
Entropy Estimates for the Irish Language
Sai Chaithanya Kumar Palada

Department of Mathematics and Statistics,
Maynooth University,

Kildare, Ireland.

David Malone
Hamilton Institute / Department of Mathematics and Statistics,

Maynooth University,
Kildare, Ireland.

Abstract—Entropy estimates for natural languages are useful
for a number of reasons. For example, they can be used to
estimate the length of a translated text or the amount of text
required to make a brute-force attack on an encrypted message
feasible. This paper briefly reviews the development of techniques
for entropy estimation and then applies modern techniques to
Irish text. We believe this addresses a gap in the literature giving
an entropy estimate for the Irish language. We discuss our results
in the context of entropy estimates for equivalent English text.

Index Terms—entropy, compression, estimation, natural lan-
guage, Irish, English

I. INTRODUCTION

The information entropy of a source was introduced by
Shannon [1] in the 1940s. The entropy of a source of messages
describes the average number of bits required to store a
message from that source or to transmit such a message.
Shannon considered the question of how one might estimate
the entropy for English by considering the frequencies and
predictability of words and characters [2].

More formally, a source produces message X that is random
and P[X = mi] = pi. The Shannon Entropy is given by

H(X) = −
∑
i

pi log2 pi. (1)

For a source with only two messages that occur with probabil-
ity p and 1− p this is sometimes written h(p) = −p log2 p−
(1 − p) log2 1 − p. When considering natural languages, the
traditional quantity to consider has been the entropy per char-
acter. That is, if we consider a random message Xn of length
n from the language, then we would calculate H(Xn)/n. In
order to average out short term correlations in a language, one
would ideally evaluate the limit as n→∞.

One could estimate the entropy directly using Shannon’s
formula by estimating the probabilities of various sequences
of characters. Under assumptions, such as stationarity and
ergodicity of the letters of the language, the entropy per
character can be related to the predictability of the next in a
sequence of characters of the language. This allows estimates
using the predictability of the language [2], [3]. However, as
techniques for data compression on computers improved (e.g.
[4]), it became possible to exploit the links to data storage
requirements and use compression to estimate entropy.

While these techniques were originally applied to English,
they have also been applied to other languages including
Arabic, Chinese, French, Greek, Japanese, Hebrew, Korean,
Russian and Spanish [5]–[7]. However, as far as we are
aware, these techniques have not yet been applied to the
Irish language. In this paper, we will apply data compression
techniques to estimate the entropy of the Irish language using
three different sources. We will also apply the techniques to
the equivalent English documents and compare the results.

In addition to having applications in the storage and trans-
mission of messages, knowing the entropy of a language has
a number of other applications. For example, it can be related
to the security of a cipher through the unicity distance [8] and
can be related to other measures of security (e.g. [9], [10]). In
a broader context, it is also used as a measure of randomness
or unpredictability, which can be optimised when designing
data analysis techniques (e.g. [11], [12]).

The paper is laid out as follows. In Section II we describe
the method that we follow to carry out entropy estimation for
natural language texts. Section III describes our source texts
in Irish and English, and also describes synthetic data sources
that we use for validation. Section IV begins by describing
the results of validating the method, followed by the results
of applying the method to our natural language data sets.
Section V makes some observations on our results and the
paper concludes in Section VI.

II. METHOD

We follow the method outlined in [7]. We begin by taking
a sample of text in a language. We take the first n characters
of the sample and compress them to get a file of size R(n)
and then calculate the compression rate r(n) = R(n)/n. If
the compression is efficient for the language in question, then
R(n) should be close to the entropy of Xn, and so r(n) will
be close to the entropy per character. Consequently, we would
like to know the value of r(n) as n→∞.

A. Compressors

In practice, we have to choose a suitable compressor that
will be efficient for Irish. We will consider using the common
compressors zip (deflate), gzip, bzip2, xz and 7z in PPMd
mode. The PPMd compressor [13] has proven particularly
effective with other natural languages [5], [7] and we expect it
to be similarly effective when applied to Irish. We also include
the Zopfli compressor [14], which compresses data in a format978-1-7281-2800-9/19/$31.00 ©2018 IEEE

Compressor Command Line
zip zip -9 -q
gzip gzip --best
bzip2 bzip2 --best
xz xz --best
7z 7z a -m0=PPMd -mo=9 -mmem=26 -si
zopfli zopfli -c

TABLE I
OPTIONS USED FOR EACH COMPRESSOR.

that is compatible with traditional formats such as gzip, but
achieves more efficient compression at the cost of much higher
compression times.

The compressors used are summarised in Table I, including
the command line options used to invoke the compressors. The
compressors have been used in aggressive modes, intended
to achieve efficient compression. Also, where possible, the
compressors have been run in a filter mode1, so that extra-
neous information about filenames will not be stored with the
compressed data.

B. Estimation of Entropy Rate

Another choice we have to make is how to estimate r(n)
as n → ∞. One option is to simply take a large amount
of text and find r(n∗) for this text, where n∗ is the size of
the text. We will present results using this method. However,
typically the compression rate improves as the compressor sees
more data allowing it to learn the statistics of the language.
This, combined with overheads associated with writing out
file headers and other data structures, mean that the limiting
value of r(n) would be typically be expected to approach the
entropy from above.

This leads to a second strategy: fitting a curve to r(n)
and using the fitted curve to extrapolate to the limit. Several
possible parameterised curves2 have been proposed, but we
will fit f(n) = Anβ−1 + h, corresponding to the f1 function
from [7]. To fit the curve we use the points ni = 26, 27, . . .
and including powers of 2 up to and including the file size.
The file size is included if it is not a power of two. To find the
parameters, we follow [7] and find parameters that minimise∑

i

(ln r(ni)− ln f(ni))
2
.

This reduces the impact of larger absolute errors that may be
seen for smaller i, as we really want to extrapolate beyond
the largest n values. To take the limit of f1 as n → ∞, we
simply use the fitted value of h.

C. Implementation

As the compression phase of this process involves Unix
command-line tools, we implemented the compression phase
using a shell script to automate the process. The plotting
of data and fitting of curves is then implemented with the
gnuplot package.

1A filter mode reads from C’s stdin and outputs to stdout.
2These are sometimes referred to as an ansatz.

Source Lang Characters Bytes Words Naı̈ve Entropy
Bible GA 4866723 5220849 879623 4.445
Bible EN 4164527 4164527 790020 4.405
Constitution GA 142291 150890 23866 4.755
Constitution EN 138135 139331 22679 4.770
GDPR GA 395278 422247 63262 4.392
GDPR EN 352067 352324 55124 4.400

TABLE II
A SUMMARY OF THE DATA SETS USED TO ESTIMATE THE ENTROPY.

CHARACTER AND WORD COUNTS ARE CONDUCTED WITH THE WC TOOL IN
A UTF-8 LOCALE.

III. DATA SOURCES

A. Irish and English Texts

We work with three sets of data, available in both English
and Irish. The first is the Bible. For an Irish version, we use
An Bı́obla Naofa, a 1981 translation of the Bible into Irish
[15]. To produce suitable plain text, PDF files of each chapter
were converted to plain text using the pdftotext command
line tool with the -layout option. The resulting text was
in UTF-8 and was cleaned by removing lines beginning with
page feeds, removing digits that appeared to be verse numbers,
removing leading/trailing blank space and removing duplicate
spaces or blank lines. The resulting UTF-8 contains some
accented characters outside the ASCII range and some other
characters such as left- and right-quotation marks.

For an English version of the Bible, we took the Project
Gutenberg version of the King James Bible [16]. Project
Gutenberg provide a UTF-8 version, which is trimmed to begin
at the text The First Book of Moses and end just before the text
End of the Project Gutenberg EBook of The King James Bible.
Verse numbers are removed and white space is regularised in
a similar manner to that applied to the Irish text. This results
in a plain ASCII file. Note that the books included in the King
James Bible and An Bı́obla Naofa are slightly different.

Our second source of text is the Constitution of Ireland.
The text is available as a PDF with parallel Irish and English
text. The pages were separated into two PDF files for Irish and
English pages, including the index pages. The third text is EU
Regulation 2016/679, the General Data Protection Regulation
(GDPR) [17]. This document is available as a PDF in each
official European language. For both sources the pdf was
converted to plain text with pdftotext -layout and
repeated white space, etc., was removed. The result for both
was UTF-8 encoded text. The English version of both contains
a small number of non-ASCII characters.

Table II shows a brief summary of our sources, giving the
number of UTF-8 characters, bytes and words in the file.
We also provide a naı̈ve estimate of the entropy, using just
the frequencies of the characters and equation 1. This would
correspond to ignoring the correlation between characters and
assuming that each character is drawn to be independent and
identically distributed (IID).

B. Validation Data Sets

In addition to these sources of natural language, we also
use two synthetic sources of text for validation. The first is a

 1

 10

 100 1000 10000 100000 1x10
6

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

Fig. 1. Performance of various compressors on random Bernoulli 0/1 text.

list of one million ASCII 0 or 1 characters, chosen using a
cryptographic random number generator3. We regard these as
a Bernoulli random source and this source should ideally have
an entropy of h(0.5) = 1 bit per character.

The second validation source is a list of one million ASCII
0 or 1 characters, where the nth character is 1 if the nth

odd number is prime. Though the primes are not randomly
distributed their structure is complex and so a generic data
compressor is unlikely to identify the pattern. There are
148,932 odd primes less than two million, so a 1 character
occurs with probability 0.148932. Thus, for a compressor that
noticed no other structure, one would expect an entropy of
around h(0.148932) ≈ 0.607 bits per character.

More generally, there are approximately n/ lnn primes
less than n and only one is even [18]. Given that there
are approximately n/2 odd numbers up to n, the density
of odd primes up to n is roughly 2/ lnn − 2/n. If they
appear randomly distributed, the entropy will be approximately
h(2/ lnn − 2/n). We will call this the random estimate for
the primes data.

IV. RESULTS

A. Validation

To validate our framework, we first apply it to the random
Bernoulli 0/1 data. The results are shown in Figure 1, where
the values of r(n) are shown for our different compressors.
We see that from about 30,000 characters, the 7z PPMd
compressor is most effective, as it has the smallest r(n) values.
Table III shows the r(n∗) ratio for the full file size, n∗. We see
that we get entropy estimates of almost 1.3 bits per character
for the bzip2 compressor, around 1.2 bits per character for zip
and gzip, around 1.1 bits per character zopfli and xz, and 1.02
bits per character for 7z. Ideally, we expect an entropy of 1
bit per character, so these estimates are relatively good with
7z getting closest to the ideal estimates.

Also shown in the figure are the fitted curves. We can see
that they follow the points relatively closely. We are interested
in the limiting value of the curves as n becomes large, and we
see that the ordering of the curves is the same as the points for

3The generator was /dev/random on Mac OS X.

Source Lang 7z bzip2 xz zopfli gzip zip
Bernoulli none 1.022 1.282 1.100 1.119 1.199 1.200
primes none 0.603 0.606 0.619 0.666 0.751 0.752
Bible GA 1.736 2.068 2.118 2.677 2.813 2.813
Bible EN 1.528 1.796 1.854 2.316 2.444 2.444
Constitution GA 1.710 1.924 2.053 2.279 2.380 2.390
Constitution EN 1.610 1.835 1.929 2.142 2.238 2.248
GDPR GA 1.257 1.420 1.592 1.920 2.021 2.024
GDPR EN 1.196 1.350 1.486 1.804 1.901 1.905

TABLE III
ENTROPY ESTIMATES IN BITS PER CHARACTER USING r(n∗) AT THE FILE

SIZE, n∗ .

 0.1

 1

 10

 100 1000 10000 100000 1x10
6

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z
Random Estimate

Fig. 2. Performance of various compressors on bitmap of odd primes.

larger n. Table IV shows the results estimating the entropy via
the fitted curve, and again they estimate an entropy of a little
above 1 bit per character. Comparing the results to Table III
we see that the results are broadly similar.

Figure 2 shows the results for our second validation data
set, the bitmap of odd primes. By around 10,000 characters
7z is again the most efficient compressor, with the smallest
r(n) value. If we inspect Table III, the values of r(n∗) are
close to our estimate of 0.607, obtained by assuming that the
distribution of the primes looks random to the compressors.

Figure 2 shows that the fitted curves fit well again, and
Table IV shows that the fitted values for the entropy are close
to 0.607, though a little higher than the values taken from
r(n∗). Also shown in the figure is the random estimate from
Section III. We see that initially the entropy estimated by the
compressors is well above this random estimate, however, by
about 10,000 characters there is reasonable agreement.

Source Lang 7z bzip2 xz zopfli gzip zip
Bernoulli none 1.048 1.282 1.116 1.126 1.226 1.230
primes none 0.635 0.648 0.667 0.695 0.781 0.798
Bible GA 1.857 2.072 2.203 2.580 2.716 2.752
Bible EN 1.632 1.820 1.945 2.213 2.338 2.362
Constitution GA 1.654 1.620 1.786 2.039 2.160 2.414
Constitution EN 1.527 1.451 1.654 1.892 1.997 2.280
GDPR GA 1.170 1.040 1.322 1.592 1.709 2.041
GDPR EN 1.181 1.059 1.386 1.637 1.759 1.981

TABLE IV
ENTROPY ESTIMATES IN BITS PER CHARACTER VIA FITTING f1(n) AND

USING h AS THE ENTROPY ESTIMATES FOR VARIOUS COMPRESSORS.

 1

 10

 100 1000 10000 100000 1x10
6

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

 1

 10

 100 1000 10000 100000

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

 1

 10

 100 1000 10000 100000

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

Fig. 3. Performance of various compressors on Irish text. The Bible is shown
on the top, the Constitution of Ireland is shown in the middle and the GDPR
is shown at the bottom.

B. Irish and English Texts

Having validated our framework, we now want to move to
estimating the entropy per character for Irish. Figure 3 shows
the result of applying our framework to the three Irish texts. In
previous studies, the 7z PPMd has proven efficient for natural
languages, so we expect that it may also be efficient for Irish.
We see that for all three texts, by around 4,000 characters 7z
is already the most efficient compressor.

Inspecting the entropy estimates given by r(n∗) in Table III,
we see that the compressor efficiencies are consistently in the
order 7z, bzip2, xz, zopfli, gzip and zip for the Irish text. The
entropy of the Bible and Constitution text are about 1.7 bits
per character, while the GDPR directive has a lower entropy
per character of around 1.25 bits per character.

Interestingly, we observe that the fitted curves for the Irish

 1

 10

 100 1000 10000 100000 1x10
6

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

 1

 10

 100 1000 10000 100000
c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

 1

 10

 100 1000 10000 100000

c
o
m
p
re
s
s
io
n

ra
te

(b
its
/c
h
a
ra
c
te
r)

characters

zip
gzip
zopfi

xz
bzip2

7z

Fig. 4. Performance of various compressors on English text. The Bible is
shown on the top, the Constitution of Ireland is shown in the middle and the
GDPR is shown at the bottom.

text in Figure 3 do not follow the r(n) values as closely as we
saw for the synthetic text in Figures 1 and 2 For example, for
the Bible from about 8,000 characters to 400,000 characters
there is a significant gap between the 7z curve and the values
of r(n). A similar pattern is present in the results for the
Constitution between about 10,000 and 80,000 characters.

The results for estimating the entropy via the fitted curves
are shown in Table IV. While they are often within 0.1 bits
per character of the values estimated by r(n∗), there are some
compressor and text combinations that show larger differences.
With these estimates the smallest entropy estimates are given
by 7z for the Bible (about 1.85 bits per character), and bzip2
for the Constitution and GDPR (1.6 and 1.0 bits per character,
respectively).

For comparison, Figure 4 shows analogous results for the
equivalent English texts. We see that many of the features seen

for the Irish texts are repeated for the English texts, including
7z being the most efficient compressor from around 4,000
characters, a consistent order of compressor efficiency and
discrepancies between the curve fitting and the r(n∗) values
over similar ranges.

Consulting Table III, we see that the English text with 7z
gives about 1.5, 1.6 and 1.2 bits per character for the Bible,
Constitution and GDPR texts respectively. Interestingly, when
the extrapolated values in Table IV are used, the smallest
values are given by 7z for the Bible, but bzip2 for the other
two texts, as in Irish.

V. DISCUSSION

A first observation is that the entropy of the various texts
that we are working with is different. This is unsurprising, as
the style in which a text is written will have some impact on
the entropy. For example, though written mostly in English,
Joyce’s Ulysses has been estimated to have a high entropy of
around 2.2 bits per character, which is much higher than other
English texts, presumably due to its literary style [7].

For our Irish text, it appears that the Bible has higher
entropy per character and the GDPR appears to have quite
low entropy. As the English version of the GDPR also has
low entropy, this is likely to be due to subject matter and
style that EU regulations are written in. Translation software
is often used to ease translation of EU documents, which could
increase the regularity of the text and so decrease entropy.

A. Higher Entropy Irish

Our second observation is that Irish seems to have a higher
entropy per character than English, at least when calculated
in terms of the compression ratio r(n∗). This is potentially
surprising for a number of reasons. First, Irish works with a
23 letter alphabet4 compared to English’s 26 letter alphabet,
which would seem to reduce the number of options per
character. Second, Irish texts are typically longer than their
English translations, suggesting Irish requires more characters
to convey similar information.

When we investigated this, we found that though the Irish
texts contained more characters, the resulting compressed file
was also larger5. One possible explanation for this is that
in UTF-8 encoding, most characters used in English are
represented as a single byte, however the Irish vowels with
a fada are represented by multiple bytes, which count as a
single input character. However, a compressor will store a
small amount of extra information for a multi-byte character.

To determine if this explained the higher entropy for Irish,
we recomputed the results using the number of input bytes
instead of characters. The results are shown in Table V
when the compression ratio is calculated using bytes. When
compared to Table III we see the entropy reduced and the

4Irish is usually written using the letters a á b c d e é f g h i ı́ l m n o ó
p r s t u ú, however some loan words use other letters such as v. The accent
on the vowels is known as a fada.

5Though a direct comparison between the Bibles is not possible, as they
contain a different subset of books.

Source Lang 7z bzip2 xz zopfli gzip zip
Bible GA 1.619 1.928 1.974 2.495 2.622 2.622
Bible EN 1.528 1.796 1.854 2.316 2.444 2.444
Constitution GA 1.612 1.814 1.936 2.149 2.245 2.254
Constitution EN 1.596 1.819 1.912 2.124 2.218 2.229
GDPR GA 1.177 1.329 1.490 1.798 1.892 1.895
GDPR EN 1.195 1.349 1.485 1.802 1.900 1.904

TABLE V
ENTROPY ESTIMATES IN BITS PER BYTE USING rb(n∗) AT THE FULL FILE

SIZE, n∗ .

Source Lang 7z bzip2 xz zopfli gzip zip
Bible GA 1.730 1.932 2.054 2.402 2.528 2.563
Bible EN 1.632 1.820 1.945 2.213 2.338 2.362
Constitution GA 1.550 1.508 1.666 1.906 2.020 2.271
Constitution EN 1.511 1.428 1.633 1.869 1.973 2.262
GDPR GA 1.094 0.976 1.239 1.489 1.598 1.909
GDPR EN 1.181 1.059 1.385 1.637 1.758 1.980

TABLE VI
ENTROPY ESTIMATES IN BITS PER BYTE VIA FITTING fb

1 (n) AND USING h
AS THE ENTROPY ESTIMATES FOR VARIOUS COMPRESSORS.

gap is closed significantly. The entropy per byte for the Bible
and Constitution are still marginally higher for Irish, but the
entropy per byte for the GDPR in English is marginally higher.
For completeness, we also show the results of fitting curves
in Table VI.

At an intuitive level, one could make the argument that the
information contained in a document in a particular language
is the information in the document plus the information
about how to express that document in a particular language.
Thus, one might expect a certain consistency in the size of
compressed documents in different languages [5]. Indeed, Behr
et al. noted that the compressed size of the Bible is within
about 15% of the size of a compressed English bible [5].

Thus, observing larger compressed files for a language is in-
teresting, For our high-entropy Irish bible, it is approximately
30% larger than the compressed English bible when using 7z.
This suggests that while multibyte characters play some role
in the higher entropy per character of Irish, this may not be a
full explanation.

One possible explanation is that certain features of Irish
prove challenging for compressors, for example English has
a simpler system of noun declension, and in Irish nouns can
often be modified by a séimhiú (e.g. Constitution translates
as Bunreacht but my Constitution is mo Bhunreacht) or an
urú (e.g. our Constitution is ár mBunreacht) in different
circumstances, which may reduce opportunities for matching
previous strings.

B. Choice of Compressor

For both English and Irish we consistently saw that the 7z
PPMd was the most efficient compressor, while bzip2 came
in second. Interestingly, bzip2 found random data a challenge
to compress and was outperformed by some of the other
compressors. It is possible that one could tune the compressors
further to match the language of a particular document. Our

 0.1

 1

 10

 100

Bible Constitution GDPR

R
u
n

T
im
e

(s
)

7z
bzip2

xz
zopfi
gzip
zip

 0.1

 1

 10

 100

Bible Constitution GDPR

R
u
n

T
im
e

(s
)

7z
bzip2

xz
zopfi
gzip
zip

Fig. 5. Runtimes for the compression phase (on 2.3GHz Core i5 on OS X
Mojave). Irish texts are shown on the top, English texts below.

choice of parameters for 7z was guided by some further
experimentation [19].

While runtime of the compressors is not of direct interest
when estimating entropy, it will be of general interest where
data is compressed on-the-fly. We show the runtimes of the
compression phase in Figure 5 on a log-scale to emphasize the
relative runtimes. We observe that the compression times for
both Irish and English are similar. As noted in Section II, the
run time of the zopfli compressor is expected to be high, and
it is substantially higher than all other compressors. Zip, gzip
and bzip2 have low runtimes and 7z in PPMd mode appears
only slightly more expensive.

C. Curve Fitting and Extrapolation

While 7z was the most efficient compressor and gave the
smallest entropy estimates when using r(n∗), it did not always
give the smallest estimate when a curve was fitted to r(n).
However, for the natural languages, we did observe that the
curve fitting was not always satisfactory, and so there is reason
to regard these results more critically.

Note that we see features in the raw r(n) values that any
curve with a small number of parameters might have trouble
following. We investigated the original texts to see if there
was an obvious cause (e.g. a change of style) that might
explain these features. For example, 80,000 is in the middle
of Genesis in the bible, and there is no obvious reason why
behavior might change at this point. For the Constitution,
10,000 is approximately the beginning of the list of articles of
the constitution after the forward matter. However, the change
in style does not seem substantial at this point.

We did also investigate changing the range over which the
curve is fitted, and found that this could vary the predicted
h values. This indicates that trying to extrapolate as n →
∞ requires considerable care. Indeed, when we extrapolated
with our synthetic primes dataset, the fitted curve followed
our random estimate well, but then failed to identify that the
random estimate goes to zero as n → ∞. In a sense, this
is unsurprising, as 1/ lnn goes to zero much more slowly
than f1(n) can. However, the extrapolation actually gave larger

estimates than our r(n∗) value, contradicting our expectation
that the limiting value would be approached from above.

VI. CONCLUSION

In this paper we have reviewed a method to estimate the
entropy per character of natural language. We validated our
implementation of the method and then applied it to three texts
available in both Irish and English. Our estimates for entropy
per character vary from about 1.0–1.8 bits per character. When
compared to English, it appears that Irish has a slightly higher
entropy per character. Some of this difference appears to be
explained by the presence of multi-byte characters in Irish,
however the entropy estimates are still relatively high.

In future work, it would be useful to analyse more texts
in English and Irish, compare the entropy of Irish with other
languages using multi-byte encodings and also to investigate
the impact of using other encodings on entropy estimation.

REFERENCES

[1] C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[2] ——, “Prediction and entropy of printed english,” Bell System Technical
Journal, vol. 30, no. 1, pp. 50–64, 1951.

[3] T. Cover and R. King, “A convergent gambling estimate of the entropy
of english,” IEEE Transactions on Information Theory, vol. 24, no. 4,
pp. 413–421, 1978.

[4] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE transactions on Information Theory, vol. 24,
no. 5, pp. 530–536, 1978.

[5] F. Behr Jr, V. Fossum, M. Mitzenmacher, and D. Xiao, “Estimating
and comparing entropy across written natural languages using
PPM compression,” Tech. Rep., 2002. [Online]. Available: \url{http:
//nrs.harvard.edu/urn-3:HUL.InstRepos:25104999}

[6] L. Levitin and Z. Reingold, “Entropy of natural languages: Theory and
experiment,” Chaos, Solitons & Fractals, vol. 4, no. 5, pp. 709–743,
1994.

[7] R. Takahira, K. Tanaka-Ishii, and Ł. Debowski, “Entropy rate estimates
for natural language — a new extrapolation of compressed large-scale
corpora,” Entropy, vol. 18, no. 10, p. 364, 2016.

[8] C. Shannon, “Communication theory of secrecy systems,” Bell System
Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[9] D. Malone and W. Sullivan, “Guesswork is not a substitute for entropy,”
in Proceedings of the Irish Information Technology and Telecommuni-
cation conference, 2005.

[10] M. Christiansen and K. Duffy, “Guesswork, large deviations, and Shan-
non entropy,” IEEE Transactions on Information Theory, vol. 59, no. 2,
pp. 796–802, 2013.

[11] A. Holzinger, C. Stocker, B. Peischl, and K.-M. Simonic, “On using
entropy for enhancing handwriting preprocessing,” Entropy, vol. 14,
no. 11, pp. 2324–2350, 2012.

[12] K. Nigam, J. Lafferty, and A. McCallum, “Using maximum entropy
for text classification,” in IJCAI-99 workshop on machine learning for
information filtering, vol. 1, 1999, pp. 61–67.

[13] A. Moffat, “Implementing the PPM data compression scheme,” IEEE
Transactions on Communications, vol. 38, no. 11, pp. 1917–1921, 1990.

[14] J. Alakuijala and L. Vandevenne, “Data compression using Zopfli,”
Google, Tech. Rep., 2013.

[15] P. Ó Fiannachta, Ed., An Bı́obla Naofa. Irish Bible Society.
[16] P. Gutenberg, Ed., The King James Version of the Bible. [Online].

Available: http://www.gutenberg.org/ebooks/10
[17] European Union, “Regulation (EU) 2016/679 of the european parliament

and of the council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46,” Official Journal of the
European Union (OJ), vol. 59, no. 1-88, p. 294, 2016.

[18] G. Hardy and E. Wright, An introduction to the theory of numbers.
Oxford University Press, 1975.

[19] S. C. K. Palada, “Entropy estimation and compression of languages
using machine learning,” Tech. Rep., 2018.

