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Abstract—Energy maximising controllers (EMCs), for wave
energy converters (WECs), based on linear models, are attractive
in terms of simplicity and computation. However, such (Cummins
equation) models are normally built around the still water level
as an equilibrium point and assume small movement, leading
to poor model validity for realistic WEC motions, especially for
the large amplitude motions obtained by a well controlled WEC.
The method proposed here is to use an adaptive algorithm to
estimate the control model online, whereby system identification
techniques are employed to identify a linear model that is most
representative of the actual controlled WEC behaviour. Using
exponential forgetting, the linear model can be regularly adapted
to remain representative in changing operational conditions. To
that end, this paper presents a novel adaptive controller based
on a receding horizon pseudospectral formulation.

A case study is presented, providing an preliminary evalu-
ation of the adaptive receding horizon pseudospectral control
(ARHPC), using simulations based on both linear hydrodynamic
modelling and computational fluid dynamics (CFD). The param-
eter adaptation is shown to behave as expected in both different
simulation environments. The ARHPC is observed to perform
well in irregular sea states, absorbing more power than its non-
adaptive counterpart. The optimal trajectory calculated by the
adaptive model is seen to have a smaller motion and power
take-off (PTO) forces, compared to those calculated by the non-
adaptive linear control model, due to the increased amount of
hydrodynamic resistance estimated by the adaptive model, as
identified from the nonlinear viscous CFD simulation.

Index Terms—Wave energy, adaptive control, system identifi-
cation, CFD

I. INTRODUCTION

The design of EMCs for WECs is challenging, for the
following reasons:

1) WECs are correctly described by complex nonlinear
equations, which are difficult to parameterize accurately

2) The models which describe WECs vary considerably in
structure across different WEC types

3) The resonant motion of controlled WECs challenge
small-signal linearisation around a zero displacement
equilibrium

Typically for model-based control [1]–[5], a linear WEC
model is determined based on Cummins equation [6], with
the nonparametric hydrodynamic parameters determined using
boundary-element method (BEM) tools. Such models assume
small movement around an equilibrium point, corresponding to
still water conditions. However, this assumption is challenged,
since the ideal WEC behaviour is characterised by significant
motion, especially when driven into resonance with the inci-
dent waves by the EMC [7], [8]. Furthermore, WEC hydrody-
namics are typically characterised by nonlinearities, including
viscous damping effects and nonlinear Froude-Krylov forces,
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where the nature and comparative extent of these nonlinearities
vary considerably from device to device [9].

While some nonlinear WEC models have been incorporated
into model-based WEC controllers (for example, see [10]–
[12]), nonlinear control solutions are not without their prob-
lems. Although a nonlinear model structure is more likely to be
a better representation of the true WEC dynamics, the control
solution is often difficult, including the required solution of a
nonconvex optimisation problem [11], [12].

Considering the desirability of WEC controllers based on
linear models, but also the need to capture nonlinear WEC
behaviour under controlled conditions, this paper proposes an
adaptive controller, which tunes the parameters of a represen-
tative linear WEC model, based on measured WEC responses.
A receding-horizon pseudospectral controller (RHPC) uses
this linear model to determine the optimal velocity trajectory,
which maximises the energy capture while observing physical
constraints, and a lower-level backstepping controller imple-
ments the velocity-following control loop [13]. The adaptive
WEC model is initialised with parameters determined from a
BEM solver and the model parameters are recursively adapted
using a recursive least squares (RLS) algorithm. The parameter
updating enables both initial model tuning, as well as continual
model adaptation, to ensure relevance to possible changes in
the dynamic WEC behaviour due to:

• Changing sea states
• Varying mooring dynamics due to slow drift motions of

the WEC and changing tidal elevation [14]
• Marine growth on the WEC
• Green water on the WEC, or water leakage into the WEC
• Non-critical subsystem failure [15]

The adaptation of the control model to remain representative
of the actual WEC dynamics, has the potential to increase
the controller performance across the variable conditions en-
countered by a WEC throughout its operational lifetime. [1]
suggests that optimal causal control is only a viable approach
if the controller parameters adapt to changes in the sea state,
showing the necessity of gain-scheduling in accordance with
changes in the spectral content and propagatory direction
of the sea state. A comparison of selected adaptive control
strategies for WECs, such as gain scheduling and extremum-
seeking adaption, is presented in [4]. A review of adaptive
control employed for wave energy applications is given in [16].

As a case study, this paper demonstrates the implementation
of the adaptive controller in numerical wave tank (NWT) sim-
ulations. The controller operates interactively with the simula-
tion and updates its internal model, using system identification
techniques, based on measured outputs [17]. This has evolved
from earlier work, where fixed hydrodynamic models are
identified using measured responses from NWT experiments
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[18]–[20]. The present adaptive control case extends this by
identifying the models online within the NWT simulation.

II. THE ADAPTIVE CONTROLLER

The adaptive controller is an extension of the RHPC control
detailed in [13]. A critical comparison of the RHPC and
traditional model predictive control (MPC) for wave energy
devices is given in [21], revealing that both approaches have
comparable performances, but that the RHPC typically re-
quires a third of the computational expense. The RHPC is
extended in the present work by allowing the linear control
model to adapt to the measured WEC responses.

The linear control model is detailed in Section II-A, and
then Section II-B describes the RLS adaptive algorithm
employed to update the parameters of the linear control
model online, based on measurements of the WEC behaviour.
Section II-C details the optimal controller, which utilises the
linear control model to calculate the optimal WEC velocity
trajectory to maximise energy absorption while observing
path constraints.

A. Linear control model

The adaptive control model is a linearised version of New-
ton’s second law of motion applied to the WEC, based on
Cummins’ equation [6]:

(m+µ∞)
dv(t)

dt
+

∫ t

0

Kr(t−τ)v(τ)dτ+Shx(t) = Fex(t)+u(t)

(1)
Here, m and µ∞ are the mass and the infinite frequency added
mass of the system, Kr(t) is the kernel function involved
in a convolution product with the velocity, representing a
linearised version of the radiation force, Sh is the hydrostatic
stiffness, while Fex(t) is a linearised expression of the
excitation force generated by unperturbed incoming waves
onto the WEC’s hull, at its equilibrium position. x(t) and v(t)
are the system position and velocity, respectively, representing
the state variables, and u(t) is the control force applied by a
power take off (PTO) system.

1) Pseudospectral representation: The state and control
variables are approximated by a truncated series of orthogonal
basis functions on a fixed control horizon, I = [t, t + T0],
where T0 the control horizon over which the energy absorption
is maximised:

∀t ∈ I, f(t) ≈ fN (t) =
N∑
i=1

f̃iφi(t) = Φ(t)f̃ (2)

fN (t) is a truncated series that approximates the initial
function, f(t) (which could be a state or control variable), as
a finite sum of weighted basis functions, Φ(t) = {φi(t)}Ni=1.
The vector, f̃ = [f̃1, . . . , f̃N ]T , contains the projections of f(t)
onto the basis functions:

f̃i =

∫
I

φi(t)f(t)dt (3)

2) Basis functions: For WEC optimal control problems,
Fourier-type bases seem to be a straightforward choice, since
the harmonic wave elevation and hydrodynamic forces are
usually well described via Fourier analysis. However, real-time
control and finite-time control horizons require approximations
of nonperiodic functions. Therefore, in the present work, half-
range Chebyshev Fourier (HRCF) functions, which provide
a Fourier extension for nonperiodic signals, are selected for
the bases. The HRCF functions are defined in [22], and
employed in a RHPC in [13]. Choosing n frequencies leads
to N = 2n+ 1 basis functions, with n sine, n cosine and one
constant term, shown in Fig. 1 for n = 4.

Fig. 1. The first four frequencies of the (a) cosine (Φ[2 : n + 1]) and (b)
sine (Φ[n+ 2 : 2n+ 1]) HRCF basis functions. The first basis function is a
constant: φ1(t) =

√
1/2

3) Receding horizon pseudospectral control model: Cum-
mins’ equation (Eqn. (1)), is expressed in terms of state and
control variable projections (x̃, ṽ and ũ), and is evaluated over
the control horizon, at N collocation points, tk, as:

Φ(tk)

(
[M,N]

[
x̃
ṽ

]
− ũ

)
= Fex(tk)− Fr(tk) (4)

where M and N are N × N matrices, that multiply by the
truncated series approximations of the corresponding state
variable, to represent the position and velocity dependent
forces in Eqn. (1), respectively. The term Fr(t), is the radiation
force generated by past values of the velocity affecting the
control horizon, whereby the radiation convolution product
in Eqn. (1) is decomposed into two parts, depending either
only on past or future values of the device velocity. The
radiation force depending on future values of the velocity
is then included inside the operator matrix N. An example
showing the elaboration of Eqn. 4 in detail is given in [13].

By developing the linear equation of the system, we obtain:∑
i

∑
j

mij x̃iφj(tk) +
∑
i

∑
j

nij ṽiφj(tk) = F (tk) (5)

where F (t) = u(t) + Fex(t) − Fr(t). The two double sums
can be seen as a projection of the position and velocity onto
given kernel functions, m and n, respectively, such that:∑

i

∑
j

mij x̃iφj(t) =

∫
I

mN (t, τ)xN (τ)dτ (6)

∑
i

∑
j

nij ṽiφj(t) =

∫
I

nN (t, τ)vN (τ)dτ (7)
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where mN (t, τ) =
∑

i

∑
j mijφi(τ)φj(t) and nN (t, τ) =∑

i

∑
j nijφi(τ)φj(t). The equation of motion is then trans-

formed in a Fredholm integral equation of the first kind, as:∫
I

mN (t, τ)xN (τ)dτ +

∫
I

nN (t, τ)vN (τ)dτ = F (t) (8)

4) Model initialisation: From Eq. (1), the initial kernel
functions mN

0 and nN0 can be written as:

mN
0 (t, τ) = Shδ(t− τ) (9)
nN0 (t, τ) = (m+ µ∞)δ̇(t− τ) +Kr(t− τ) (10)

where δ and δ̇ correspond, respectively, to the Dirac delta
function and its first derivative. This illustrates the ability
of the model formulation to represent the standard Cummins
equation. The control model parameters are initialized from
Eqs. (9) and (10) , using hydrodynamic parameter values,
Sh, µ∞ and Kr(t), obtained from a BEM solver.

B. Parameter adaptation

The matrix [M,N], is updated at each TRLS time-step, p,
using a standard RLS algorithm [23], which tries to obtain the
best kernel functions, mN and nN from Eq. (8), to satisfy the
motion of the system, using the following recursive algorithm:

θ = [x̃T , ṽT ]T (11)

e(p) = d(p)− θT [M,N]
T

(p− 1) (12)
r(p) = P(p− 1)θ/(λ+ θTP(p− 1)θ) (13)
P(p) = λ−1

(
P(p− 1)− r(p)θTP(p− 1)

)
(14)

[M,N](p) = [M,N](p− 1) + e(p)r(p) (15)

where the covariance matrix P is initialised as P(0) = p0I
(where I is the identity matrix). The vector d contains the
measured outputs the linear model should emulate, which in
this case is F̃, the projection of F (t). λ is the forgetting factor,
allowing a self-tuning (λ = 1) or adaptive control (0 < λ < 1).

C. Optimal control

The optimal control consists of two layers. The first layer
calculates the optimal trajectory the WEC should follow
for energy maximisation, while observing path constraints
(typically amplitude and/or force limitations). The second
layer controls the PTO force to ensure the WEC follows the
optimal trajectory prescribed by the first layer.

1) Optimal trajectory calculation: The optimal controller
maximises the absorbed energy, J , over the control horizon:

J = −
∫
I

v(t)u(t)dt (16)

Replacing v(t) and u(t) with their truncated series:

J ∝ −ṽT ũ (17)

Since the basis functions are orthogonal, the cost function is
directly proportional to the sum of the product of ṽi and ũi,
which leads to a convex optimisation problem; a strength of
this linear control formulation.

While maximising J , the control algorithm must also ensure
that the state and control variables obey the dynamic equations
describing the WEC behaviour. Expressed in terms of residu-
als, and replacing state and control variables in Eqn. (4)by the
truncated series, we obtain the following linear equations:

r1(t) = Φ(t) [Dx̃− ṽ]

r2(t) = Φ(t) [((m+ µ∞)D + R)ṽ + Shx̃− ũ] . . .

+Fr(t)− Fex(t)

where D is the differention matrix defined in [24], R is the
radiation matrix defined in [13], corresponding to the radiation
force generated by the velocity over the control horizon I .

Path constraints, such as PTO force or position excursion
limits, can be easily taken into account by the RHPC algo-
rithm, whereby the controller determines a velocity setpoint
which is within the physical displacement/PTO force con-
straints of the system. For example, in order to avoid any
slamming phenomenon that could occur if the device comes
out of the water, as can happen when applying complex-
conjugate control without position constraints, the relative
position of the body with respect to the actual free surface,
η(t), is constrained to be smaller than a given geometrical
parameter H ,

|Φ(t)x̃− η(t)| ≤ H. (18)

The control algorithm needs to maximise the cost
function J , bring the residuals r1 and r2 to zero, and
ensure the satisfaction of linear inequality constraints. The
optimisation problem is quadratic, allowing the use of
efficient optimisation techniques, and is re-solved at a regular
time-steps, ∆tRHPC < I , following the receding horizon
approach [25]. For more details on the RHPC algorithm, the
reader may refer to [13] and [21].

2) Trajectory tracking: A backstepping method is imple-
mented for trajectory tracking, forcing the nonlinear dynamical
WEC system to follow the optimal trajectory calculated by
the linear control model. Backstepping, employing feedback
linearisation, is shown to have good robustness properties [26]
and follows the general robust hierarchical structure in [27].
The implementation of the backstepping method is described
in [13], where it is shown to minimise the position error, e2(t),
and the velocity error, e2(t):

e1(t) = x(t)− xref (t)

e2(t) = v(t)− vref (t)

where xref (t) and vref (t) are the reference position and
velocity trajectories, respectively.

The PTO force, FPTO, that ensures the WEC follows the
calculated reference trajectory, is given by:

FPTO(t) = −(m+ µ∞)(e1(t)− ẍd(t) + τ2e2(t)) . . .

+Shx(t) +

∫ t

0

Kr(t− τ)v(τ)dτ − Fex(t)

where ẍd(t) is the time derivative of ẋd(t) = vref (t)−τ1e1(t),
which is an intermediate variable related to the desired veloc-
ity, and τ1 and τ2 are constants (in units of s−1) defining the
rate of convergence of e1(t) and e2(t).
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III. CASE STUDY

The performance of the ARHPC is assessed here using
numerical simulations. The simulation structure is detailed in
Section III-A. The two different simulation environments used
in the assessment are described in Section III-B. A description
of the test case considered is outlined in Section III-C, and the
results presented in Section III-D.

A. Simulation structure

The global architecture of the control algorithm, and its sim-
ulation environment, is shown in Fig.2. The control algorithm
can be decomposed into three distinct stages, each running
with individual time-steps:
• The backstepping controller (Green) is contained as a

routine within the simulation, and updates the control
force at each time step ∆tSim. The input reference
trajectory is defined by its projections onto the orthogonal
set of basis functions, and thus can be easily estimated
at any given instant without the need for interpolation.

• The RHPC (Red) computes the reference trajectory iter-
atively at a regular time-step, ∆tRHPC . The solution of
the reference trajectory projection maximises the energy
absorption, while ensuring path constraints. The optimi-
sation problem is solved using the active-set algorithm in
the quadprog function in MATLAB.

• The adaptive algorithm (Blue) updates the linear control
model at a regular time-step ∆tRLS . The updated control
model is then stored and used by the RHPC to find the
reference trajectory. The choice of ∆tRLS is important,
in that it must be chosen short enough to allow good
tracking of changes in a linear representative model
corresponding to sea state variations, while not so short
as to attempt instantaneous tracking of the nonlinearities.

The excitation force (White) must be estimated over the
future control horizon T0. A comparison of forecasting
metodologies is presented in [28], which concludes that very
accurate predictions of swell waves can be obtained up to two
wave periods into the future. In the present paper, the effect
of the excitation force prediction is removed, and the ARHPC
is evaluated under the assumption of perfect knowledge of the
incident wave series.

SimulationBackstepping
Control
force

Optimisation

Adaptive
controlx
model

Recursive
leastx

squares

Measured past values
position and velocity

Error

Real
trajectory

Evaluated past values
position and velocity

Model
parameters

Sum
forces

Measured past values
control force

Measured past values
velocity

Convolutionx
integralxwithx

radiationxkernal
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Optimal
trajectory

Model

Position and
 velocity
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excitation force
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Excitation
force

Current value
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Fig. 2. Global architecture of the control algorithm and the WEC simulation

B. Simulation environments

The study employs both linear hydrodynamic model and
CFD-based numerical wave tank (NWT) simulations as
evaluation tools for the adaptive WEC controller.

1) Linear simulation: The linear hydrodynamic model
yields fast simulations, allowing the evolution of the adaptive
model parameters to be investigated over many wave periods
or sea states. Additionally, the parameters in the linear
hydrodynamic model can be easily changed to specific
values, to assess the accuracy of corresponding changes
in the adaptive model. The linear model is implemented
in MATLAB, and employs a 4th order Runge-Kutta (R-K)
scheme to solve Cummins equation (Eqn. 1), using constant
time steps ∆tSim = 10−3s. The hydrodynamic parameters
are obtained from the open source linear potential theory
BEM software Nemoh [29]. It should be noted that the R-K
disretisation differs significantly from the pseudospectral
model parameterisation used in the control calculations.

2) CFD NWT simulation: The CFD simulation environ-
ment requires intensive computation and large run-times;
however, the CFD NWT evaluation ensures the maximum
fidelity in the calculation of the WEC response, capturing
important nonlinear hydrodynamic effects, such as viscous
damping and nonlinear Froude-Krylov forces, which have
pronounced relevance for a controlled WEC [7], [8]. The CFD
NWT provides a realistic simulation model which is different
from the control model, allowing the convergence and adaptive
properties of the present control scheme to be tested, where
the ARHPC will try to create the best representative linear
control model corresponding to the conditions encountered
in the nonlinear simulation. The NWT is implemented using
the open source CFD software, OpenFOAM, as detailed in
[30], and already utilised for WEC control evaluation in [8],
[31]. Full details of the CFD NWT simulation of the present
ARHPC are described in [16]. The CFD simulation uses an
adaptive timestep to ensure the Courant condition is satisfied,
leading to timesteps typically 10−3s > ∆tSim > 10−4s.

C. Test case description

Buoy

Inertia (Sea floor/damper plate)

PTO

Heave

Fig. 3. Case study WEC

The case study considers a point
absorber WEC, comprising a spher-
ical buoy, constrained to heave mo-
tion only, equipped with an ideal
PTO capable of providing/extracting
bidirectional power to/from the
heaving buoy, see Fig.3. The mass
density of the WEC is half of the
water density, so that the sphere is
50% submerged at equilibrium. The
sphere has a 0.1m radius and 0.61s
natural period, representing a scaled
down version of a realistic WEC,
chosen to reduce the required CFD
computation time as discussed in [16], [32]. This test case is
chosen identical to that presented in [8], [16].
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1) Input waves: An input wave series representing a JON-
SWAP spectrum, with a peak period of 1s, is employed (see
Fig. 4). Note the peak period differs from the natural period
of the WEC, which is 0.61s.

Fig. 4. First 30s of the input wave series used for the test case.

2) Model initialisation: Choosing seven frequencies for
the RHPC basis functions was found to give a parsimonious
balance between accuracy and complexity in approximating
the solution. The linear control model therefore comprises two
15× 15 submatrices, M and N. Using hydrodynamic param-
eters calculated from the BEM solver Nemoh, the parameter
values for M and N are initialised using Eqs. (9) and (10),
respectively, and are displayed in Fig. 5.
• The matrix M is initialised via: M = ShI.

M appears in Fig. 5-(a) as diagonal, with the non-zero
parameters representing the hydrostatic stiffness.

• The matrix N, shown in Fig. 5-(b), is given by:
N = (m+ µ∞)D + R.

• The differential matrix D is shown in Fig. 5-(c). The first
column is zero since the first basis function is a constant
and its derivative is zero. Likewise, the parameter values
in the upper left and lower right quadrants are zero,
since the derivate of a cosine is a sine and vice-versa.
The parameter values in the upper right and lower left
quadrants, which transform the cosines to sines, and vice-
vera, can be seen to contain a structured pattern, with very
large values that dominate the resulting parameter values
in the matrix N.

• The radiation matrix, R, Fig. 5-(d), contains non-zero
parameter values along the main diagonal, which corre-
spond to the radiation damping force due to the WEC
velocity. The nonzero terms along the small diagonals,
in the upper right and lower left quadrants, correspond
to the added mass terms that are in quadrature with the
velocity, whereby a cosine velocity gives a sine radiation
term (and vice-versa) relating to an added mass force.

Fig. 5. Initialisation of the M and N matrices, where N = (m+µ∞)D+R

3) Control settings: The value for the various control
parameters employed in the test cases are listed in Table I.
The collocation points are displayed in Fig. 6, employing a
sinusoidal spacing over the control horizon, to minimise any
Gibbs phenomena, as discussed in [13].

TABLE I
CONTROL SETTING VALUES USED IN THE TEST CASE EXAMPLES.

Parameter Symbol Value
Control horizon T0 2s
RLS update period ∆tRLS 0.2s
Optimal trajectory update period ∆tRHPC 1ms
RLS forgetting factor λ 0.995
P initialisation p0 1
Number of basis functions N 15
Geometrical constraints H 0.1m

Fig. 6. The 2N + 1 collocation points spanning the control horizon.

4) Tests: Three tests are performed for the preliminary
assessment of the ARHPC, Tests 1 and 2 investigate the
adaptive properties of the control model, and then Test 3
assesses the performance of the ARHPC, as follows:

Test 1: The first test examines the ARHPC model parameter
adaptation, over a period of 30s, in the linear model and CFD
NWT simulations. The RLS algorithm will be initialised at
t = 3s, and completes 135 update steps in the remaining
27s. The ARHPC model parameters in the linear model
simulation are expected to remain fairly constant, since both
models are linear and their parameters are initialised using
the same BEM hydrodynamic data. Conversely, for the CFD
simulations, the ARHPC model parameters should adapt
in response to the nonlinear effects captured by the CFD
simulation but neglected in the ARHPC model initialisation.

Test 2: To further investigate the adaptive properties of
the ARHPC, a linear simulation is performed with double
the amount of hydrodynamic radiation, 2Kr(t), to examine
how the parameters in the N matrix respond. The importance
of accurate control model estimation of the resistive forces,
in optimal control calculations, is discussed theoretically in
[33] and demonstrated experimentally in [16]. The fast linear
simulation runtimes allows the evolution and convergence of
the parameter values to be examined over a period of 100s.

Test 3: The final test assesses the ARHPC performance,
using the CFD NWT as an evaluation tool. The importance
of evaluating EMCs for WECs in a realistic simulation en-
vironment, such as CFD, is discussed in [8]. The resulting
WEC motion, PTO forces and energy capture, from the CFD
simulation in Test 1, are compared against a second CFD
simulation of the same controller employing non-adaptive
model parameters.
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D. Results

1) Test 1: The total changes to the ARHPC model parame-
ters, at t = 30s, are shown in Fig 7. The changes to the model
parameters in the CFD simulation, ∆MCFD and ∆NCFD, are
displayed in Figs. 7-(a) and (b) respectively, and the changes
to the model parameter in the linear simulation, ∆MLS and
∆NLS, are displayed in Figs. 7-(c) and (d) respectively.

The largest parameters changes in ∆MCFD are seen to
occur to the first few diagonal entries of the upper left and
lower right quadrants, corresponding to Sh and frequencies
less than or equal to the peak wave period. Fig. 8 plots the evo-
lution of the first three diagonal entries, M(1, 1),M(2, 2) and
M(3, 3), showing a decrease in the parameter values identified
from the CFD simulation. A decrease in the adaptive model
representation of Sh makes sense physically, considering Sh

for the sphere is maximal at equilibrium, and the adaptive
model parameters therefore update to a linear average of the
reduced Sh values while the sphere is away from equilibrium.
For comparison, the first three diagonal entries of MLS are
also plotted in Fig. 8, and can be seen to remain fairly constant,
as expected.

The diagonal entries of ∆NCFD, corresponding to the
hydrodynamic radiation force, are seen to have changed due
to the adaptive algorithm. The evolution of first three diagonal
entries, N(1, 1),N(2, 2) and N(3, 3), are also plotted in
Fig. 8, where the parameter values identified from the CFD
simulation are seen to increase during adaptation. Due to
viscous damping forces present in the CFD simulation, in
addition to the radiation forces, the adaptive model increases
its linear representation of the total velocity dependent forces.
Once again, by comparison, the model parameters from the
linear simulation are seen to remain fairly constant. However,
in this case, the parameters for the velocity dependent forces
in the linear simulation, ∆NLS, are seen to vary more than for
the position related forces ∆MLS, likely due to this mismatch
in parameterisation of the radiation convolution integral in the
linear simulation and the RHPC model. Increasing the number
of basis functions may reduce these small variations.

The relatively large changes around the first few diagonal
parameters in the upper right and lower left quadrants of
∆NCFD, correspond to differences in the added mass effects
within the CFD simulation compared to the linear model
representation. Comparison of Figs. 5-(d) and 7-(b), shows
that the positive values around the diagonal of the upper right
quadrant of R become more positive in the identified model,
and likewise, the negative values in the lower left quadrant
become more negative, indicating an overall increase in the
added mass due to the parameter adaptation. This is consistent
with the findings in [18], where both the radiation and added
mass values identified from CFD NWT experiments were seen
to increase relative to those identified from BEM data. The
evolution of N(2, 9),N(2, 10) and N(3, 10) are also plotted in
Fig. 8, showing an increase in the parameter values identified
from the CFD simulation, and little change to those identified
from the linear simulation.

Fig. 7. Changes to parameters in the M and N matrices for the CFD
simulation, (a) and (b), respectively. Changes to parameters in the M and N
matrices for the linear simulation, (c) and (d), respectively.

Fig. 8. Evolution of the model parameters for the linear and CFD simulations.

2) Test 2: The resulting parameter adaptation due to the
doubling of the hydrodynamic radiation force in the linear
simulation is illustrated in Fig 9-(a), which plots the evolution
of the first three diagonal parameter values of the N matrix.
Fig 9-(a) shows that the parameters N(1, 1),N(2, 2) and
N(3, 3), which relate to the hydrodynamic radiation, converge
to values approximately double their initial values, as might
be expected. The effect of the adaptation of all the parameters
in the N matrix is demonstrated in Fig 9-(b), which plots
the actual simulated radiation force over a control horizon,
and the linear control model approximation to this at the 15
collocation points, for both the initial and the adapted control
models. Fig 9-(b) shows that the initial model approximation
is quite poor, with values about half the simulated radiation
force, whereas the updated model manages to approximate the
simulated radiation force well.

Fig. 9. (a) Evolution of the model parameters for the linear simulation with
double the radiation force (b) The simulated radiation force and the control
model approximation using the initial and adapted (t = 100s) parameter
values
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3) Test 3: The performance of the ARHPC, versus its
nonadaptive counterpart, is shown in Figs. 10-12. The WEC
displacement and energy absorption are plotted in Fig. 10,
showing the model adaptation leads to the ARHCP calculating
an optimal trajectory with smaller amplitude displacements,
yet yielding more energy than the nonadaptive controller.

For this particular case study, the real system had more
viscous drag than in the initial RHPC model, and as a result the
adaptation slows down the system response to reduce viscous
drag losses. However, if the initial RHPC model overspecified
the amount of viscous drag, then the adaptation would speed
up the response. The correct nature and magnitude of this
filtering effect, which speeds or slows the system response, is
not known a priori and will vary as the input wave conditions
and system characteristics change over time. The use of an
adaptive model, allows the control to determine the appropriate
system response, by regularly updating and improving its
description of the real system, based on online measurements.
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Fig. 10. Results of the adaptive RHPC versus the constant RHPC. (a) the
WEC displacement, and (b) the energy absorbed by the PTO.

In addition to smaller displacements, the PTO forces applied
to the WEC by the ARHPC controller are also smaller than
those applied by the nonadaptive controller, as shown in Fig.
11. The optimal PTO force calculated by the RHPC and the
actual PTO force applied to the WEC, are plotted in for the
constant control model case (a) and the ARHPC (b). The
mismatch between the optimal and actual PTO force is due
to the trajectory tracking of the backstepping control which
ensures the WEC follows the optimal velocity trajectory.
Fig. 11 shows that, as the ARHPC model adapts and better
represents the actual WEC dynamics in the CFD NWT, the
calculated PTO force and the actual PTO force converge.
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Fig. 11. The calculated optimal PTO force trajectory and the actual PTO force
applied to the WEC after the backstepping control in the CFD simulation.

Another advantage of the ARHPC, over its nonadaptive
counterpart, is illustrated in Fig. 12, which plots the amount
of energy flowing in and out of the PTO, normalised against
the total absorbed energy. Fig. 12-(a) shows that, for the WEC
with the constant control model, about 4.5 times the absorbed
energy came into the PTO from the WEC and 3.5 times from
the PTO to the WEC. However, for the WEC with the adaptive
control model, Fig. 12-(b) only 3 times the total absorbed
energy came into the PTO from the WEC and 2 times from the
PTO to the WEC. Fig. 12-(c) shows the ratio of energy in to
energy out for the two controllers, showing the improvement
of the adaptive controller over the constant controller once
the adaption begins. Limiting the amount of bi-directional
power flow is important when generator inefficiencies are
considered, due to energy losses occurring every time energy is
transferred. Additionally, the smaller bi-directional power flow
results in a reduction of the PTO power capacity requirement
and associated capital costs.
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Fig. 12. The flow of energy to and from the PTO, normalised against the
total absorbed energy, for the (a) constant control model and (b) the adaptive
control model. (c) The ratio of energy in to energy out, as a measure of the
energy efficiency of the two controllers.

Regarding computational demand, on an Intel Xeon CPU
E5-2450 v2 @ 2.5 GHz, the unoptimised, MATLAB inter-
preted control algorithm required 0.04s for backstepping, 0.5s
for optimal trajectory calculation and 0.15s for parameter
update. This is already fast enough for real-time control of
full scale WECs, where recalculation of the optimal trajecto-
ries is typically required on a second-by-second basis. With
optimised and compiled code, we would expect roughly an
order of magnitude increase in computational speed, therefore
real-time control seems feasible with the ARHPC.

IV. CONCLUSION

The optimal controller presented in this paper, the ARHPC,
utilises a linear control model which results in a quadratic
optimisation problem that lends itself to efficient optimisation
routines, enabling the possibility of real-time control. Typical
weaknesses of a linear WEC model, such as limited range
of validity, are overcome by employing system identification
techniques to update the model parameters online so that the
linear model remains representative in changing sea conditions
and WEC states.

The initial assessment of the ARHPC, performed in a high-
fidelity CFD simulation environment, gives promising results,
with the ARHPC absorbing more energy than its non adaptive
counterpart. In addition to producing more power, the resulting
WEC displacements and PTO forces from the ARHPC were
smaller than from the nonadaptive controller, which would
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reduce the required capital and operational costs for the
WEC. Both controllers were evaluated under the assumption of
perfect knowledge of the incident wave series over the control
horizon and assuming the PTO to be 100% efficient. Another
advantage displayed by the ARHCP, was the lower amount
of bi-directional power flow required to/from the PTO, which
decreases the amount of energy loss when PTO inefficiencies
are considered.
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