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ABSTRACT
This paper commences from a new indirect utility function and derives the corresponding
system of equations, relating commodity demands to prices and income, that satisfies the
constraints imposed by utility maximisation (aggregation, homogeneity, Slutsky symmetry
and negativity).  As the famous linear expenditure system (LES) is a special case of this new
system, it is named the generalised Stone-Geary system (GSGS) and it incorporates a
generalisation of the ‘subsistance’ income concept to one of ‘committed’ income.  However,
the GSGS is not subject to the well known limitations of the LES and it can model a
reasonably representative range of consumer behaviour.  It is also relatively parsimonious in
parameters involving just 3n – 1, where n is the number of commodities.  The new system has
greater ranges of theoretical validity than various systems derived from ‘flexible’ functional
forms.  As with the LES, simple conditions on the parameters guarantee the validity of the
system for all variable values except, perhaps, at low incomes.
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I INTRODUCTION

A long standing approach to examining how consumers react to price and income changes

estimates a set of demand equations for the main commodities and bases deductions on

coefficient values.  At its simplest, economic demand theory assumes consumers choose to

allocate their limited spending power to purchases of goods to maximise their own

satisfaction.  This assumption of rational economic behaviour imposes substantial constraints

(aggregation, homogeneity, Slutsky symmetry and negativity) on the specification of a system

of equations.  Ideally, of course, the system ought also be capable of representing the full

range of observed consumer behaviour, for example, as regards substitutability and

complementarity of various goods.  Finally, data are often fairly limited, so models ought not

to be too prolific in unknown parameters.

Compliance with optimisation theory can be assured by maximising a valid (direct) utility

function, subject to a budget constraint, or alternatively, appealing to duality theory and

commencing from a cost or indirect utility function.  In the latter case, let ),( yU p be the

indirect utility function, where p is a vector of prices and y is income.  For validity, ),( yU p

should be homogeneous of degree zero in income and prices (p), non-decreasing in y, non-

increasing in p, and convex or quasi-convex in p.  Then the demand equations can be

obtained from Roy’s lemma

y
U

p
Uqi ∂

∂
∂
∂−= /  ,

where iq is the quantity demanded.  For example, it is well known that the simple utility

function

P
yU = , (1)

where P is a weighted geometric mean of prices, so that )log(log jj pP αΣ= , with the non-

negative jα  adding to unity over the n commodities, conforms to the validity conditions.  It

gives the demand equations

i
ii

i y
qpw α== , (2)

with iw  the budget shares.  However, these equations limit consumer responses to changes in

prices or income to maintaining equal proportional spending on commodities, that is, they

restrict price and income elasticities to unity.  While such a consumption pattern might

sometimes be plausible, it would be unreasonable to assume it always is.  Economists would
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usually like much more flexibility in the sense of price and income elasticities being able to

take arbitrary values.

This paper will present a new system of demand equations that complies with optimisation

theory, is flexible enough to represent a wide range of consumer behaviour and is reasonably

parsimonious in unknown coefficients.  As will be seen, it contains the famous Stone–Geary

linear expenditure system (LES) as a special case and so will be subsequently described as the

generalised Stone–Geary system (GSGS).  However, over the last quarter century many

demand systems have been introduced that have stressed their full flexibilities as their

strengths, so it is probably necessary to first review the problem of simultaneously achieving

compliance with rational economic behaviour1 while maintaining flexibility as regards

permissible elasticity values.

                                                          
1 Some authors use the term ‘regularity’ for this compliance, but that can suggest it is commonplace.
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II FLEXIBILITY AND RATIONAL ECONOMIC BEHAVIOUR

It is actually very difficult to find functional forms for utility that permit flexibility for

elasticities without transgressing the validity conditions for at least some combinations of

prices and income.  To illustrate the problems that can arise, suppose P in (1), is taken as a

more general index over the n commodities of the form

kj
j k

jkj
j

j ppbpaP loglogloglog ∑∑∑ += , (3)

where the property of being homogeneous of degree one is ensured by supposing

,1=∑
j

ja  andk  allfor   0=∑
j

jkb  j. allfor   0=∑
k

jkb

This will lead to more flexibility of price elasticities, (athough income elasticities are still

unitary).  Obviously, the number of coefficients requiring estimation is now O(n2), which may

raise difficulties if data are limited, but there is a more fundamental problem.  A valid price

index must increase with any commodity price, given other prices constant, but the quadratic

(in logs) function (3) can first increase and then decrease with some price, because the

conditions on the bjk clearly imply some must be negative.  That in turn means that the ‘utility

function’ could increase with price (and fail convexity). It is possible that all ‘real world’

prices occurring in the data, or of interest in inference, might lie well away from the values

where these phenomena would occur, so that the utility function could be ‘locally’ valid.

This type of difficulty arises with many flexible functional forms.  For example, the translog

utility function of Christiansen, Jorgensen and Lau (1975) is

kjj k
jk

jj
j p

y
p
yb

p
ya logloglog ∑∑∑ +  ,

with kjjkj bba ==Σ  and 1 .  This permits non-unitary income elasticities as well as non-

unitary price elasticities, but if it is flexible it should be able to model homothetic behaviour

and this requires  and 0=∑
j

jkb  .0=∑
k

jkb   So these constraints must be permissible.  But

the utility function is then Py loglog − , with log P exactly of the form (3) with the same

constraints on coefficients.  These comments are not original, of course.  Caves and

Christiansen (1980), Lau (1986) and Deaton (1986) have remarked on the incompatibility of

flexibility and ‘global regularity’.
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But some flexible demand systems follow from utility functions that strain credibility much

further.  For example, the almost ideal demand system (AIDS) of Deaton and Muellbauer

(1980)

*loglog
P
ybpcaw i

j
jijii ++= ∑ ,

where P* is a price index2, has as utility function

p)(
)p(loglog

B
PyU −= ,

with jj pbbB loglog 0 ∑+= , where 0=∑ jb and with log P again of the form (3) with

the same constraints on parameters.  It is easy to show that as y increases, U must increase

with prices corresponding to negative bj and, of course, 0=Σ jb  implies some negative bj.

But even a low income region is not safe for validity.  If U is quasi-convex in prices the

diagonal terms of the matrix of second derivatives must not be negative.  But







 −−+=

∂
∂

P
ybcbw

Bpp
U

iiiii
ii

log)21(1 2
22

2

.

Obviously this becomes negative as y increases, but even for small y there can be problems as

bi < -.5 shows.  Again, these comments are not new.  Criticisms of the AIDS model have

appeared in the literature, for example, by Cooper and McLaren (1992)3 and by Conniffe

(1993).  Similar difficulties arise for some other demand systems, for example for the various

‘rank 3’ systems such as that of Ryan and Wales (1999)4.

So although these flexible forms can fit arbitrary patterns of elasticities, it is at a price of very

shaky utility optimisation foundations, as well as O(n2) parameters.  An alternative is to make

optimisation, or rational economic behaviour, paramount in the choice of utility function and,

subject to that, keep elasticities as flexible as possible.  However, this has usually not been as

flexible as desired.  The LES can serve as an example.  It can be derived5 from the simple

modification to (1)

                                                          

2 Strictly, kj
j k

jkj
j

jo ppcpaaPP loglog
2
1logloglog * ∑∑∑ ++== , but to retain

linearity for estimation simplicity, this is often approximated by j
j

j pwP loglog * ∑= .

3 Cooper and McLaren proposed a modification to the AIDS model – the MAIDS model (employed for
example by Boyle, 1996), valid to higher income than AIDS, although it still loses validity when
income increaseses sufficiently.
4 That has hfygU −−−= )/( , with g, f and h specified functions of prices.  The crucial constraint

that leads to violation of theory as income increases is 0=Σ jα in h = )log( jj pαΣ .
5 Its various historical derivations have been described by Neary (1997).
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P
py

U jjγΣ−
=

and translates (in Gorman’s, 1975, terminology) equation (2) to

)( jj
i

i
ii py

p
q γαγ Σ−+= ,

with iq presumed ≥  γι..  Provided, as with (1), the jα are positive and add to unity, validity

conditions hold6.  But, as is well known, the LES is rather inflexible for representing observed

consumer behaviour and is probably only appropriate for a set of broadly defined

commodities.  Complementarity between pairs of goods is precluded, as are negative income

elasticities (inferior goods) and Engel curves (relationships of expenditures to income at fixed

prices) are linear.  As regards the latter property, one of the few generally agreed findings in

empirical studies (see, for example, Lau, 1986) is that they can be non-linear for some goods.

Other simple and parsimonious utility functions, for example, Houthakker’s (1960) indirect

addilog system (IAD) lead to different, but also unwelcome, inflexibilities in the

corresponding demand equations.  So there is scope for any new system of demand equations

that complies with utility optimisation, is flexible enough to represent a broad range of

consumer behaviour and is reasonably parsimonious in unknown coefficients.  The system to

be presented in subsequent sections of this paper is one such.  Compliance with utility theory

will be assured by commencing from a utility function and imposing constraints only on its

parameters.  Empirical applicability will be shown by examining income, own-price and

cross-price elasticities and demonstrating them free of obvious limitations.  Furthermore, the

system is quite parsimonious in involving only 3n - 1 parameters, at least in its simplest form.

                                                          
6 It’s true jj py γΣ>  is required and the iq must be non-negative, but failure of validity at low
incomes is not considered a practical difficulty.
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III THE GSGS INDIRECT UTILITY FUNCTION

Consider the indirect utility function



















−= ∑

j

y
p

P
yU j

j

β

γ1 , (4)

where y is income, P is a weighted geometric mean of prices, so that

)log(log jj pP αΣ= with the non-negative jα  adding to unity, and summations are over

the n commodities.  U is presumed positive, that is

∑ −> jj ypy jj
ββγ 1 ,

which will hold for all jβ  positive provided y is not small7.  If a iβ  is negative, the

corresponding iγ must also be negative, while if a iβ  is zero, the corresponding iγ must be

<18.

The first condition for a valid utility function is that it is homogeneous of degree zero in

income and prices (p) and this is obviously true.  Since

j

y
p

y
U

y
U j

jj

β

βγ 





+=

∂
∂ ∑ (5)

and

P
y
p

p
U

p
U

i

i
ii

i

i

i

1−







−−=
∂
∂

β

βγ
α

, (6)

the conditions of being nondecreasing in y and nonincreasing in p hold provided each ii βγ is

positive.

Finally, convexity or quasi-convexity in p is required.  From (6)

2
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22
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+

=

ββ

ββγβγα
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7 This is a generalisation of the condition on income required by the LES given in note 6.
8 If several jβ are zero, the sum of the corresponding jγ must be <1.
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It is evident from (7) and (8) that the Hessian matrix with respect to prices is composed of a

nonnegative definite matrix 'GG , where G is the vector with ith term

plus a diagonal matrix D with ith diagonal term equal to the second term of (7), minus a

nonnegative definite matrix 'HH , where H is the vector with ith term

While 'HH−  is negative semi-definite, the addition to it of the diagonal matrix with ith term

gives a nonnegative definite matrix (diagonals positive and principal minors of higher order

zero).

Subtracting the same matrix from D shows that U is convex with respect to prices provided all

the terms

,
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are positive for all i.  Considering first the case of all jβ positive, the three components are of

order 2y , iy β−2  and iy β22− , so there is no difficulty provided iα is positive.  A zero iβ

would leave only the first positive component.  Note the second term is positive if iβ  is < 1,

so that a zero iα may be compatible with validity in that situation.  For at least one of the

jβ negative, let sβ be the smallest (most negative).  Then (since iγ is negative) the three

components are of order sy β22− , siy ββ −−2 and iy β22− and it is clear the critical term is i= s.

For that term, the coefficient of ss
spy ββ 2222 / −− is

)( 22
ssss ββαγ −− ,

which is certainly positive if sβ .> -1, however small sα .  (Extracting the term in

ss
spy ββ −− 11 /  from U will not leave a negative term if y is sizable because a positive term of

order y, if sβ  was the only Negative, or greater if there is another negative β  will dominate.)
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IV DEMAND EQUATIONS

Applying Roy’s identity to the utility function (4) gives the GSGS demand equations

( )∑

∑







−−






+


















−

=
j

j

y
p

y
p

y
p

w
j

jj

i
i

ii
j

ji

i β

ββ

βγ

βγγα

11

1

, (9)

in budget share form.  The system of course satisfies the constraints of aggregation,

homogeneity, symmetry and negativity, provided the conditions on parameters, specified in

the previous section, are satisfied.

Taking all the iβ = 1 in (9) gives

y
p

y
p

w iijj
ii

γγ
α +





−= ∑1 , (10)

the linear expenditure system.  So, there is a sense in which the demand system (9) may be

seen as a generalisation of the linear expenditure system.  This can be developed further.  An

attractive interpretation (when the γ’s are non-negative, which they do not have to be) of the

term jj pγΣ  in (10) is as ‘subsistence’ income.  When yp jj /)( γΣ , is near 1, little more

than essential quantities of each commodity are purchased and the demand system

approximates ypw iii /γ= , or iiq γ= .  So textbooks often (e.g. Deaton & Muellbauer,

1980, p.145) interpret (10) as giving a consumer’s budget shares as a weighted average of a

‘rich’ person’s and a ‘poor’ person’s budget shares.  The budget shares (9) can also be seen as

weighted averages - now of those of a ‘rich’ person and of someone following the indirect

addilog system.  The quantity

j

y
p

y j
j

β

γ∑ 





(11)

could be considered a ‘committed’ income, although with wider interpretation than just

subsistence income, since it can change with income.  For iβ = 1 say, the ith component of

(11) is ii pγ , so iγ could again be taken as a minimum essential quantity purchased at price

ip irrespective of income.  For kβ = 0 say, the kth component of (11) is ykγ , so kγ could be

understood as a minimum proportion of income to be spent on commodity k irrespective of

price and intermediate interpretations are possible for a β between zero and one. A β  greater

than one, where the commodity fades out of (11) as income increases, could be interpreted as
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a less drastic option than the exclusion at all incomes that setting the corresponding 0=γ

would imply.  It is true the case of a negative β and its corresponding γ seems incompatible

with this committed income notion, but that situation also arises with the LES when a γ is

negative.

Assuming at least one β is less than unity, (11) increases to infinity as ∞→y , with

dominant term

syssps
ββγ −1 ,

where sβ is the smallest of the iβ .  If  all iβ are < 1, (11) goes to zero with y with dominant

term

lyl
lpl

ββ
γ

−1
,

where lβ is the largest of the iβ .  However, if one or more s'β ≥  1, y cannot go to zero.  In

the LES the condition jj py γΣ>  means the system is inapplicable at low y.  Here (11) may

go to zero with y, perhaps giving a somewhere wider validity to the GSGS.  But it requires all

s'β 1<  and in any case invalidity of the LES at low income has never been seen as

important in the literature.

Whatever about the interpretation of (11) as committed income, it is clear that when income

is little greater than (11), that is when

j

y
p j

j

β

γ∑ 






approaches unity, the demand system (9) tends to

∑ 













=
j

y
p

y
p

w
j

jj

i
i

ii

i β

β

βγ

βγ
, (12)

the IAD9 demand system.  Indeed (9) could be seen as a weighted average of a ‘rich’ person’s

and an ‘IAD’ person’s budget shares.

                                                          
9 There are relations between IAD and GSGS validity conditions.  The validity conditions of the IAD
have been debated in the literature more than once, as the exchanges between Gamelatos (1973, 1974)
and Somermayer (1974), and between Akin and Stewart (1979) and Murty (1982) testify.
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The limiting form of (9) for large y is determined by the smallest iβ .  By multiplying

numerator and denominator of (9) by y to the power of sβ and letting ∞→y , it turns out

that for sβ negative

s

ss
sw

β
βα

−
−=

1
and

s

i
iw

β
α
−

=
1

, for ,si ≠

while for sβ non-negative, iiw α= , for all ,i which is the same limiting form as for the linear

expenditure system.  If all iβ are < 1, the largest, lβ , plays a corresponding role as 0→y ,

with

l

ll
lw

β
βα

−
−=

1
and

l

i
iw

β
α
−

=
1

, for ,li ≠

and iiw α= , for all i , depending on whether lβ  is positive or negative.  These limiting

forms are quite different10 to those of (12), where 1→sw as ∞→y and 1→lw  as

0→y and all other budget shares to zero.11

                                                          
10 Except when all iα but one are zero.
11 This feature of the IAD might be plausible if goods could be reclassified extracting the most
expensive components from the standard commodity classifications to form a super-luxury class (and a
corresponding most basic-necessity class), but is untenable given conventional National Accounting
and Budget Survey classifications.
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V INCOME AND PRICE ELASTICITIES AND ENGEL CURVES

Following some tedious differentiation and tidying of terms, the income elasticity for the ith

commodity can be shown to be







 −−−++−= ∑∑
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jjjji
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E )1(1
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, (13)

where

j

y
p

V j
j

β

γ∑ 





−= 11 and

j

y
p

V j
jj

β

βγ∑ 





−−= )1(12 .

The expression (13) permits goods to be luxuries or necessities at finite income, according as

iE is larger or smaller than unity.  iE could even be negative for some range of income (for a

positive iβ and small iα ), so permitting a commodity to behave as an inferior good.  But if

iα is non zero, iE  must eventually become positive as income increases since it was shown in

the previous section that as ∞→y  the budget shares tend to constants and therefore income

elasticity to unity.  This would be reasonable enough for a commodity like public transport,

say, where expenditure on bus and train fares could decrease with rising income as private

motor ownership increases and then increase again as more expensive public transport

options, such as taxies, are availed of.  Mathematically, if iα = 0, the limit of iE  as ∞→y is

1 - iβ , or 1 - iβ + sβ , depending on the sign of sβ , suggesting the good could be

‘permanently inferior’.  However, section III showed that iα = 0 could only be compatible

with convexity if .1<iβ

The own-price elasticities are

{ } 





−−+−+−=

2

11)1(1
V
V

w
wwe

i

i
iiiiii

ααβ ,

which tends to –1 as ∞→y , provided iα  is non-zero and to iβ - 1, if it is zero.  The cross-

price elasticities are
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−−= Kk

i

i
kik V

Vw
w

e ααβ
2

11 .

As ∞→y the ike  evidently tend to zero.  Note that ike need not equal mke .  A limitation of

the IAD is that the cross-price elasticities of all goods with respect to kp  are equal, a property

arising (as pointed out by Samuelson, 1965) from the additivity of its indirect utility function,
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which implies various behavioural restrictions, such as the impossibility of luxuries having

complements.

The compensated price effect

y
qq

p
q i

k
k
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∂
∂+

∂
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pp
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V
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V
Vw

y
qq βαβαααβαβββ −−−−+Σ−+Σ+−−

and this can generally be negative or positive, allowing for complements as well as substitutes

unlike the situation where all iβ  are unity (giving the linear expenditure system), when the

above reduces to

( )
ki

ki
jj pp

py ααγΣ−  ,

which is non-negative.

The Engel curves are the relationships between expenditure (piqi) on commodities and income

at constant prices.  That these are not restricted to linearity, but can take a large variety of

shapes, is probably already obvious from equation (9) and the income elasticity (13).

Linearity will of course occur if all the iβ  are unity.  The limiting forms for the wi described

in section IV imply piqi ≈ k y, (with k a constant) for very large y (and near y = 0, provided

all 1<iβ  ), so Engel curves will then approximate linearity, but before that, shapes can vary

greatly.  It is probably unnecessary to illustrate this in detail, especially since Somermayer

and Langhout (1972) devoted much effort to demonstrating the great range of  Engel curves

arising from the IAD, which, as already mentioned, is close to a special case of the GSGS.
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VI LIMITS TO FLEXIBILITY AND GENERALISATIONS

The previous section has demonstrated that the GSGS is considerably more flexible than the

LES or IAD models.  But are there limits to its flexibility?  In discussing this theme, it is

useful to consider the class of demand functions  Pollak (1972) described as exhibiting

"generalised separability", although (9) does not actually belong to the class.  These are of the

form

),,( V
y
pfq i

ii =

where V is a homogenous function of all prices and income and because all prices, except ip ,

take effect through V there are implied symmetries in how demands for commodities are

affected by prices of other goods.  For example, for the IAD as given by (11), V is the

denominator and so the ratio of two budget shares does not depend on the prices of other

commodities.  While this may not always be implausible, it is restrictive.

The GSGS demand equations may be written

















+=
i

i
iiii y

pV
V

w
β

βγα 1
2

1
,

with V1 and V2 defined as in section V.  Although prices, other than own price, take effect

through V1 and V2, there is now scope (via the αι ) for greater variation in how commodity

demands are affected by prices.  However, there are still restrictions in limiting other price

effects to operate through V1 and V2.  For example, if a subset of commodities had α’s zero,

then within this subset, ratios of budget shares would depend, as for the IAD, only on the

corresponding pairs of prices.  This is hardly a worrying restriction, but does show there are

limits to the system’s flexibility to represent all conceivable consumer behaviour.  This is

partly due to the fairly parsimonious parameterisation of the model, but also to the fact that

the constraints implied by consumer demand theory are not at all trivial in the limitations they

impose on functional forms.

Since the underlying motivation for this paper is that ‘flexibility’ is rather useless if it means a

model is able to represent many kinds of consumer behaviour except that corresponding to

rational economic optimisation, generalisations of the GSGS utility function or the demand

equations have to be guarded.  A device like taking P of the form (3), would endanger

compliance with demand theory and, perhaps less importantly, greatly increase the number of

parameters.  A modest generalisation of P is feasible though.  In (4), P was taken to be a
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weighted geometric mean of prices.  This is not the only simple form of price index and a

weighted arithmetic or harmonic mean of prices could also have been employed.  In fact, by

introducing an extra parameter it is possible to encompass all three forms of price index in the

formula

[ ]θθα
1

jj pP Σ= ,

where θ = 1 gives a weighted  arithmetic mean, θ = -1 gives a weighted harmonic mean and

θ = 0 gives (by a limit argument) a weighted geometric mean.  If all the βι = 1, these amount

to the variants of the LES that have been examined by Pollak (1971) and Gamelatsos12

(1973).  These variants only slightly increased the flexibility of the LES and the situation

seems similar for the GSGS.

The device of ‘translating’ (Gorman, 1975) whereby income y in a utility function is replaced

by jj py φΣ− , altering demand equations from )p,( yqq ii =  to

)p,( jjiii pyqq φφ Σ−+= ,

can be employed to produce the demand equations
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where the V*, s follow from the V’s by replacing y by jj py φΣ− .  Another n parameters

have been introduced here, but not all that much extra flexibility can be obtained from

translation parameters and there can be problems of over-parametrisation and identifiability

that could cause difficulties when estimating models.  For example, it is well known the LES

can be derived from a homothetic system by translation, which would correspond to putting

all the iβ = 0 in (14).  But as shown earlier, (9) reduces to the LES when all the iβ = 1.  So

the sub-models of (14):  all iβ = 0; and, all iβ = 1 with iφ = 0; are identical.

The form of the utility function (4) suggests that the GSGS can be considered one of a family

deduced from utility functions generated from products of simpler utility functions.  But

products of such functions need not satisfy all validity conditions, so care is required.

Varying the first utility, y/P, by use of other forms of price mean has already been mentioned

and it is easy to verify that replacing the second (IAD type) utility by some simple utility

                                                          
12 Gamelatsos did not actually work from an  indirect utility function, but from direct utility functions
of the Bergson type, previously considered by Samuelson (1965). So did Brown and Heien (1972).
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functions also achieves convexity of the product function13.  But these simple utilities have

fewer parameters than the IAD, so the final demand functions with just 2n – 1 parameters are

less flexible than (9).  However, choosing a second utility with more parameters than the IAD

type and demonstrating the validity of the resultant product seems difficult.

                                                          
13 Deriving demand systems from suns or products of utility functions is the subject of a working paper
by Conniffe (2002).
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VII CONCLUDING REMARKS

Detailed illustration of estimation and testing of the GSGS model on Irish data will be

deferred to another paper, but, in any event, will not require any new methodological

innovations.  Evidently, estimation is not computationally simple and requires non-linear

methods, but in this regard it is no more complex than the translog, or the AIDS model in its

strict non-linear form.  Hypothesis testing issues will also arise, of course, especially as

regards the conditions on parameters, such as non-negative jα and positive jj βγ  required for

rational economic optimising behaviour, since random variation could give an apparently

wrong sign estimate that is not actually significantly different from zero.  To test some

hypotheses, for example homogeneity, it may be necessary to estimate models with extra

parameters.  Again however, the testing procedures will be much the same as for some

existing demand systems.

But there is one topic that perhaps has data analysis implications and which deserves some

discussion here, because it is interrelated with the functional form of the GSGS model.  The

demand equations (in expenditure form) do not aggregate over consumers except in the LES

special case.  That is, averaging individual expenditures on goods over a group of consumers

of varying incomes (presumed facing the same prices and with the same equation parameters

applicable) does not reproduce the same equations with income replaced by average income.

The LES case aggregates because the equations are then linear.  Requiring aggregation over

consumers to hold is extremely restrictive on the choice of functional form of demand

equations.  If the data for analysis are records on individuals the property, or the lack of it, is

irrelevant.  But data are very often already aggregated over individuals to some degree.  Some

authors believe utility maximisation, and the consequent constraints on demand equations,

pertain strictly to individuals and consequently consider they will apply at aggregate level

only if the demand equations aggregate over consumers.  Other authors feel it quite

appropriate to conceptualise a hypothetical consumer corresponding to the aggregate data and

to visualise this representative consumer as a utility maximiser.  Some, indeed, have been

sceptical of the value of applying utility theory to actual individuals at all, rather than to

representative consumers.  The arguments on this matter are beyond the scope of this paper,

but for some economists, the range of applicability of the GSGS may depend on the views

they hold on this topic.
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