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Histogram Approaches for Lossy Compression of
Digital Holograms of Three-Dimensional Objects

Alison E. Shortt, Thomas J. Naughton, and Bahram Javidi, Fellow, IEEE

Abstract—We present a novel nonuniform quantization com-
pression technique—histogram quantization—for digital holo-
grams of 3-D real-world objects. We exploit a priori knowledge
of the distribution of the values in our data. We compare this
technique to another histogram based approach: a modified
version of Max’s algorithm that has been adapted in a straight-
forward manner to complex-valued 2-D signals. We conclude the
compression procedure by applying lossless techniques to our
quantized data. We demonstrate improvements over previous re-
sults obtained by applying uniform and nonuniform quantization
techniques to the hologram data.

Index Terms—Digital holography, image compression, nonuni-
form quantization, 3-D image processing.

I. INTRODUCTION

HOLOGRAPHY is a successful technique for recording
and reconstructing 3-D objects. With the advent of dig-

ital holography [1]–[7], and continuing advances in megapixel
CCD sensors, holograms of useful size and in an appropriate
form for processing can be captured. An optical system [8], [9]
based on a Mach–Zehnder interferometer [see Fig. 1(a)] was
used to record our digital holograms. The resulting digital holo-
grams are in an appropriate form for data transmission and ob-
ject recognition. It has also been proposed to stream digital holo-
grams over a network to generate a form of 3-D video [10]. The
initial stages of such a proposal has involved the compression of
individual holographic frames followed by object reconstruc-
tion [10]. A real-time 3-D object reconstruction method using
the complex field of a digital hologram has been shown to work
successfully [11]. A digital hologram comprises several views
of the object from a small range of angles. By extracting the
appropriate region [12], [13] of pixels from the hologram and
by applying a numerical Fresnel propagation technique [2], [5],
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Fig. 1. (a) Experimental setup for PSI: BE, beam expander; BS, beam splitter;
RP, retardation plate; M, mirror, and (b) scatter plot of the complex-valued data
in hologram 3 before quantization.

[8], any one of these views of the object can be reconstructed.
The dimensions of our digital holograms are 2028 2044 pixels
with each pixel storing 8 bytes of real information and 8 bytes of
imaginary information. Given that each hologram is 65 Mbytes
in size in its native format, a transmission rate of 2 frames/s
over a 1-Gbit/s network connection results. Therefore, realtime
holographic video streaming has proven to be impractical over
a wide-area network.

Our intention is to compress [14] these holograms for more
efficient storage and transmission. Lossless image compres-
sion techniques, such as Lempel–Ziv (LZ77,LZW) [15], [16],
Huffman [17], and Burrows–Wheeler (BW) [18], perform
poorly when applied to holograms due to the inherent speckle
content that gives the holograms a white-noise appearance [10].
Holographic speckle is difficult to remove since it actually car-
ries 3-D information. Therefore, the use of lossy compression
techniques [10] to initially quantize the holograms, followed
by the application of lossless techniques to the quantized
holograms, seems essential.

Quantization and phase quantization have been applied suc-
cessfully to Fourier and holographic data in the past [10], [11],
[19]–[27]. In this paper, we quantize our digital holograms using
a novel histogram-based technique (that we refer to as histogram
quantization) in which we exploit our knowledge of the distri-
bution of the complex values in our data. Uniform quantization
was implemented previously since it is an extremely fast and
simple technique [10], [20]. Nonuniform quantization achieves
superior compression ratios, but it is time consuming due to its
iterative nature. Our histogram quantization technique, like uni-
form quantization, requires just one pass through the data but
exhibits the improved results of nonuniform quantization. We
extract the cluster centers from histogram plots of the real and
imaginary digital hologram data, as well as from histogram plots
of the amplitude and phase digital hologram data. We quantize

1057-7149/$25.00 © 2007 IEEE



SHORTT et al.: HISTOGRAM APPROACHES FOR LOSSY COMPRESSION OF DIGITAL HOLOGRAMS 1549

our holograms with the resulting cluster centers (a small repre-
sentative set of complex-valued points used to replace a signif-
icantly larger set of input data points).

We compare our histogram quantization approach to another
histogram-based technique adapted from what in communica-
tions theory is known as optimal signal quantization. This algo-
rithm is known as Max’s algorithm [31] and under very specific
conditions (scalar quantization, a specific error metric, and real-
valued 1-D signals) is optimal. We do not claim that our straight-
forward adaptation of this technique is optimal for digital holo-
grams, but it acts as a useful benchmark for histogram quantiza-
tion due to its similar approach and computational complexity.
Max’s algorithm (or the Lloyd–Max algorithm) has been redis-
covered and refined over the years [32]. Max’s algorithm was
later used for quantization of Fourier spectra for digital holo-
gram applications [33] and it has also been used in the design
of an optimally quantized phase-only matched filter for image
recognition [34]. We extend Gallagher’s innovative work [33]
in the following respects: we consider nonuniform step sizes
rather than simply finding the optimal uniform step-size quan-
tizer, we consider digital holograms of real-world objects rather
than computer-generated objects, and we consider Fresnel holo-
grams rather than Fourier holograms. The problem of quantizing
digital holograms of real-world objects is more complicated
than that of quantizing (or binarizing) computer-generated holo-
grams in three important respects. First, the often obvious fringe
structure in computer-generated holograms is not present in dig-
ital holograms of diffuse real-world 3-D objects. This means
there is less structure in the hologram that can be exploited
by lossless compression techniques. Second, speckle noise is
present in real-world holograms. This multiplicative data-de-
pendent noise is very difficult to reduce and can cause many con-
ventional image processing applications to fail. Third, because
digital holograms are captured using a physical system as op-
posed to an idealized system in computer-generated holography,
there can be many nonuniformities in the data. One simple ex-
ample would be that the mean intensity is often spatially de-
pendent in a digital hologram: if one’s reference beam does not
have perfectly uniform intensity then regions of the digital holo-
gram can be brighter than others. Using the simplest binarization
technique as an example, this means that a single intensity-based
scalar threshold for a computer-generated hologram would need
to be replaced by a complicated nonuniform spatially dependent
2-D threshold function to do the equivalent task with an opti-
cally sensed digital hologram.

We use modified Max’s algorithm (mMa) quantization to ex-
tract the cluster centers from histogram plots of our real and
imaginary digital hologram data. We compare the results of our
noniterative histogram and mMa quantization techniques with
previous uniform quantization [10], [21], [26] and nonuniform
quantization ( -means clustering [30], [35], the Kohonen com-
petitive neural network [29], [36], and companding quantization
[28]) results. Compression noise or artifacts that emerge in the
decompressed hologram are not of immediate concern; rather,
of concern is the effect of compression losses on our recon-
structed object, range of viewing angles, and so on. We, there-
fore, use a reconstructed-object-plane rms (root-mean-squared)
metric in the reconstruction domain to quantify the quality of

our decompressed holograms. We conclude the compression
procedure by encoding our quantized digital holograms using
lossless compression techniques and measure the amount of
compression achieved by each technique for various levels of
quantization using compression ratio in the hologram domain.

In Section II, we describe how 3-D objects are captured using
digital holography. We discuss the quantization of digital holo-
grams in Section III. We present the results of applying his-
togram quantization and mMa quantization to our digital holo-
grams in Section IV. In Section V, we complete the compression
process by applying lossless techniques to our quantized holo-
graphic data and conclude in Section VI.

II. PHASE-SHIFT DIGITAL HOLOGRAPHY

A technique known as phase-shift interferometry [3], [5]
(PSI) was used to create our in-line digital holograms [see
Fig. 1(a)] [8], [9]. A linearly polarized Argon ion (514.5 nm)
laser beam is expanded and collimated, and divided into object
and reference beams. A reference object positioned a distance
of approximately mm from a 10-bit 2028 2044
pixel Kodak Megaplus CCD camera, is illuminated by the first
beam. We refer to the complex amplitude distribution in the
plane of the object as . The linearly polarized reference
beam passes through half-wave plate and quarter-wave
plate . This beam can be phase-modulated by rotating the
two retardation plates. Through permutation of the fast and
slow axes of the plates we can achieve phase shifts of 0, ,

, and . The reference beam combines with the light
diffracted from the object and forms an interference pattern in
the plane of the camera. At each of the four phase shifts we
record an interferogram. We use these four real-valued images
to compute the camera-plane complex field by PSI [3],
[5]. We call this computed field a digital hologram.

A digital hologram contains sufficient amplitude and
phase information to reconstruct the complex field in
a plane in the object beam at any distance from the camera
[5], [8]. This can be calculated using the Fresnel approximation
[13], which in convolution form is

(1)
where is the wavelength of the illumination, and denotes a
convolution operation. At , and ignoring errors in digital
propagation due to discrete space (pixelation) and rounding, the
digital reconstruction approximates . Several
3-D objects (see Fig. 2) were used in our experiments. Each had
approximate dimensions of mm and were positioned
323–420 mm from the camera.

III. DIGITAL HOLOGRAM QUANTIZATION

Quantization is a data reduction technique that encodes the
set of input data values using an appropriate subset of values.
Uniform quantization is a data-dependent technique and is the
optimal choice when the data values are uniformly distributed.
Since our hologram data consists of unevenly distributed com-
plex values, the set of quantization values must be selected care-
fully in order to account for these biases. When the set of quan-
tization values is a nonuniform sampling of the input data, the
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Fig. 2. Reconstructions from (a) hologram 1, (b) hologram 2, (c) hologram 3,
(d) hologram 4, (e) hologram 5, and (f) hologram 6 using unquantized hologram
data and with 5 � 5 pixel mean filtering.

quantization is referred to as nonuniform quantization. Com-
bined rescaling and uniform quantization using clusters of a
hologram , where and is odd, is defined as

(2)

where
and

.
Digital holograms have been shown to be particularly sen-

sitive to any defects resulting from lossy compression [10].
Speckle is partly responsible for this; small changes to the
digital hologram give rise to the reconstruction of a totally
different speckle pattern and so reconstructions differ signifi-
cantly. Therefore, as a means of reducing the speckle effect,
the phase information in the reconstructed object wavefront is
discarded and a median or mean filtering operation is applied.
Preserving the object plane amplitude information alone is
justified since this information has an inherent dependency on
both the amplitude and phase of the hologram plane. It follows
that if enough amplitude and phase information is preserved
in the hologram plane during compression, then the amplitude
information in the object plane will be reconstructed properly.
The level of acceptable filtering will be application dependent.

In our compression experiments, a digital hologram is
compressed and then decompressed as , and an object re-
constructed by numerical propagation. The quality of the com-
pressed reconstruction is measured by finding the normalized
rms (NRMS) difference between it and the same perspective
from an uncompressed hologram, defined as

(3)

Fig. 3. Scatter plots of the complex-valued data in hologram 2: (a) uniformly
quantized (crosses represent unused clusters), (b) Kohonen competitive,
(c) companding quantization, and (d) histogram quantization, all with 49
clusters.

where are the dimensions of the digital hologram
and are discrete spatial coordinates in the reconstruction
plane. In order to reduce the effects of speckle noise, only
amplitude in the reconstruction plane is considered and a 5 5
pixel mean filtering operation is applied prior to calculation of
NRMS difference.

IV. NONUNIFORM QUANTIZATION

The nonuniform distribution of our data, as shown in (1b) for
hologram 3, prevents the uniform quantization technique from
performing optimally. By nonuniformly positioning the cluster
centers to match the fact that there is a higher probability that
the pixel will have a low amplitude value, the cluster centers can
be used more efficiently.

We previously investigated a number of nonuniform quan-
tization techniques, including -means clustering [30], [35],
the Kohonen competitive neural network [29], [36], and com-
panding quantization [28]. Experimental results revealed that
these techniques more appropriately positioned cluster centers
and produced lower NRMS errors compared to uniform quan-
tization. This is illustrated in Fig. 3(a)–(c), which shows the
distribution of clusters relative to the hologram data for uniform
quantization, Kohonen competitive, and companding quanti-
zation, respectively. Unfortunately, the iterative nonuniform
techniques ( -means clustering and Kohonen competitive) are
extremely computationally expensive, and, therefore, it is not
practical to iterate the algorithms each time a hologram is to
be compressed. Ideally, the cluster centers from one class of
holograms could be stored in a lookup table and applied with
reasonable results to the quantization of subsequent holograms.
As might be expected, overfitting occurs when there is too
little training data; thus, we previously found that the resulting
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Fig. 4. NRMS error of the reconstructed object plotted against number
of clusters with uniform quantization, Kohonen competitive, companding
(spiral) quantization and histogram quantization (in real-imaginary space and
amplitude-phase space) for (a) hologram 1 and (b) hologram 2.

cluster centers are significantly less effective when applied in
the quantization of a different hologram (see [28, Fig. 1]). Later,
we illustrate the effectiveness of our histogram quantization
technique when cluster centers from one hologram are used to
quantize another hologram.

To speed up the quantization process, we previously de-
veloped an approach analogous to companding that involves
nonuniformly transforming a fixed-interval sampling grid of
the complex plane, rather than transforming the input data. The
grid is compressed in regions where the input data is dense (for
example, close to the origin) and the grid is stretched in regions
where the input data is sparse. The samples are then treated as
cluster centers to quantize the input data. We developed two
companding grids [28] and found that the spiral, which is based
on a logarithmic spiral function, performed best with our digital
holograms. Fig. 3(c) shows a spiral companding grid with 49
clusters. In polar coordinates, the spiral has the form ,
where is the distance from the origin, is the angle, and
and are arbitrary constants. This technique is not only almost
as fast as uniform quantization but also consistently produces
lower NRMS errors for some numbers of cluster centers, as
illustrated in Fig. 4 for two holograms. However, this figure
also shows that the iterative technique produces significantly
lower NRMS errors compared to both uniform and companding
quantization. We now present two quantization techniques that
retain the noniterative characteristic of companding quantiza-
tion, while improving upon its results.

A. Histogram Quantization

In the noniterative nonuniform quantization technique, we
call histogram quantization we can use either histograms of the
real and imaginary or amplitude and phase data in the quan-
tization process. Through experimentation, we found that 200
bins in each histogram was sufficient. Initially, we used the
highest peaks in each of the real and imaginary histograms to
define clusters. However, simply selecting the maxima in the
histogram did not prove fruitful. Therefore, for a given com-
plex-valued hologram, we partition the histogram of the real
values into sections of equal range, where is the number
of clusters (or complex quantization levels) that we desire. This
partitioning can be described as follows. Given the set of real or
imaginary values in a digital hologram consisting of values in
the range , and a number of sections , the th section in

Fig. 5. Histogram for (a) real and (b) imaginary hologram 2 data with 49 clus-
ters. Arrows denote the seven cluster centers in each dimension.

a partitioning of the histogram of that set would be the range
defined by

if
if

where , and where .
Next, we extract the value of the highest peak in each range.
This highest peak corresponds to the most frequently occurring
real or imaginary value in the corresponding range, as shown in
Fig. 5. The real values and imaginary values are paired
to give complex-valued clusters, as shown in Fig. 3(d). Each
pixel in the hologram is quantized by changing its value to be the
value of its nearest cluster. A higher number of clusters corre-
sponds to increased reconstruction quality and a lower compres-
sion ratio. We repeated the procedure with the hologram data in
polar (amplitude-phase) representation.

In order to illustrate the effect of codebook size (i.e., the
number of clusters) on compression loss, Fig. 4 shows plots of
NRMS difference against codebook size for two of the holo-
grams. The Kohonen competitive network consistently outper-
forms the other techniques over all trials. For smaller codebook
sizes, nonuniform quantization is far superior to uniform quanti-
zation. As the codebook size increases, this superiority becomes
less pronounced. This figure also shows that the histogram quan-
tization technique (using both cartesian and polar space holo-
gram data) achieved better reconstruction results (for the same
amount of compression) than those obtained for uniform [10]
and companding quantization [28], with histogram quantiza-
tion performing better in cartesian space than in polar space.
With a significant time-complexity advantage (requiring only a
single pass) over iterative nonuniform quantization techniques,
the noniterative histogram quantization technique (using either
cartesian or polar space hologram data) may be used instead of
iterative nonuniform techniques in cases where timing is crit-
ical.

Fig. 6 illustrates the results of applying the cluster centers re-
sulting from histogram quantization of one hologram to another
hologram [referred to as Histogram quantization (“diff. hol.”)].
We also include the results of applying histogram quantization
directly to the hologram (referred to as Histogram quantization).
This figure shows that the cluster centers obtained from the his-
togram quantization technique (using cartesian space hologram
data) are more applicable to unseen hologram data compared
to the iterative techniques (see [28, Fig. 1]). This, and compa-
rable results with the other holograms, shows that even when
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Fig. 6. NRMS error of the reconstructed object plotted against number of clus-
ters with uniform quantization and histogram quantization for (a) hologram 1.
“diff. hol.” means using the clusters from hologram 2 to quantize hologram 1,
and (b) hologram 4. “diff. hol.” means using the clusters from hologram 3 to
quantize hologram 4.

the data set is extremely limited, the over-fitting problem that
occurs with the iterative techniques is less likely to occur with
the noniterative histogram quantization technique.

B. mMa Quantization

We now adapt the optimal real-valued 1-D signal quantiza-
tion technique [31] to complex-valued 2-D signals. In our adap-
tation of this technique, mMa quantization, which we do not
claim is optimal for digital holograms, we apply the approach to
histogram plots of the data in cartesian form. Under the specific
conditions of Max’s study [31], for a quantizer to be considered
optimal, it must satisfy the centroid condition and the nearest
neighbor condition. The centroid condition

(4)

where is the number of quantization levels, is a set of end
points of the input ranges, and is a set of output or quan-
tization levels corresponding to each input range, states that the
optimal quantization level, for the region is the center of
the inputs that lie in that region. The nearest neighbor condition

(5)

where is the input amplitude probability density, states that
the region must consist of all inputs closer to codevector

than any other quantization level [31]. Max [31] attempts to
satisfy these conditions and suggests “to pick , calculate the
succeeding ’s and ’s and then if is the centroid of the area
between and , was chosen correctly.” Our pseudocode
algorithm mMaOdd (for odd N), shown in Fig. 9, is used to
quantize one half of the histogram as follows.

1) Set equal to (i.e., index of the next
bin to the right of the center bin in p).

2) Call mMaOdd.
3) If the area returned from Step 2) is greater than zero then

increment , then go to Step 2); otherwise, save the s
that are returned from Step 2) and halt. The other half of
the histogram is quantized in a similar way.

We implemented this original pseudocode algorithm with
Matlab. We used an idealized histogram from Max’s paper to
test our code: a Gaussian , with zero
mean and standard deviation of 1. We illustrate the resulting

Fig. 7. Gaussian for 12 quantization levels, with solid lines representing quan-
tization levels (y s) and dotted lines representing end points of input ranges
(x s).

Fig. 8. NRMS error of the reconstructed object plotted against number of
clusters with Kohonen competitive, k-means quantization, and mMa using the
Gaussian curve fitting approach in (a) hologram 1 and (b) hologram 2.

quantization levels, , and end points, , when in
Fig. 7, with solid lines corresponding to the s and dotted
lines corresponding to the s. We performed experiments to
determine the appropriate number of bins required to closely
match the cluster positions obtained by Max. Using 16 001 bins
for , our results were within two decimal places of Max’s
results. Decreasing the number of points to 401 resulted in a
200-fold decrease in computation time (7420 versus 37 ms,
respectively, on our hardware) with results that were still
comparable with Max’s.

Although a normal distribution is not a precondition for
Max’s approach, as it happens, our data appeared to be closely
approximated by a Gaussian. For a given complex-valued holo-
gram, we calculated the mean and standard deviation of each
of the real and imaginary histograms and used these to estimate
a Gaussian fit to our data. We used mMa quantization to locate
the most appropriate quantization levels in each of these
real and imaginary Gaussians. We compared our mMa using
the Gaussian curve fitting approach to -means quantization
and the Kohonen competitive network, as illustrated in Fig. 8.
We found that for some holograms, mMa using Gaussian curve
fitting gave significantly higher quantization errors.

Our implementation of Max’s formalism is capable of
working with a realistic discrete histogram that is neither
unimodal nor locally smooth. We decided to feed the real
and imaginary histograms directly into our algorithm. We
experimented with different numbers of bins in our histograms
and found that 401 bins was the best tradeoff between com-
putation time and accuracy. We then used mMa quantization
to locate a range of even and odd numbers of clusters in our
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Fig. 9. Pseudocode algorithm for mMa quantization of hologram data based on
its histogram. For ease of explanation, the algorithm shown only quantizes one
half of the histogram. It can be extended to quantize both sides of the histogram
in a straightforward manner.

hologram data. Fig. 10 shows the distribution of 36 clusters
relative to the hologram data in two of our holograms. The
resulting reconstruction errors for mMa quantization for both
even and odd numbers of clusters are shown in Fig. 11 for
two holograms. mMa quantization for odd numbers of clusters
outperformed both even numbers of clusters and the -means
clustering algorithm (ee assume this is due to the histograms’
well-defined single mode). However, for numbers of clusters in
the [25, 81] range, the Kohonen competitive network produced
slightly lower NRMS errors compared to mMa quantization
consistently for all holograms. There are three reasons for the
underperformance of mMa quantization compared to the Ko-
honen competitive network. mMa quantization assumes slowly
varying histograms, but the histograms of our data are not
slowly varying. Also, we measure error in the reconstruction
domain rather than in the quantized hologram domain. Finally,
as with the histogram quantization technique, by separating the
real and imaginary components of the complex-valued pixels,
the natural correlation between the components is disregarded,

Fig. 10. Scatter plots of the complex-valued hologram data using 36 clusters
resulting from mMa quantization using the histogram approach in (a) hologram
1 and (b) hologram 2.

Fig. 11. NRMS error of the reconstructed object plotted against number of
clusters with Kohonen competitive, k-means quantization, and mMa quanti-
zation using the histogram approach (even and odd) in (a) hologram 1 and
(b) hologram 2.

and this impairs the overall performance of the technique. An
advantage of mMa quantization over the Kohonen competitive
network is that of speed, since the technique is noniterative.

We compare the performance of the histogram and mMa
quantization since both techniques employ a priori knowledge
about the distribution of the hologram data. Fig. 12 shows
the resulting curves when the reconstruction error was plotted
against number of clusters with histogram quantization and
mMa quantization applied to a representative selection of the
holograms. mMa quantization consistently produced lower
NRMS errors (with the exception of nine clusters for some
holograms) compared to histogram quantization. However, the
running time for histogram quantization is more repeatable
than for mMa quantization: for a given number of clusters and
data size, histogram quantization takes a constant amount of
time, while mMa quantization will take an amount of time that
depends on the shape of the histogram and the suitability of the
initial starting point.

Reconstructions of two holograms with uniform quantization,
the Kohonen competitive network, histogram quantization, and
the mMa quantization technique, with each using 9 clusters, are
shown in Fig. 13. These can also be compared with the original
reconstructions in Fig. 2. There is a significant difference in the
quality of the histogram and mMa quantization reconstructions
compared to those for uniform quantization. We see little dif-
ference in the quality for noniterative quantization compared to
iterative quantization.

Table I shows the complexity and running times of each tech-
nique to both calculate the cluster centers and quantize the input.

denotes the number of complex-valued pixels in the input,
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Fig. 12. NRMS error of the reconstructed object plotted against number of
clusters with histogram quantization and mMa quantization using the histogram
approach for (a) hologram 3 and (b) hologram 4.

Fig. 13. Reconstructions with 5 � 5 mean filtering in hologram 1 and holo-
gram 2 using (a) and (e) uniform quantization, (b) and (f) Kohonen competitive,
(c) and (g) histogram quantization, and (d) and (h) mMa quantization using the
histogram approach, all with nine clusters.

TABLE I
COMPLEXITY AND RUNNING TIMES OF THE TECHNIQUES

denotes the number of clusters, denotes the number of iter-
ations, denotes the number of bins for the histogram tech-
niques, and the asymptotic notation hides multiplicative
and additive constants only. The running times for the noniter-
ative techniques represent direct quantization of the full 2028

2044 pixel hologram 1 with 49 clusters. This is too onerous
a task for the iterative techniques and so their running times
represent training of 49 clusters with a 2048 pixel sample of
hologram 1, and subsequent quantization of the entire hologram.
This was the standard procedure used for the iterative techniques
throughout the study presented in this paper.

V. LOSSLESS COMPRESSION OF QUANTIZED

DIGITAL HOLOGRAMS

To complete the compression procedure, standard lossless
techniques (Huffman [17], LZ77 [15], LZW [16], and BW [18])
were applied to the quantized digital hologram data. Compres-
sion ratio is defined (uncompressed size)/(compressed
size). In practice, the actual compression ratio employed will be

TABLE II
LOSSLESS COMPRESSION APPLIED TO NONUNIFORMLY QUANTIZED

(HISTOGRAM) DATA FROM HOLOGRAM 4; C.R., COMPRESSION RATIO

TABLE III
LOSSLESS COMPRESSION APPLIED TO NONUNIFORMLY QUANTIZED

(mMa) DATA FROM HOLOGRAM 4; C.R., COMPRESSION RATIO

dependent on the needs of the user, specifically how much re-
construction loss they are willing to tolerate for their particular
application. Tables II and III show the results obtained when
hologram 4, quantized using histogram and mMa quantization,
respectively, was losslessly compressed using each of the four
lossless techniques (hologram 4 gave the lowest compression
ratios of all holograms tested). Huffman coding performs least
favorably at high compression ratios. For all holograms, and
for both histogram and mMa quantization, BW outperforms the
other three lossless compression techniques for most numbers
of cluster centers. Histogram quantization significantly outper-
forms mMa quantization in terms of compression ratio for all
numbers of cluster centers and for all lossless techniques used
in our experiments. The tables also show that as the level of
quantization becomes more severe, i.e., as the hologram data is
represented by fewer and fewer symbols, the performances of
the lossless techniques significantly improve. As was shown in
Fig. 13, even for such severe quantization, the reconstructions
can be adequate for some applications. Similar results, with
compression ratios up to 78, were obtained for each of the other
holograms used in our study.

Looking at the combined compression ratio and NRMS error
gives one the full picture. Fig. 14 shows NRMS difference
plotted against compression ratio for the BW technique for
histogram quantization, mMa quantization, companding quan-
tization, and the Kohonen competitive network for hologram 1
and hologram 2, respectively. Each point on the curves repre-
sents a number of clusters, with the smallest number of clusters
represented by the point furthest to the right of each curve.
The complete set of such figures (for all holograms) reveals
that mMa quantization, with a moderate increase in NRMS
error, produces significantly higher compression ratios over
each hologram and for each number of clusters compared to
the Kohonen competitive network. mMa quantization generally
produces comparable compression ratios with companding
quantization, but outperforms companding quantization in
terms of NRMS error. Histogram quantization produces the
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Fig. 14. NRMS error of the reconstructed object plotted against compression
ratio with Kohonen competitive, histogram quantization, and mMa quantization
using the histogram approach in (a) hologram 1 and (b) hologram 2, all using
the BW technique.

highest compression ratios for each hologram and for each
number of clusters.

VI. CONCLUSION

We have used two noniterative techniques for the nonuniform
quantization of digital holograms of 3-D real-world objects. We
compressed the quantized hologram data using lossless tech-
niques. We compared the results of these noniterative techniques
to results obtained previously for uniform quantization, iterative
nonuniform quantization, and noniterative companding quanti-
zation. Performance was evaluated through a NRMS metric in
a reconstruction plane and compression ratio in the hologram
domain. mMa quantization produced higher compression ratios
with slightly higher NRMS errors compared to the iterative
techniques. This technique also produced significantly lower
NRMS errors compared to companding quantization. The other
technique presented in this paper, the histogram quantization
technique, outperformed each of the other techniques in terms
of compression ratio. We found that BW compression produced
the highest compression ratios among the lossless techniques
employed. Compression ratios in the range [18, 78] were ob-
tained with good reconstruction quality. In terms of real-time
holographic video streaming, the quantization and compression
steps could be completed off-line, or if necessary implemented
in hardware. With the compression ratios reported here, conven-
tional dedicated communication channels would be sufficient
to stream holographic video at 30 frames/s. However, real-time
reconstruction of the 3-D objects from the holographic video
would require the decompression and Fresnel transform steps to
be implemented in dedicated optical [11] or electronic hardware.
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