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Sensitivity of the performance of a conceptual rainfall–

runoff model to the temporal sampling of calibration data

Satish Bastola and Conor Murphy
ABSTRACT
The effect of the time step of calibration data on the performance of a hydrological model is

examined through a numerical experiment where HYMOD, a rainfall–runoff model, is calibrated with

data of varying temporal resolution. A simple scaling relationship between the parameters of the

model and modelling time step is derived which enables information from daily hydrological records

to be used in modelling at time steps much shorter than daily. Model parameters were found to

respond differently depending upon the degree of aggregation of calibration data. A loss in

performance, especially in terms of the Nash–Sutcliffe measure, is evident when behavioural

simulators derived with one modelling time step are used for simulation at another time step. The

loss in performance is greater when parameters derived from a longer time step were used for

simulating flow with a shorter time step. The application of a simple scaling relationship derived from

a multi-time step model calibration significantly decreased the loss in model performance. Such an

approach may offer the prospect of conducting higher temporal resolution flood frequency analysis

when finer scale data for model calibration are not available or limited.
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INTRODUCTION
Conceptual hydrological models are widely used for inform-

ing the practical management of water resources. Such uses

range from real time flood forecasting to the simulation of

future climate change impacts (Bastola et al. ). In apply-

ing models the appropriate simulation time step should

reflect the timing and scale of key processes of interest.

The aggregation of model input in time affects the ability

of a model to capture small-scale processes, thereby affect-

ing the identifiability of related model parameters. Poor

identifiability has notable implications for prediction uncer-

tainty, understanding hydrological processes and in

extending the use of hydrological models as a tool for predic-

tion in ungauged basins.

As a key input, the temporal and spatial pattern of rain-

fall plays an important role in determining the hydrological

response of river basins. Therefore, the influence of these

rainfall characteristics in simulating hydrological response

has been widely investigated (e.g., Krajewski et al. ;
Finnerty et al. ; Ishidaira et al. ; Littlewood &

Croke ; Wang et al. ). Ostrowski et al. () briefly

summarize past discussions (predominantly from the early

1980s) on the dependency of derived model parameters on

the rainfall time step used for calibration. More recently, a

number of authors have recognized the need to identify

the scale dependencies of critical hydrologic parameters

(e.g., Littlewood & Croke ; Wang et al. ).

Runoff scaling experiments conducted by Finnerty et al.

() show that the output from a lumped hydrological

model was sensitive to the spatial and temporal averaging

of rainfall inputs. They also presented a preliminary

approach for adjusting model parameters to account for

spatial and temporal variation in rainfall input. Krajewski

et al. () reported the greater influence of the temporal

resolution of rainfall inputs over spatial variability on

model output. More recently, the work of Littlewood &

Croke (), Wang et al. () and Ostrowski et al. ()
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has explored the time scale dependencies of hydrological

model parameters. These studies show that the parameters

describing different components of runoff response, their

identifiability and derived values, depend upon the temporal

sampling of the calibration data.

In particular, the parameters describing slow flow pro-

cesses reveal a low sensitivity, usually remaining constant

over the range of temporal scales, while parameters describ-

ing quick flow components showed high sensitivity and

dependence on time resolution. Littlewood & Croke

() show that the calibrated parameters of a unit hydro-

graph-based model change substantially over a range of

time steps from 1 to 24 hours used in calibration and high-

light the importance of accounting for model parameter –

data time step dependencies in pursuit of a reduction in

the uncertainty of simulations. The authors also suggest

that further work along these lines be undertaken using

different catchments and models.

Kavetski et al. () present quantitative and qualitative

insights into the time scale dependencies of hydrological

parameters, predictions and their uncertainties and examine

the impact of the time resolution of the calibration data on

model complexity. The authors argue that the use of likeli-

hood functions that better represent the statistical

description of the observed data can help in reducing time

scale dependencies of model parameters and in improving

the identifiability of increasingly complex model structures.

They concluded that fixed-step explicit time stepping,

which is usually adopted in conceptual hydrological

models, can create susbtantial time scale trend in the

model results. Clark & Kavetski () show that,

over vast regions of the parameter space, the numerical

errors of fixed-step explicit schemes commonly used in

hydrology routinely dwarf the structural errors of the

model conceptualization.

In the present context where rapid developments in

computational processing have allowed the possibility of

the estimation of flood frequency characteristics by continu-

ous simulation, a hydrological simulation using shorter time

steps is desirable as such simulations could provide better

performance in short-term river discharge estimation (e.g.,

Wang et al. ). However, rainfall and runoff data with

high temporal resolution are usually not available as desired.

Therefore, rainfall–runoff models are commonly calibrated
s://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
at coarser time scales (e.g., daily). Subsequently, parameters

are then used in conjunction with finer scale input data

observed or generated from stochastic rainfall generators

to produce simulations with a sub-daily time step (e.g.,

Blazkova & Beven ; Cameron et al. ).

In this study, we revisit the issue of temporal sampling in

hydrological modelling. It is worth noting that issues related

to the numerical implementation of hydrological models is

not dealt with explicitly here. The conceptual model is

solved using fixed-step explicit time stepping. Here we

focus on deriving functional relationships between the par-

ameters of the conceptual hydrological model HYMOD

and the temporal resolution of the calibration data, so that

more realistic modelling of hydrological processes can be

conducted at sub-daily time steps where data availability

does not allow calibration at time steps shorter than daily.
METHODS

In order to investigate the effect of temporal sampling of

data on model performance and the value of derived

model parameters, a numerical experiment is devised

where a rainfall–runoff model is calibrated using varying res-

olutions of rainfall and runoff data. Subsequently, different

parameter sets or ‘simulators’ are identified for each

resolution using the generalized likelihood uncertainty

estimation (GLUE) method. A functional relationship

between model parameters and the data resolution is

derived which is then evaluated using a period and catch-

ment other than that used for calibration.

Study area, model and data

The method is applied to two study catchments located

within the Republic of Ireland: the river Moy at Rahans

(1,803 km2), located on the western coast of Ireland and

the Boyne at Slane Castle (2,452 km2) located on the east

coast. In the context of Irish climate, the Moy basin is

wetter (SAAR¼ 1,323 mm) and has a higher runoff coeffi-

cient than the Boyne (SARR¼ 890 mm). The Boyne can

be considered to represent a relatively dry basin in the

Irish context, whereas the Moy can be considered to rep-

resent a wet basin. Observed stream flow data were
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obtained from the Office of Public Works (available at

http://www.opw.ie/hydro/), and observed precipitation

and temperature data were obtained from Met Éireann,

the Irish National Meteorological Service for the period

1971–2000.

To evaluate the sensitivity of model parameters to the

time step used for calibration we employ the HYMOD

model (see Boyle ; Wagener et al. ). HYMOD is a

lumped model and is frequently used for prediction and

scientific evaluation purposes. The model uses a non-linear

tank connected with two series of linear tanks in parallel

to model the rainfall excess mechanism. Runoff generation

consists of two components, a slow flow component and a

quick flow component. The model has a non-linear com-

ponent which partitions precipitation into precipitation

excess. Furthermore, the model has a linear routing com-

ponent (Figure 1). In HYMOD, the spatial variation in

store capacity over a basin is represented by the reflected

power distribution function (Equation (1)).

F(C) ¼ 1� 1� C
Cmax

� �Bexp

0 � C � Cmax (1)

where F(.) is a water storage capacity distribution function,

Cmax is the parameter that defines the size of the largest

water storage capacity within the catchment, Bexp is the par-

ameter that defines the degree of spatial variability in the

water storage capacities. The model uses a parameter, α, to
Figure 1 | Structure of HYMOD model.
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partition the water from surface storage to slow and fast

reservoirs or tanks. These fast and slow reservoirs are used

in the model for the translation of water to the basin

outlet. For translation, the model uses a single linear reser-

voir to simulate the slow flow component of basins and

three identical reservoirs, characterized with only a single

parameter, in series to simulate the quick component. The

time constant for these reservoirs are characterized by par-

ameters Ks and Kq, respectively for the slow and quick

flow tanks. The model output is the summation of the flow

from these two tanks. Evapotranspiration occurs at the

potential rate if sufficient soil moisture is available and

then occurs at a reduced level depending upon the available

soil-moisture content. The slow flow component, modelled

using one linear reservoir, represents the groundwater,

while the quick flow component, which represents the sur-

face flow, is modelled using three identical quick flow

reservoirs. In the present application of HYMOD, a total

of five parameters require estimation through model cali-

bration. The prior uncertainty range of parameter values

used for simulation is as shown in Table 1 (see also Vrugt

et al. ).

Parameter scaling

The application of the model with coarse scale input data

(e.g., daily) for modelling hydrological response at shorter

time steps (e.g., sub-daily) can be achieved by suitably

http://www.opw.ie/hydro/
http://www.opw.ie/hydro/


Table 1 | Parameters of HYMOD and their ranges

Sn
Description of model
parameter Abbreviation Minimum Maximum

1 Maximum storage capacity
in the basin

Cmax (L) 200 500

2 Spatial variability of soil-
moisture distribution
within the basin

Bexp 0.1 2

3 Flow distribution between
the quick and slow
linear reservoirs

A 0.2 1

4 Residence time of the
quick release reservoir

Kq (day
�1) 0 0.9

5 Residence time of the slow
release reservoir

Ks (day
�1) 0 0.1
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adjusting the parameters to account for the effect of the tem-

poral sampling of data on model parameter estimation.

Defining a relationship between model parameters and the

temporal scale is the simplest way to make an adjustment.

Here we use the equation:

θ0T 0 ,i ¼ θT ,i þ βiθT ,i(T � T 0)=100 (2)

where θT ,i is the ith parameter estimated with the modelling

time step T. The primed quantity refers to the desired short

time step (sub-daily) and unprimed refers to longer

scale time step (daily). This relationship linearly scales the

value of model parameters based on desired sub-daily time

step and daily time step. The scaling factor β is estimated

from the calibration dataset.

Experience with hydrological modelling and parameter

calibration has shown that a large number of plausible

values exist that result in behavioural parameter sets that

can produce acceptable simulations from wide ranges of

parameter space. One way to avoid the effect of parameter

uncertainty in deriving the scaling relationship is to base

the derived relationship on the median value of behavioural

model parameters. The scaling relationship between the

median parameter value and the time scale can be based

on parameter values estimated for each 3-, 6-, 12- and 24-

hour modelling time step.

Alternatively, the scaling relationship can also be

obtained by simultaneously maximizing the performance

for each time step with respect to chosen objective criteria.
s://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
This allows simulataneous estimation of model parameter

and scaling relationships. In relation to the latter, following

Bastola et al. () we used the Nash–Sutcliffe efficiency

(NSE) of simulated streamflow and the NSE for transformed

flow, to consider the heteroscedastic variance in flow, where

the flow was transformed explicitly before evaluating the

objective function by using Equation (3):

z ¼ [(yþ 1)λ � 1]=λ (3)

where λ is the transformation parameter, selected to be 0.3, z

is the transformed streamflow, and y is observed streamflow.

It is referred to as HMLE (Heteroscedastic Maximum Like-

lihood Estimator) hereafter. For the simultaneous estimation

of the model parameter and scaling relationship, a multi-

objective multi-timestep calibration method is used. Multi-

time step calibration attempts to calibrate the model for all

time steps simultaneously while concurrently attempting to

achieve the best possible scaling relationship (Equation

(2)) between model parameters and model time step. In

this method, first the approximate functional relationship

between MPs (θ) and modelling time step (T) is assumed a

priori (e.g., Equation (2)). Subsequently, the parameters of

the functional relationship (i.e., α) are calibrated such that

the average of the model performance for all time steps con-

sidered for multi-time calibration is maximized. The Pareto-

based multi-objective approach was adopted (considering

various objective criteria as mentioned above) for the cali-

bration. In the context of multi-objective calibration, the

optimization problem for the calibration of a multi-step

model can be stated as follows:

MaximizeF(θ) ¼ 1
n

Xn
i¼1

f1,i(θ),
1
n

Xn
i¼1

fq,i(θ)

" #( )
(4)

where θ is the vector of model parameters, n is the number

of parameters of the hydrological model, n is the number of

temporal resolutions used for calibration (e.g., four, i.e., 3-

hourly, 6-hourly, 12-hourly and 24-hourly), q is the number

of objective functions (eight objective functions are used in

this study), and f p,i(θ) is the model performances for the

ith resolution measured with respect to objective criteria.

To calibrate the regional relationship between MPs and

time step, we employ a non-dominating sorting genetic
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algorithm (NSGAII) (Dev et al. ) which is a population-

based heuristic search algorithm which handles multiple

algorithms using a Pareto-based approach. In this approach,

the simultaneous maximization of performance is sought for

each time step and objective criteria. The solution to

Equation (4) results in a set of Pareto optimal solutions,

but the compromised solution, which represents the point

that is closest to the ideal performance point is chosen.

For the numerical experiment, the underlying hourly pre-

cipitation and runoff measurements were averaged for

increasingly longer time intervals. Subsequently, the

relationships between time steps and selected sensitive

parameters are calibrated.
RESULTS

Sensitivity of model parameters

The sensitivity of model parameters is tested using

regional sensitivity analysis (RSA). RSA is a widely used

global sensitivity method that utilizes the results of

Monte-Carlo sampling (see Spear & Hornberger ) to

identify sensitive model parameters. In this method,

each parameter’s population is split into two groups of

equal size and the cumulative distribution of the par-

ameters in each group is plotted with respect to the

chosen measure of performance. Differences in form and

separation of the resulting curves indicate parameter sen-

sitivity. The cumulative distributions of both groups for

two different time resolutions (3-hourly and daily) for

the Boyne and Moy river catchments are shown in

Figure 2. For the three parameters α, Ks and Kq the discre-

pancies between the cumulative plot corresponding to

behavioural and non-behavioural populations are mark-

edly high, a clear signature of high sensitivity. In

addition, a sensitivity index, defined as the ratio of the

maximum distance between the cumulative curve corre-

sponding to behavioural and non-behavioural simulators

and the median value of the corresponding calibrated

model parameters is estimated to summarize the sensi-

tivity of parameters and their dependence on time step.

This index for the 3-hourly and daily time steps is

shown in Figure 3. The three parameters mentioned
om https://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
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above showed higher sensitivity. Additionally, the sensiti-

viy of these parameters increased when the calibration

time step is decreased from daily to 3-hourly.

Data resolution and model performance

The models (or basin simulators) identified with both 3-

hourly and daily time steps are used to assess the impact

of modelling time step on model parameters and simulation

performance. The performance of behavioural simulators is

assessed both in terms of timing (using NSE) and the volume

of flow (using volume error). Results for the two selected

catchments are shown in Figure 4. The performance criteria

for the 3-hourly time step are calculated based on the simu-

lated flow aggregated to a daily time step. Although the

number of behavioural simulators are significantly less for

3-hourly simulations as compared to daily data, the spread

of points in parameter space is similar.

The Moy basin shows a larger volume bias in compari-

son to the Boyne. Model performance is conditional upon

a number of factors including the chosen objective function,

the method of spatial aggregation of rainfall and the period

used for calibration. In this study, as the modelling was con-

ducted at a sub-daily time scale, only 3 years of data

were used. In addition, the NSE criteria were used to esti-

mate behavioural simulators. As there was only a single

rainfall station measuring sub-hourly rainfall, we used the

data from this station to represent catchment rainfall.

Despite having high volume bias, the model for Moy was

accepted based on NSE criteria for this study. Importantly,

of primary interest to this numerical experiment are the rela-

tive differences in performance with varying modelling time

steps.

When the behavioural simulators identified from one

time step are used to simulate models with the other time

step there is a notable shift of points in the model perform-

ance space. Figure 5 shows the impact of using daily basin

simulators in the performance of model simuation with

time steps shorter than that used for calibration, while

Figure 6 shows the impact of using hourly basin simulators

on time steps longer than that used for calibration. Figures 5

and 6 show clearly the impact for the Boyne and Moy

catchments, revealing that points in model performance

space moved away from the ideal performance point



Figure 2 | Regional sensitivity analysis plots showing the sensitivity of the parameters of the HYMOD model and its sensitivity to modelling time step for (a) Boyne river catchment and (b)

Moy river catchment.
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(NSE¼ 1 and volume error¼ 0) when models identified

with daily data are used for 3-hourly, 6-hourly and 12-

hourly simulations.
s://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
For the basins selected in this study, the loss in perform-

ance in multi-time step simulations associated with

simulators calibrated with daily data is larger than that



Figure 4 | Model objective space for the simulations obtained through daily and 3-hourly data for (a) Boyne river catchment and (b) Moy river catchment.

Figure 5 | Model performances of daily simulators with 3-hourly, 6-hourly, 12-hourly and daily time steps: (a) Boyne river catchment; (b) Moy river catchment. The NSE and volume error

are evaluated after aggregating corresponding data to a daily time scale.

Figure 6 | Model performances of hourly simulators with 3-hourly, 6-hourly, 12-hourly and daily time steps: (a) Boyne river catchment; (b) Moy river catchment. The NSE and volume error

are evaluated after aggregating corresponding data to a daily time scale.

Figure 3 | Sensitivity index for the parameters of the HYMOD model for two modelling time steps: (a) Boyne river catchment; (b) Moy river catchment.
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associated with hourly data. This supports the argument that

scaling of model parameters is desirable if the simulation

time step is different from the time step that is used for

model calibration. Table 2 summarizes the simulation results

for the Boyne catchment for the calibration and validation

periods. The performance measured in terms of NSE for

simulation with 3-, 6-, 12-hourly and daily time steps are

acceptable. The width and reliability of the prediction inter-

val (i.e., CN is the count efficiency that measures the

percentage of observation encapsulated within the predicted

range) evaluated using the GLUEmethod are also similar for

all simulations made during the calibration period. However,

a loss in model performance, precision (range) and reliability

(count efficiency) is observed when daily simulators are used

for sub-daily time step simulation and vice versa.

Figure 7(a) and 7(b) shows the hydrograph for cali-

bration and validation periods (3 years). It is apparent

from the figure that the peaks estimated with a 3-hourly

time step are greater than those estimated with a daily

time step. The same is observed in the validation period.

Figure 7(c) shows for the validation period the flow simu-

lated with daily simulators but at 3-hourly and daily time

steps. It is also apparent that the simulators derived from

3-hourly data tend to overestimate peak flow relative to

simulators derived from a daily time step.

The fact that a loss in performance is observed when be-

havioural simulators derived from a daily time step are used

to simulate at sub-daily time steps and given that the sensi-

tivity of model parameters also change with modelling

time step, recalibration is desirable if the modelling time

step is changed. An alternative to this would be to scale

the parameters to suit the modelling time step.
Table 2 | Performances for basin simulators estimated with different time resolution for the B

vations lying within the prediction range; Range is the average width of the predicti

Calibration

Sn Modelling time step CN NSE Range

1 3-hourly 0.85 0.78 25.07

2 6-hourly 0.86 0.78 24.42

3 12-hourly 0.91 0.81 24.55

4 24-hourly 0.92 0.82 24.53

s://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
Scaling the parameters of the HYMOD model

In tackling this problem, particularly where appropriate

data time steps may not be available, the scaling of

the parameters enables adjustments to be made to account

for changes in the temporal aggregation of data. This facili-

tates the use of information from daily hydrological records

in rainfall–runoff models that operate on time steps much

shorter than daily. Table 3 shows the percentage change

in the model parameters observed when the modelling

time step is changed from daily to sub-daily. Results are

based on the median parameter value calculated from the

behavioural set of model parameters. The percentage

change for α, Kq and Ks is markedly higher than for the

Cmax and Bexp parameters.

In addition to the modelling scales, the likelihood

measures and uncertainty in model parameters influence

the scaling relationship. Therefore, the estimation of a scal-

ing relationship is treated as a multi-objective problem,

where the scaling relationship between model parameters

and data time steps is estimated using the NSGAII search

algorithm.

Eight objective criteria, four based on NSE, i.e., each

estimated based on 3-, 6-, 12- and 24-hourly simulation

time steps, and the other four based on the HMLE criteria

are used. From the Pareto optimal solutions, a scaling

relationship corresponding to the compromised solution

is selected. The scaling parameter (α in Equation (2)) cor-

responding to the compromised solution is �2.2, �2.3 and

�3.2 for the α, Ks and Kq parameters, respectively. These

parameters, which are derived based on data for the

Boyne catchment were subsequently used to scale the
oyne river catchment (CN is the count efficiency that measures the percentage of obser-

on interval)

Validation

With daily simulators With 3-hourly simulators

CN NSE Range CN NSE Range

0.46 0.63 16.07 0.75 0.75 24.77

0.67 0.71 21.12 0.75 0.78 22.99

0.73 0.75 22.91 0.64 0.71 19.99

0.79 0.79 24.95 0.44 0.61 16.63



Figure 7 | Simulation results for (a) calibration (Boyne river catchment), (b) validation (Boyne river catchment), (c) validation period with scaled and unscaled simulators.
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parameters for the Moy catchment. The performance of

the scaled parameters for the validation period (period

not used for calibration) and catchment (Moy river catch-

ment) is shown in Figure 8. Compared to the unscaled

parameters, i.e., using daily basin simulators

for simulation of sub-daily time steps, the loss in model

performance corresponding to the use of scaled par-

ameters is smaller. Table 4 summarizes the simulation
om https://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
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results for the Boyne catchment with rescaled basin simu-

lators used for the validation period.
CONCLUSION

This study revisits the issue related to the temporal sampling

of data and the performance of a hydrological model using



Table 3 | Percentage change in the value of parameters identified with daily time step simulation when the daily simulation time step is reduced to sub-daily

% change in parameter with respect to daily calibrated parameter

Sn Basin Time resolution (hour) Cmax Bexp α Kq Ks

1 Boyne 3 2.1 6.7 �41.6 �73.4 �49.3

2 6 1.9 3.2 �21.3 �37.9 �47.0

3 12 1.1 1.8 �12.3 �9.2 �19.0

4 Moy 3 �4.9 22.5 �53.6 �81.1 �37.6

5 6 0.1 19.3 �35.2 �62.5 �39.5

6 12 �0.6 9.2 �15.7 �21.4 �28.6

Figure 8 | Model performances of scaled (from daily to sub-daily) simulators for two river catchments: (a) Boyne; (b) Moy. The NSE and volume error are evaluated after aggregating

corresponding data to a daily time scale.

Table 4 | Performance for scaled basin parameters for the Boyne river catchment (CN is

the count efficiency that measures the percentage of observation lying within

the prediction range; Range is the average width of the prediction interval)

Calibration Validation

Sn Modelling time step CN NSE Range CN NSE Range

1 3-hourly 0.83 0.76 22.16 0.68 0.71 21.07

2 6-hourly 0.87 0.79 22.71 0.71 0.75 21.82

3 12-hourly 0.91 0.82 23.47 0.74 0.78 22.79

4 24-hourly 0.92 0.82 23.90 0.79 0.79 24.94
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two Irish river catchments. A straightforward way of apply-

ing a hydrological model at different time scales is to adjust

parameters depending upon the scale at which parameters

are calibrated and the temporal scale at which simulation

is desired. The HYMOD model is run in a continuous

mode for a 3-year period for calibration and another
s://iwaponline.com/hr/article-pdf/44/3/484/370459/484.pdf
3-year period for validation using model time steps of 3, 6

12 h and daily. Runoff timing and volume biases are investi-

gated when performing simulations at time scales different

from those at which the model parameters are calibrated.

The analysis revealed a general increase in modelled peaks

when moving from longer to shorter time steps.

The use of parameters estimated using daily time steps

resulted in a significant loss in model performance when

applied to 3-hourly time steps. However, simple adjustment

of the parameters resulted in improved model simulations,

reducing the need for recalibration and indicating the poten-

tial for the application of such techniques in situations

where sub-daily data may not be available. The results

shown indicate that it is necessary to adjust parameters

derived from daily time steps if sub-daily simulations are to

be made. Furthermore, the parameter adjustment procedure

is evaluated by applying such procedures during periods and

in catchments other than used for calibration.
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