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ABSTRACT 

Event processing systems involve the processing of high volume 

and variety data which has inherent uncertainties like incomplete 

event streams, imprecise event recognition etc. With the 

emergence of crowdsourcing platforms, the performance of event 

processing systems can be enhanced by including ‘human-in-the- 

loop’ to leverage their cognitive ability. The resulting crowd-

sourced event processing can cater to the problem of event 

uncertainty and veracity by using humans to verify the results. 

This paper introduces the first hybrid crowd-enabled event 

processing engine. The paper proposes a list of five event crowd 

operators that are domain and language independent and can be 

used by any event processing framework. These operators 

encapsulate the complexities to deal with crowd workers and 

allow developers to define an event-crowd hybrid workflow. The 

operators are: Annotate, Rank, Verify, Rate, and Match. The 

paper presents a proof of concept of event crowd operators, 

schedulers, poolers, aggregators in an event processing system. 

The paper demonstrates the implementation of these operators and 

simulates the system with various performance metrics. The 

experimental evaluation shows that throughput of the system was 

7.86 events per second with average latency of 7.16 seconds for 

100 crowd workers. Finally, the paper concludes with avenues for 

future research in crowd-enabled event processing. 

CCS CONCEPTS 

• Computing methodologies → Distributed computing 

methodologies • Information systems → Crowdsourcing 
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Event crowd, event processing, crowdsourcing, human-in-the-
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1 INTRODUCTION 

We are living in a world driven by data. With the volume of data 

being generated constantly increasing, a number of challenges 

exist to process such data especially if data is streaming in real 

time [1]. For example, in environmental monitoring, the data is 

processed from various sensors to understand pollution levels so 

that immediate action can be taken to counter its negative effects. 

Similarly, other fields like financial [2], transportation [3], and 

manufacturing require the processing of data in near-real-time.  

Event-based systems process data from different sources like 

sensors and social media feeds where the event data can be 

veracious and have inherent uncertainties. These uncertainties can 

be due to multiple reasons including incomplete event streams, 

erroneous event recognition and imprecise event patterns [4].  Ivo 

et al. [2] distinguish three types of uncertainties in event data i.e. 

uncertainty in event content,  occurrence, and rules. For example, 

a scenario of crime detection requires a visual surveillance system 

[4] to detect people and their actions in different conditions. This 

is highly uncertain to predict accurate patterns of crime on 

monitoring people actions. Thus involving human computation 

can reduce uncertainty aspects in event-driven applications.  

Human intelligence can be used as an intermediary to gather 

better insights from event data where needed. Crowdsourcing, 

which incorporates ‘human computation’ as a building block, is 

used in various data intensive applications for comparison, 

classification, verification, etc. It plays a vital role in addressing 

tasks like entity resolution, image identification, and others, where 

existing algorithms have limited capabilities. In crowdsourcing, 

tasks are segmented into smaller microtasks and are resolved 

using human inputs. With the development of crowd-powered 

platforms like Amazon Mechanical Turk (MTurk) [5] and 

CrowdFlower [6], human input is no longer constrained to offline 

batch processing. Realtime crowdsourcing is emerging where the 

response wait time is getting transitioning from hours [7] to 

seconds [8] thus opening the opportunity to develop crowd-

enabled event processing systems. 

Crowd operators like filtering [9], labeling, selection [10], join, 

and sort have been proposed to perform common database 

operations using human workers. Presently, no operators in event 

processing systems deal with crowd interactions. In this paper, we 

propose an initial set of five event crowd operators to process 
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events using a crowd of workers. These operators introduce 

‘human-in-the-loop’ natively within event processing systems, to 

solve complex real world problems. The main contributions of the 

paper are the following: 

 

1. Explore the use of crowdsourcing in event based 

systems and its benefits in solving event related 

problems like uncertainty, labeling, and verification. 

2. A reference architecture for crowd-enabled event 

processing. 

3. Event crowd operators: Annotate, Match, Rank, Rate, 

and Verify. 

4. An initial evaluation framework for crowd-enabled 

event system along with performance metrics over 

simulated events and crowds. 

5. Research challenges of crowdsourcing in event based 

systems. 

The rest of the paper is organized as follows: Section 2 covers 

crowdsourcing basics and works related to operators in event 

processing and crowdsourcing. Section 3 gives detail on the 

reference architecture. Section 4 conceptualizes the proposed 

event crowd operator design with their structure and definition. 

Section 5 explains methodology, assumptions, and experimental 

evaluation. Section 6 discusses the research challenges and 

implications of this work. The paper concludes in section 7. 

2 THEORETICAL BACKGROUND 

This section conceptualizes the theoretical framework for the need 

of crowd operators in event processing. It introduces event 

processing languages and various key concepts and terminologies 

used in the crowdsourcing domain. Then it focuses on realtime 

crowdsourcing and related work. Finally, a motivational example 

is presented. 

2.1  Event Processing Languages 

Many event processing systems use declarative and SQL-like 

query languages, termed as Event Processing Language (EPL) 

[11]. These EPL queries once registered, run continuously on an 

event engine and return the desired results as defined by a 

subscriber's rule. EPL’s have their own specific set of rules and 

operators which have their own domain associated semantics. For 

example, SpaTec [12] is a composite event language which uses 

operators like 'same location' and 'remote location' to match event 

occurrences over space and time. The syntax of these languages is 

intuitive and provide high-level abstraction, thus facilitating users 

and programmers to write reactive rules in a simplistic form 

which execute upon detection of specific events. 

2.2 Basic Concepts in Crowdsourcing 

The word "crowdsourcing" is made from the words "crowd" and 

"outsource" which means to redistribute or contract out work to 

potentially large groups of people. Thus, it is the redistribution of 

a problem on an online platform to get it resolved by tapping the 

collective human intelligence in exchange for some incentives. 

For example, object recognition in an image is a complex task. 

This can easily be solved by creating a bounding box around 

objects and getting it labeled with different people [13]. Access to 

crowd resources has become easier with the development of 

crowd-powered interfaces [5,6]. Below is the list of core concepts 

related to crowdsourcing: 

 

1. Requester: The individuals or organizations who want their 

work to be completed. They post their tasks on a 

crowdsourcing platform with specific budget and deadline to 

get their work done. 

2. Worker: The people who perform tasks on the crowd 

platform. They select available tasks as per their expertise 

and perform them and get paid, as it is the major driver 

which motivates them to work. 

3. Crowdsourcing Platform: An interface which connects 

both workers and requesters and provides them with a high-

level abstraction to facilitate task exchange. The platform 

behaves like a marketplace which handles all aspect of crowd 

work from task generation to completion, pricing, worker 

availability, etc. Presently, several crowdsourcing platforms 

are available like Amazon Mechanical Turk [5] and 

CrowdFlower [6]. 

4. Task Design: Designing a task is a key aspect of 

crowdsourcing. The requester divides complex problems into 

several simple tasks called HIT’s (Human Intelligence 

Tasks), which can easily be resolved by ordinary workers. 

The tasks can be of varied types like single or multiple 

choices, rating, clustering or labeling. The requester also 

defines task settings like pricing, timing, and quality control 

as per his specific needs [14]. 

5. Answer Aggregation: To overcome the issue of potential 

low-quality answers from workers, it is common in 

crowdsourcing to collect multiple answers for the same task 

and then choose the optimal result through answer 

aggregation. Various aggregation algorithms have been 

proposed including majority decision [10] and expectation 

maximization [15]. 

2.3 Realtime Crowdsourcing 

Recent works have shown that responses from the crowd can be 

gathered at an interactive speed with less crowd latency. CRQA 

[16], a crowd -powered near realtime automatic question 

answering system  has the ability to answer questions in under 1 

minute. VizWiz [17] is a mobile phone based talking application, 

that gives ‘near real-time’ answers to visual questions. It follows 

an intelligent approach- ‘quikTurkit’ for recruiting worker in 

advance which can produce an answer to a question in an average 

of 56 seconds. Similarly, Bernstein et al. [8] introduced the 

concept of ‘on demand synchronous crowds’ where workers are 

present at the same time to do a task. They presented the ‘retainer 

model’, a pre-recruitment strategy, where workers are paid in 

advance so that they can be available on demand to perform a 
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task. Thus the response time of crowd is transitioning from hours 

to seconds making it suitable for near realtime systems. 

2.4 Related Work 

The use of crowdsourcing for computational operators has been 

actively studied in the databases community [14]. Crowd 

operators are used to perform various operations on given tasks as 

per the defined rules. In general, the primary focus of database 

researchers has been to include the crowd into data operators like 

selection [10], filtering [9], sort, join and aggregation [18]. There 

have also been efforts to define declarative approaches for 

introducing crowd-based operations in data processing systems 

[19,20]. More recent research proposals have tried to crowdsource 

spatial tasks [21,22]. However, none of these works have 

considered the use of crowd-based operators in data processing 

for streams or events.  

Enabling crowdsourcing in event-based systems can help to solve 

challenging problems like event uncertainties, data veracity, 

inaccurate measurements, and image annotation. Artikis et al. [3] 

showed the utility of crowdsourcing for event detection in 

complex event processing. The authors use a crowdsourcing 

module in urban traffic modeling to deal with data sparsity and 

sensor disagreement in heterogeneous stream processing. It 

reduces the event uncertainty through crowdsourced information 

thus giving more accurate information. But their proposal is 

primarily limited to applying event detection rules on streams of 

data. By comparison, this paper takes a more holistic approach to 

crowdsourcing event-based system by defining crowd-based event 

operators. 

Wasserkrug et al. [23] propose a framework for uncertainty in 

event processing which categorizes uncertainty in two 

dimensions: element uncertainty and origin uncertainty. Element 

uncertainty deals with uncertainties about event occurrence and 

event attributes. In our model, such an uncertainty is the result of 

crowd performance of operators on events, as that can include 

uncertainty due to lack of full agreements between workers, 

under-performance, or limited expertise. Origin uncertainty may 

come from the event source or inference over events. Our model 

deals with another origin which is the crowd, as crowd-based 

single-event processing uncertainty can propagate to a complex 

event processing (CEP) pattern. Wasserkrug et al. [24] propose a 

model to deal with such a CEP inference under uncertainty.  

2.5 A Motivating Example 

The US Wildfire Activity Public Information map [25] shows the 

recent active locations of wildfires and other information related 

to it. The map is generated using live feeds from US wildfire 

reports, MODIS satellite hotspots, weather radar and social media 

feeds like YouTube, Twitter, Instagram and Flickr. The map 

consists of inherent uncertainties and false information some of 

which are listed below: 

 Fig. 2 shows a MODIS satellite hotspot alert stating that a 1 

km zone of that location is identified ‘hot’ by sensors and  

can be a wildfire. How to quickly verify that the potential 

hotspot is a wildfire so that alerts can be raised to firefighting 

agencies? 

 Fig. 3 shows a YouTube video on the wildfire map with a 

label of “This is Wildfire. Signing off”. But on analysis, it 

was found that the video is related to gaming console. How 

can this wrong information be filtered out to avoid false 

alert? 

 Fig. 4 shows a Flickr image talking about wildfire smoke, 

but the smoke might be a low cloud. Thus, how can we filter 

out the false information and optimize our streams? 

Consider a smart city scenario where the city administrator has 

subscribed to an event engine for wildfire alerts as it includes 

threats to the city's infrastructure like water reservoir and power 

supply. The wildfire related streaming data is handled by an event 

processing engine. Although the event engine will filter out 

unnecessary information but then also the uncertainties will be 

there due to its inherent limitation. How can the event processing 

engine deal with the uncertainties described above?  The process 

can become efficient if there are some crowd operators configured 

with the event engine to loop in human computation to verify the 

incoming events. As shown in Fig. 1, a crowd-enabled event 

processing engine posts streaming events to a crowd sourcing 

platform and then can collect aggregated response to generate 

results thus acting as a black box between event sources, sinks, 

and the crowdsourcing platform. Number in Fig. 1 shows the flow 

of information in the system. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 REFERENCE ARCHITECTURE  

This section describes the reference architecture where 

crowdsourcing can be supported in event processing systems 

using the proposed event crowd operators. Our general framework 

is depicted in Fig. 5 which shows its various components.  The 

detailed description of these components with architectural flow 

are as follows: 

Crowd- Enabled 

Event Processing 

Engine 

Crowd 

Operators 

Crowd 

Platform 

1 
2 

4 

3 

Streaming 

Event Source 

Event Sink 

Crowd-

Enabled 

Event 

Processing 

Engine 

Figure 1: Event Crowd reference architecture 
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1. The Event Source streams the events to be processed by the 

Event Engine. The source can be any publishing system like 

databases, sensors, Web feeds, and Web services. Event 

Sinks are the final destination and act as subscribers like 

applications, databases, dashboards, and agents. 

2. The Event Engine receives the events of interest and 

processes them using the event crowd operators in the EPL 

query. When a crowd operator is applied over incoming 

events it wraps that event with crowd specifications and 

creates a new event termed as the crowd event. The Event 

Engine then sends the crowd event to the HIT Engine.  

3. In crowdsourcing, Human Intelligence Tasks (HIT) are the 

tasks (here events with operators and crowd specifications) 

which the crowd/worker performs. Thus, the HIT Engine 

handles the crowd processing part and sends back the results 

to the Event Engine. This consists of three modules which 

are: 

 HIT Manager: The HIT Manager receives the crowd 

events, compiles them in a HTML form (HIT) as 

accepted by the crowd platform (e.g. MTurk) with 

different crowd specifications as provided by the 

proposed operators.  

 HIT Scheduler: The HIT Scheduler receives the HIT 

and sends it to the crowdsourcing platform using the 

application programming interface (API) of the crowd- 

platform. It also receives the results back from the 

crowd and sends it to the HIT Aggregator.  

 HIT Aggregator: This module aggregates the tasks 

answered by multiple workers on the same events and 

sends it back to the Event Engine as aggregated event. 

Thus the aggregated event itself are treated as a new 

event for the Event Engine creating a high level of 

abstraction for human computation.  

 

The above architectural flow can be explained using an example. 

Consider an Event Source is streaming a set of social media 

images as events which need to get verified as wildfire or non-

wildfire instances. The events will be received by the Event 

Engine which will further process it using the Verify crowd 

operator. The operator wraps the event as a crowd event with 

labeling specifications and sends it to the HIT Engine.  The engine  

 

will combine it as a HIT (Fig. 6) and send it to the crowd and 

receive the response back. The HIT Aggregator will aggregate the 

received answers as per the aggregation algorithms [26] and send 

the aggregated events back to Event Engine which can send it to 

the designated subscriber.  

The above described architecture follows the push model of 

crowdsourcing where the tasks are pushed to the workers. 

Suppose a certain worker has information about events like 

wildfire, traffic congestion or accidents, then they can push the 

information to the event engine where it will be considered as an   

        
 

 

Figure 2: MODIS satellite hot spots 

warning 

 

Figure 3: False YouTube video of  

wildfire alert  

 

Figure 4: False Flickr post on wildfire 

smoke 

Figure 5: Crowd-enabled event processing architecture 

HIT Price: 0.1$ 

HIT Expiration Time: 25 sec 

Tasks: Verify the Image. 

Instructions: Is this image is of a wildfire 

? 

  

  

Yes  
 No  
Can’t Say  

Submit 

Figure 6: Event posted as a HIT on crowdsourcing platform 
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event source. The crowd operators working in event engine will 

push the event streams to crowd workers to get the intended work 

done.     

4 EVENT CROWD OPERATORS  

This section conceptualizes five event crowd operators as shown 

in Table 1. 

Event Operator Input Output 

Annotate 1 Event Label 

Match 2 Events True/False 

Rank Collection of Events Ordered List 

Rate 1 Event Score (1-5) 

Verify 1 Event True/False 

 

In this paper, we introduce five event crowd operators for 

common tasks usually performed by the crowd which includes 

solving problems like labeling, translation, verification, and 

ranking. This list of operators is not comprehensive and can be 

extended. Each operator’s functionality is explained with the help 

of formal semantics [27, 28] and user-defined functions (UDF) 

[29].  

As shown in Fig. 7, when an operator is applied over incoming 

events it creates crowd events which have attributes including 

crowd tasks, crowd instructions, and crowd configuration. The 

crowd operator is defined using a UDF whose skeleton is shown 

in Table 2 with explanation of its attributes. In the below table, the 

operator function takes two types of input. Event Input is related 

to events and its specifications while Crowd Input takes the 

parameters related to crowdsourcing. These parameters are then 

assigned to the UDF attributes like crowd tasks, instructions, and 

configuration. 

Operator Function (Event Input, Crowd Input) 

Returns: Output 

Crowd Task: Information regarding what operations 

(rank, verify, etc.) the crowd/worker has to perform over 

the event. 

Crowd Instructions: Instructions the crowd needs to      

follow during operations. 

Crowd Configuration: Crowdsourcing information: 

expiration time (HIT exp): the maximum time allowed to 

perform the operation before it will get expired, and the 

incentive (HIT price): the monetary cost that the crowd 

will be paid on performing operations over the event. 

Response: Form where users will provide their answers 

as an output which will be send to Returns. 

Figure 7:  Event Crowd operator’s design 

4.1 Annotate 

The annotate operator is used for labeling events like textual or 

image. The formal semantics of this operator is as follows: 

𝑨𝒏𝒏𝒐𝒕𝒂𝒕𝒆(𝑬) ≔ 𝒍𝒊  𝒊𝒇 ∃𝒍𝒊   ∈ 𝒍𝒂𝒃𝒆𝒍𝒔  𝒘𝒉𝒆𝒓𝒆 𝒍𝒂𝒃𝒆𝒍𝒔
= {𝒍𝟏, 𝒍𝟐, 𝒍𝟑 … … . , 𝒍𝒏 } 

 

The above semantics represents that if the Annotate operator is 

applied over an event E, then it will return a primitive label 

𝑙𝑖  which belongs to the provided set- 𝑙𝑎𝑏𝑒𝑙𝑠. The UDF of the 

annotate operator is given below: 

 
Annotate (Object event, String [] label list, Object Crowd Input) 

Returns: (String event label) 

Crowd Task: Label event 

Crowd Instructions: “Label the event from a given label 

list” 

Crowd Configuration: ({HIT exp: 25 sec}, {HIT price: 

0.25$}) 

Response: Form ((‘label 1’, event     label) … (‘label n’, 

event label)) 

The function can be explained using the wildfire alert example. 

The Annotate function will take the image event as input with 

label list like (Wildfire, Normal Fire, and Can’t Say). The 

function will post this as a HIT using the crowd configuration 

information. The Response will create a form where the crowd 

needs to provide the answer from predefined label list and returns 

the answer label. 

4.2 Match 

The Match operator is used to determine whether two events are 

the same or not. It sends the pair of events to the crowd which 

validates the similarity of events and sends a Boolean response 

{True, False} back to the event engine. Suppose there are two 

event instances E1 and E2: 

E1:= e11 e12 e13 e14 ……….e1n 

E2:= e21 e22 e23 e24 ……….e2n 

The formal semantics of the Match operator is given below:  

𝑴𝒂𝒕𝒄𝒉(𝑬𝟏, 𝑬𝟐) ≔ 𝑻𝒓𝒖𝒆 𝒊𝒇 ∀𝒆𝟏 ∈  𝑬𝟏 𝚲 ∀𝒆𝟐

∈ 𝑬𝟐 𝒂𝒓𝒆 𝒄𝒓𝒐𝒘𝒅 𝒔𝒊𝒎𝒊𝒍𝒂𝒓 

 

 

     Table 1: Event Crowd Operators 

Table 2: Skeleton of User Defined Function for Event 

Crowd Operators 

Event Crowd 

Event 

Crowd 

Operator 

Event 

Crowd Task 

Crowd 

Instructions 

Crowd 

Configuration 
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𝑴𝒂𝒕𝒄𝒉(𝑬𝟏, 𝑬𝟐) ≔ 𝑭𝒂𝒍𝒔𝒆 𝒊𝒇 ∃𝒆𝟏 ∈ 𝑬𝟏 𝚲 ∃𝒆𝟐

∈ 𝑬𝟐 𝒂𝒓𝒆 𝒄𝒓𝒐𝒘𝒅 𝒅𝒊𝒔𝒕𝒊𝒏𝒄𝒕 

In the above semantics if all the instances of E1 and E2 are similar 

then it is matched and the query result is ‘True’ else if any of 

instance of E1 and E2 are not the same it will be ‘False’. The 

Match UDF defined below takes two events and a crowd 

specification as input and creates a HIT with response of ‘True’ or 

‘False’ and returns a Boolean match status. In the UDF under 

crowd instructions, the property ‘P’ refers to what characteristics 

event are going to get matched. For example, if a crowd is asked 

to match whether two events are from the same location then the 

property (P) is- location. 

 

Match (Object event1, Object event2,  Object Crowd Input ) 

Returns: (Boolean match status) 

Crowd Task: Match events 

Crowd Instructions: “Match whether the two events are 

same as per property P” 

Crowd Configuration: ({HIT exp: 25 sec},{HIT price: 

0.25$}) 

Response: Form((‘True’, match status),(‘False’,        

match status)) 

4.3 Rank 

The Rank operator ranks a collection of events in an ordered list 

on the basis of some defined criteria. For example, if there are 5 

events and they need to be ordered according to properties like 

value, importance or priority then the Rank operator will take 

these 5 events as an input and rank them. The semantics for the 

Rank operator is as follows: 

𝑹𝒂𝒏𝒌(𝑬𝟏, 𝑬𝟐, 𝑬𝟑 … … . 𝑬𝒏) ≔ (𝑬𝟏; 𝑬𝟐; 𝑬𝟑 … … 𝑬𝒏) 

𝒊𝒇 ∀𝒊, 𝒋 ⇒  𝒗𝒂𝒍(𝑬𝒊) ≥  𝒗𝒂𝒍(Ej) 𝒘𝒉𝒆𝒓𝒆 𝒊 ≤

𝒋 𝒂𝒏𝒅 𝒊, 𝒋 ∈ {𝟏, 𝟐, 𝟑, 𝟒 … . . 𝒏} 

 

In the above semantics, the operator takes a collection of events as 

an input and arranges them in a sequence which is denoted by a 

sequence operator (;) [28] . It denotes that if the value (𝒗𝒂𝒍) of all 

instances of any event Ei is greater than the value of any other 

events Ej then it will be placed higher in the sequence. 

 

 

Rank (Object [ ] event, Integer rank range, Object Crowd 

Input) 

Returns: (Object [ ] ranked events) 

Crowd Task: Rank events 

Crowd Instructions: “Rank the list of events as per    

their property P” 

Crowd Configuration: ({HIT exp: 25 sec},{HIT price:  

0.25$}) 

Response: Form((‘Rank no.’, event[ 1]),  

                                   . 

                                   . 

                            (‘Rank no.’,  event[n] )) 
 

The above rank function takes a collection of events, rank range 

and crowd specification as an input. Here rank range means that 

the rank will be given in the provided range. In response, the 

crowd will get the list of events and needs to provide a rank 

within the specified rank range. For example, the collection of 

image events needs to be ranked on the basis of their quality like 

high resolution, blurred, and out of focus. If rank range is 5 then 

the image events will be ranked between 1 to 5 i.e. high quality 

and sharp resolution images will get the higher rank like 5 or 4 

and the rank will decrease based on the quality of images. 

4.4 Rate 

The Rate operator rates the event on the basis of a specified 

property. Suppose there is a stream of events related to different 

restaurants of a given location. The Rate operator will rate these 

restaurants on the basis of a specific defined property like cuisine, 

service, etc., using crowdsourcing. The formal semantics of the 

Rate operator is given below: 

𝑹𝒂𝒕𝒆(𝑬) ≔ 𝒄𝒓𝒐𝒘𝒅𝒓𝒂𝒕𝒆 𝒙  𝒘𝒉𝒆𝒓𝒆 𝒄𝒓𝒐𝒘𝒅𝒓𝒂𝒕𝒆 𝒙 

∈ 𝑿 𝒂𝒏𝒅  𝑿𝒎𝒊𝒏 ≤ 𝒙 ≤ 𝑿𝒎𝒂𝒙 

In the above semantics, the operator rates an event E with the 

specific value(𝑐𝑟𝑜𝑤𝑑𝑟𝑎𝑡𝑒 𝑥)  where it belongs to the range of 

property X. Here X is the range in which a rating can be given 

like in the above example scenario it can be high, medium and 

low. As shown below, the UDF of the Rate function takes an 

event with various rate specifications and posts it to the crowd to 

get the event rated. 

 

Rate (Object Event, String rate specification , Object Crowd 

Input) 

Returns: (String, Integer  rate) 

Crowd Task: Rate event 

Crowd Instructions: “Rate the event from the given rate 

specification” 

Crowd Configuration: ({HIT exp: 25 sec},{HIT price: 

0.25$}) 

Response: Form((‘rate spec 1’, rate), (‘rate spec 2’, rate), 

……,  (‘rate spec n’, rate)) 

 

4.5 Verify 

In [3] crowdsourcing has been used for handling event uncertainty 

in traffic modeling. Thus the Verify operator can leverage this 

functionality of verifying events through human computation. In 

the below semantics, when the Verify operator is applied over an 

event (E) it returns a Boolean response in terms of ‘True’ or 

‘False’, verifying the specified nature of event. 

 

𝑽𝒆𝒓𝒊𝒇𝒚(𝑬) ≔ 𝑻𝒓𝒖𝒆/𝑭𝒂𝒍𝒔𝒆 𝒊𝒇 𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 𝒐𝒇 𝑬 𝒊𝒔 𝑻𝒓𝒖𝒆

/𝑭𝒂𝒍𝒔𝒆 𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈 𝒕𝒐 𝒕𝒉𝒆 𝑪𝒓𝒐𝒘𝒅 

 

In the below defined UDF, the Verify operator takes the event and 

the specifications as an input. The Verify specification gives 

instructions to the crowd based on what they need to verify in the 

event. For example, if there is streaming data from social media to 

verify whether there is traffic congestion in particular location or 
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not. The Verify operator can post the event to the crowd to get the 

responses and send it back to the event engine which can take 

further decisions on rerouting traffic for instance. 

 

  

Verify (Object Event, String verify specification , Object 

Crowd Input) 

Returns: (Boolean verification status) 

Crowd Task: Verify events 

Crowd Instructions: “Verify the content of the events” 

Crowd Configuration: ({HIT exp: 25 sec},{HIT price: 

0.25$}) 

Response: Form((‘True’, verification status), (‘False’, 

verification status)) 

 

4.6 Crowd Operators Implementation 

We have implemented these operators in Esper [30] to run our 

experiments. It is a component for complex event processing 

written in Java. EPL queries can be easily written in Esper engine 

which can process large volumes of events form historical or real 

time scenario. Esper provides highly flexible extension API’s 

from which the engine functionality can be extended by 

integrating new functionality. 

The event crowd operators have been implemented using the 

Esper extensions API. The operators have been written as a Java 

class file and then are integrated with the engine. The operators 

can then be directly used within EPL queries. A simple match 

operator query can be written as: 

 

Select Match(event1, event2, crowd input ) 

from Image_Event.win:length(1) 

The above query will take two Image events with crowd input 

specifications and will create a new crowd event which will be 

posted on the crowd platform. Since here the answer will come in 

‘True’ (image matched) or ‘False’ (image not matched) so the 

operator wraps the resulting event with these Boolean options. 

Similarly, a simple Annotate query can be written as: 

 

Select Annotate(event, label list, crowd 

input) from Image_Event.win:length(2) 

 

The above query will create a new crowd event having a list of 

labels. The crowd will select labels from this list and annotate the 

event. The operators design is independent and can easily be 

written in any event processing framework. Overall we want to be 

language agnostic in defining the operator for their ease of use in 

any other EPL. The implementation in Esper is done as proof of 

concept for event crowd idea.  

5 EXPERIMENTAL EVALUATION 

Our experiment has two main goals: 1) Assess the average latency 

and throughput of human-in-the-loop in event processing using 

crowd operators. 2) Assess the crowd operators and HIT 

Aggregator latency. 

5.1 Methodology 

We performed our simulation using an Intel core i7 machine with 

2.60 GHz CPU and 8 GB of RAM. The events were generated 

using Poisson distribution with different average arrival rates (𝝀). 

We simulated the experiments with different arrival rates ranging 

from 1 to 100 events per second. The Esper engine receives these 

events and event crowd operators wraps these events as per rules 

and crowdsourcing information and push it to HIT Scheduler 

queue. This queue stores the events in first in first out (FIFO) 

order. The crowd simulator receives the events from queue and 

performs the tasks. We have followed the retainer model [8] for 

realtime crowdsourcing. This is a recruitment approach where the 

crowd is pre hired (with some extra cost) to work on specific tasks 

and will be available when tasks arrived to them.  We have used 

queuing theory [31] to retain the worker pools. Suppose the 

worker pool size is W0, as the specific tasks comes the Wk 

workers starts working on the tasks with worker pool size 

remaining to W0- Wk.  If the overall worker pool size is zero (all 

workers busy) then it will not accept any tasks until some sets of 

workers get free to take job. In short it is a M/M/c/N queue [31], 

which has a ‘c’ parallel servers with N buffer size where 

tasks(events) arrives at rate 𝝀 and have processing time µ. The 

probability that an event has to wait (when all ‘c’ servers are 

busy) to get processed can be determined by using Erlang’s Loss 

formula [31].  

5.2 Results 

We ran our experiments for 4000 events at different arrival rates 

ranging from 1 to 100 events per seconds. Events are generated 

from the source according to a Poisson process with a specified 

rate.  Fig. 8 shows the graph between throughput and average 

latency of our system. Average latency is the average time taken 

by each events to get processed by the system. This includes the 

time from when an event is generated, crowd operators applied on 

it, queuing and dequeuing time in the HIT Scheduler, time taken 

by the crowd to process the events, and the time taken by HIT 

Aggregator to aggregate the responses for each event. Throughput 

is considered as the number of events being processed by the 

system in every second. In our experiment (Fig. 8) we have taken 

different worker pool size ranging 40 to 100 workers where, when 

an event arrives will be served by set of crowds. Bernstein et al. 

[8] have shown that the minimum response time by the crowd to 

get an answer is approximately 10 seconds. We have used this 

response time in our simulation as this can give us a minimum 

threshold time to get answers in event processing systems using 

crowd operators. It can be seen that the system throughput 

increases with an increase in the number of workers. Initially, for 

40 workers the throughput is 3.61 events per second which 

increased to 7.86 events per second for 100 workers. There is little 

change in the throughput after 70 workers. The average latency 

for events is 246.47 seconds for 40 workers which decreases with 

increase in throughput. The average latency for events is 7.16 

seconds for 100 workers. Thus, from the graph we can say that 

system is sustainable with no backpressure of events when 100 
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workers are pooled for events coming at arrival rate less that 7.16 

seconds. 

 

Fig. 9 shows the computation time of five event crowd operators. 

In order to understand the real operator processing time we passed 

the events to these operators under a ‘for’ loop. Thus the arrival 

rate of events is equal to the system processing speed. We have 

averaged 1000 runs to calculate the computation time of 

operators. Fig. 9 shows the operator’s time to process 500 events. 

Since the Rank operator processes a collection of events, its 

computation time is little higher (1349 milliseconds/500 events) 

as compared to other operators. Similarly, the Match operator’s 

computation time (1,337 milliseconds/500 events) is second 

highest as it takes two events as input for processing.  

In crowdsourcing platform, each event is answered by specific set 

of workers. Thus, each event has multiple responses which need 

to be aggregated to get the final answers. There are multiple 

aggregation algorithms to get the final answers based on workers 

quality. We have integrated the simulator given in [26] to test our 

system. The simulator run over specified number of questions and 

apply different aggregation algorithms. We have used four 

aggregation algorithms to determine the performance which is 

been used by the HIT Aggregator. Fig. 10 shows the computation 

time for aggregating answers per events. The simulation has been 

run for 4,000 events responded by 100 workers where each event 

has responses ranging from 1 to 5. 

It can be seen that the Majority Decision [10] and GLAD [32] 

approaches have the least aggregation time and are nearly 

constant with different answers per events while the Expected 

Maximization (EM) [15] and SLME [33] computation time 

increases with increase in number of answers per events. The EM 

and SLME take more time because in every iteration they update 

the aggregated value of answers on the basis of worker expertise 

and adjust the worker expertise as per there response. 

The above experimental evaluation are preliminary to test the 

event crowd concept. There is no present competitor or system 

against which we can compare or benchmark our results due to 

the immaturity of the field. The evaluation shown gives an 

indication of performance under certain assumptions which will 

vary across different applications. 

      

 

5.3 Limitations and Assumptions 

Our simulated experiments have a number of assumptions: 

 

1. The HIT Scheduler queue size is large so that it can add up 

the incoming events. The queue size is dynamic and can 

grow up to its buffer limit so that no events can be lost. Thus 

there is no throttling of events.  

2. In event processing the arrival rates of events can be millions 

per second but due to limited experimental setup we have 

limited our arrival rates to a maximum of 100 events/second. 

3. In real crowdsourcing, the workers have different expertise 

levels like normal, expert, spammers, etc. We have assumed 

that all the workers have the same quality. In the experiments 

worker quality is considered on the basis of their response 

time and not on the basis of their expertise.  

Figure 9: Event Crowd operator’s computation time 

Figure 10: Aggregation of events with different aggregation 

algorithms 

Figure 8: Throughput vs. Latency 
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4. The fastest crowd response of 10sec is taken from literature 

[8]. 

5. We have not considered any expiration time of event and 

assumed that all events are being answered by the workers. 

6. In order to get better quality answers some known tasks 

which are termed as gold units are used to find better quality 

answers. In our experiments no gold units are injected in 

streaming events. 

7. Aggregation of answers for each event is based on Majority 

Decision [10] algorithm. 

8. No variation of pricing is considered for the crowd. 

6 CHALLENGES AND IMPLICATIONS 

The inclusion of crowd operators into event processing languages 

is sort of an event enrichment process [34] which has number of 

research challenges associated: 

 

1. CEP Pattern Matching: One research challenge lies in the 

extension of the model proposed in this paper to pattern 

matching and complex event processing. Research questions 

include how crowd operators in different parts of a pattern 

are scheduled to be submitted to the HIT server, and how the 

uncertainty of single-events operators are propagated to 

evaluate the uncertainty scores of patterns and the derived 

CEP events. 

2. Optimization of HIT Scheduling: The proposed model poses 

challenges on how to optimize the management and update 

of the cache of crowd responses. Research questions also 

arise on the potential subsumption relationships that can exist 

between crowd operators which can lead to opportunities to 

reduce latency. 

3. Crowd Routing and Real-time Availability: One of the 

primary research challenges of crowdsourcing in CEP is to 

meet the varying latency requirements of processing human 

intelligence tasks. Specifically, overcoming the differences 

between near real-time processing of events and variance in 

availability of crowds. This problem poses a quality versus 

latency trade-off. The quality of crowd answers can also be 

affected by the expertise of crowd workers, which becomes 

more apparent when HIT’s require domain specific 

knowledge. 

4. Scaling with Machine Learning: Another challenge of 

crowdsourcing in CEP is the scaling of the proposed 

approach in case of a large number of parallel events. As 

crowdsourcing becomes more popular, applications are 

competing for human attention on crowdsourcing platforms. 

In this respect, it is interesting to investigate the use of 

machine learning for approximate crowd answers or routing 

HIT’s to appropriate workers. 

5. Realtime Crowdsourcing:  Latency is the biggest bottleneck 

for event based systems. Bernstein et al. [8] introduce the 

concept of realtime crowdsourcing, where pre-recruited 

workers are present for doing certain tasks. But pre-

recruiting workers itself is a challenge from the perspective 

of availability, no. of workers needed to be retained, extra 

incentives, and to keep them standby until the task is 

assigned, are all an open areas of research. 

6. Other Event Crowd Operators: The paper details five event 

crowd operators which can be extended further depending on 

specific application scenarios. There is still a challenge to 

identify other event crowd operators. The operators list can 

be related to incentives, evaluate quality of experience, and 

categorization. It is also interesting to extend the design of 

present crowd operators by adding extra attributes like 

quality of service. 

7. Geographic Density of Workers: In crowdsourcing, for 

spatial crowd operators the geographic density of workers is 

also essential. As shown in Fig. 2, some tasks requires people 

in the near vicinity to verify the information related to 

events. In case of low density workers, the task can then be 

assigned to multiple people in near vicinity [35] to ensure its 

completion which is itself an area of research for task 

assignment. 

7 CONCLUSION AND FUTURE WORK 

In this paper, we proposed five crowd operators for event 

processing. The aim of operators is to bring ‘human in the loop’ in 

event systems. We discuss the design of each operator using 

formal semantics and user-defined functions. The working model 

of operators has been implemented in Esper. The paper details a 

reference architecture for event systems using an event engine, 

crowd operators, HIT manager, and a crowdsourcing platform. 

Finally, the paper discusses the experimental evaluation for the 

system by calculating throughput and average latency. The 

experimental result shows that the throughput of the system 

increases with the increase in worker pool size and is associated 

with a decrease in the average latency. The system throughput for 

100 workers was 7.86 events per second with average latency of 

7.16 seconds for each events. The computation time for Rank and 

Match operator is relatively higher than other operators as they 

take more input events for processing. The fusion of 

crowdsourcing and event processing poses a number of new 

research challenges and implication. We plan in the future to scale 

our system with real crowdsourcing platform to benchmark our 

results in real-world settings. 
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