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Abstract—High accuracy at a low computational time is likely
to be a fundamental trait for mathematical models for wave
energy converters, in order to be effective tools for reliable
motion prediction and power production assessment, device and
controller design, and loads estimation. Wave energy convert-
ers are particularly prone to exhibit complex and nonlinear
behaviours, which are difficult to be modelled efficiently. Highly-
nonlinear effects, related to nonlinear Froude-Krylov forces, are
nonlinear coupling, instability, and parametric resonance, which
may damage or improve the power production. It is therefore
fundamental to be able to describe such nonlinearities, in order
to assess their repercussion on the performance of the device,
and eventually design the system in order to exploit them.

This paper provides a computationally efficient, compact, and
flexible modelling approach for describing nonlinear Froude-
Krylov forces for axisymmetric wave energy devices, in 6 degrees
of freedom. Unlike other similar models, based on a mesh
discretization of the geometry, the analytical formulation of the
wetted surface allows the dynamical model to run almost in real
time.

Index Terms—Nonlinear hydrodynamic model, parametric
resonance, pitching/rolling instability, computationally efficient,
wave energy converter.

I. INTRODUCTION

WAVE energy converters (WECs), by their nature, are
prone to show significant and various nonlinearities,

since their principal aim, pursued by the control strategy, is to
enlarge the amplitude of motion, in order to maximize the
absorbed power [1]. Consequently, linear models, although
popular for their computational convenience, may, in certain
conditions, return poor results, in term of accuracy of motion
prediction and, therefore, power production assessment [2].
Furthermore, since power-optimizing control strategies may be
really sensitive to modelling errors [3], using linear models as
a base for the controller may be highly penalizing for the final
power output.

The most important hydrodynamic nonlinearities in wave-
activated WECs are due to large changes in the instantaneous
wetted surface, which can be described by nonlinear Froude-
Krylov (FK) force models [2]. Side effects of nonlinear FK
forces are, eventually, nonlinear coupling between different
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degrees of freedom (DoFs), and parametric resonance [4]–
[6]. Such highly-nonlinear effects are potentially damaging
the efficiency of the device, since they open a channel for the
energy to flow from the DoF where the power is harvested,
to other un-exploited DoF. Effectively, the power is spilled, in
order to feed into parasitic motions. Conversely, it may also
happen that, due to nonlinear variations of the system param-
eters, conditions for instability are met, which may magnify
the amplitude of motion in one or more DoFs. Eventually,
if such magnification of motion is partially transmitted to the
DoF where the energy is harnessed, the power produced would
increase [7].

Such deleterious/beneficial phenomena are completely un-
described by linear theory which, therefore, is likely to
wrongly estimate the power absorbed. Similarly, nonlinear
models with a lower number of DoFs may neglect important
energy exchange with unmodelled DoFs. For example, con-
sidering heaving devices subject to two dimensional waves,
the roll DoF is usually not modelled, since it is not externally
excited, therefore theoretically null motion is expected. How-
ever, if, under certain conditions, parametric roll kicks in, the
roll DoF is internally excited, causing the energy to be suck
from other DoFs and, consequently, implying power loss.

Models able to describe such nonlinear behaviours are
generally computationally expensive because, for geometries
of arbitrary complexity, a mesh-approach is required. For
example, using the software LAMSWEC (Large Amplitude
Motion Simulation of Wave Energy Converters) [8], supported
by tank experiment evidence, [5] and [4] show that the
SEAREV and Wavebob devices, respectively, are incline to
parametric roll, with consequent significant power loss.

Despite its accuracy, LAMSWEC (and similar mesh-based
approaches) are too slow to be considered viable for control
applications, or for long term power production assessment.
However, if the geometry is assumed to be axisymmetric,
computationally efficient approaches are available, relying on
the ability of describing analytically the whole wetted surface,
thereby avoiding the use of a mesh [9], [10]. Note that
such assumption is not particularly restrictive for the common
WEC class of point absorbers, which are designed to be non-
directional, therefore axisymmetric.

The aim and novelty of this paper is to provide a mesh-free
compact and computationally efficient 6-DoF nonlinear hy-
drodynamic model, based on nonlinear FK force calculations.
The CorPower device [11] is then considered as a case study,
investigating if and when pitching instability and parametric
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resonance occur, and the consequent implication on the power
produced by the device. In order to evaluate the advantages
brought by the nonlinear model, results are compared with
standard linear FK models. Furthermore, nonlinear models in
both one, three, and six DoFs are considered, in order to
discuss the significance of nonlinear coupling and parasitic
motions, which may affect the energy production.

The reminder of the paper is organized as follows: Sect.
II presents the theoretical background about the linear and
nonlinear FK force calculations, as well as a brief description
of the parametric resonance phenomenon. Section III presents
the considered case study, and results are discussed in Sect.
IV. Some final remarks and conclusions are given in V.

II. THEORETICAL BACKGROUND

The basics of linear and nonlinear FK force calculations
are proposed in Sect. II-A. A brief description of parametric
resonance is given in II-B.

A. Froude-Krylov forces

In the framework of linear potential theory, FK forces
correspond to the integral of the pressure of the undisturbed
wave field over the wetted surface of the device. Such a
pressure is defined, according to linear Airy’s theory, as:

p(x, z, t) = pst+pdy = −γz+γ cosh (χ (z + h))

cosh (χh)
η(x, t) (1)

where pst = −γz is the static pressure, pdy the dynamic
pressure, γ the specific weight of the sea water, η(x, t) a 2-
dimensional wave with amplitude a and wave frequency ω,
χ the wave number, h the water depth (defined according
to a right-handed inertial frame of reference (x, y, z), with
the origin at the still water level (SWL)), x pointing in the
direction of propagation of the wave, and z pointing upwards.
It is then convenient to apply Wheeler’s stretching to (1), as
shown in [12]. Note that, in irregular sea conditions, the pres-
sure formulation in (1) is used for each harmonic component
of the wave spectrum in order to define the total pressure
field. The accuracy of the pressure representation, and the
effectiveness of the nonlinear FK force calculation is discussed
in [12], for regular and irregular sea states, also considering
nonlinear wave models, such as Rienecker-Fenton, for regular
waves, and higher-order spectral (HOS) method for irregular
waves, concluding that the use of Wheeler’s stretching allows
for sufficiently accurate computation of nonlinear FK force,
even with nonlinear waves.

Froude-Krylov forces are computed by integrating the pres-
sure, shown in equation (1), over the instantaneous wetted
surface S(t). In particular, static and dynamic FK force
components can be defined, respectively, as follows:

FFKst = Fg +

∫∫
S(t)

−γzndS (2a)

FFKdy =

∫∫
S(t)

pdyndS (2b)

where n = (nx, ny, nz) is the unit vector normal to
the surface, pointing outwards, and Fg is the gravity force.
Likewise, FK torques are defined as follows:

TFKst = r× Fg +

∫∫
S(t)

−γzr× ndS (3a)

TFKdy =

∫∫
S(t)

pdyr× ndS (3b)

where r is the position vector, and × is the cross product.
In the linear approximation, it is assumed that the wave

steepness and the relative displacement between the wave and
the device is small (wave-follower behaviour). Consequently,
integrals (2a) to (3b) are defined with respect the -constant-
wetted surface at rest, and usually computed with boundary
element method (BEM) solvers, like WAMIT [13]. Conversely,
nonlinear FK forces are computed with respect to the instan-
taneous wetted surface, therefore taking the real position of
the device, with respect to η, into account.

For a geometry of arbitrary complexity, the surface can be
discretized through a mesh, computing the contribution to the
force over each mesh panel [8]. Such an approach, though
feasible, is computationally expensive, due to the recalculation,
at each time step, of the instantaneous wetted surface, and
consequent remeshing of the geometry. For axisymmetric
buoys, a convenient parametrization of the wetted surface can
ease the calculation of the FK integrals. In terms of validation,
the method proposed in this paper, in its 1-DoF version, is
effectively compared with CFD simulations in [2], and shown
to be more accurate than the linear model. Also, the present
method is a computationally efficient version, although with a
narrower range of applicability, of the LAMSWEC approach;
when LAMSWEC is applied to axisymmetric geometries,
it returns the same results of the proposed approach, as
shown in [9] and [2]. Therefore, since LAMSWEC has been
widely validated through wave tank tests (for the SEAREV
device in [4], and the Wavebob device in [5]), and since
the proposed approach provides results virtually identical to
LAMSWEC (for axisymmetric devices), by extension there is
high confidence on the accuracy of the results given by the
present modelling approach.

The assumption of axisymmetric geometry allows the ana-
lytical description of the whole wetted surface. It is convenient
to use an auxiliary right-handed frame of reference (x̂, ŷ, ẑ),
fixed on the body, with the origin at its centre of gravity
(CoG), and with the axis parallel to the inertial frame’s axis
when the body is at rest, the ẑ−axis pointing upwards. Such a
frame is advantageous both because it makes the definition of
nonlinear FK forces easier (therefore faster to compute), and
because it implies constant and minimal inertial matrix, which
simplifies the dynamic response simulation [14], [10].

The geometry of a generic buoy, symmetric around a
vertical axis, can be described in cylindrical coordinates, with
respect to the body-frame, as follows:
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
x̂(ρ, θ) = f(ρ) cos θ

ŷ(ρ, θ) = f(ρ) sin θ

ẑ(ρ, θ) = ρ

, θ ∈ [−π, π) ∧ ρ ∈ [ρ1, ρ2] (4)

where f(ρ) is a generic function of the vertical coordinate ρ,
describing the profile of revolution of the axisymmetric body,
as shown in [2].

Defining the FK forces in the body-frame requires to map
the pressure from the inertial-frame (where it is defined) onto
the surface of the body. The transformation, from (x, y, z)
to (x̂, ŷ, ẑ), is represented by the Euler angle triad (ε, δ, ψ),
corresponding to roll, pitch, and yaw angles, respectively.
The 3-2-1 Euler angle sequence is the rotation convention
commonly used for marine vehicles, thought as three sets of
rigid rotations [15]:

x̂ŷ
ẑ

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cδ 0 sδ
0 1 0
−sδ 0 cδ

1 0 0
0 cε −sε
0 sε cε

xy
z


(5)

where the operands c and s stand for cosine and sine,
respectively.

The change of coordinates, from Cartesian (x̂, ŷ, ẑ) to
cylindrical (ρ, θ), shown in (4), requires the inclusion of
‖eρ × eθ‖ in the integral, where eρ and eθ are unity vectors
in the ρ and θ directions, respectively. Furthermore, n can be
expressed as eρ×eθ

‖eρ×eθ‖ . Simplifying the denominator of n, it
follows that the integral in (2b), for example, becomes:

FFKdy=

∫∫
S(t)

pdy(x̂, ŷ, ẑ)ndS=

θ2∫
θ1

ρ2∫
ρ1

pdy(ρ, θ) (eρ×eθ) dρdθ

(6)
Although such an approach is applicable to any geometry

with revolution symmetry, the vast majority of axisymmetric
point absorbers can be described as a combination of cylinders,
cones, and spheres. However, note that discs (lids), which
close the surface of a cylinder, cannot be described using
cylindrical coordinates. To this end, polar coordinates are valid
alternatives, much alike to the cylindrical one, shown in [14],
[10].

Finally, the FK force integrals must be solved numerically
using, for example, a trapezoidal rule. The computation time
depends on the integration scheme utilized, a 2D-quadrature
scheme [16], and on the relative and absolute tolerances used
to approximate the integral, which have been set to 10−2 and
100. The ultimate value of the computation time depends on
hardware capabilities (Intel(R) Xeon(R) CPU (E5-1620 v3 @
3.50 GHz) processor, with 16.0 GB RAM and Windows 7
Professional 64 bit), and on the complexity of the geometry.
Indeed, real WEC buoys may be a combination of different
sections, typically cylinders and cones, with each section of
the buoy requiring an individual integral. For the CorPower
geometry, which is described in Sect. III, it is found that the
calculation time of the nonlinear FK forces, in 6-DoFs, is of
the order 5 ·10−2. The consequent run time for computing the

response of the device to incoming wave is about 1.2 times the
simulation time, effectively allowing the model to run almost
in real time. However, it is important to point out that all
calculations are performed in Matlab, which is between one
and two orders of magnitude slower than lower level coding
languages, such as C or Fortran [17]. Nevertheless, although
the mesh-based LAMSWEC nonlinear FK model is coded in
Fortran (which is a significantly faster implementation than
Matlab), it has a run time about 10 times longer than the
simulation time [8], therefore about one order of magnitude
slower than the method proposed in this paper.

B. Parametric resonance

Parametric resonance is caused by time-varying changes
in the parameters of a system [18]. Such a phenomenon is
observed in floating bodies, when the roll natural period is
twice the heave/pitch natural period, and it has been widely
investigated in shipping and offshore spar-type structure.

However, little investigation has been undertaken in the
wave energy field [19]. Numerical and experimental studies
are available for the pitching device SEAREV [5], the 2-body
self-reacting heaving device Wavebob [4], and a floating spar-
type oscillating water column device [6]. Such studies show
detrimental effect of parametric motion to the WEC perfor-
mance, since the energy is parametrically transferred from the
primary mode of motion into other modes. Nevertheless, it
is not excluded that parametric resonance may be beneficial
for certain WECs, expressly designs to take advantage out of
parametric excitations [7], [20].

In systems with time varying parameters, two conditions for
the generation of parametric motion are defined by [7]: 1) the
frequency of the excitation is approximately twice the natural
frequency of the secondary system (frequency condition), and
2) the amplitude of the parametric excitation is larger than
the damping of the secondary system (threshold condition).
For example, the Wavebob device, which has time varying
hydrostatic stiffness and position of the centre of mass, is
particularly prone to parametric resonance, since its large roll
natural period (about 20s) is parametrically excited by waves
of 10s period.

In general, the classic approach to investigate the likelihood
of parametric roll is the Mathieu equation [18], which is a
singe DoF unforced equation, with harmonic variations of the
stiffness term. Although it can give some insight, it cannot
forecast the severity of the eventual parametric response.
Furthermore, several approximations are needed to reduce the
full nonlinear 6-DoF model into a 1-DoF partially linearized
model, which would fit into the Mathieu equation structure. In
particular, linear and nonlinear coupling effects between the
6-DoFs are be neglected, and the variations of the stiffness
term are assumed to be harmonic, which is not necessary the
case. Finally, nonlinear variations of the excitation force are
be neglected as well.

III. CASE STUDY

The 6-DoF nonlinear hydrodynamic model is used to sim-
ulate the response of a device to incoming waves. Regular
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waves are considered, in order to be able to study the effect
of the wave height (Hw) and wave period (Tw), independently.
Furthermore, since parametric resonance is particularly sensi-
tive to the frequency and amplitude of the external excitation,
as explained in Sect. II-B, it is convenient to study, at least
at first, only monochromatic waves. A wide range of wave
conditions, based on [21], is considered, with Tw ∈ [4, 15]s,
step 0.5s, and Hw ∈ [0.5, 4]m, step 0.5m. However, waves
steeper than 2% (low period and large height) are excluded.

The case study is a heaving buoy WEC, inspired by the
CorPower [11] device, whose shape and dimension, based on
[21], are shown in Fig. 1. Such a device presents the peculiarity
of a pre-tensioning system, used to reduce the weight of the
buoy, and the WaveSpring mechanism, which effectively acts
as a negative spring [21].

Fig. 1. Shape and dimensions of the case study buoy, inspired by the
CorPower device [21].

The motion of the device is described by Newton’s second
law, in vectorial form, for 6 DoFs, written in the body-fixed
frame of reference:

M ẍ =fFKst + fFKdy + fd + frad + fvis+

fCor + fmoor + fpre + fWS + fPTO,
(7)

where M is the inertial matrix, x = (x̂, ŷ, ẑ, ε, δ, ψ) is
the state vector in the body-fixed frame, f is the generalized
force vector, composed of 3 forces and 3 torques. The other
force components in (7) are fd, the diffraction force, frad, the
radiation force, fvis, the viscous force, fCor, the Coriolis force,
fmoor, the mooring force, fpre the pretension force, fWS the
WaveSpring force, and fPTO, the power take-off (PTO) force.
Note that fpre, fWS , and fPTO act on the axis of the device,
therefore along ẑ.

The common expression for fd, frad, fvis, and fCor are used
[15], where fd is computed through the diffraction impulse
response function, frad through a state space representation
of the radiation convolution integral [22], and fvis through
a Morison equation [23]. Furthermore, fmoor and fpre are
linearly proportional to displacement, while fPTO is linearly
proportional to velocity.

The important numerical parameter values used in the
model are based on [14], [21], and summarized in Table I,

TABLE I
MODEL PARAMETERS, BASED ON [14], [21].

Surge/Sway Heave Pitch/Roll
M 7.513 · 105kg 7.513 · 105kg 2.36 · 106kgm2

Kmoor 7.2 · 104N/m 2 · 104N/m 9.5 · 105Nm/m
Kpre - 5.17 · 105N/m -
BPTO - 2.44 · 106Ns/m -
Cd 0.35 0.35 1
Tn 13s 6.5s 7.5s

where Kmoor is the mooring stiffness, Kpre is the pretension
stiffness, BPTO the PTO damping coefficient, Cd the drag
coefficients, and Tn the natural periods. The Wavespring
mechanism, which is composed of three pneumatic cylinders,
is modelled as in [24], assuming an adiabatic compression of
the working fluid in the chambers of the cylinders. It follows
that fWS is computed as:

fWS = NcpWSAWS ẑ
√
L2
WS,0 + ẑ2, (8)

where Nc is the number of cylinders (3), AWS the active
area of the cylinder (0.1489m2), LWS,0 the initial length of
the cylinder (4m), and pWS is the pressure in the chambers,
defined as

pWS = pWS,0V
γa
WS,0/V

γa
WS (9)

where VWS is the volume of the cylinder chamber, γa the
constant adiabatic index (1.4), and the subscript 0 indicates
initial conditions.

IV. RESULTS

The pitch response of the device, comparing the linear and
nonlinear 6-DoFs models, is shown in Fig. 2, considering,
for clarity, only waves of height 2m. Similar results are
found for waves of different heights, with increasing nonlinear
effects as the wave becomes higher, therefore steeper and more
energetic.

6 8 10 12 14
0

5

10

15

20

25

Tw[s]

Pi
tc

h
an

gl
e:
δ[
◦ ]

LFK 6-DoF
RFK 6-DoF

Fig. 2. Pitch response of the CorPower device, subject to regular waves of
height 2m, according to linear and nonlinear Froude-Krylov 6-DoFs models.

Overall, the pitch response predicted by the nonlinear model
is significantly larger, especially for periods close to the
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pitch resonant period (low periods), and close to the surge
resonant period (high periods), which is coupled with pitch.
The magnification of the pitch angle may have an effect on
the power production since, as shown in [14], [10], the heave
mode is nonlinearly coupled with surge and pitch modes.

The increase of the pitch response can be partially explained
by the variations of the hydrostatic restoring torque in pitch,
due to fluctuations of the metacentric height. In order to
evaluate such variations, a parametric study is performed by
displacing the buoy in fixed heave (zG) and pitch (δ) positions,
and computing the hydrostatic torque (T pFKst ) over a wave
cycle, considering, for example, a wave of Tw = 10s and
Hw = 2m.

Given the variability of nonlinear T pFKst , the mean torque
is presented in Fig. 3, along with error bars, whose length is
equal to the standard deviation of the static torque, over one
wave period. While the nonlinear model significantly overlaps
with the linear model for very small zG, it diverges from it
with when the absolute value of either δ or zG increases.
Furthermore, for vertical displacements larger than 1.75m,
the static torque changes sign, contriving to drive the buoy
away from the equilibrium position, as opposed to acting as
a restoring torque, which is the case for a linear model. In
fact, for z ≥1.75m, the metacentre falls below the centre of
gravity, which is the condition for pitching instability [25].

However, Fig. 3 only considers quasi-static variations of
the system parameters, since the device is restrained from
moving, and dynamic effects are nullified. Although quasi-
static analysis permits a focus on zG and δ only, the dynamic
response also needs to be considered, in order to take the effect
of the natural frequency and the wave frequency into account,
since they are important drivers of instability, as discussed in
Sect. II-B, and shown in Fig. 4.
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Fig. 3. Static pitch Froude-Krylov force (T p
FKst

) for the CorPower buoy,
subject to a wave with Hw = 2m and Tw = 10s, according to the linear
model (solid line), and the nonlinear model, for different heave position zG.

The roll response is now considered, shown in Fig. 4.
Note that the motion of the device is studied for a initial
roll displacement of 0.1◦, as suggested in [4], in order to
provide some initial energy in the roll DoF. Since the external

force is null in this DoF, the roll mode can be only internally
excited, requiring some nonlinear mechanism for exchanging
energy between different modes. Furthermore, in order to
generate significant roll responses, parametric resonance must
occur. In fact, when a system resonates, it magnifies negligible
fluctuations from to the equilibrium position, to infinity if the
system is un-damped, or until the damping limitations are met.

Tw[s]
4 6 8 10 12 14

H
w
[m

]
0.5

1

1.5

2

2.5

3

3.5

4

R
ol

l
an

gl
e:
ε[
◦ ]

1

2

3

4

5

6

7

8

Fig. 4. Maximum roll angle, due to parametric resonance, according to the
6-DoF nonlinear Froude-Krylov model.

The conditions for parametric resonance act on the exci-
tation amplitude and period, hence Hw and Tw, respectively,
as explained in II-B. Figure 4 clearly shows how parametric
roll appears after a certain amplitude threshold is exceeded.
The main periods where parametric roll is excited is at about
7.5 − 8s, where the maximum roll amplitude is about 8◦.
Smaller parametric roll responses are found at 11.5s and 9.5s.

In other WECs with large roll natural period, for example
[4] (Tn about 20s), parametric resonance happens at wave
periods about half the roll natural period, therefore Tw of about
10s. Conversely, for the CorPower device, the roll Tn is quite
small (about 7.5s), therefore waves with Tw = 1

2Tn are too
small, and outside the target production region. However, since
Tn is small in roll, parametric resonance is indeed mainly
happening at about Tw = Tn, as shown in Fig. 4.

The response in roll, for the wave condition with largest
roll amplitude (Tw = 8s,Hw = 3.5m) is shown in the phase
graph (ε, ε̇), and fast Fourier transform (FFT), in Fig. 5. The
frequency components of the FFT are normalized against the
wave frequency ωw. The limit cycle response is quite simple,
dominated by a relative frequency of unity. Such a response
confirms that Tw = 8s is the main wave frequency where
parametric roll is directly excited. Furthermore, non-zero mean
values and super-harmonics are evident.

Figure 4 shows that the secondary frequency where para-
metric roll is excited is at Tw = 11.5s. The phase diagram
and FFT of the roll response to a wave of Tw = 11.5s and
Hw = 4m is shown in Fig. 6. It can be noted that the limit
cycle response is topologically more complex. Furthermore,
the FFT graph shows that sub-harmonics are generated. The



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2826578, IEEE
Transactions on Sustainable Energy

IEEE TRANSACTION ON SUSTAINABLE ENERGY, VOL. XX, NO. XX, MMMM YYYY 6

−10 −5 0 5
−5

0

5

ε[◦]

ε̇[
◦ /
s]

0 1 2 3 4
0

0.05

0.1

0.15

ω
ωw

Fig. 5. Phase graph (ε, ε̇) (top figure), and FFT (bottom figure), for the
wave condition with Tw = 8s and Hw = 3.5m. In the top figure, the cross
indicates the initial condition (ε = 0.1◦, ε̇ = 0◦), while the external solid
line represents the limit cycle response.

dominant relative frequency is 1.5, which corresponds to
a period of 7.5s, which is exactly the roll natural period.
Therefore, it can be inferred that parametric roll at Tw = 11.5s
is caused, in an indirect way, by the roll natural period.

Finally, the consequences of pitching instability and para-
metric roll on the energy absorption are investigated. In
particular, neglecting one ore more DoF can affect the power
production estimation. For the case of a heaving buoy, as the
one studied in this paper, a 1-DoF linear model should predict
the same power capture as a 6-DoF, since heave is linearly
un-coupled from all the other modes. Conversely, nonlinear
models take nonlinear coupling effects into account, therefore
there could be differences between different models. In order
to include, selectively, pitching nonlinearities, and parametric
resonance, 1-(only heave), 3-(surge-heave-pitch), and 6-DoFs
model are compared. Figure 7 shows the power production,
estimated with such models.

Obviously, for small wave heights, the three models overlap,
since nonlinear effects are minimal. For higher waves. the 3-
DoF model produces, overall, more power than the 1-DoF
model, apart from wave periods close to 8s, where a significant
power drop is found. Hence, it can be inferred that the power
differences are due to the presence of the pitching motion,
which is nonlinearly coupled with heave, as shown in [14],
[10]. On the one hand, pitch angles up to about 15◦ (Tw greater
than 9s, as shown in 2) benefit the power conversion. On the
other hand, too large pitch angles seem to be detrimental (ε
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wave condition with Tw = 11.5s and Hw = 4m. In the top figure, the cross
indicates the initial condition (ε = 0.1◦, ε̇ = 0◦), while the external solid
line represents the limit cycle response.
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Fig. 7. Power estimation, according to the 1-, 3-, and 6-DoFs nonlinear
Froude-Krylov models.

up to about 22◦, at Tw of about 7.5s, as shown in 2).
Small differences are found between the 3-DoFs and the 6-

DoFs models, indicating that, for the CorPower device, the in-
fluence of parametric roll to the power production is effectively
negligible. Indeed, despite present, the parametric roll angles
are relatively small. However, for the wave condition where the
roll angle is the maximum (8◦, at Tw = 8s, and Hw = 3.5m),
the power difference, although small, is appreciable.
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In order to provide a clearer representation of the power
production under- or over-estimation, Fig. 8 shows the ratio
between the power estimated with the 6-DoF model, compared
to the power estimated with the 1-DoF model. Consistent with
Fig. 7, modest overestimation is found at large periods, with
peaks of +5%. However, larger excursions are found at Tw
between 6s and 9s, with up to +16% overestimation at around
Tw = 7s, and up to -15% for Tw = 8s.
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Fig. 8. Power production estimation ratio, between the 6-DoF and the 1-DoF
model.

V. CONCLUSION

High accuracy at a low computational time is likely to
be a fundamental trait for WECs mathematical models to be
effective, in particular for reliable power production assess-
ment, device and controller design, and loads estimation. Wave
energy converters are particularly prone to exhibit complex
and nonlinear behaviours, which are difficult to be modelled
efficiently. Highly-nonlinear phenomena, often affecting the
efficiency and the energy conversion capabilities of wave
energy devices, are related to instabilities and parametrically
excited motions.

This paper provides a computationally efficient, compact,
and flexible modelling approach for describing nonlinear
Froude-Krylov forces for axisymmetric wave energy devices,
in 6 degrees of freedom. Unlike other similar models, based
on a mesh discretization of the geometry, the analytical for-
mulation of the wetted surface allows the dynamical model to
run almost in real time. However, a considerable speed up, of
about 1 or 2 order of magnitudes, is expected if lower level
coding languages are employed.

The 6-DoF nonlinear model is used to investigate the
response of the a having buoy wave energy converter, inspired
by the CorPower device. The nonlinear model is shown to
be able to represent pitching nonlinearities, and parametric
resonance in the roll degree of freedom. In particular, nonlinear
variations of the restoring pitch torque is discusse, with
particular focus on instability conditions. Furthermore, the

conditions for parametric roll response are discussed. Due
to the relatively small roll natural period, comparable with
the incoming wave period, two different parametric excitation
mechanism are found: the first direct, at the roll natural period
(with generation of super-harmonics), and the second indirect,
at larger period (with generation of sub-harmonics).

Finally, the repercussion that such nonlinearities have on
the power generation is investigated. In particular, 1-, 3-,
and 6-DoFs model are considered, in order to progressively
study the influence of pitch and roll nonlinearities. It is
found that, thanks to a nonlinear coupling between heave
and pitch, the effect of pitch is usually beneficial, when the
pitch angles are lower than 15◦, while is detrimental for larger
pitch angles, close to the pitch resonant period. On the other
hand, parametric roll, although present, has no large effect on
the power production since, when it happens, pitch roll are
generally relatively small.

Overall, this paper provides a tool, easy to implement, to
investigate nonlinear effects in wave energy converters, and
their consequences on the efficiency of the device. As a future
study, other devices, renown to show important parametric
motions, and significantly affecting the power absorption, may
be considered as a further case study. Moreover, as further
work, a complete validation of the code is needed, using data
from either CFD codes or experimental tests.
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