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Abstract—In this paper, a scheme for coupling free-space
THz radiation into a nonlinear whispering-gallery mode (WGM)
resonator is presented. The purpose is to detect the weak THz
radiation from the cosmic microwave background (CMB) by up-
converting the signal into the optical domain via the nonlinearity
of the medium. Such high-sensitivity receiver has theoretically
shown capabilities towards photon counting at room temperature,
however, it is critical to efficiently couple the THz radiation into
the resonator. Therefore, by using the Schelkunoff-Waterman
method (the so called T-matrix method) we perform an analytical
evaluation of two different free-space coupling techniques: a free-
space Gaussian beam, and a Gaussian beam incident in a silicon
lens under total internal reflection. By comparing the excited
modes in the resonator, the optimal parameters for each case
are given.

Index Terms—Cosmic microwave background, THz, photon-
counting, whispering-galley mode, T-matrix.

I. INTRODUCTION

The measurement of the so called B-mode polarization com-
ponent of the cosmic microwave background would allow the
indirect detection of primordial gravitational waves, providing
a definitive test of inflationary paradigm [1]. Thus, this is
a high interest area where high-sensitivity photon-counting
receivers at sub-THz and THz frequencies are needed. A
receiver scheme which has theoretically shown capabilities
towards photon-counting sensitivity at room-temperature is the
nonlinear parametric up-conversion of the THz signal into
the optical domain via the second-order nonlinear response
χ(2) of a dielectric [2]. By mixing the THz signal with an
optical pump inside a nonlinear dielectric, sidebands are cre-
ated through sum frequency generation (SFG) and difference
frequency generation (DFG) [3]. Since the sidebands are in the
optical domain, they can be detected with currently available
high-sensitivity optical detectors. In order to achieve an effi-
cient nonlinear interaction of the THz signal and the optical
pump inside the medium, high field intensities are required.
A travelling-wave resonator made of a nonlinear material is

therefore suitable because it can considerably enhance the
intra-cavity field intensity in continuous wave (CW) operation.
A conceptual scheme of the receiver is depicted in Fig. 1. A
whispering-gallery mode is excited inside a resonator made
of LiNbO3 for each frequency (THz signal, optical pump
and up-converted optical signal), whose angular velocities
must be equal in order to fulfill the phase-matching condition
[4]. A prism is used to couple-in the pump coming from a
laser and to couple-out the up-converted signal which is then
detected by an optical receiver. Total internal reflection (TIR)
evanescent field arising from the prism interface allows the
coupling. Dielectric waveguides have shown to be suitable
for coupling the THz signal into the resonator since they
have a relatively well mode overlapping with the WGM
evanescent field [5], [6], however bulky interfaces including
a horn antenna and transitions are required to couple free-
space THz field to the dielectric waveguide. In this paper,
we evaluate the coupling given by the TIR field arising
when a THz Gaussian beam is incident into a semi-spherical
silicon lens beyond the critical angle, and compare this with
the direct coupling of the Gaussian beam without lens. This
lens coupling mechanism emulates the prism used for optical
frequencies. The analysis is carried out by computing the
excited fields inside the resonator due to the incident field,
by means of the Schelkunoff-Waterman method.

The paper is structured as follows: In Section II we briefly
discuss the mathematical formulation of the problem and
compute the resonator’s internal field matrix. In Section III,
the free-space and TIR Gaussian beam field wave expansions
are computed. Finally, we present results of the analysis in
Section IV and conclusions in Section V.

II. MATHEMATICAL FORMULATION

In order to study the coupling of the field into the res-
onator, we reduce the system to a scattering problem, with
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Fig. 1. General receiver scheme. The laser pump and up-converted signal
are coupled through a prism via frustrated total internal reflection. A THz
Gaussian beam is coupled as a WGM inside the resonator by means of a
semi-spherical lens.

the resonator being the scatterer and the free-space or TIR
Gaussian beam being the incident field. This assumes the
resonator resonance is not affected by the presence of the semi-
spherical which is a good approximation for confined WGM
as the ones we are dealing with [8]. Following [7], we use the
equivalence principle to remove the scatterer and substitute it
by equivalent surface primary sources J+ = ân×(Hi+Hs)
and M+ = ân× (Ei+Es), with ân being the normal vector
to the surface of the scatterer, Ei, Hi being the incident
electric and magnetic fields respectively, and Es, Hs being
the scattered electric and magnetic fields respectively. Such
sources radiate the field Es, Hs outside the body, and −Ei,
−Hi inside of it. Therefore, evaluating the observation point
r inside the resonator, we have:

∇×
∮
S

M+(r′) ·G(r, r′) dS′

−∇×∇×
∮
S

J+(r′)

iωε0
·G(r, r′) dS′ = −Ei(r) (1)

where we have assumed exp(iωt) harmonic time dependence,
S is the resonator surface and G(r, r′) = Ig(r, r′), being
g(r, r′) the free-space Green’s function and I the unit dyadic.
Now, we expand G(r, r′), Ei and the internal field of the
original problem Et, Ht in vector spherical harmonics which
form a complete basis [9]–[11] as:

G(r, r′) = iκ0
∑
n,m,σ

(−1)mF (3)
σ−mn(κ0, r

′)F
(1)
σ−mn(κ0, r)

(2)

Ei(r) = κ0
√
η0
∑
n,m,σ

aσmnF
(1)
σmn(κ0, r) (3)

Et(r) = κ1
√
η1
∑
n,m,σ

cσmnF
(1)
σmn(κ1, r) (4)

where κ0, η0 and κ1, η1 are the wavenumber and impedance
of vacuum and resonator respectively. The corresponding
magnetic fields can be obtained by changing σ → 3− σ and
multiplying by −i/η. In the above equations, the summation∑
n,m,σ ≡

∑∞
n=1

∑n
m=−n

∑2
σ=1 is truncated until some n =

N . The indices n and m determine the radial and azimuthal

behavior of the mode respectively, and σ = 1 represents TE
modes, while σ = 2 represents TM modes. The mathematical
expressions of F (1,3)

σmn(κ0, r) are given in [11]. Considering
that boundary conditions must hold, i.e, J+ = ân ×Ht and
M+ = ân×Et, and applying orthogonality properties of the
functions F (1,3)

σmn(κ0, r) over any spherical surface inside the
resonator whose volume contains a homogeneous medium, we
finally get a 2N × 2N system of equations:

a1uv =
∑
n,m

(
L2,1
mnuv +

η0
η2
L1,2
mnuv

)
c1mn

+

(
L2,2
mnuv +

η0
η2
L1,1
mnuv

)
c2mn (5)

a2uv =
∑
n,m

(
L1,1
mnuv +

η0
η2
L2,2
mnuv

)
c1mn

+

(
L1,2
mnuv +

η0
η2
L2,1
mnuv

)
c2mn (6)

with,

Lσsmnuv = Ku

∮
S

ân ·
[
F

(3)
σ−mn(κ0, r

′)× F (1)
smn(κ1, r)

]
dS′

(7)
where

Ku=
iκ0κ1(−1)u√

η0/η2
(8)

Such system of equations can be solved for the internal
field coefficients cσmn given the incident field coefficients
asuv . WGM resonators are axisymmetric (spheres, discs, rings,
etc), and in such case Lσsmnuv = 0 for u 6= m which
reduces considerably the computation time of the matrix of the
system. Surface integral of Eq. (7) must be solved numerically,
however it simplifies to a 1-dimensional one for axisymmetric
resonators. In the case the scatterer is a sphere, Lσsmnuv = 0
for (u, v) 6= (m,n) and the resultant matrix is diagonal.

III. INCIDENT FIELD EXPANSIONS

We take into consideration two cases of interest: A Gaussian
beam in free space and under TIR when changing from the
dielectric lens medium, to vacuum. In each case, the fields will
be expanded in a superposition of plane waves, and each one
of these will be expanded in vector spherical harmonics. This
way the total incident field coefficients asuv are determined.

A. Free-space Gaussian Beam

Consider a Gaussian beam propagating in the +z direction,
with its focus in the origin of the coordinate system, beam
waist w0, and linear polarization in the x axis. The x compo-
nent of the field Ex in the plane z = 0 has the form [12]:

Ex = E0 exp

(
−x

2 + y2

w2
0

)
(9)

whose two dimensional Fourier transform in the plane xy (or
plane wave spectrum) is
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Fxy [Ex] = πw2
0E0 exp

[
−w

2
0

4
(κ2x + κ2y)

]
(10)

so we can obtain the field as a continuous superposition of
plane waves, i.e,

Ex(r) =
w2

0E0

4π

∫ ∞
−∞

∫ ∞
−∞

exp

[
−w

2
0

4
(κ2x + κ2y)

]
· exp (iκ · r) dκx dκy (11)

where κ = κxâx + κyây + κzâz and κz =
√
κ20 − κ2x − κ2y

The surface integral of Eq. (11) spans over an infinite domain
(κx, κy). However, for κ2x + κ2y > κ20, the spectrum has small
values and such fraction of evanescent waves can be neglected
[12]. Therefore we can perform the integration over a circle of
radius κ0 in the plane (κx, κy). In order to satisfy Maxwell’s
equations, the field must also have a z component given by
the relation E · κ = 0, thus

E(r) =

(
âx −

κx
κz
âz

)
Ex(r) (12)

The total field can be evaluated by changing variables in the
area integral of Eq. (11) to express κ in spherical coordinates,
yielding

E(r) =
w2

0E0κ
2
0

8π

∫ 2π

0

∫ π/2

0

(
âx −

cosϕ

cos θ
âz

)
sin 2θ

· exp
[
−
(w0

2
κ0 sin θ

)2]
exp (iκ(θ, ϕ) · r) dθ dϕ (13)

with,

κ(θ, ϕ) = κ0 (sin θ cosϕâx + sin θ sinϕây + cos θâz) (14)

The expression for the beam with the focus in an arbitrary
position r0 can be obtained replacing r → r−r0 in Eq. (13).

The expansion coefficients bσmn of a plane wave
A exp [iκ(θ, ϕ) · r] in vector spherical harmonics are given
by [11]:

bσmn =
2
√
π(−1)m+1

κ0
√
η0

iA ·K∗σmn(θ, ϕ) (15)

where, K∗σmn(θ, ϕ) is the conjugated of the far-field pattern
function composed by Legendre polynomials given in [11].
Eq. (15) is valid for complex angles θ, ϕ allowing the repre-
sentation of evanescent plane waves. Finally, expanding each
plane wave of Eq. (13) into a series analogous to Eq. (3) with
the coefficients given by Eq. (15), the resulting coefficients
of the total beam are determined by the following numerical
integral:

aσmn = Cm

∫ 2π

0

∫ π/2

0

(
âx −

cosϕ

cos θ
âz

)
·K∗σmn(θ, ϕ)

· sin 2θ exp
[
−
(w0

2
κ0 sin θ

)2]
dθ dϕ (16)

Fig. 2. Incidence of a Gaussian beam from silicon (n2) to vacuum (n0)

with
Cm =

i(−1)m+1w2
0E0κ0

4
√
π
√
η0

(17)

In order to represent an arbitrarily oriented Gaussian beam,
Eq. (16) can still be used considering the integral sweeps over
the θ and ϕ angles with respect to the beam’s axis. However,
the function K∗σmn must be evaluated at the actual angles
θ′(θ, ϕ) and ϕ′(θ, ϕ) with respect to the fixed coordinate
system, and the unitary vectors must be evaluated in such
coordinate system as well.

B. Gaussian beam under TIR

Consider the dielectric-air interface placed in the y = 0
plane, and a Gaussian beam arbitrarily oriented coming from
the dielectric to the interface (see Fig. 2). From the ar-
bitrarily oriented form of Eq. (16) we apply Snell’s laws
to each plane wave coming from silicon determined by
K∗σmn(θ

′(θ, φ), ϕ′(θ, φ)) and the wavevector κ2 forming an
angle γ2 with the interface. Then, the plane wave is refracted
to vacuum with wavevector κ2 forming an angle γ0 with the
interface which is determined by

γ0 = arccos

(
n2
n0

cos γ2

)
(18)

where γ2 = arcsin(sin θ′ cosϕ′) and must be real. γ0 can be
complex if the specific plane wave is under TIR. In any case,
the transmitted wave vector is given by

κ0 = cos γ0ρ̂+ sin γ0ây = κ0xâx + κ0yây + κ0zâz (19)

with ρ = κ2 − (κ2 · ây) ây being the real normal vector
to ây and parallel to the plane of incidence. From that, the
transmitted plane wave angles (θ′0, φ

′
0) are

θ′0 = arccos

 κ0z√
κ20x + κ20y + κ20z

 (20)

ϕ′0 = arccos

 κ0x√
κ20x + κ20y

 (21)

ϕ′0 = arcsin

 κ0y√
κ20x + κ20y

 (22)
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The angle ϕ′0 must be simultaneously determined from
multi-valuated Eqs. (21) and (22). θ′0 and ϕ′0 are in general
complex and must be substituted in K∗σmn(θ

′
0, ϕ
′
0) from Eq.

(16) after multiplying by the Fresnel coefficients for each
polarization. Note that (θ′0, ϕ

′
0) depend on γ2, which depend

on (θ′, ϕ′) which is in turn a function of the integration
variables (θ, ϕ) according to arbitrary rotation of the beam.
The dielectric-air interface can be translated a distance d
in the −y axis to some point y = −d by substituting
r → r + dây in Eq. (13) which leads to a multiplication
factor exp [iκ0y (θ′0, ϕ

′
0) d] in Eq. (16).

IV. RESULTS

In this section, we study the coupling in an spherical
resonator made of sapphire with refractive index nr = 3.01.
The radius of the sphere is Ra = 2.5mm and is being
excited at its resonance frequency for a fundamental TE WGM
of mode number m,n = 8, 8. The resonance frequency is
determined by the characteristic equation [8].

d

dr
[rjn(nrκ0r)]

∣∣∣∣
r=Ra

h(1)n (κ0Ra)

=
d

dr
[rh(1)n (κ0r)]

∣∣∣∣
r=Ra

jn(nrκ0Ra) (23)

where jn(x) is the spherical Bessel function h
(1)
n (x) is the

spherical Hankel function of first kind. The solution of this
equation for the mode n = 8 is a complex frequency whose
imaginary part accounts for the radiation and absorption losses
and whose real part results f = 73.28GHz. Since we are
dealing with a sphere, the internal field matrix, and its inverse
are diagonals as was shown in Section II. Therefore, the
internal field coefficients can be determined with the simple
relation

cσmn = D−1mnaσmn (24)

where Dmn are the diagonal elements of the matrix. Due to
the strong resonance of modes n = 8, the elements D−1mn act
as filter of such modes for the given frequency as shown in
Fig. 3. Therefore, is sufficient to compare the strength of the
desired mode in the expansion of the different incident fields.

A. Free-space Gaussian beam coupling

Fig. 4 shows the coupling scheme of a free-space Gaussian
beam traveling in x direction with polarization in z direction.
The beam’s focus and the center of the sphere are separated a
distance h in a plane which is transversal to the beam. Figure
5 shows there is an optimal distance h where the coupling
to mode m,n = 8, 8 is maximized. This distance agrees with
the approximation given in [13] and is physically linked to the
Van de Hulst’s localization principle [14]. The beam waist is
w0 = λ0, but an iterative study also showed that for the same
beam power, the magnitude of a188 decrease monotonically
by increasing the beam waist w0 or by translating the focus

Fig. 3. Magnitude of the diagonal elements of the inverse matrix as a function
of the mode m,n

Fig. 4. Free-space Gaussian Beam coupling

Fig. 5. Magnitude of the Gaussian beam mode TE m,n = 8, 8 as a function
of the distance h from the focus to the center of the sphere

point towards the x direction. Fig 6 shows the resulting excited
field inside the resonator is a WGM m,n = 8, 8 with a field
intensity higher than the incoming Gaussian beam’s electric
field amplitude of 1V/m.

B. TIR Gaussian beam coupling

A similar study has been done for the TIR case. A Gaussian
beam with waist radius w0 = λ0 propagates from a silicon
medium (n2 = 3.42) to the silicon-air interface which is at
a distance g = 0.05λ0 from the surface of the resonator.
Different incidence angles were evaluated to obtain the curve
shown in Fig. 7. It can be seen an optimal angle exists at
γ2 = 32.6◦, which is close to the angle a plane wave must
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Fig. 6. Electric field excited inside the resonator with the free-space Gaussian
beam coupling in the plane z = 0. The beam has an electric field amplitude
of 1V/m.

Fig. 7. Dependence of the coefficient |a188| with the incidence angle of the
beam

propagate with in order to phase-match the WGM evanescent
field with the TIR evanescent field:

γ2approx
= arcsin

(
cm

2πfn2Ra

)
≈ 37.58◦ (25)

As in the previous section, increasing the beam waist while
keeping the same power, or moving the focus point along the
direction of propagation, only decreases the coupling strength.
Note that the coefficient a188 is about 25 time higher for the
TIR case than for the free-space case which means the lens is
suitable for free-space coupling. Fig 8 shows the excited WGM
is again the desired m,n = 8, 8 mode with a much higher
amplitude than in the free-space Gaussian beam case. In order
to compare with the same incoming power, the beam’s electric
field amplitude has been scaled accordingly to 1/

√
n2 V/m.

V. CONCLUSION

The mathematical framework of the Schelkunoff-Waterman
method has been used to study the excited internal field
of a spherical resonator for a given incident field structure.
Two free-space different excitations configurations have been
compared: free-space Gaussian beam, and Gaussian beam
incident in a silicon lens under TIR. The latter showed a con-
siderable improvement in the coupling strength of a particular
mode, although the influence of the lens in the resonance was

Fig. 8. Electric field excited inside the resonator with the TIR Gaussian
beam coupling in the plane z = 0. The beam has an electric field amplitude
of 1/

√
n2 V/m.

neglected. As a better approximation we can compute the mul-
tiple reflections appearing between the lens planar interface
and the resonator. This approach is suitable to quickly analyze
the performance of different incident field configurations and
other resonator geometries, although numerical inaccuracies
arise for high permitivities or highly non-spherical bodies.
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