
The Event Crowd: A Novel Approach for Crowd-Enabled Event

Processing

Piyush Yadav Umair ul Hassan Souleiman Hasan Edward Curry

Lero- The Irish Software

Research Centre, National

University of Ireland Galway

piyush.yadav@lero.ie

Insight Centre for Data

Analytics, National

University of Ireland Galway

umair.ulhassan@insight-

centre.org

Lero- The Irish Software

Research Centre, National

University of Ireland Galway

souleiman.hasan@lero.ie

Lero- The Irish Software

Research Centre, National

University of Ireland Galway

edward.curry@lero.ie

ABSTRACT

Event processing systems involve the processing of high volume

and variety data which has inherent uncertainties like incomplete

event streams, imprecise event recognition etc. With the

emergence of crowdsourcing platforms, the performance of event

processing systems can be enhanced by including ‘human-in-the-

loop’ to leverage their cognitive ability. The resulting crowd-

sourced event processing can cater to the problem of event

uncertainty and veracity by using humans to verify the results.

This paper introduces the first hybrid crowd-enabled event

processing engine. The paper proposes a list of five event crowd

operators that are domain and language independent and can be

used by any event processing framework. These operators

encapsulate the complexities to deal with crowd workers and

allow developers to define an event-crowd hybrid workflow. The

operators are: Annotate, Rank, Verify, Rate, and Match. The

paper presents a proof of concept of event crowd operators,

schedulers, poolers, aggregators in an event processing system.

The paper demonstrates the implementation of these operators and

simulates the system with various performance metrics. The

experimental evaluation shows that throughput of the system was

7.86 events per second with average latency of 7.16 seconds for

100 crowd workers. Finally, the paper concludes with avenues for

future research in crowd-enabled event processing.

CCS CONCEPTS

• Computing methodologies → Distributed computing

methodologies • Information systems → Crowdsourcing

KEYWORDS

Event crowd, event processing, crowdsourcing, human-in-the-

loop, event uncertainty

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.
DEBS '17, June 19-23, 2017, Barcelona, Spain

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5065-5/17/06…$15.00

http://dx.doi.org/10.1145/3093742.3093922

1 INTRODUCTION

We are living in a world driven by data. With the volume of data

being generated constantly increasing, a number of challenges

exist to process such data especially if data is streaming in real

time [1]. For example, in environmental monitoring, the data is

processed from various sensors to understand pollution levels so

that immediate action can be taken to counter its negative effects.

Similarly, other fields like financial [2], transportation [3], and

manufacturing require the processing of data in near-real-time.

Event-based systems process data from different sources like

sensors and social media feeds where the event data can be

veracious and have inherent uncertainties. These uncertainties can

be due to multiple reasons including incomplete event streams,

erroneous event recognition and imprecise event patterns [4]. Ivo

et al. [2] distinguish three types of uncertainties in event data i.e.

uncertainty in event content, occurrence, and rules. For example,

a scenario of crime detection requires a visual surveillance system

[4] to detect people and their actions in different conditions. This

is highly uncertain to predict accurate patterns of crime on

monitoring people actions. Thus involving human computation

can reduce uncertainty aspects in event-driven applications.

Human intelligence can be used as an intermediary to gather

better insights from event data where needed. Crowdsourcing,

which incorporates ‘human computation’ as a building block, is

used in various data intensive applications for comparison,

classification, verification, etc. It plays a vital role in addressing

tasks like entity resolution, image identification, and others, where

existing algorithms have limited capabilities. In crowdsourcing,

tasks are segmented into smaller microtasks and are resolved

using human inputs. With the development of crowd-powered

platforms like Amazon Mechanical Turk (MTurk) [5] and

CrowdFlower [6], human input is no longer constrained to offline

batch processing. Realtime crowdsourcing is emerging where the

response wait time is getting transitioning from hours [7] to

seconds [8] thus opening the opportunity to develop crowd-

enabled event processing systems.

Crowd operators like filtering [9], labeling, selection [10], join,

and sort have been proposed to perform common database

operations using human workers. Presently, no operators in event

processing systems deal with crowd interactions. In this paper, we

propose an initial set of five event crowd operators to process

44

DEBS’17, June 2017, Barcelona, Spain P. Yadav et al.

events using a crowd of workers. These operators introduce

‘human-in-the-loop’ natively within event processing systems, to

solve complex real world problems. The main contributions of the

paper are the following:

1. Explore the use of crowdsourcing in event based

systems and its benefits in solving event related

problems like uncertainty, labeling, and verification.

2. A reference architecture for crowd-enabled event

processing.

3. Event crowd operators: Annotate, Match, Rank, Rate,

and Verify.

4. An initial evaluation framework for crowd-enabled

event system along with performance metrics over

simulated events and crowds.

5. Research challenges of crowdsourcing in event based

systems.

The rest of the paper is organized as follows: Section 2 covers

crowdsourcing basics and works related to operators in event

processing and crowdsourcing. Section 3 gives detail on the

reference architecture. Section 4 conceptualizes the proposed

event crowd operator design with their structure and definition.

Section 5 explains methodology, assumptions, and experimental

evaluation. Section 6 discusses the research challenges and

implications of this work. The paper concludes in section 7.

2 THEORETICAL BACKGROUND

This section conceptualizes the theoretical framework for the need

of crowd operators in event processing. It introduces event

processing languages and various key concepts and terminologies

used in the crowdsourcing domain. Then it focuses on realtime

crowdsourcing and related work. Finally, a motivational example

is presented.

2.1 Event Processing Languages

Many event processing systems use declarative and SQL-like

query languages, termed as Event Processing Language (EPL)

[11]. These EPL queries once registered, run continuously on an

event engine and return the desired results as defined by a

subscriber's rule. EPL’s have their own specific set of rules and

operators which have their own domain associated semantics. For

example, SpaTec [12] is a composite event language which uses

operators like 'same location' and 'remote location' to match event

occurrences over space and time. The syntax of these languages is

intuitive and provide high-level abstraction, thus facilitating users

and programmers to write reactive rules in a simplistic form

which execute upon detection of specific events.

2.2 Basic Concepts in Crowdsourcing

The word "crowdsourcing" is made from the words "crowd" and

"outsource" which means to redistribute or contract out work to

potentially large groups of people. Thus, it is the redistribution of

a problem on an online platform to get it resolved by tapping the

collective human intelligence in exchange for some incentives.

For example, object recognition in an image is a complex task.

This can easily be solved by creating a bounding box around

objects and getting it labeled with different people [13]. Access to

crowd resources has become easier with the development of

crowd-powered interfaces [5,6]. Below is the list of core concepts

related to crowdsourcing:

1. Requester: The individuals or organizations who want their

work to be completed. They post their tasks on a

crowdsourcing platform with specific budget and deadline to

get their work done.

2. Worker: The people who perform tasks on the crowd

platform. They select available tasks as per their expertise

and perform them and get paid, as it is the major driver

which motivates them to work.

3. Crowdsourcing Platform: An interface which connects

both workers and requesters and provides them with a high-

level abstraction to facilitate task exchange. The platform

behaves like a marketplace which handles all aspect of crowd

work from task generation to completion, pricing, worker

availability, etc. Presently, several crowdsourcing platforms

are available like Amazon Mechanical Turk [5] and

CrowdFlower [6].

4. Task Design: Designing a task is a key aspect of

crowdsourcing. The requester divides complex problems into

several simple tasks called HIT’s (Human Intelligence

Tasks), which can easily be resolved by ordinary workers.

The tasks can be of varied types like single or multiple

choices, rating, clustering or labeling. The requester also

defines task settings like pricing, timing, and quality control

as per his specific needs [14].

5. Answer Aggregation: To overcome the issue of potential

low-quality answers from workers, it is common in

crowdsourcing to collect multiple answers for the same task

and then choose the optimal result through answer

aggregation. Various aggregation algorithms have been

proposed including majority decision [10] and expectation

maximization [15].

2.3 Realtime Crowdsourcing

Recent works have shown that responses from the crowd can be

gathered at an interactive speed with less crowd latency. CRQA

[16], a crowd -powered near realtime automatic question

answering system has the ability to answer questions in under 1

minute. VizWiz [17] is a mobile phone based talking application,

that gives ‘near real-time’ answers to visual questions. It follows

an intelligent approach- ‘quikTurkit’ for recruiting worker in

advance which can produce an answer to a question in an average

of 56 seconds. Similarly, Bernstein et al. [8] introduced the

concept of ‘on demand synchronous crowds’ where workers are

present at the same time to do a task. They presented the ‘retainer

model’, a pre-recruitment strategy, where workers are paid in

advance so that they can be available on demand to perform a

45

The Event Crowd: A Novel Approach for Crowd-Enabled Event Processing DEBS’17, June 2017, Barcelona, Spain

task. Thus the response time of crowd is transitioning from hours

to seconds making it suitable for near realtime systems.

2.4 Related Work

The use of crowdsourcing for computational operators has been

actively studied in the databases community [14]. Crowd

operators are used to perform various operations on given tasks as

per the defined rules. In general, the primary focus of database

researchers has been to include the crowd into data operators like

selection [10], filtering [9], sort, join and aggregation [18]. There

have also been efforts to define declarative approaches for

introducing crowd-based operations in data processing systems

[19,20]. More recent research proposals have tried to crowdsource

spatial tasks [21,22]. However, none of these works have

considered the use of crowd-based operators in data processing

for streams or events.

Enabling crowdsourcing in event-based systems can help to solve

challenging problems like event uncertainties, data veracity,

inaccurate measurements, and image annotation. Artikis et al. [3]

showed the utility of crowdsourcing for event detection in

complex event processing. The authors use a crowdsourcing

module in urban traffic modeling to deal with data sparsity and

sensor disagreement in heterogeneous stream processing. It

reduces the event uncertainty through crowdsourced information

thus giving more accurate information. But their proposal is

primarily limited to applying event detection rules on streams of

data. By comparison, this paper takes a more holistic approach to

crowdsourcing event-based system by defining crowd-based event

operators.

Wasserkrug et al. [23] propose a framework for uncertainty in

event processing which categorizes uncertainty in two

dimensions: element uncertainty and origin uncertainty. Element

uncertainty deals with uncertainties about event occurrence and

event attributes. In our model, such an uncertainty is the result of

crowd performance of operators on events, as that can include

uncertainty due to lack of full agreements between workers,

under-performance, or limited expertise. Origin uncertainty may

come from the event source or inference over events. Our model

deals with another origin which is the crowd, as crowd-based

single-event processing uncertainty can propagate to a complex

event processing (CEP) pattern. Wasserkrug et al. [24] propose a

model to deal with such a CEP inference under uncertainty.

2.5 A Motivating Example

The US Wildfire Activity Public Information map [25] shows the

recent active locations of wildfires and other information related

to it. The map is generated using live feeds from US wildfire

reports, MODIS satellite hotspots, weather radar and social media

feeds like YouTube, Twitter, Instagram and Flickr. The map

consists of inherent uncertainties and false information some of

which are listed below:

 Fig. 2 shows a MODIS satellite hotspot alert stating that a 1

km zone of that location is identified ‘hot’ by sensors and

can be a wildfire. How to quickly verify that the potential

hotspot is a wildfire so that alerts can be raised to firefighting

agencies?

 Fig. 3 shows a YouTube video on the wildfire map with a

label of “This is Wildfire. Signing off”. But on analysis, it

was found that the video is related to gaming console. How

can this wrong information be filtered out to avoid false

alert?

 Fig. 4 shows a Flickr image talking about wildfire smoke,

but the smoke might be a low cloud. Thus, how can we filter

out the false information and optimize our streams?

Consider a smart city scenario where the city administrator has

subscribed to an event engine for wildfire alerts as it includes

threats to the city's infrastructure like water reservoir and power

supply. The wildfire related streaming data is handled by an event

processing engine. Although the event engine will filter out

unnecessary information but then also the uncertainties will be

there due to its inherent limitation. How can the event processing

engine deal with the uncertainties described above? The process

can become efficient if there are some crowd operators configured

with the event engine to loop in human computation to verify the

incoming events. As shown in Fig. 1, a crowd-enabled event

processing engine posts streaming events to a crowd sourcing

platform and then can collect aggregated response to generate

results thus acting as a black box between event sources, sinks,

and the crowdsourcing platform. Number in Fig. 1 shows the flow

of information in the system.

3 REFERENCE ARCHITECTURE

This section describes the reference architecture where

crowdsourcing can be supported in event processing systems

using the proposed event crowd operators. Our general framework

is depicted in Fig. 5 which shows its various components. The

detailed description of these components with architectural flow

are as follows:

Crowd- Enabled

Event Processing

Engine

Crowd

Operators

Crowd

Platform

1
2

4

3

Streaming

Event Source

Event Sink

Crowd-

Enabled

Event

Processing

Engine

Figure 1: Event Crowd reference architecture

46

DEBS’17, June 2017, Barcelona, Spain P. Yadav et al.

1. The Event Source streams the events to be processed by the

Event Engine. The source can be any publishing system like

databases, sensors, Web feeds, and Web services. Event

Sinks are the final destination and act as subscribers like

applications, databases, dashboards, and agents.

2. The Event Engine receives the events of interest and

processes them using the event crowd operators in the EPL

query. When a crowd operator is applied over incoming

events it wraps that event with crowd specifications and

creates a new event termed as the crowd event. The Event

Engine then sends the crowd event to the HIT Engine.

3. In crowdsourcing, Human Intelligence Tasks (HIT) are the

tasks (here events with operators and crowd specifications)

which the crowd/worker performs. Thus, the HIT Engine

handles the crowd processing part and sends back the results

to the Event Engine. This consists of three modules which

are:

 HIT Manager: The HIT Manager receives the crowd

events, compiles them in a HTML form (HIT) as

accepted by the crowd platform (e.g. MTurk) with

different crowd specifications as provided by the

proposed operators.

 HIT Scheduler: The HIT Scheduler receives the HIT

and sends it to the crowdsourcing platform using the

application programming interface (API) of the crowd-

platform. It also receives the results back from the

crowd and sends it to the HIT Aggregator.

 HIT Aggregator: This module aggregates the tasks

answered by multiple workers on the same events and

sends it back to the Event Engine as aggregated event.

Thus the aggregated event itself are treated as a new

event for the Event Engine creating a high level of

abstraction for human computation.

The above architectural flow can be explained using an example.

Consider an Event Source is streaming a set of social media

images as events which need to get verified as wildfire or non-

wildfire instances. The events will be received by the Event

Engine which will further process it using the Verify crowd

operator. The operator wraps the event as a crowd event with

labeling specifications and sends it to the HIT Engine. The engine

will combine it as a HIT (Fig. 6) and send it to the crowd and

receive the response back. The HIT Aggregator will aggregate the

received answers as per the aggregation algorithms [26] and send

the aggregated events back to Event Engine which can send it to

the designated subscriber.

The above described architecture follows the push model of

crowdsourcing where the tasks are pushed to the workers.

Suppose a certain worker has information about events like

wildfire, traffic congestion or accidents, then they can push the

information to the event engine where it will be considered as an

Figure 2: MODIS satellite hot spots

warning

Figure 3: False YouTube video of

wildfire alert

Figure 4: False Flickr post on wildfire

smoke

Figure 5: Crowd-enabled event processing architecture

HIT Price: 0.1$

HIT Expiration Time: 25 sec

Tasks: Verify the Image.

Instructions: Is this image is of a wildfire

?

Yes
 No
Can’t Say

Submit

Figure 6: Event posted as a HIT on crowdsourcing platform

47

The Event Crowd: A Novel Approach for Crowd-Enabled Event Processing DEBS’17, June 2017, Barcelona, Spain

event source. The crowd operators working in event engine will

push the event streams to crowd workers to get the intended work

done.

4 EVENT CROWD OPERATORS

This section conceptualizes five event crowd operators as shown

in Table 1.

Event Operator Input Output

Annotate 1 Event Label

Match 2 Events True/False

Rank Collection of Events Ordered List

Rate 1 Event Score (1-5)

Verify 1 Event True/False

In this paper, we introduce five event crowd operators for

common tasks usually performed by the crowd which includes

solving problems like labeling, translation, verification, and

ranking. This list of operators is not comprehensive and can be

extended. Each operator’s functionality is explained with the help

of formal semantics [27, 28] and user-defined functions (UDF)

[29].

As shown in Fig. 7, when an operator is applied over incoming

events it creates crowd events which have attributes including

crowd tasks, crowd instructions, and crowd configuration. The

crowd operator is defined using a UDF whose skeleton is shown

in Table 2 with explanation of its attributes. In the below table, the

operator function takes two types of input. Event Input is related

to events and its specifications while Crowd Input takes the

parameters related to crowdsourcing. These parameters are then

assigned to the UDF attributes like crowd tasks, instructions, and

configuration.

Operator Function (Event Input, Crowd Input)

Returns: Output

Crowd Task: Information regarding what operations

(rank, verify, etc.) the crowd/worker has to perform over

the event.

Crowd Instructions: Instructions the crowd needs to

follow during operations.

Crowd Configuration: Crowdsourcing information:

expiration time (HIT exp): the maximum time allowed to

perform the operation before it will get expired, and the

incentive (HIT price): the monetary cost that the crowd

will be paid on performing operations over the event.

Response: Form where users will provide their answers

as an output which will be send to Returns.

Figure 7: Event Crowd operator’s design

4.1 Annotate

The annotate operator is used for labeling events like textual or

image. The formal semantics of this operator is as follows:

𝑨𝒏𝒏𝒐𝒕𝒂𝒕𝒆(𝑬) ≔ 𝒍𝒊 𝒊𝒇 ∃𝒍𝒊 ∈ 𝒍𝒂𝒃𝒆𝒍𝒔 𝒘𝒉𝒆𝒓𝒆 𝒍𝒂𝒃𝒆𝒍𝒔
= {𝒍𝟏, 𝒍𝟐, 𝒍𝟑 … … . , 𝒍𝒏 }

The above semantics represents that if the Annotate operator is

applied over an event E, then it will return a primitive label

𝑙𝑖 which belongs to the provided set- 𝑙𝑎𝑏𝑒𝑙𝑠. The UDF of the

annotate operator is given below:

Annotate (Object event, String [] label list, Object Crowd Input)

Returns: (String event label)

Crowd Task: Label event

Crowd Instructions: “Label the event from a given label

list”

Crowd Configuration: ({HIT exp: 25 sec}, {HIT price:

0.25$})

Response: Form ((‘label 1’, event label) … (‘label n’,

event label))

The function can be explained using the wildfire alert example.

The Annotate function will take the image event as input with

label list like (Wildfire, Normal Fire, and Can’t Say). The

function will post this as a HIT using the crowd configuration

information. The Response will create a form where the crowd

needs to provide the answer from predefined label list and returns

the answer label.

4.2 Match

The Match operator is used to determine whether two events are

the same or not. It sends the pair of events to the crowd which

validates the similarity of events and sends a Boolean response

{True, False} back to the event engine. Suppose there are two

event instances E1 and E2:

E1:= e11 e12 e13 e14 ……….e1n

E2:= e21 e22 e23 e24 ……….e2n

The formal semantics of the Match operator is given below:

𝑴𝒂𝒕𝒄𝒉(𝑬𝟏, 𝑬𝟐) ≔ 𝑻𝒓𝒖𝒆 𝒊𝒇 ∀𝒆𝟏 ∈ 𝑬𝟏 𝚲 ∀𝒆𝟐

∈ 𝑬𝟐 𝒂𝒓𝒆 𝒄𝒓𝒐𝒘𝒅 𝒔𝒊𝒎𝒊𝒍𝒂𝒓

 Table 1: Event Crowd Operators

Table 2: Skeleton of User Defined Function for Event

Crowd Operators

Event Crowd

Event

Crowd

Operator

Event

Crowd Task

Crowd

Instructions

Crowd

Configuration

48

DEBS’17, June 2017, Barcelona, Spain P. Yadav et al.

𝑴𝒂𝒕𝒄𝒉(𝑬𝟏, 𝑬𝟐) ≔ 𝑭𝒂𝒍𝒔𝒆 𝒊𝒇 ∃𝒆𝟏 ∈ 𝑬𝟏 𝚲 ∃𝒆𝟐

∈ 𝑬𝟐 𝒂𝒓𝒆 𝒄𝒓𝒐𝒘𝒅 𝒅𝒊𝒔𝒕𝒊𝒏𝒄𝒕

In the above semantics if all the instances of E1 and E2 are similar

then it is matched and the query result is ‘True’ else if any of

instance of E1 and E2 are not the same it will be ‘False’. The

Match UDF defined below takes two events and a crowd

specification as input and creates a HIT with response of ‘True’ or

‘False’ and returns a Boolean match status. In the UDF under

crowd instructions, the property ‘P’ refers to what characteristics

event are going to get matched. For example, if a crowd is asked

to match whether two events are from the same location then the

property (P) is- location.

Match (Object event1, Object event2, Object Crowd Input)

Returns: (Boolean match status)

Crowd Task: Match events

Crowd Instructions: “Match whether the two events are

same as per property P”

Crowd Configuration: ({HIT exp: 25 sec},{HIT price:

0.25$})

Response: Form((‘True’, match status),(‘False’,

match status))

4.3 Rank

The Rank operator ranks a collection of events in an ordered list

on the basis of some defined criteria. For example, if there are 5

events and they need to be ordered according to properties like

value, importance or priority then the Rank operator will take

these 5 events as an input and rank them. The semantics for the

Rank operator is as follows:

𝑹𝒂𝒏𝒌(𝑬𝟏, 𝑬𝟐, 𝑬𝟑 … … . 𝑬𝒏) ≔ (𝑬𝟏; 𝑬𝟐; 𝑬𝟑 … … 𝑬𝒏)

𝒊𝒇 ∀𝒊, 𝒋 ⇒ 𝒗𝒂𝒍(𝑬𝒊) ≥ 𝒗𝒂𝒍(Ej) 𝒘𝒉𝒆𝒓𝒆 𝒊 ≤

𝒋 𝒂𝒏𝒅 𝒊, 𝒋 ∈ {𝟏, 𝟐, 𝟑, 𝟒 … . . 𝒏}

In the above semantics, the operator takes a collection of events as

an input and arranges them in a sequence which is denoted by a

sequence operator (;) [28] . It denotes that if the value (𝒗𝒂𝒍) of all

instances of any event Ei is greater than the value of any other

events Ej then it will be placed higher in the sequence.

Rank (Object [] event, Integer rank range, Object Crowd

Input)

Returns: (Object [] ranked events)

Crowd Task: Rank events

Crowd Instructions: “Rank the list of events as per

their property P”

Crowd Configuration: ({HIT exp: 25 sec},{HIT price:

0.25$})

Response: Form((‘Rank no.’, event[1]),

 .

 .

 (‘Rank no.’, event[n]))

The above rank function takes a collection of events, rank range

and crowd specification as an input. Here rank range means that

the rank will be given in the provided range. In response, the

crowd will get the list of events and needs to provide a rank

within the specified rank range. For example, the collection of

image events needs to be ranked on the basis of their quality like

high resolution, blurred, and out of focus. If rank range is 5 then

the image events will be ranked between 1 to 5 i.e. high quality

and sharp resolution images will get the higher rank like 5 or 4

and the rank will decrease based on the quality of images.

4.4 Rate

The Rate operator rates the event on the basis of a specified

property. Suppose there is a stream of events related to different

restaurants of a given location. The Rate operator will rate these

restaurants on the basis of a specific defined property like cuisine,

service, etc., using crowdsourcing. The formal semantics of the

Rate operator is given below:

𝑹𝒂𝒕𝒆(𝑬) ≔ 𝒄𝒓𝒐𝒘𝒅𝒓𝒂𝒕𝒆 𝒙 𝒘𝒉𝒆𝒓𝒆 𝒄𝒓𝒐𝒘𝒅𝒓𝒂𝒕𝒆 𝒙

∈ 𝑿 𝒂𝒏𝒅 𝑿𝒎𝒊𝒏 ≤ 𝒙 ≤ 𝑿𝒎𝒂𝒙

In the above semantics, the operator rates an event E with the

specific value(𝑐𝑟𝑜𝑤𝑑𝑟𝑎𝑡𝑒 𝑥) where it belongs to the range of

property X. Here X is the range in which a rating can be given

like in the above example scenario it can be high, medium and

low. As shown below, the UDF of the Rate function takes an

event with various rate specifications and posts it to the crowd to

get the event rated.

Rate (Object Event, String rate specification , Object Crowd

Input)

Returns: (String, Integer rate)

Crowd Task: Rate event

Crowd Instructions: “Rate the event from the given rate

specification”

Crowd Configuration: ({HIT exp: 25 sec},{HIT price:

0.25$})

Response: Form((‘rate spec 1’, rate), (‘rate spec 2’, rate),

……, (‘rate spec n’, rate))

4.5 Verify

In [3] crowdsourcing has been used for handling event uncertainty

in traffic modeling. Thus the Verify operator can leverage this

functionality of verifying events through human computation. In

the below semantics, when the Verify operator is applied over an

event (E) it returns a Boolean response in terms of ‘True’ or

‘False’, verifying the specified nature of event.

𝑽𝒆𝒓𝒊𝒇𝒚(𝑬) ≔ 𝑻𝒓𝒖𝒆/𝑭𝒂𝒍𝒔𝒆 𝒊𝒇 𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 𝒐𝒇 𝑬 𝒊𝒔 𝑻𝒓𝒖𝒆

/𝑭𝒂𝒍𝒔𝒆 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝑪𝒓𝒐𝒘𝒅

In the below defined UDF, the Verify operator takes the event and

the specifications as an input. The Verify specification gives

instructions to the crowd based on what they need to verify in the

event. For example, if there is streaming data from social media to

verify whether there is traffic congestion in particular location or

49

The Event Crowd: A Novel Approach for Crowd-Enabled Event Processing DEBS’17, June 2017, Barcelona, Spain

not. The Verify operator can post the event to the crowd to get the

responses and send it back to the event engine which can take

further decisions on rerouting traffic for instance.

Verify (Object Event, String verify specification , Object

Crowd Input)

Returns: (Boolean verification status)

Crowd Task: Verify events

Crowd Instructions: “Verify the content of the events”

Crowd Configuration: ({HIT exp: 25 sec},{HIT price:

0.25$})

Response: Form((‘True’, verification status), (‘False’,

verification status))

4.6 Crowd Operators Implementation

We have implemented these operators in Esper [30] to run our

experiments. It is a component for complex event processing

written in Java. EPL queries can be easily written in Esper engine

which can process large volumes of events form historical or real

time scenario. Esper provides highly flexible extension API’s

from which the engine functionality can be extended by

integrating new functionality.

The event crowd operators have been implemented using the

Esper extensions API. The operators have been written as a Java

class file and then are integrated with the engine. The operators

can then be directly used within EPL queries. A simple match

operator query can be written as:

Select Match(event1, event2, crowd input)

from Image_Event.win:length(1)

The above query will take two Image events with crowd input

specifications and will create a new crowd event which will be

posted on the crowd platform. Since here the answer will come in

‘True’ (image matched) or ‘False’ (image not matched) so the

operator wraps the resulting event with these Boolean options.

Similarly, a simple Annotate query can be written as:

Select Annotate(event, label list, crowd

input) from Image_Event.win:length(2)

The above query will create a new crowd event having a list of

labels. The crowd will select labels from this list and annotate the

event. The operators design is independent and can easily be

written in any event processing framework. Overall we want to be

language agnostic in defining the operator for their ease of use in

any other EPL. The implementation in Esper is done as proof of

concept for event crowd idea.

5 EXPERIMENTAL EVALUATION

Our experiment has two main goals: 1) Assess the average latency

and throughput of human-in-the-loop in event processing using

crowd operators. 2) Assess the crowd operators and HIT

Aggregator latency.

5.1 Methodology

We performed our simulation using an Intel core i7 machine with

2.60 GHz CPU and 8 GB of RAM. The events were generated

using Poisson distribution with different average arrival rates (𝝀).

We simulated the experiments with different arrival rates ranging

from 1 to 100 events per second. The Esper engine receives these

events and event crowd operators wraps these events as per rules

and crowdsourcing information and push it to HIT Scheduler

queue. This queue stores the events in first in first out (FIFO)

order. The crowd simulator receives the events from queue and

performs the tasks. We have followed the retainer model [8] for

realtime crowdsourcing. This is a recruitment approach where the

crowd is pre hired (with some extra cost) to work on specific tasks

and will be available when tasks arrived to them. We have used

queuing theory [31] to retain the worker pools. Suppose the

worker pool size is W0, as the specific tasks comes the Wk

workers starts working on the tasks with worker pool size

remaining to W0- Wk. If the overall worker pool size is zero (all

workers busy) then it will not accept any tasks until some sets of

workers get free to take job. In short it is a M/M/c/N queue [31],

which has a ‘c’ parallel servers with N buffer size where

tasks(events) arrives at rate 𝝀 and have processing time µ. The

probability that an event has to wait (when all ‘c’ servers are

busy) to get processed can be determined by using Erlang’s Loss

formula [31].

5.2 Results

We ran our experiments for 4000 events at different arrival rates

ranging from 1 to 100 events per seconds. Events are generated

from the source according to a Poisson process with a specified

rate. Fig. 8 shows the graph between throughput and average

latency of our system. Average latency is the average time taken

by each events to get processed by the system. This includes the

time from when an event is generated, crowd operators applied on

it, queuing and dequeuing time in the HIT Scheduler, time taken

by the crowd to process the events, and the time taken by HIT

Aggregator to aggregate the responses for each event. Throughput

is considered as the number of events being processed by the

system in every second. In our experiment (Fig. 8) we have taken

different worker pool size ranging 40 to 100 workers where, when

an event arrives will be served by set of crowds. Bernstein et al.

[8] have shown that the minimum response time by the crowd to

get an answer is approximately 10 seconds. We have used this

response time in our simulation as this can give us a minimum

threshold time to get answers in event processing systems using

crowd operators. It can be seen that the system throughput

increases with an increase in the number of workers. Initially, for

40 workers the throughput is 3.61 events per second which

increased to 7.86 events per second for 100 workers. There is little

change in the throughput after 70 workers. The average latency

for events is 246.47 seconds for 40 workers which decreases with

increase in throughput. The average latency for events is 7.16

seconds for 100 workers. Thus, from the graph we can say that

system is sustainable with no backpressure of events when 100

50

DEBS’17, June 2017, Barcelona, Spain P. Yadav et al.

workers are pooled for events coming at arrival rate less that 7.16

seconds.

Fig. 9 shows the computation time of five event crowd operators.

In order to understand the real operator processing time we passed

the events to these operators under a ‘for’ loop. Thus the arrival

rate of events is equal to the system processing speed. We have

averaged 1000 runs to calculate the computation time of

operators. Fig. 9 shows the operator’s time to process 500 events.

Since the Rank operator processes a collection of events, its

computation time is little higher (1349 milliseconds/500 events)

as compared to other operators. Similarly, the Match operator’s

computation time (1,337 milliseconds/500 events) is second

highest as it takes two events as input for processing.

In crowdsourcing platform, each event is answered by specific set

of workers. Thus, each event has multiple responses which need

to be aggregated to get the final answers. There are multiple

aggregation algorithms to get the final answers based on workers

quality. We have integrated the simulator given in [26] to test our

system. The simulator run over specified number of questions and

apply different aggregation algorithms. We have used four

aggregation algorithms to determine the performance which is

been used by the HIT Aggregator. Fig. 10 shows the computation

time for aggregating answers per events. The simulation has been

run for 4,000 events responded by 100 workers where each event

has responses ranging from 1 to 5.

It can be seen that the Majority Decision [10] and GLAD [32]

approaches have the least aggregation time and are nearly

constant with different answers per events while the Expected

Maximization (EM) [15] and SLME [33] computation time

increases with increase in number of answers per events. The EM

and SLME take more time because in every iteration they update

the aggregated value of answers on the basis of worker expertise

and adjust the worker expertise as per there response.

The above experimental evaluation are preliminary to test the

event crowd concept. There is no present competitor or system

against which we can compare or benchmark our results due to

the immaturity of the field. The evaluation shown gives an

indication of performance under certain assumptions which will

vary across different applications.

5.3 Limitations and Assumptions

Our simulated experiments have a number of assumptions:

1. The HIT Scheduler queue size is large so that it can add up

the incoming events. The queue size is dynamic and can

grow up to its buffer limit so that no events can be lost. Thus

there is no throttling of events.

2. In event processing the arrival rates of events can be millions

per second but due to limited experimental setup we have

limited our arrival rates to a maximum of 100 events/second.

3. In real crowdsourcing, the workers have different expertise

levels like normal, expert, spammers, etc. We have assumed

that all the workers have the same quality. In the experiments

worker quality is considered on the basis of their response

time and not on the basis of their expertise.

Figure 9: Event Crowd operator’s computation time

Figure 10: Aggregation of events with different aggregation

algorithms

Figure 8: Throughput vs. Latency

51

The Event Crowd: A Novel Approach for Crowd-Enabled Event Processing DEBS’17, June 2017, Barcelona, Spain

4. The fastest crowd response of 10sec is taken from literature

[8].

5. We have not considered any expiration time of event and

assumed that all events are being answered by the workers.

6. In order to get better quality answers some known tasks

which are termed as gold units are used to find better quality

answers. In our experiments no gold units are injected in

streaming events.

7. Aggregation of answers for each event is based on Majority

Decision [10] algorithm.

8. No variation of pricing is considered for the crowd.

6 CHALLENGES AND IMPLICATIONS

The inclusion of crowd operators into event processing languages

is sort of an event enrichment process [34] which has number of

research challenges associated:

1. CEP Pattern Matching: One research challenge lies in the

extension of the model proposed in this paper to pattern

matching and complex event processing. Research questions

include how crowd operators in different parts of a pattern

are scheduled to be submitted to the HIT server, and how the

uncertainty of single-events operators are propagated to

evaluate the uncertainty scores of patterns and the derived

CEP events.

2. Optimization of HIT Scheduling: The proposed model poses

challenges on how to optimize the management and update

of the cache of crowd responses. Research questions also

arise on the potential subsumption relationships that can exist

between crowd operators which can lead to opportunities to

reduce latency.

3. Crowd Routing and Real-time Availability: One of the

primary research challenges of crowdsourcing in CEP is to

meet the varying latency requirements of processing human

intelligence tasks. Specifically, overcoming the differences

between near real-time processing of events and variance in

availability of crowds. This problem poses a quality versus

latency trade-off. The quality of crowd answers can also be

affected by the expertise of crowd workers, which becomes

more apparent when HIT’s require domain specific

knowledge.

4. Scaling with Machine Learning: Another challenge of

crowdsourcing in CEP is the scaling of the proposed

approach in case of a large number of parallel events. As

crowdsourcing becomes more popular, applications are

competing for human attention on crowdsourcing platforms.

In this respect, it is interesting to investigate the use of

machine learning for approximate crowd answers or routing

HIT’s to appropriate workers.

5. Realtime Crowdsourcing: Latency is the biggest bottleneck

for event based systems. Bernstein et al. [8] introduce the

concept of realtime crowdsourcing, where pre-recruited

workers are present for doing certain tasks. But pre-

recruiting workers itself is a challenge from the perspective

of availability, no. of workers needed to be retained, extra

incentives, and to keep them standby until the task is

assigned, are all an open areas of research.

6. Other Event Crowd Operators: The paper details five event

crowd operators which can be extended further depending on

specific application scenarios. There is still a challenge to

identify other event crowd operators. The operators list can

be related to incentives, evaluate quality of experience, and

categorization. It is also interesting to extend the design of

present crowd operators by adding extra attributes like

quality of service.

7. Geographic Density of Workers: In crowdsourcing, for

spatial crowd operators the geographic density of workers is

also essential. As shown in Fig. 2, some tasks requires people

in the near vicinity to verify the information related to

events. In case of low density workers, the task can then be

assigned to multiple people in near vicinity [35] to ensure its

completion which is itself an area of research for task

assignment.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed five crowd operators for event

processing. The aim of operators is to bring ‘human in the loop’ in

event systems. We discuss the design of each operator using

formal semantics and user-defined functions. The working model

of operators has been implemented in Esper. The paper details a

reference architecture for event systems using an event engine,

crowd operators, HIT manager, and a crowdsourcing platform.

Finally, the paper discusses the experimental evaluation for the

system by calculating throughput and average latency. The

experimental result shows that the throughput of the system

increases with the increase in worker pool size and is associated

with a decrease in the average latency. The system throughput for

100 workers was 7.86 events per second with average latency of

7.16 seconds for each events. The computation time for Rank and

Match operator is relatively higher than other operators as they

take more input events for processing. The fusion of

crowdsourcing and event processing poses a number of new

research challenges and implication. We plan in the future to scale

our system with real crowdsourcing platform to benchmark our

results in real-world settings.

ACKNOWLEDGEMENTS

This work was supported with the financial support of the Science

Foundation Ireland grant 13/RC/2094 and co-funded under the

European Regional Development Fund through the Southern &

Eastern Regional Operational Programme to Lero - the Irish

Software Research Centre (www.lero.ie).

REFERENCES
[1] T. Becker, E. Curry, A. Jentzsch, and W. Palmetshofer. 2016. New Horizons

for a Data-Driven Economy: Roadmaps and Action Plans for Technology,

Businesses, Policy, and Society. In New Horizons for a Data-Driven

Economy (pp. 277-291). Springer International Publishing.

[2] I. Correia, F. Fournier, and I. Skarbovsky. 2015. The uncertain case of credit

card fraud detection. In Proceedings of the 9th ACM International Conference

on Distributed Event-Based Systems (pp. 181-192). ACM.

[3] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski, C.

52

DEBS’17, June 2017, Barcelona, Spain P. Yadav et al.

Bockermann, K. Morik, V. Kalogeraki, J. Marecek, and A. Gal. 2014.

Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic

Management. In EDBT (Vol. 14, pp. 712-723).

[4] A. Artikis, O. Etzion, Z. Feldman, and F. Fournier. 2012. Event processing

under uncertainty. In Proceedings of the 6th ACM International Conference

on Distributed Event-Based Systems (pp. 32-43). ACM.

[5] Amazon Mechanical Turk. Available from: https://www.mturk.com/.

[6] CrowdFlower: AI for your business. Available from:

https://www.crowdflower.com/.

[7] P.G. Ipeirotis. 2010. Analyzing the amazon mechanical turk

marketplace. XRDS: Crossroads, The ACM Magazine for Students, 17(2),

pp.16-21.

[8] M.S. Bernstein, J. Brandt, R.C. Miller, and D.R. Karger. 2011. Crowds in two

seconds: Enabling realtime crowd-powered interfaces. In Proceedings of the

24th annual ACM symposium on User interface software and technology (pp.

33-42). ACM.

[9] A.G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh,

and J. Widom. 2012. Crowdscreen: Algorithms for filtering data with humans.

In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data (pp. 361-372). ACM.

[10] T. Yan, V. Kumar, and D. Ganesan. 2010. Crowdsearch: exploiting crowds

for accurate real-time image search on mobile phones. In Proceedings of the

8th international conference on Mobile systems, applications, and

services (pp. 77-90). ACM.

[11] F. Bry, M. Eckert, O. Etzion, J. Riecke, and A. Paschke. 2009. Event

processing language tutorial. In Proceedings of the 3rd ACM Int. Conf. on

Distributed Event-Based Systems. ACM.

[12] S. Schwiderski-Grosche and K. Moody. 2009. The SpaTeC composite event

language for spatio-temporal reasoning in mobile systems. In Proceedings of

the Third ACM International Conference on Distributed Event-Based

Systems (p. 11). ACM.

[13] H. Su, J. Deng, and L. Fei-Fei. 2012. Crowdsourcing annotations for visual

object detection. In Workshops at the Twenty-Sixth AAAI Conference on

Artificial Intelligence (Vol. 1, No. 2).

[14] G. Li, J. Wang, Y. Zheng, and M.J. Franklin. 2016. Crowdsourced data

management: A survey. IEEE Transactions on Knowledge and Data

Engineering, 28(9), pp.2296-2319.

[15] P.G. Ipeirotis, F. Provost, and J. Wang. 2010. Quality management on amazon

mechanical turk. In Proceedings of the ACM SIGKDD workshop on human

computation. ACM.

[16] D. Savenkov and E. Agichtein. 2016. CRQA: Crowd-Powered Real-Time

Automatic Question Answering System. In Fourth AAAI Conference on

Human Computation and Crowdsourcing.

[17] J.P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R.C. Miller, R. Miller, A.

Tatarowicz, B. White, S. White, and T. Yeh. 2010. VizWiz: nearly real-time

answers to visual questions. In Proceedings of the 23nd annual ACM

symposium on User interface software and technology (pp. 333-342). ACM.

[18] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. 2012. Counting with

the crowd. In Proceedings of the VLDB Endowment (Vol. 6, No. 2, pp. 109-

120). VLDB Endowment.

[19] A.G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom.

2012. Deco: declarative crowdsourcing. In Proceedings of the 21st ACM

international conference on Information and knowledge management (pp.

1203-1212). ACM.

[20] M.J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. 2011.

CrowdDB: answering queries with crowdsourcing. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of data (pp.

61-72). ACM.

[21] H. To, G. Ghinita, and C. Shahabi. 2014. A framework for protecting worker

location privacy in spatial crowdsourcing. Proceedings of the VLDB

Endowment, 7(10): p. 919-930.

[22] U. ul Hassan, and E. Curry. 2016. Efficient task assignment for spatial

crowdsourcing: A combinatorial fractional optimization approach with semi-

bandit learning. Expert Systems with Applications. 58: p. 36-56

[23] S. Wasserkrug, A. Gal, and O. Etzion. 2006. A taxonomy and representation

of sources of uncertainty in active systems. In International Workshop on

Next Generation Information Technologies and Systems. Springer.

[24] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. 2008. Complex event

processing over uncertain data. In Proceedings of the second international

conference on Distributed event-based systems DEBS 08, pp. 253–264.

[25] ESRI. US Wildfire Activity Public Information Map. [Online] ESRI. 2017.

https://www.arcgis.com/apps/PublicInformation/index.html?appid=4ae7c683b

9574856a3d3b7f75162b3f4.

[26] N. Quoc Viet Hung, N. T. Tam, L. N. Tran, and K. Aberer. 2013. An

evaluation of aggregation techniques in crowdsourcing. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), vol. 8181 LNCS, no.

PART 2, pp. 1–15.

[27] G. Cugola and A. Margara. 2010. TESLA: a formally defined event

specification language. In Proceedings of the fourth international conference

on Distributed event-based systems DEBS, pp. 50–61.

[28] D. Zimmer and R. Unland. 1999. On the semantics of complex events in

active database management systems. In Proceedings 15th International

Conference on Data Engineering (Cat. No.99CB36337), 1999, no. Dml, pp.

392–399.

[29] A. Marcus, E. Wu, and D. Karger. 2011. Demonstration of qurk: a query

processor for humanoperators. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data. ACM.

[30] EsperTech. EsperTech: Event Series Intelligence. Available from:

http://www.espertech.com/esper/.

[31] D. Gross, J. Shortle, F. Thompson, and C. Harris. 2008. Fundamentals of

queueing theory. 2008: John Wiley & Sons.

[32] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. 2009. Whose

Vote Should Count More: Optimal Integration of Labels from Labelers of

Unknown Expertise. In Proceedings of Advances in Neural Information

Processing System, vol. 22, no. 1, pp. 1–9, 2009.

[33] V.C. Raykar, S. Yu, L.H. Zhao, A. Jerebko, C. Florin, G.H. Valadez, L.

Bogoni, and L. Moy. 2009. Supervised learning from multiple experts: whom

to trust when everyone lies a bit. In Proceedings of the 26th Annual

international conference on machine learning (pp. 889-896). ACM.

[34] S. Hasan, S. O’Riain, and E. Curry. 2013. Towards Unified and Native

Enrichment in Event Processing Systems. In Proceedings of 7th international

conference on Distributed event-based systems DEBS (DEBS 2013), pp. 171–

182, 2013.

[35] U. ul Hassan, and E. Curry. 2015. Flag-Verify-Fix: Adaptive Spatial

Crowdsourcing leveraging Location-based Social Networks. In Proceedings

of 23rd ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems. (ACM SIGSPATIAL 2015), pp. 1–4,

2015.

53

