On the Development of C++ Instruments

Victor LAZZARINI
Maynooth University
Maynooth
Co. Kildare
Ireland,
Victor.Lazzarini@nuim.ie

Abstract

This paper brings together some ideas regarding
computer music instrument development with re-
spect to the C++ language. It looks at these from
two perspectives, that of the development of self-
contained instruments with the use of a class library
and that of programming of plugin modules for a
music programming system. Working code exam-
ples illustrate the paper throughout.

Keywords

Computer Music Instruments, C++, Music Pro-
gramming

1 Introduction

Whatever we do, if we are in the business of
making music solely or primarily with comput-
ers, one way or another, at some point, we will
meet computer music instruments|Lazzarini,
2017a] . Whether we are making electroacous-
tic music, algorithmic composition, live coding,
tracking, creating pop tunes, we will find our-
selves manipulating these. They can present
themselves through music programming sys-
tems [Lazzarini, 2013] , such as Csound [Laz-
zarini et al., 2016] or Faust [Orlarey et al., 2004],
or as software synthesizers, plugins, audio pro-
cessing programs, etc. There is a wide variety
of forms. In this paper, I would like to contem-
plate one of these that involves libraries, com-
pilers, and the C++ language.

C++ was once described as having “the ele-
gance, the power, and the simplicity of a hand
grenade”, which to me, as a die-hard pure
C programmer sounds about right. However,
I must admit that its latest standards, ISO
C++11[ISO/IEC, 2011] , C++14[ISO/IEC,
2014] , and the forthcoming C++17,[ISO/IEC,
2017] arriving in quick succession as they are,
are making this monstrous language more at-
tractive. Now finally we can write a nice lambda
and pass it to a map to process a list, for
example. The standard library, borne out of

the much appreciated, much maligned, stan-
dard template library (STL), has actually be-
come quite usable. There is still enough com-
plexity for one to get entangled, however, but
with moderation and good design, we can make
it work for us.

This paper will examine two approaches of
C++ instrument making. The first one is based
on employing a signal processing library to write
simple, straightforward, programs that can be
ported to various platforms. The second is to
create components, plugins, for Csound using
a framework that sits atop the system imple-
mentation in C. It is mostly directed at com-
puter music practitioners who can converse in
C/C++, and it will be fully illustrated by work-
ing code, which can also be found somewhere in
an online repo (links will be given).

2 AuLib Instruments

Towards the end of 2016, I decided to collect
a number of digital signal processing (DSP) al-
gorithms that I had been writing or studying
throughout the years into a simple, lightweight,
flexible C++ library, called AuLib'. One of my
aims was to document these uniformly in effi-
cient and readable code so that they could be-
come somewhat of a reference for me and others.
I was also rewriting some of my teaching mate-
rials and this became part of them. Following
a number of refactoring steps, I settled on a de-
sign that followed modern C++ standards in
employing the standard library as much as pos-
sible to handle resources and keeping the code
as simple and lightweight as possible.

When designing a class library, there are two
distinct possibilities (amongst the various deci-
sions we have to make) with respect to object hi-
erarchies. One is that we can define a base class
for DSP objects that has a shared processing in-
terface, that is one (or more) DSP methods that

'github.com/vlazzarini/aulib/

are specialised in derived classes. A means of
connecting objects is provided separately from
this, and once connected, we can place the ob-
jects in a list of references or pointers to the base
class and call the processing method of each in
turn to get an output signal. This is what is at
the heart of processing engines such as the one
in PD, Csound, Faust. If the aim is to create a
library whose main objective is to be employed
as an engine for some higher-level programming
or patching system, this is the way to go. The
Sound Object Library[Lazzarini, 2000] was de-
signed this way and it really paid off when it
was later wrapped up in Python.

The alternative is to relax this constraint and
not provide a unified processing interface, leave
it to derived classes to define their own. The
advantage of this is that each class can have dif-
ferent ways to handle input parameters to pro-
cessing methods, depending on what they are
supposed to do. So an oscillator might have am-
plitude and frequency as parameters, in scalar
or vectorial forms, or no parameters at all (for
say fixed values of amplitude and frequency).
It can provide a bunch of overloads to han-
dle each case. A filter will have an input sig-
nal and optional parameters, depending on the
type. A frequency-domain object might take a
spectral frame. This, on one hand, simplifies
connections (we can define them at the process-
ing point, rather than separately), and on the
other makes it hard to use in sound engine appli-
cations where the interface needs to be shared.

Given that the objective here for this library
was to provide a working context for a di-
verse set of algorithms, and to provide a flex-
ible means of using them in programs, I have
opted for the second approach. This would
provide greater freedom to create exactly the
right form to hold each DSP formulation. Now,
given this context, it is still desirable to use the
class structure afforded by C++ to re-use code
fully. This meant to design a base class that
was a container for an audio signal, providing
the typical fundamental operations we would
like to perform on it. For me, this meant: scal-
ing (multiplying by a scalar), offsetting (adding
a scalar), mixing (adding a vector/signal) and
ring modulating (multiplying by a vector/sig-
nal). Granted, in an audience of music and
audio developers, we are likely to find multiple
definitions of what fundamental operations on
signals are, but I am drawing the line here (ok
maybe not quite, but let’s keep at this for the

moment). Attributes such as number of chan-
nels (interleaved), sampling rate and vector size
are also needed, and of course the audio signal
vector itself.

This makes up the AudioBase class of the li-
brary, which begins like this:

class AudioBase {

protected:
uint32_t m_nchnls;
uint32_t m_vframes;
std::vector<double> m_vector;
double m_sr;
uint32_t m_error;

Having a fundamentally neutral base, with no
hint of what a DSP object might want to im-
plement allows me to use it for absolutely ev-
erything I can think of, or almost. So of the 50-
odd classes currently sitting in the library, only
four are not derived from AudioBase (fig. 1).
It is specialised for common time-domain oper-
ations (oscillators, filters, envelopes, etc.), for
spectral processing (short-time Fourier trans-
form, phase vocoder), for function tables, for
audio input/output, and even for higher-level
instrument models. Code re-use is truly max-
imised.

3 Developing Instruments

A detailed description of the library design is
offered elsewhere [Lazzarini, 2017c]. In this pa-
per, we will to look at using it for C4++ instru-

ment development. So let’s explore some cases?.

3.1 Basic examples

We begin with a trivial case: a ping instrument,
written as a command-line program. This just
plays a 440Hz, -6dB sine wave to the output for
a couple of seconds. The code, without its safety
checks etc, can be abbreviated as this seven-
liner:

int main() {
Oscil sig(0.5,440);
SoundOut output("dac");
for (int i = 0; i < def_sr * 2;
i += def_vframes)
output.write(sig.process());
return O;

}

Frequency and amplitude are not changing,
so I pick the process() overload with no pa-
rameters and stick its return value straight into
the output write() method. The two classes

2all examples available in the examples directory of
the AuLib repository.

AuLib:Chn

AulLib::AllPass
AuLib::Adsr

AuLib:Delay [
AuLib:Envel

AuLibzHamming
Aulib:Hann

AuLib::EnvelTable |

| AuLib::SawTable |

[Autib:FuncTabie

AuLib::SquareTable |

AuLib::FourierTable
i

| AuLib::Sample Table |

| AuLib: Triangle Table |

| AuLibz:instrument< T > I

| AuLib:LowP

AuLib::BandR

AuLib::BandP AuLib::Reson

AuLib:Expon
AuLib:Note

AuLib::Oscil AuLib::Oscil

AuLib::Line
AuLib::Pan AuLib::Oscilic

rd
AuLib::AudioBase i
AuLib::Phasor
AuLib::SigBus
AuLib::Soundin

AuLib::SoundOut AuLib:Pvoc

AuLib::Stit AuLib::TableReadi

\

[AuLib::TableRead ft——— AuLib::TableReadic |

AulibzTapi

Aulib::Tap =Tapi
AuLib::Rms

Aulib::TonelLP

Aulib::ToneHP

Aulib:MidiData
AuLib::Midiln
Aulib:Segments

AuLib::TableSet

AuLib::ResonR

Aulib::ResonZ

Aulib::BlOsc

AuLib:HighP I

Aulib::SamplePlayer

Figure 1: The AuLib class library

share the base, but they have distinctly-named
and defined processing methods.

Let’s try something slightly less simplistic.
A similarly-placed instrument but now with a
sweeping resonant filter acting on a sawtooth
wave:

int main() {
TableSet saw (SAW);
BlOsc sig(0.5, 440., saw);
ResonR fil (1000, 1.);
Balance bal;
SoundOut output("dac");

for (int i = 0; i < def_sr*10;
i += def_vframes) {
sig.process ();
fil.process(sig,
1000. + 400. * i / def_sr);
bal.process (fil, sig);
output.write(bal);
}
return O;

}

TableSet creates a set of tables for a band-
limited oscillator. The filter centre frequency is

varied over time, and we feed its output into a
balancing operator that uses a comparator to
keep amplitudes under control.

To demonstrate how the base class-defined
operations can be useful, we have a simple FM
example

int main() {
double fm = 440., fc = 220., ndx = 5.;
Oscili mod, car;
SoundOut output("dac");
for (int i = 0; i < def_sr*10;

i += def_vframes) {
mod.process (ndx * fm, fm);
car.process (0.5, mod += fc);
output.write(car);

}

return O0;

Note the wuse of the overloaded sum-
assignment operator in mod += fc to add the
modulator signal to the carrier (scalar) fre-
quency.

3.2 Instrument Models

Clearly, the examples above are more demon-
strations of how instruments can be set up. This
would, in a more realistic scenario, be placed
in plugin or GUI application wrapping code,
where they can become useful. The AuLib also
provides some modelling of instruments and in-
stances of these. We can show how these work
in a straightforward application case: a poly-
phonic MIDI synthesiser.

The AuLib class Note provides the base for
an instance of a sound object, which can be
for example, a synthesiser voice. This holds
basic parameters such as amplitude, cps pitch,
etc. that we can use to control a sound object.
To use it, we derive our own, and specialise its
dsp method, placing our sound processing code
there.

class SineSyn public Note {
// signal processing objects
Adsr m_env;
Oscili m_osc;

// DSP owverride
virtual const SineSyn &dsp() {
if ('m_env.is_finished ())
set(m_osc(m_env (), m_cps));
else clear();
return *this;

}

The sound synthesis is again, trivial, to
keep the example focused: an envelope and a
sine wave oscillator. But note that we have

a new convenient interface: using the classes
operator (), we connect objects more easily one
into another. This syntax reinforces the connec-
tion metaphor, envelope, alongside pitch, into
oscillator. Given that the class is derived from
AudioBase, we set its vector to the result of the
processing.

Additionally, we want to specialise two other
methods: for sound onset and sound termina-
tion:

// mnote off processing
virtual void off_note() {
m_env.release ();

}

// mote on processing
virtual void on_note() {
m_env.reset(m_amp, 0.01,
0.5, 0.25 * m_amp, 0.01);

This plus the constructor completes our Note-
derived class. Now we want to model the whole
synthesiser, not just its voices. To do this, we
can use the Instrument template class, instan-
tiated with the required number of voices and
our note class:

Instrument <SineSyn> synth(8);

An important aspect of this class is that it
has a dispatch() method that takes in five pa-
rameters (message type, channel, datal, data2,
time stamp) and responds to two message types
(NOTE ON, NOTE OFF). While these are the
same as the MIDI channel messages, we are
just re-using the metaphor here. The call to
dispatch() does not need to originate from
MIDI or be limited to the usual MIDI data
ranges. Specialisations of instrument can re-
implement message handling to allow for other
types. Instrument also handles polyphony us-
ing last-note priority, and this can also be over-
riden in derived classes.

Given that the example will use MIDI input,
the library supports a simple MIDI listener class
that takes an Instrument object (or from any
type implementing dispatch() and process()
and responds to messages. The complete pro-
gram becomes very straightforward (trivial sig-
nal handler implementation omitted):
int main() {

int dev;

Instrument <SineSyn> synth(8);
SoundOut out("dac");

MidiIn midi;

std::signal (SIGINT, signal_handler);

std::cout <<

"Available MIDI inputs:\n";
for (auto &devs:
midi.device_list ())
std::cout << devs << std::endl;
std::cout << "choose a device: ";
std::cin >> dev;

if (midi.open(dev) =
AULIB_NOERROR) {
std::cout <<
"running...
(use ctrl-c to close)\n";
while (running)
// listen to midi on
// behalf of synth
out (midi.listen(synth));
} else
std::cout <<
"error opening device...\n";
std::cout << "...finished \n";
return 0;

}

Again, with a few lines of code, we can get
a basic MIDI synthesiser instrument. Although
the synthesis is simple, it can be shown that
the effort involved in more complex examples
scales well. It is just a case of using other signal
processing objects in different arrangements.

4 Csound Plugins

The second case of C++ instrument develop-
ment we will look at focuses on creating com-
ponents (plugins) that can be employed in a mu-
sic programming language. Unit generators in
Csound are known as opcodes and the system
has a well-document C interface for the pur-
pose of adding new ones of these to it. It also
has a C++ base class that has been used for
a small number of opcode plugin libraries that
come with the system.

With the intention of enabling a more com-
plete and well-integrated C++ support for plu-
gin opcode development, I have introduced
the Csound Plugin Opcode Framework? CPOF
(pronounced see-pough or cipd = vine in Por-
tuguese?). The actual framework part of it
is fairly light, consisting of two template base
classes, but it also contains an extensive set
of utility classes that wrap Csound C code for
C++ use in a very idiomatic way (table 1).
CPOF is discussed extensively in [Lazzarini,
2017h).

3available as part of Csound, github.com/csound/
csound, with code examples in the examples/plugin di-
rectory.

4as in: C++ gives you enough vine, or rope, for you
to either hoist yourself up a tree, or hang yourself fairly
decently.

] Class

Description

Csound The Csound engine
Params Opcode parameters
AudioSig Audio signals

Fsig Spectral signals
Pvframe<T> Spectral data frames
Pvbin<T> Spectral data bins
Vector<T> Array variables
Table Function tables
AuxMem<T> Dynamic memory
Thread Multithreading
Plugin<N,M> | Plugin base class
FPlugin<N,M> | Spectral plugin base class

Table 1: Classes provided by CPOF.

5 Plugin Examples

The Csound language has a variety of internal
data types that its opcodes can process. We will
look at each one of these with a programming
example.

5.1 Init-time opcodes

In Csound, code that is run only once per in-
stantiation (or again on explicit re-initisation)
employs init-time variables. These are scalar
types holding a floating-point number (the
MYFLT type defined by the system). Plugin op-
codes for these types are derived from Plugin
and are instantiated templates taking the num-
ber of output and input arguments (respec-
tively) as parameters. The following examples
uses the standard library Gaussian generator to
produce a random number using the normal dis-
tribution. The first input argument is the mean,
followed by the deviation, and the seed:

#include <plugin.h>

struct Gauss
csnd::Plugin<1l, 3>{
std::normal_distribution<MYFLT> norm;
std::mt19937 gen;

init init (){

csnd::constr (&norm,
inargs [1]);

csnd::constr (&gen, inargs[2]);
outargs [0] = norm(gen);
csnd::destr (&norm) ;
csnd::destr (&gen);

}

};

inargs [0],

Note that because Csound instantiates the
plugin object and it does not know anything
about C++4 constructors, we need to explicitly
construct the objects norm and gen. When we

are done, we need to destruct them as they are
likely to have allocated resources, which we do
not want to be left dangling. The Plugin base
class gives us the inargs and outargs objects,
which contain the input and output arguments
respectively.

In order for the plugin to be added to
Csound’s collection of opcodes, we need to
register it. To do this, we implement the
csnd::on_load() function, where we place
a call to the csnd::plugin<T>() template
method, passing the argument types ("i") and
the action time of the opcode (thread::i), as
well as the opcode name we will use (”guas-
sian”):

#include <modload.h>
void csnd::on_load(Csound

*csound) {
csnd::plugin<Gauss>(csound, "gaussian',

"i®, "jijii", csnd::thread::i);

}

5.2 Control-rate opcodes

The next data type we can tackle is the one used
control-rate variables (k). This is also a scalar,
but now the opcode is active at performance
time (as well as init). A control-rate version of
the gaussian opcode would look like this:

struct GaussP
csnd::Plugin<1l, 3>{
std::normal_distribution <MYFLT>
norm;
std::mt19937 gen;

int init O{
csnd::constr (&norm,

inargs [1]1);
csnd::constr (&gen, inargs([2]);
csound->plugin_deinit (this);
return 0K;

}

inargs [0],

int deinit (){
csnd::destr (&norm) ;
csnd::destr (&gen);
return 0K;

}

int kperf () {
outargs [0] = norm(gen);
return O0K;
}
}s
We can see that we now supplied the kperf ()
that will be called repeatedly during perfor-
mance. Another difference is that we have
to provide a deinit() to call the destructors,
which will be called when performance ends.
This method needs to be registered separately

with Csound through the plugin deinit()
template function. We register this version of
the opcode with:

csnd::plugin<GaussP>(csound, "gaussian",
"k", "iii", csnd::thread::ik);

5.3 Audio-rate opcodes

For audio signals, we need to implement the
aperf () method. The variable now is a vector,
so we have to use an AudioSig object to hold
it. The following example shows an aperf ()
method that can be added to GaussianPerf to
implement an audio rate opcode:

int aperf (0{

csnd::AudioSig out(this, outargs (0));

for (auto &sample out)
sample = norm(gen);

return 0K;

}

The same class can then be registered for an
audio-rate output:

csnd::plugin<GaussP>(csound, "gaussian",
"a", "iii", csnd::thread::ia);

5.4 Spectral signals

Spectral signals in Csound are carried from op-
code to opcode using fsig variables. These are
self-describing variables holding one frame of
frequency-domain data, plus associated infor-
mation about the stream. In CPOF, we manip-
ulate these using the pv_stream class. Similarly
to audio signals we can get the fsig data off argu-
ments into objects of these types for processing.
An opcode is responsible for initialising its own
output stream, which we can do at init time.
Stream frames can be decomposed in separate
bins held by pv_bin objects.

The example below shows a plugin that im-
plements spectral tracing [Wishart, 1996] de-
fined as retaining only the loudest N bins in
each frame. Some important aspects to note
about this code: (a) spectral processing occurs
at a rate determined by the frame analysis rate,
so we run it a k-rate and process frames as they
become available; (b) a framecount, a member
variable of the FPlugin base class, is kept for
this. (c) The AuxMem is used to manage a heap-
allocated block of memory to keep bin ampli-
tudes; and (d) we add the types as a static con-
stant member of the class, which simplifies the
plugin registration call.

The basic algorithm is as follows:

1. get the amplitudes from each bin;

2. find the nth loudest;

3. use this as a threshold to filter the frame
date, keeping only the bin holding ampli-
tudes above it.

#include <plugin.h>
#include <algorithm>

struct PVTrace csnd::FPlugin<1, 2> {

csnd:: AuxMem<float> amps;
static constexpr

char const *otypes = "f";
static constexpr

char const *itypes = "fk";

int init() {
if (inargs.fsig_data(0).isSliding())
return csound->init_error(
Str("sliding not supported"));

if (inargs.fsig_data(0).fsig_format ()
!=csnd::fsig_format::pvs &&
inargs.fsig_data(0).fsig_format ()
!=csnd::fsig_format::polar)
return csound->init_error(
Str("fsig format not supported"));

amps.allocate (csound,
inargs.fsig_data(0).nbins ());

csnd::Fsig &fout =
outargs.fsig_data (0);

fout.init (csound,
inargs.fsig_data (0));

framecount = 0;
return 0K;

}

int kperf () {
csnd::pv_frame &fin =
inargs.fsig_data(0);
csnd::pv_frame &fout =
outargs.fsig_data (0);

if (framecount < fin.count()) {
int n = fin.len() - (int)inargs/[1];
float thrsh;

std::transform(fin.begin(),fin.end (),
amps .begin(), [IJ(csnd::pv_bin £){
return f.amp(); });

std::nth_element (amps.begin(),

amps .begin ()+n, amps.end());
thrsh = amps[n];
std::transform(fin.begin(), fin.end(),
fout.begin(),

[thrsh] (csnd::pv_bin £f){

return f.amp() >= thrsh 7

f : csnd::pv_bin(); });

framecount = fout.count(fin.count());

}

return 0K;
}
};

#include <modload.h>
void csnd::on_load(Csound *csound) {
csnd::plugin<PVTrace >(csound,
"pvstrace", csnd::thread::ik);

The standard library algorithms are very well
suited to implementing these steps. The code
becomes very compact and fairly readable.

5.5 Array variables

Csound has a container type, array, which can
be used to create vectors of built in types.
CPOF provides a template class Vector<T>
to wrap array arguments conveniently for ma-
nipulation. The typedef myflt_vector is an
instantiation of this template for real values
(MYFLT). The following example combines the
use of lambdas and templates to create a whole
family of binary (two-operand) operators for nu-
meric (scalar) arrays. It can be used for init and
k-rate opcodes. The processing is placed on a
separate function to avoid code duplication. It
is just a matter of mapping the inputs into the
outputs through the application of a given func-
tion.

MYFLT) >
2> {

template <MYFLT (*bop) (MYFLT,
struct Array0Op2 csnd::Plugin<1,

int process(csnd::myfltvec &out,
csnd::myfltvec &inl,
csnd::myfltvec &in2) {
std::transform(inl.begin(), inl.end(),
in2.begin(), out.begin(),
[1(MYFLT £1, MYFLT £2) {
return bop(fl, £2); 1});
return 0K;

}

int init() {
csnd::myfltvec &out =
outargs.myfltvec_data (0);
csnd::myfltvec &inl =
inargs.myfltvec_data(0);
csnd::myfltvec &in2 =
inargs.myfltvec_data(1l);

if (in2.1len() < inl.len())
return csound->init_error (
Str("second input array"
" is too short\n"));

inl.len());
inl, in2);

out.init (csound,
return process (out,

}

int kperf () {
return

process (outargs.myfltvec_data(0),
inargs.myfltvec_data (0),
inargs.myfltvec_data(1));
}
s

This class template then is instantiated to
create various opcodes based on different two-
operand functions:

csnd::plugin<ArrayOp2<std::atan2>>
(csound, "taninv",
"i[l", "i[Ji[l", csnd::thread::i);
csnd::plugin<ArrayOp2<std::atan2>>
(csound, "taninv",

"k[J]", "k[lk[]", csnd::thread::ik);
csnd::plugin<ArrayOp2<std::pow>>

(csound, "pow",

"i[]", "i[Ji[l", csnd::thread::i);
csnd::plugin<ArrayOp2<std::pow>>

(csound, "pow",

"k[1", "k[1k[]", csnd::thread::ik);

csnd::plugin<ArrayOp2<std::hypot>>

(csound, "hypot",

"i[]", "i[Ji[l", csnd::thread::1i);
csnd::plugin<ArrayOp2<std::hypot>>

(csound, "hypot",

"k[I1", "k[Jk[]", csnd::thread::ik);
csnd::plugin<ArrayOp2<std::fmod>>

(csound, "fmod",

"i[]", "i[]i[l", csnd::thread::i);
csnd::plugin<ArrayOp2<std::fmod>>

(csound, "fmod",

"k[1", "k[Ik[]", csnd::thread::ik);
csnd::plugin<ArrayOp2<std::fmax>>

(csound, "fmax",

"i[]", "i[Ji[l]", csnd::thread::1i);
csnd::plugin<ArrayOp2<std::fmax>>

(csound, "fmax",

"k[1", "k[lk[]", csnd::thread::ik);
csnd::plugin<ArrayOp2<std::fmin>>

(csound, "fmin",

"i[]", "i[Ji[l", csnd::thread::i);
csnd::plugin<ArrayOp2<std::fmin>>

(csound, "fmin",

"k[1", "k[Ik[]", csnd::thread::ik);

This is a good example of how we can apply
modern a C++ idiom to create compact code
for the generation of a family of related opcodes.

6 Conclusions

Perhaps one of the conclusions of this paper is
that C++ is not such a terrible choice for the
implementation of computer music instruments.
While C is still the preeminent language for au-
dio signal processing, the latest C++ standards
have made that language somewhat more inter-
esting, providing almost a blend of high-level
scripting with a (hopefully) efficient implemen-
tation.

References

ISO/IEC. 2011. ISO international standard
ISO/IEC 4882:2011, programming language
CH++.

ISO/IEC. 2014. ISO international standard
ISO/IEC 14882:2014, programming language
C++.

ISO/IEC. 2017. Working draft, standard for
programming language C++.

V. Lazzarini, J. ffitch, S. Yi, J. Heintz, O.
Brandtsegg, and I. McCurdy. 2016. Csound:
A Sound and Music Computing System.
Springer Verlag.

V. Lazzarini. 2000. The SndObj sound object
library. Organised Sound, (5):35-49.

V. Lazzarini. 2013. The development of com-
puter music programming systems. Journal
of New Music Research, (42):97-110.

V. Lazzarini. 2017a. Computer Music Instru-
ments. Springer Verlag.

V. Lazzarini. 2017b. The csound plugin op-
code framework. In SMC 2017 (under re-
view), Helsinki.

V. Lazzarini. 2017c. The design of a
lightweight dsp programming language. In
SMC 2017 (under review), Helsinki.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of faust. Soft
Computing, 8(9):6237632.

T. Wishart. 1996. Audible Design. Orpheus
The Pantomine.

