Γhum]H

× [ym − Γhum], (9)

where Θ0 = −N ln(2πσ2
ν)/2 , Θ1 = 1/2σ2

ν . By taking
derivative of the log-likelihood function and setting it to zero,

the estimation of the channel response betweem the mth
antenna and uth MT can be obtained as

ĥum = (ΓHΓ)−1ΓHym. (10)

Thus, by substituting (10) into (9), we have

ε̂m = arg max
ε
{ln p(ym|εm)}

= arg max
ε
{Θ0 −Θ1 × [ym − Γ(ΓHΓ)−1ΓHym]H

× [ym − Γ(ΓHΓ)−1ΓHym]}, (11)

where ε̂m = [ε̂0m, ε̂
1
m, · · · , ε̂U−1m ] is the estimated CFO vector

on the mth antenna at the BS whose elements are different
users’ CFOs with indices u = 0, . . . , U − 1. By ignoring the
terms irrelevant to εm in (11), we have

ε̂m = arg max
ε
{yH

mΓ(ΓHΓ)−1ΓHym}. (12)

The computational complexity of (ΓHΓ)−1 may become too
high in real-time applications. Hence, if we assume

ΓHΓ ≈ cI, (13)

where c is a constant value, the computational complexity
of (12) is greatly reduced. Therefore, we propose to use ZC
sequences, [15], for training

z[n] = exp(
jMπn2

N
), n = 0, · · · , N − 1, (14)

where M is an integer parameter relatively prime to N and
z = [z[0], z[1], · · · , z[N − 1]]T . This sequence has good
properties such as constant amplitude and zero autocorrelation
for any circular shifts [14]. Each element of this sequence has
an amplitude equal to one. The autocorrelation of ZC sequence
satisfies

R[k] =
N−1∑
n=0

z[n]z∗[n� k] =

{
N k = 0,

0 k 6= 0.
(15)

This means that the ZC sequence is orthogonal to all non-zero
circular shifts. Let Z be a circulant matrix with the first column
equal to [z(0), z(1), · · · , z(N − 1)]T . The autocorrelation
property of the ZC sequence can be rewritten in an equivalent
matrix form as

ZHZ = NI. (16)

According to (15), we can generate an orthogonal training
sequence for each MT with respect to the other MTs by
circular shifting the sequence in time domain. Denoting the
training sequences as ζu = [ζu[0], ..., ζu[N − 1]]T for 0 ≤
u ≤ U − 1, we define the training sequence used at the uth
MT as ζu = z〈Qu〉, where

z〈Qu〉 = [z[N −Qu], · · · , z[N ], z[0], · · · , z[N −Qu− 1]]T,
(17)

is a circular-shifting of z to the right direction by Qu samples,
0 ≤ Qu ≤ N − 1. For example, for the first MT we use
the prime ZC sequence; that is, ζ1 = z where Q1 = 0.
Theoretically, applying orthogonal sequences as the training
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sequences achieves the mutual interference free condition in
the absence of CFO. However, in the presence of CFOs, mu-
tual interference is inevitable and the estimation performance
is severely degraded.

By applying the proposed training sequences, ΓHΓ ≈ NI
can be retained and the reduced complexity ML estimator in
(12) reduces to

ε̂m = arg max
ε
{yH

mΓΓHym/N}. (18)

Compared with (12), (18) has a lower computational complex-
ity and the estimation of εm for the uth MT can be obtained
by inserting (7) into (18) as

ε̂m = arg max
ε
{yH

mΨ0Λ0(Λ0)H(Ψ0)Hym + · · ·

+yH
mΨU−1ΛU−1(ΛU−1)H(ΨU−1)Hym}. (19)

Therefore, CFO estimation for all the users can be performed
independently. Consequently, the CFO estimate for the uth MT
on the mth antenna is obtained as

ε̂um = arg max
ε
{yH

mΨuΛu(Λu)H(Ψu)Hym}. (20)

Based on 20, multidimensional grid search problem for CFO
estimation in (11) converts into a set of line search problems,
i.e., one per user. Finally, the estimated CFO value for the
desired user u is achieved by averaging over all the estimated
CFO values on different antennas, i.e.,

ε̂u =
1

Mr

Mr−1∑
m=0

ε̂um, (21)

As it will be shown in section IV, (21) improves the CFO
estimation accuracy as the number of BS antennas increases.
According to (10), using the ZC pilot sequences, we can
approach to ΓHΓ ≈ NI for channel estimation too. Then the
corresponding channel impulse response estimator on the mth
antenna is given by

ĥm = ΓHym/N, (22)

By substitution of (7) into (22), we have

ĥum = ((Λu)H(Ψ̂
u
)Hym)/N, (23)

where ĥum is the estimated channel impulse response between
the uth MT antenna and the BS antenna m. Ψ̂

u
is an

estimation of Ψu given in (3).

B. CFO compensation at the receiver

After CFO and channel estimation, the next goal of this
paper is to present a receiver structure to recover transmitted
symbols by CFO compensation and channel equalization for
different users. In this section a trivial CFO compensation is
discussed.

It can be shown that the received signal in presence of CFOs
and wireless channel at the BS on the mth antenna in (2) can
be rewritten as

ym =
U−1∑
u=0

ΨuFHHu
msu + νm, (24)

where su = [su(0), su(1), · · · , su(N − 1)]T is the symbol
vector transmitted from the uth MT and Hu

m = diag(h̄um) is
a diagonal matrix including the channel frequency response
between the uth MT antenna and the mth BS antenna, where

h̄um = [h̄um(0), h̄um(1), · · · , h̄um(N − 1)]T, (25)

is N × 1 vector which includes the samples from the N -point
DFT of the channel impulse response.

A trivial CFO compensation may be performed for each
user separately. Let us define

Ψ̂
−k

= diag[exp(−jψ̂k[0]), · · · , exp(−jψ̂k[N − 1])], (26)

where ψ̂k[i] = 2πε̂ki/N . The aligned received signal vector
for the kth user is

ŷkm = Ψ̂
−k

ym = Ψ̂
−k

U−1∑
u=0

ΨuFHHu
msu + Ψ̂

−k
νm. (27)

Assuming ε̂k = εk , Ψ̂
−k

Ψk = I, we have

ŷkm = FHHk
msk + Ψ̂

−k
U−1∑
u=0
u 6=k

ΨuFHHumsu + Ψ̂
−k
νm. (28)

Hence, the desired term is FHHk
msk and other terms can be

assumed as interference and absorbed into the noise vector.
As a result, the received signal vector after DFT is

r̂km = F ŷkm = Hk
msk + ν

′

m. (29)

where r̂km = [r̂km(0), r̂km(1), · · · , r̂km(N − 1)]T. It is worth
mentioning that we separately compensate the effect of CFO
for each user.

Finally, symbol estimation is performed in the subcarrier
level. Let us define the received signal samples on the ith
subcarrier over all antennas for the kth user as

r̂k(i) = [r̂k0 (i), r̂k1 (i), · · · , r̂kMr−1(i)]T. (30)

The estimated samples transmitted on the ith subcarrier for
the kth user using matched filter detector are obtained as [16]

ŝk(i) =
(wk

i )H

||wk
i ||2

r̂k(i), (31)

where wk
i = [h̄k0(i), h̄k1(i), · · · , h̄kMr−1(i)]T.

IV. SIMULATION RESULTS

In this section, computer simulations are performed to eval-
uate the performance of the proposed joint CFO and channel
estimator at the BS. We assume 4 MTs with random CFO
values uniformly distributed within the range −0.5 < εu < 0.5
communicating with Mr = 100 antennas simultaneously at
the BS unless otherwise stated. Each MT uses OFDM with
N = 64 subcarriers and the length of CP is N/4 = 16. The
channel gain remains unchanged during an OFDM symbol
interval. Also we use extended typical urban (ETU) channel
model [17]. Furthermore, the signals from MTs are assumed
to have the same average power at each antenna.
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Fig. 2. MSE of CFO estimation with CFO vector ε =
[0.1,−0.1, 0.05,−0.05].
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Fig. 3. MSE of the CFO estimation uniformly distributed in −0.5 < εu <
0.5.

Fig. 2 shows mean square error (MSE) for constant CFO
values [0.1,−0.1, 0.05,−0.05]. Also MSE of random CFO
values is presented in Fig. 3. As shown in these figures, the
performance of the proposed estimator is improved as well as
SNR is increased.

Fig. 4 shows channel estimation MSE of our proposed
algorithm. In this figure, the performance of channel estimator
are compared in two situations. In first case, we consider
perfect knowledge of CFO values, while in the second case the
CFO values are also estimated. As expected, the performance
of channel estimation with perfect knowledge of CFOs has
a superior performance than the case where the CFO values
are estimated. However, the performance of the second case
is comparable with that of perfectly known CFOs case.

The bit error rate (BER) performance of our proposed CFO
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Fig. 4. MSE of channel estimation with perfect CFO and estimated CFO.
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Fig. 5. BER performance of the proposed CFO estimation compared with
the perfect CFO estimation and a system without CFO.

and channel estimation techniques are shown in Fig. 5. Fig. 6
presents the MSE performance of our proposed CFO esti-
mation technique as a function of different CFOmax ranges,
where CFO values for all the users are assumed uniformly
distributed within the range −CFOmax < εu < CFOmax for
each point in the curve and Eb/N0 = 0 dB. As shown in this
figure, MSE is degraded with the increase of CFOmax. This
is due to the fact that condition (13) is not valid for large CFO
values.

Finally, Fig. 7 shows the MSE performance of our proposed
estimation algorithm as a function of the number of BS
antennas at Eb/N0 = 0 dB. As the number of BS antennas is
increased, the CFO estimates become more accurate. For the
number of BS antennas larger than 64, MSE is approximately
constant. Consequently, the CFO estimation may be performed
at a limited number ofBS antennas to reduce the computational
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Fig. 6. MSE performance of our proposed CFO estimation technique as a
function of different maximum CFO ranges.
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Fig. 7. MSE of CFO estimation versus the number of BS antennas.

burden of the system.

V. CONCLUSION

Massive MIMO has recently attracted a great deal of
attention among researchers. In this paper, we proposed a
joint estimation of multiple CFOs and the users’ channel
responses based on the ML criteria. We proposed to use the
ZC training sequences as a low PAPR sequence to reduce the
implementation complexity. Utilization of ZC sequences for
training simplified the multidimensional grid search problem
of estimating multiple CFOs and converts it into a set of
line search problems. CFO estimation for each user was
estimated on each antenna distinctly. Also the performance of
CFO estimation was improved through averaging over part of
antennas. Finally, we evaluated the efficiency of the proposed

algorithm through numerical simulations.
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