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Abstract 

Gene evolution is primarily studied through the observations of comparative 

cumulative point mutations between homologs. Genes also evolve through “remodelling”, the 

process of repurposing and reorganising genes and gene fragments into novel sequences. Gene 

remodelling is a relatively underappreciated evolutionary concept. Remodelling events 

circumscribe the development of novel sequences via fusion or fission events and through the 

shuffling of exons or domains. To date, all studies into remodelling have focussed on specific 

remodelling events, for example gene fusions in cancer samples, or have used small datasets 

(<15 species). As such, a comparative remodelling analyses between two taxonomic Kingdoms 

has yet to be completed. In 2018, CompositeSearch was developed to overcome the 

computational bottlenecks associated with mining all possible combinations that may attribute 

to remodelling events. We used CompositeSearch to investigate the comparative extent of 

remodelling within large fungal (107 species) and plant (50 species) datasets. We observed 

approximately 50% of fungal genes and 61% of plant genes to have a history of remodelling 

despite robust controls against Type I errors. We observed the rate of remodelled family birth 

and decay to be clocklike in both datasets, and that remodelled genes were considerably more 

homoplastic than non-remodelled genes. Functional overrepresentation analysis concluded that 

remodelled genes were associated with rapidly evolving systems, such as secondary 

metabolism, and with phenotypic novelty, such as flowering in angiosperms.  

 Remodelling events have been associated with the development of antimicrobial 

resistance (AMR). As CompositeSearch does not discern between a fusion event and any other 

remodelling event, we developed CompositeBLAST to detect novel AMR fusion events. 

CompositeBLAST was considerably faster and more sensitive than previously published 

fusion detection tools. Using this software, we detected previously unreported mupirocin and 

vancomycin resistance genes as being derived from remodelling events.   
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1.1 Gene evolution 

 

1.1.1. Introduction to modular evolution 

 

Molecular evolution refers to the accruement of changes in biological sequences (such 

as DNA, RNA, or translated amino acid sequences) over successive generations. Molecular 

evolution is a relatively young field in biology, which utilises principles and practices from 

genetics, biochemistry, computational biology, and bioinformatics. Gene evolution, a 

subdiscipline of molecular evolution, focusses on changes in protein-coding genes over 

generations and is achieved through comparative genetics and comparative genomics. Themes 

in gene evolution explore, for example, the evolutionary origins of new genes within genomes 

(Haggerty et al., 2012), the evolution of novel functions (Hughes, 2005), and phenotype 

evolution (Zhang, 2018).  

The emergence of novel genes in a genome, whether through duplication, horizontal 

gene transfer (HGT) or successive point mutations can promote significant functional 

innovation or phenotypic changes (Chandrasekaran and Betrán, 2008; Haggerty et al., 2012). 

A common example of this can be observed in the development of antimicrobial resistance in 

bacterial populations via plasmid mediated HGT (Lerminiaux & Cameron, 2019). Gene 

deletion may also confer considerable phenotypic changes (Bailey et al., 2019), and is often 

observed during the transition to parasitic life cycles (Sun et al., 2018). For example, successive 

losses of secondary metabolite production, cellulose degrading, and hemicellulose degrading 

genes have been implicated in the transition towards obligate biotrophy in the fungal 

phytopathogen Blumera graminis (Spanu et al., 2010).  

With the exception of HGT, genetic novelty in genomes typically arises due to “genetic 

redundancy”, where a particular biological function is carried out by two or more genes (Force 
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et al., 1999), usually resulting from a duplication event (discussed further in Section 1.1.3.). In 

such instances, due to a lack in selection pressures, one duplicate is free to acquire mutations 

and evolve down its own pathway without affecting organismal fitness (Kleinjan et al., 2008; 

Xia et al., 2016). Of course, there are exceptions to this, such as duplications resulting in gene 

toxicity or deleterious mutations in paralogs (Birchler and Veitia, 2012). As deleterious 

mutants are unlikely to persist in the genome, this thesis is exclusively concerned with 

“successful” mutants (divergent sequences that persist in the genome record). The potential 

fates of duplicated genes are discussed in subsection 1.1.2.1. 

The cynosure of this thesis is the study of “modular evolution” in protein-coding genes, 

and, as such, the terms “gene” and “protein” are used interchangeably. Specifically, we 

investigate the genesis of novel gene families through “gene remodelling”, a broad term 

describing the process of novel gene generation from existing gene sequences through 

processes such as domain shuffling (Kawashima et al., 2009) within a gene, or gene fusion and 

gene fission between independent genes (Leonard and Richards, 2012).  

Typically, gene evolution is considered to be “tree-like”, examined through the lens of 

vertical inheritance, and involves the study of the rates, distribution, and effect of nucleotide 

substitutions over time or between phenotypes (Haggerty et al., 2012). Comparatively, gene 

remodelling examines the “network-like” aspects of gene evolution (Jachiet et al., 2014; 

Pathmanathan et al., 2018), where instead of having a single point of origin, a gene family can 

be formed from multiple, non-homologous progenitors (Haggerty et al., 2012) (Figure 1.1.1.). 

Remodelled gene families are the central focus of this thesis. 

 

1.1.1.1. Selfish gene theory  

 

The selfish gene theory (Dawkins, 1989) argues that genes compete for survival within 

genomes, tending to promote phenotypic selection that aids their own propagation. Briefly,  
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Figure 1.1.1. “Tree-like” vs “network-like” gene evolution 

 

The top phylogeny depicts tree-like evolution as the number of roots (nroots) does not exceed 1 

and does not possess merged nodes. The bottom phylogeny depicts network-like evolution as 

nroots > 1 and due to the possession of merged nodes. The bars beside each gene name represent 

a BLAST alignment (Altschul et al., 1997) between each gene, and colour annotations 

represent membership within a gene family. Circles beside the bars represent network vertices, 

where each vertex is a gene and each connection (edge) represents homology. All genes in the 

top phylogeny are connected to each other. Gene families x and y in the bottom phylogeny do 

not share homology with each other, however both share homology with family xy.  
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adaptations that are beneficial for the propagation for a specific allele will be selected against 

genes in direct competition, resulting in a biased allele distribution. As traits are inherited 

almost exclusively via genetic propagation, evolutionary processes, such as selection, are better 

understood through the observation of genes as opposed to exclusively relying on phenotypic 

data such as fossils.  

 

1.1.1.2. Gene duplication  

 

The duplication of genes is a major driving force underlying expansions in the genetic 

repertoire, and subsequently lays the foundation for the generation of genetic novelty (Wagner, 

1998; Garsmeur et al., 2014). Duplicates arising within an organism are known as paralogs, 

whereas genes arising from a common ancestor prior to a speciation event are known as 

orthologs. Duplication mediated evolution has been under consistent, intense scrutiny since 

Ohno first described the phenomenon in detail (Ohno, 1970). Paralogs are usually 

indistinguishable from each other immediately after a duplication event, and are thus 

functionally redundant (Force et al., 1999). Redundancy reduces selective pressure on at least 

one paralog, which may then accumulate point mutations resulting in innovation or decay (Rice 

and Palmer, 2006; Wang and Paterson, 2011).  

 

1.1.1.2.1. Potential fates of duplicated genes  

 

The potential fates of duplicated genes are commonly debated (eg. Wagner, 1998; 

Rastogi and Liberles, 2005; Nardmann and Werr, 2013). In multicellular organisms, unless a 

duplication event occurs in germ cells, paralogs are present in just one cell, which must 

compete with neighbouring cells to ensure paralogous survival. Comparatively, duplicates 
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arising in single celled organisms or within the germ cells of a multicellular organism must 

compete with other individuals within a population that do not possess this paralogous pair. If 

a paralog is deleterious to normal function, thus reducing host fitness, it is likely to be removed 

from the gene pool prior to reproduction or within a few generations of the initial duplication 

event (Veitia, 2005). As mentioned above, silent mutations may not be selected against and 

may persist within a population. Comparatively, if a paralog is advantageous, it is likely to be 

selected for and passed on to successive generations (Force et al., 1999).  

Gene dosage refers to the sum of translated sequences by a specific gene in a given cell 

over time (Qian et al., 2008). If gene concentration is suboptimal, a duplication event could 

hypothetically increase fitness. Therefore, unless inhibited, increases in gene copy number 

enables increased protein production. If amplified protein production is advantageous, little 

variation, if any, accumulates within the paralogous sequence while maintenance remains 

advantageous (Lynch and Conery, 2000). The slow accumulation of point mutations in a 

positively selected paralog, or point mutations accrued once paralogous maintenance is no 

longer advantageous results in altered functionality (Hughes et al., 2014). Comparatively, a 

paralog may be deleterious to an organism due to interference with tightly coordinated 

pathways. Prominent fitness declination arising from paralogs is exemplified in human 

neuropathies where paralogs of α-synuclein have been associated with early onset Parkinson’s 

disease (Rice and McLysaght, 2017). Parkinson’s disease progresses through the accumulation 

of Lewy bodies in nerve tissues (Jellinger and Korczyn, 2018). Lewy bodies are composed of 

granular tissue and α-synuclein variants. As α-synuclein is involved in embryonic nerve 

development, germline mutations would likely render a host non-viable. A duplication event 

allows for α-synuclein variants to arise thus contributing to Lewy body formation (Rice and 

McLysaght, 2017).  
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Figure 1.1.2. Paralog fates 
 
 

Each box represents a conserved gene domain and each domain triplet represents a 3-domain 

gene (eg. ABC and EBF). Each descending level represents a duplication event. A solid line 

between genes represents vertical inheritance between a parent and paralog, a broken line 

(dashed) represents loss of selection (ns), and a broken line (dotted) represents a change in 

function. Loss of selection in domains A and C following the second duplication event 

(resulting in AnsBC and ABCns) represents a subfunctionalisation event (functional 

partitioning), and the change in function (ABC→ABD) represents a neofunctionalization 

event (evolution of functional novelty). The loss of selection (and subsequent loss of function) 

exhibited during the third and fourth duplication events (AnsBC→AnsBnsCns) represents a 

pseudogenisation event (complete loss of function). The development of functional novelty 

in a subfunctionalised gene (EBC→EBCns→EBF) as exhibited during the third and fourth 

duplication events represents a neosubfunctionalisation event (the evolution of functional 

novelty in functionally partitioned paralogs). 
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In cases where paralogs are retained, but not functionally conserved, one of three 

scenarios arise (Figure 1.1.2.): 

 

(i.): Pseudogenisation (Levasseur and Pontarotti, 2011) where a paralog 

accumulates successive point mutations rendering it functionally deficient 

resulting in its transition to a non-coding gene; 

 

(ii.): Neofunctionalisation (Xia et al., 2016), where one paralog retains its original 

function and the other, being under less selective pressure evolves a new 

function through the accumulation of beneficial mutations or through the 

convergent evolution of a conserved domain, resulting in a “false fusion” event 

(a gene that appears to be a fusion of two ORFs but did not arise from such) 

such as an epaktologous event (Nagy and Patthy, 2011). Fusion events are a 

prominent subset of remodelling events (Leonard and Richards, 2012) and are 

discussed in detail in subsection 1.1.1.2.1.; or  

 

(iii.): Subfunctionalisation (Kleinjan et al., 2008), where paralogs of multifunctional 

genes undergo functional partitioning resulting in differential expression. 

Ancestral, pre-subfunctionalised genes often contain more than one catalytic 

domain (Bashton and Chothia, 2007), resulting in selective pressure being 

applied to only one portion of each paralog.  

 

As such, successive deletion events are free to take place within non-selected regions, 

resulting in a “one-sided fission” event if this further results in a partial gene deletion (Des 

Marais and Rausher, 2008). Fission events, like fusion events, are discussed in their own 
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section later in this chapter (subsection 1.1.2.1.). It is also possible for neofunctionalisation to 

occur in subfunctionalised genes, ultimately cumulating to neosubfunctionalisation (Rastogi 

and Liberles, 2005). Neofunctionalisation or pseudoegenisation are hypothesised to be the most 

likely fates of non-conserved paralogs (Wagner, 1998; Lynch and Conery, 2000). 

Neosubfunctionalised genes lend credence to the theory that subfunctionalised genes are 

intermediates in protein evolution and are rarely retained. Due to the considerable variation in 

neosubfunctionalised genes from their original paralog, it may be possible that these genes may 

only share “hidden homology”, and, as such, may be undetectable using sequence similarity 

searches (Janeček, 2008).  

 

1.1.1.2.1.1. Paralog neofunctionalisation  

 

Neofunctionalisation refers to the evolution of functional novelty in one paralogous 

gene while the other paralog retains its individual function as a consequence of selective 

pressures. Neofunctionalisation is hypothesised to follow one of two evolutionary models 

(Figure 1.1.3.):  

 

(i.):  The “mutation during redundancy” (MDR) model 

 

The MDR model (He and Zhang, 2005) strictly states that differential 

selective pressures are exerted on each paralog following a duplication event. 

Specifically, one paralog is under selective pressure to retain its original 

function and the other is under much less pressure and is free to accumulate 

mutations. MDR mediated neofunctionalisation is hypothesised to be rare due 

to the fact that deleterious or silent mutations are much more  
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Figure 1.1.3. Comparison of MDR and IAD neofunctionalization models over time  
 
 

Each box represents a domain and each domain pair represents a paralog undergoing 

neofunctionalisation (Gene AB→AC). Each level represents a timepoint (annotated by Roman 

numerals I-IV). A solid line between domains represents functional conservation and a broken 

(dashed) line represents functional divergence. A colour transition to green represents 

beneficial mutations leading to functional novelty and a transition to grey represents loss of 

selection (and subsequent loss of function). For illustrative purposes, Domain A is functionally 

retained at each time point in each model further emphasising the divergence of Domain B→C. 

For the MDR model, Domain B undergoes loss of selection and begins to acquire beneficial 

mutations resulting in functional novelty (which is selected for), eventually becoming the 

dominant function (Gene AC). For the IAD model, enzyme promiscuity is observed (indicated 

by the green colour transition without first undergoing a loss of selection), where the secondary 

function is selected for, eventually becoming the dominant function (Gene AC). 
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frequent than beneficial mutations and that these accumulations would have to 

be large scale and localised (Rastogi and Liberles, 2005), which is statistically 

unlikely to occur compared to the accumulation of deleterious mutations thus 

leading to pseudogenization (Loewe and Hill, 2010); and  

 

(ii.):  The “innovation, amplification, and divergence” (IAD) model 

 

Conversely, the IAD model (Andersson et al., 2015) postulates that 

novel functions arise alongside original function through enzyme promiscuity, 

the phenomenon where enzymes catalyse a secondary reaction in addition to 

their main catalytic reaction. As the rate of beneficial promiscuity increases, the 

secondary function is further amplified through successive duplication events 

(Weng, 2014). IAD mediated evolution is most commonly associated with 

plasmids where it has been observed experimentally by Andersson and 

company (2015). Promiscuity tends to polarise after a number of duplication 

events, thus leading to distinct functions between paralogs (Weng, 2014). 

Briefly, the key difference between the MDR and IAD models is that MDR 

mediated neofunctionalisation emerges through non-selection of a paralog 

which allows for the progressive accumulation of beneficial mutations over 

time, whereas IAD mediated neofunctionalisation emerges through catalytic 

domain promiscuity, where futher duplicates are selected for one promiscuous 

function resulting in selective divergence over time.  

 

1.1.1.2.1.2. Paralog subfunctionalisation 
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Subfunctionalisation is the evolution of functional partition within 

multifunctional paralogs (Rastogi and Liberles, 2005). As with neofunctionalisation, 

subfunctionalisation is also hypothesised to arise from one of two models: 

 

(i): The “duplication, degeneration, and complementation” (DDC) model  

 

  The DDC model states non-selected paralogs may accumulate mutations 

reducing their capacity to perform a particular function (Figure 1.1.4.). This lack 

of functionality is complemented by the other paralog, resulting in a specialist 

partitioned function for the degenerated paralog. As the multifunctional paralog 

is no longer required to carry out the function of the degenerated paralog, it also 

evolves towards subfunctionalisation due to a lack of selection for the secondary 

function (Force et al., 1999; Hellsten et al., 2007). In this model 

subfunctionalised paralogs functionally complement the pre-duplication 

multifunctional gene but may now freely evolve their own expression patterns 

and undergo further duplications and modifications without disrupting its 

complement (assuming these events would not be deleterious due to gene 

dosage toxicity). 

 

(ii.): The “escape from adaptive conflict” (EAC) model  

 

In contrast to the DDC model, the EAC model initiates with evolution 

towards simultaneous functional promiscuity prior to a duplication event (Des 

Marais and Rausher, 2008). In scenarios where functional optimisation is 

unlikely to be achieved for both functions in a single gene (due to, for example,  
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Figure 1.1.4. A comparison of DDC and EAC subfunctionalisaton models over time  

 

Each box represents a domain and each domain pair represents a paralog undergoing 

subfunctionalisation (Gene AB→A and C). Each level represents a timepoint (annotated by 

Roman numerals I-V). A solid line between domains represents functional conservation and a 

broken (dashed) line represents functional divergence. A colour transition to grey represents 

loss of selection and function. Transitions from dullness to vibrancy (in hue) represents a 

selective pressure increase. In the DDC model, Domain A is conserved in one paralog and 

Domain B in the other. In this scenario, one paralog underwent loss of selection relatively early 

post-duplication, and was thus only expressed to perform one function (as indicated by the 

transition to grey in Domain B). Consequently, the second paralog was selected for its 

alternative function (Domain B) and displayed lack of selection for Domain A (as indicated by 

the transition to grey) resulting in two distinct, subfunctionalised paralogs. In the EAC model, 

one domain in each paralog evolves towards an optimized function (as represented by increases 

in vibrancy), a loss of selection is observed in the other domain (as indicated by the transition 

to grey) resulting in two distinct paralogs with complementary domains, and subsequent 

optimised complementary functions. 
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substrate competition or structural hindrances), a duplication event followed by 

a subfunctionalisation event may be advantageous, ultimately resulting in the 

same outcome as the DDC model. An example of subfunctionalisation can be 

observed in RNAse1 (RNS1) of the primate genus Pygathrix (Zhang, 2003). 

Pygathrix spp. have adapted to predominant folivory which is atypical of the 

capabilities of Old-World primate metabolism. In most primates, RNS1 is a 

bifunctional enzyme, assisting in viral defence and in nutritionally derived 

nucleic acid degradation, and optimally functions at neutral pH (Lomax et al., 

2017). As Pygathrix have evolved folivory in their recent evolutionary history, 

they lack a specialised genetic arsenal for leaf degradation, relying on a low 

stomach pH to degrade cellulose (Zhang, 2003; Liu and Wang, 2016). As RNS1 

displays severely hampered functionality at low pH levels, a duplicated RNS1 

gene was positively selected for increased functionality in acidic environments. 

Both paralogs evolved to optimise a function for viral defence at neutral pH or 

for the metabolism of nucleic acids at a lower pH cumulating to an EAC 

mediated subfunctionalisation event (Liu and Wang, 2016).  

 

1.1.1.2.2. Duplication mechanisms  

 

As gene duplication leads to functional redundancy, which may subsequently lead to 

functional, genotypic, and phenotypic novelty, understanding the underlying genetic factors 

leading to duplication is of importance, especially those leading to large-scale genetic 

redundancy.  

Gene duplication events are commonly ascribed to transposable elements (Marburger 

et al., 2018), slipped strand mispairing (Levinson and Gutman, 1987), ectopic recombination 
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(Petrov et al., 2003), polyploidy (Clark and Donoghue, 2018), and aneuploidy (Leitch and 

Leitch, 2008). Variances in ploidy are common in fungi (Albertin and Marullo, 2012) and 

plants (Tank et al., 2015), as such these were deemed to be excellent candidates to investigate 

for modular genetic evolutionary patterns due to their propensity to introduce vast amounts of 

redundant genetic material over short time frames. These studies are the topics of Chapters III 

and IV.  

Whole genome duplication (WGD) or polyploidization is a massive evolutionary 

driving force. Evidence of WGD has been observed throughout eukaryotes (Macqueen and 

Johnston, 2014; Ren et al., 2018), and especially in Viridiplantae (Garsmeur et al., 2014), 

where their influence is particularly prevalent in grass genomes (Thiel et al., 2009). Due to the 

considerable genetic redundancy, subsequent subfunctionalisation, and neofunctionalisation 

arising post-WGD, it is implicit in many niche adaption and speciation events (Fawcett et al., 

2009).  

Polyploidy refers to one of two genomic states, autopolyploid (where extra 

chromosomes are intergenomic in origin) or allopolyploid (where extra chromosomes are 

intragenomic in origin; Figure 1.1.5.). Allopolyploids arise from hybridization events between 

closely related species, where copies of both parental genomes are maintained. A prominent 

example of this is observed within the allohexaploid genome of Triticum aestivum (common 

wheat) where three distinct ancestral genomes are maintained (Blanc and Wolfe, 2004). The 

evolution toward wheat allohexaploidy is believed to have arisen through two distinct 

hybridization events, where the origin of each ancestral genome has been identified (Petersen 

et al., 2006). In the first instance, a hybridization event occurred between two diploid species, 

Triticum uratu (einkhorn wheat) and Aegilops speltoides, resulting in the emergence of 

Triticum turgidum (durum wheat), an extant crop species harvested for pasta production 
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Figure 1.1.5. Comparison of auto- and allopolyploidy 

 

Each orange or yellow circle represents a cell and each purple circle represents its nucleus. 

Within each nucleus are a series of bars, representing chromosomes. Chromosomes shared by 

species A and B are red and chromosomes unique to species B are green. Duplicated 

chromosomes are annotated with a prime (eg. II’). Scenario (a.) depicts autoploidy, where an 

extra copy of a chromosome is inherited during duplication, in this case, chromosome II is 

duplicated (II→{II, II’}). Such scenarios may arise from replication errors such as 

chromosomal segregation errors (Potapova and Gorbsky, 2017). Scenario (b.) represents 

alloploidy, the inheritance of new chromosomal permutations via sexual reproduction between 

closely related (yet distinct) species. Comparatively, chromosomal copy number increases 

arising from sexual reproduction between two organisms from the same species is known as 

polysomy (not shown). 
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(Kerby and Kuspira, 1987). A second hybridization event between the allotetraploid T. 

turgidum and diploid Aegilops tauschii (Tausch’s goatgrass) resulted in the emergence of T. 

aestivum (Gill et al., 1991; Petersen et al., 2006).  

Comparatively, autopolyploidy is often associated with polysomy, the addition of at 

least one extra chromosomal duplicate from a parent of the same species (Soltis et al., 2014). 

Incorrect gamete chromosome reduction results in a preserved diploid state. Specifically,  

autopolyploidy arises through diploid gamete fertilization, resulting in autotriploidy, arising 

from one diploid gamete and one haploid gamete, or autotetraploids, arising from two diploid 

gametes (Parisod et al., 2010).  

 

1.1.2. Mechanisms of gene evolution  

 

1.1.2.1. Point mutations  

 

Point mutations (single base pair substitutions, insertions, or deletions) are the most 

common mechanism of gene evolution, usually arising from erroneous DNA replication 

(Frömmel and Holzhütter, 1985). Such errors may be spontaneous or may be the result of an 

environmental interference such as ultraviolet waves or the presence of reactive oxygen species 

(Fitch, 1967; Livnat, 2013). A point mutation results in one of five outcomes depending on 

their location within a codon (Thuriaux et al, 1982; Friedlander et al., 1983; Hervás-Aguilar et 

al., 2007; Barrick et al., 2009):  

 

(i.): Silent mutations do not phenotypically alter an organism as they do not change 

the codon encoded amino acid, however, subsequent mutations could be 

deleterious;  

17



 

  

 

(ii.): Nonsense mutations result in the generation of a stop codon within a gene 

resulting in a truncated gene product, an X-linked nonsense mutation in the 

human dystrophin gene (DMD) results in the onset of Duchenne muscular 

dystrophy (Gardner et al., 1995); 

 

(iii.): Conservative missense mutations result in an amino acid substitution to an 

amino acid with similar chemical properties. In such instances, function may be 

conserved unless the mutation occurs within a highly conserved gene; 

  

(iv.): Non-conservative missense mutations result in an amino acid substitution that 

drastically alters the chemical properties of their site. These mutations are often 

deleterious, for example, a non-conservative missense mutation at position 20 

(A®T) of the β-globin gene (HBB) results in the onset of sickle cell anemia (Li 

et al., 2011); and finally,  

 

(v.): Frameshift mutations which arise through a nucleobase insertion or deletion 

event, resulting in codon triplet disruption and the translation of a divergent 

protein sequence, as such frameshift mutations can be highly deleterious (Zhang 

et al., 2018). An example of such a mutation is observed in a subset of cystic 

fibrosis patients where a deletion of a thymine residue at position 1213 of the 

transmembrane conductance regulator gene (MRP7), presents as a misfolded 

protein product (Lannuzzi et al., 1991).  
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While point mutations can be highly deleterious, they can also result in advantageous 

structural or functional novelty (Zakharova et al., 1999). The accumulation of point mutations 

drives selection towards a neofunctionalised or subfunctionalised state. A single missense 

mutation can also be highly beneficial. An example of this can be observed in the evolution of 

antimicrobial resistance. A missense mutation (Asp®Asn) at position 87 of a gyrase gene gyrA 

in clinically relevant gammaproteobacteria leads to fluoroquinolone resistance (Willmott and 

Maxwell, 1993).  

 

1.1.2.2. Gene remodelling  

 

Considering the sheer extent of genetic variation observed throughout life, it is highly 

improbable that all variances can be attributed to successive accumulations of point mutations 

within gene lineages (Haggerty et al., 2012; Jachiet et al., 2014 Pathmanathan et al., 2018). It 

is likely that the process of gene remodelling played a significant role during the evolution of 

complexity. Gene remodelling refers to the rearrangement and modification of existing genes 

forming new genes from processes such as gene fusion and fission (Leonard and Richards, 

2012), domain, and exon shuffling (van Rijk and Bloemendal, 2003; Morgante et al., 2005), 

and de novo generation (McLysaght and Guerzoni, 2015). As gene remodelling is the central 

theme of this thesis, it is imperative to define specific terms used in remodelling description 

(Figures 1.1.6.-7.): 

 

(i.): A gene that shares significant similarity across a portion of its sequence length 

with two (or more) unrelated gene sequences is known as a “composite” (as it 

is composed of other, distinct sequences).  
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Figure 1.1.6. Remodelling categories (network format) 

 

Each vertex represents a gene and each cluster of genes (annotated with one of six colours) 

represents a gene family. Edges represent a “remodelled relationship” (homology via 

remodelling) between genes in different families. Bars at the bottom of the figure represent 

BLAST alignments between each gene with respect to every other gene. Alignments from 

genes of the red and blue strict component families constitute significant distinct portions of 

genes of the purple nested composite family (and vice versa). Similarly, genes of the purple 

and green families display considerable homology with distinct portions of the mahogany strict 

composite genes. Grey genes are non-remodelled.  
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Figure 1.1.7. Remodelling categories (phylogeny format)  

 

This diagram contains two phylogenies, the upper phylogeny represents one of many different 

topologies that could be inferred from the remodelled gene network in Figure 1.2.6. In this 

phylogeny, each circle represents the birth of a strict component family and all genes emerging 

after this event are included within the family. Boxes represent gene fusion events (fusion 

families) and all genes emerging afterwards are members of that family. Colour annotations 

are consistent with Figure 1.2.6. (blue, red, and green represent struct components; purple 

represents a nested composite; and mahogany represents a strict composite). The lower 

phylogeny represents a non-remodelled gene phylogeny and is included for completeness. 
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(ii.): The terms “fusion” and “fission” describe a composite gene with a clear, 

directional evolutionary history (either two genes merged together to form one 

gene or one gene split to form two genes). The term composite is bidirectional 

and is used to avoid incorrectly referring to a pre-fission gene as a fusion or vice 

versa (Figure 1.1.8.).  

 

(iii.):  A “component” gene is a sequence detected as constituting a significant portion 

of a composite gene.  

 

(iv.): A “remodelling event” is the scenario leading to the formation of composite or 

component genes. 

 

(v.): A gene that is identified as a composite in one remodelling event and as a 

component in another is known as a “nested composite” (NC).  

 

(vi.): A composite gene that is not further remodelled (is not detected as a component 

gene within another remodelling event) is a “strict composite” (SC).  

 

(vii.):  A component gene that is not further remodelled is a “strict component” (SN).  

 

(viii.): A gene that is not detected as having a history of remodelling is “non- 

  remodelled” (NR); and 

 

(ix.): NC, SC, SN, and NR categories are “remodelling categories” (RC). 
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Figure 1.1.8. Comparison of remodelling event types 

 

The networks on the left of the diagram represent three types of remodelling event, where 

yellow and blue circles represent component genes and the green circle represents a composite. 

The bars below the network represent sequence alignments between the three genes. 

Annotation of remodelling events as “fusion” or “fission” requires information on component 

emergence (directed graphs (discussed in section 1.2.)) whereas annotation as “remodelled” 

does not (undirected graph). The upper left phylogeny depicts a fusion event as both 

components emerged prior to the formation of the composite. The upper right phylogeny 

depicts a fission event as both components emerged after the composite gene. The lower trees 

do not provide enough evidence to support annotation as “fusion” or “fission”. As annotation 

as “remodelling” does not require graph directionality, all four events can be accurately 

annotated as remodelled. 
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Gene remodelling refers to the process of gene evolution beyond just cumulative 

mutations. In addition to point mutations, remodelling mediated evolution via fusion, fission, 

and shuffling of domains, exons, and fragments gives rise to vast complexity in emerging 

composite and component genes (Leonard and Richards, 2012; Pathmanathan et al., 2018). 

Composite and component genes therefore may be homologous to a wide array of unrelated 

gene families (Haggerty et al., 2012). Remodelling analyses have been completed on small 

datasets due to the restrictive computing power and time restraints disentangling such extensive 

similarity until the advent of CompositeSearch (Pathmanathan et al., 2018).  

 

1.1.2.2.1. Gene fusion and fission  

 

Gene fusions possess a defined evolutionary direction where two previously separate 

open reading frames (ORFs) merge to form a new composite ORF (Leonard and Richards, 

2012). Fusion events arise through local (gene mediated) or global (chromosome mediated) 

mechanisms. The most simple fusion mechanism is the degeneration of a stop codon, resulting 

in a readthrough of two ORFs as one. Interestingly, gene fusion events often arise through the 

same “local” mechanisms as duplication, including via transposable elements (TE; Bennetzen, 

2005). TEs often erroneously insert captured gene sequences into new genomic positions  

during their own replication processes. If a sequence is inserted into the promoter region or if 

the resultant protein is non-functional, both the duplicate and target region would be 

functionally negated (Kapitonov and Jurka, 2001). If a TE inserts a gene into a non-disruptive 

region, an effective duplication event would have taken place (Lisch, 2013). However, if a 

captured sequence is inserted into the coding region of a sequence without disrupting 

transcription machinery or the promotor region, and assuming the stop codon of the donor 

sequence or target region does not prematurely terminate the readthrough, a fused gene would 
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be generated (Bennetzen, 2005; Figure 1.1.9.). While TEs are implicit in the evolution of 

complexity, a misplaced insertion may result in considerable loss of fitness, especially if a 

signalling pathway is disrupted (Koivunen et al., 2008; Tamura et al., 2016). With the general 

exception of plants which suffer less consequence (Feschotte, 2002; Nystedt et al., 2013), 

eukaryotes implement a number of TE mediated misplacement safeguards such as siRNA 

silencing of TE transcripts (Poetsch et al., 2018). TEs have been identified as the aetiology for 

haemophilia by insertion mediated truncation of the Factor VIII blood clotting gene, hemA 

(Kazazian et al., 1988). Due to the positional restraints and safeguards against TEs, it is likely 

that these are relatively rare facilitators of fused gene formation.  

Comparatively, chromosomal events are more likely contribute more fused genes to a 

species’ repertoire, especially in lineages that are prone to polyploidisation such as fungi and 

plants (Nakamura et al., 2007; Leonard and Richards, 2012). After a polyploidization event, 

massive chromosomal rearrangements and redundant gene compaction take place (Clark and 

Donoghue, 2018). This environment promotes the three chromosomal events that promote 

fusion events (Leonard and Richards, 2012) (Figure 1.1.10.):  

 

(i.): Translocation of a chromosomal segment on to another chromosome  

 

(ii.): Inversion of a segment within a chromosome; and  

 

(iii.): interstitial deletion, the deletion of a chromosomal segment resulting in the 

merger of two previously non-adjacent chromosomal regions.  
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Figure 1.1.9. Transposable element mediated gene fusion 

 

In this scenario, a transposable element (yellow circle) such as a transposon, binds and 

translocates a copy of Gene A and inserts the duplicated sequence before the N-terminus of 

Gene C. A resultant missense mutation leading to the degradation of a stop codon allows the 

readthrough of Genes A and C as a single fused ORF. Black dashed arrows represent TE 

movement with respect to a captured gene sequence. Grey dotted arrows represent TE 

movement throughout a genome.  
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Figure 1.1.10. Chromosomal rearrangements that promote gene remodelling  

 

Chromosomal segments are represented by different coloured circles, movement of segments 

are represented by grey arrows, and the transition of one chromosomal state to another is 

represented by a black arrow. Wild type chromosomes (I and II) are drawn to the left of the 

black arrow, and the resultant aberration (I’ and II’) are drawn to the right. During 

translocation, the q-arm of Chromosome I is translocated to the end of a q-arm in 

Chromosome II, resulting in severe truncation and elongation of Chromosomes I’ and II’ 

respectively. During inversion, a p-arm is inverted in Chromosome I, so what was once the 

telomere (dark red circle) is now adjacent to the centromere (grey circle), displacing all genes 

at the extremities of the p-arm. Finally, during interstitial deletion, two interstitial segments are 

deleted from the p-arm in Chromosome I, resulting in the fusion of telomeric segments to the 

centromeric segments. All of these events promote gene remodelling by physically disrupting 

genomic architecture and the splintering of DNA sequences. 

I II I' II'
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Gene fusion events have been identified as the aetiology of many cancers due to the 

disruption of signalling pathways (Nam et al., 2007). An example of this can be observed in 

the the oncogenic BCR-ABL1 fusion which arises through a translocation event (Hochhaus et 

al., 2011) between chromosomes 9 and 22 (t(9;22)(q34;q11)). Chromosomes displaying this 

event are known as “Philadelphia chromosomes” and are prevalent in many disease 

phenotypes, especially leukaemia (Kang et al., 2016). Unfused ABL1 is a tyrosine kinase 

involved in mitotic progression and in stress response (Quentmeier et al., 2005). The function 

of wild-type BCR is yet to be fully elucidated. While gene fusions have been attributed to the 

emergence of disease phenotypes, evolutionary history is replete with hallmarks of 

advantageous fusion events (Enright and Ouzounis, 2001; Richards et al., 2006). Fusion events 

have also been implicit in the rapid development of antimicrobial resistance in clinical settings 

(Williams et al., 2005; Coleman et al., 2015). The functional prowess of fusion (composite) 

genes are discussed in detail in Chapters II and III, and the extent of fused AMR genes are 

discussed in Chapter IV. A prominent example of a gene fusion event leading to a highly 

advantageous adaption can be observed in rhodopsin-guanyl cyclase (RhGC) gene within the 

Blastocladiomycota (Avelar et al., 2014). In their unfused states, rhodopsin functions as a 

photoreceptor and guanyl-cyclase as a G-protein coupled receptor. In Blastocladia emersonii, 

RhGC is localised in the zoospore flagellar eyespot. In RhGC, light-activated rhodopsin 

initiates cGMP synthesis. Plasma membrane hyperpolarisation arises from the opening of K+-

selective channels by cGMP resulting in the opening of voltage activated Ca2+ channels (Avelar 

et al., 2014). Increased Ca2+ results in increased flagellar beating, resulting in phototactic 

response. RhGC is essential for phototaxis is B. emersonii zoospores.  

Comparative to fusions, fissions refer to the splitting of an ancestral ORF into two or 

more ORFs (Leonard and Richards, 2012). As mentioned in subsection 1.1.1.2.1.2., a one-

sided fission may arise through a nonsense mutation along a sequence, resulting in a highly 
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truncated yet still viable sequence (Leonard and Richards, 2012). Gene fission events are 

believed to occur much less frequently than fusions due to additional formation requirements 

(Durrens et al., 2008). In addition to the generation of a stop codon, a second start codon 

preceded by a promoter region must be appropriated within a gene for a fission to occur 

(Leonard and Richards, 2012).  

 

1.2. Graph theory 

 

As mentioned previously, evolution via gene remodelling is “network-like” as opposed to 

“tree-like”. A “tree” structure refers a subset of graph structures that displays a single root (if 

any) and is completely devoid of merged nodes. Comparatively, “network-like” refers to a 

subset of graph structures that has merged nodes and more than one root (Haggerty et al., 

2012). In discrete mathematics, graph theory focusses on modelling pairwise relationships 

between two or more objects. A graph (G = V,E) is composed of nodes (vertices) and the 

relationships between them (edges) and may be directed, with asymmetric, orientated edges 

between vertices, or undirected, with symmetric, unorientated edges between vertices. This 

thesis relies exclusively on undirected graphs (as previous gene remodelling studies have done 

(Jachiet et al., 2014; Pathmanathan et al., 2018)), where each vertex is a gene and edges 

between vertices are formed through sequence similarity (homology), resulting in a sequence 

similarity network (SSN). A small set of graph theory terminologies are used throughout this 

this thesis (Figure 1.2.1.): 

 

(i.): A connected component (not to be confused with “component” genes as 

discussed in subsection 1.1.2.8.) refers to a group of vertices that are connected 

(via edges) to each other but not to any group; 
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Figure 1.2.1. Graph theory nomenclature 

 

Graph (a.) depicts two connected components, distinct vertex groups (purple and orange) that 

are unconnected to each other. Graph (b.) illustrates a subgraph (annotated by green) within a 

connected component (non-included vertices are annotated with orange). The upper connected 

component in Graph (c.) depicts a clique (where all vertices are connected to all other vertices) 

and the lower connected component depicts a quasi-clique (where all vertices are not 

connected to all other vertices). For clarity, connected components in Graphs (a.) and (b.) are 

also quasi cliques. A cluster (or family) refers to any clique or quasi-clique in a graph. 

Articulation points (annotated as “A”) in Graphs (a.) and (b.) are vertices that connect two 

otherwise disconnected clusters.  

A

A

A

(a.)

(b.)

(c.)
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(ii.): A subgraph refers to specific nodes and their associated edges within a 

connected component; 

 

(iii.): A clique refers to a connected component where all vertices share an edge with 

all other vertices; 

 

(iv.): A quasi-clique refers to a connected component where not all vertices share an 

edge with all other vertices.  

 

(v.): A cluster (or family) refers to both cliques and quasi-cliques  

 

 (vi.): An articulation point is a vertex (or cluster or vertices) that connect two 

otherwise unconnected clusters. 

 

In their studies, Jachiet et al. (2012) and Pathmanathan et al., (2018) primarily focussed 

on viral datasets, however, other network based remodelling studies have investigated the 

role of remodelling in pathway evolution (Richards et al., 2006; Ocaña-Pallarès et al., 2019) 

and as evidence for eukaryogenesis via bacterial-archaeal chimerism (Alvarez-Ponce et al., 

2013). 

Homologous relationships (edges) between genes (vertices) in an SSN are easily 

established using tools such as BLASTP (Altschul et al., 1997) or DIAMOND (Buchfink et 

al., 2015), or through the possession of conserved protein domains such as PFAM domains 

(Finn et al., 2008) and InterPro domains (Apweiler et al., 2001) as assigned by tools such as 

InterProScan (Jones et al., 2014). All SSNs in this thesis are constructed using BLASTP and 

the specific criteria for cutting edges are discussed in Section 1.3.2. 
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1.3. Tools used for remodelled gene detection in large datasets 

 

 1.3.1. fdfBLAST (Leonard and Richards, 2012) 

 

 Prior to the release of CompositeSearch, remodelled gene detection required 

considerable computational resources required for large scale combinatorial comparisons 

(Pathmanathan et al., 2018). Due to this bottleneck, in silico studies on gene remodelling 

tended to focus on fusion or fission events pertaining to single genes (eg. Alvelar et al., 2014), 

on specific biochemical pathways (eg. Richards et al., 2006), or between two organisms (eg. 

Nakamura et al., 2007). In 2012, Leonard and Richards released fdfBLAST, the first tool for 

for high-throughput gene remodelling events. In particular, fdfBLAST detects differential 

gene fusions (instances where a fused gene is observed in one genome and both components 

are observed in another genome). For the purposes of this section, the terms “fusions” and 

“composites” are used interchangeably. Leonard and Richards applied this technology to nine 

fungal genomes, where a total of 63 gene fusions were identified.  

 fdfBLAST has five main steps (Figure 1.3.1.):  

 

 (i.) Comparative reciprocal BLAST 

 

Each genome in a multi-genome dataset is queried against each other 

genome using BLASTall (Altschul et al., 1997) to search for the presence of 

single copy full length homologs (1:1 relationship), the presence of genes with 

multiple homologs in another genome (1:2 relationship), and the presence of 

multiple homologs in a genome that hit a single gene in another genome (2:1 

relationship). This step ensures that a bidirectional hit is observed between the  
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Figure 1.3.1. fdfBLAST pipeline 

 

An illustration of the fdfBLAST pipeline used by Leonard and Richards (2012).  
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fusion and each component. If a potential fusion is not found to have 

bidirectional hits, it is discarded from further analyses.  

  

(ii.)  Comparative hit counts  

 

All instances of 1:2 and 2:1 relationships are extracted while all 1:1 

relationships are excluded from further analyses. 2:1 and 1:2 relationships are 

selected to detect instances where one gene aligns to two different homologs at 

different coordinates along its sequence (fused gene sequence). Such instances 

may then be parsed for differential fusion detection. 1:1 relationships cannot 

satisfy this requirement, as such they are discarded. 

 

(iii.) Reciprocal hit matching 

  

Alignments between each gene in each potential fusion (1:2 and 2:1) 

relationship are assessed to ensure that hits are bidirectional between both 

genomes. This is a quality control procedure to ensure confidence in homology. 

 

 (iv.) Ranking and sorting 

 

A “terminal alignment category” (C-terminal or N-terminal) is assigned 

to each component based on its positional alignment along the fusion sequence. 

If the component sequence terminates within the first 50% of the fusion it is 

annotated (sorted) as “C-terminal terminating” and if it terminates within the 

final 50% of the gene, it is annotated as “N-terminal terminating”. This process 
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is replicated for the initiation (start) of each component alignment against the 

fused gene, and each component is annotated as “C-terminal initiating” or “N-

terminal initiating”. Instances where genes initiate and terminate within the 

same terminal are assigned to that terminal (C-terminal or N-terminal aligning) 

and genes that initiate within the C-terminus but terminate within the N-

terminus are annotated as “middle aligning”. If a middle aligning component 

has a user defined (default = 90%) length similar to the fusion, it is considered 

to be a full length homolog and is discarded.  

 

Retained components are then ranked based on two separate methodologies: 

 

(a.): Percentage identity sequence similarity  

 

The percentage of total identical amino acids (“pident”) 

mapped to the fusion sequence (where higher percentages are 

ranked higher); and 

 

(b.): Geographical distance ratios between components 

 

The geographical distance ratio (DR) between each N-terminal 

and each C-terminal component alignment (query sequences) along the 

fused gene is calculated using the formula: 

 

DR=
qendN
qstartC

 

   where: 
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     DR:  Distance ratio 

qendN: Alignment termination position of the 

query N-terminal component (qend) 

against its potential fusion (subject 

sequence) 

qstartC: Alignment initiation position of the query 

C-terminal component (qstart) against its 

potential fusion (subject sequence) 

 

For each potential fusion, the DR between all potential C- and 

N-termini are binned between 0.1 and 1 at increments of 0.1. Distance 

ratios are inversely correlated with the distances between alignments. 

For example, a distance ratio of 1 would be observed when two 

component alignments are adjacent, whereas a distance ratio of 0.1 

would be observed when alignments are relatively far apart in relation 

to the fusion sequence (Figure 1.3.2.). 

 

(v.) Conserved domain detection 

 

HMMscan (Johnson et al., 2010) is used to assign PFAM domains 

(Bateman, 2002) to each component and fusion. A fusion must share domains 

with each of its components to be considered valid and fusions not possessing 

conserved PFAM domains are discarded. Graphical outputs are constructed for 

each fusion/fission event, which may then be manually curated.  
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Figure 1.3.2. fdfBLAST distance ratios 

 

Each scenario (a.-c.) represents the distance ratio (DR) calculated for two components (A and 

B) against a composite gene (solid black line) where DR = [0.1, 0.2, …, 1.0]. The DR is 

inversely correlated to the distance between domains (Leonard and Richards, 2012)  
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 1.3.2. CompositeSearch (Pathmanathan et al., 2018) 

 

To our knowledge, CompositeSearch is the only program for high throughput 

remodelled gene detection since fdfBLAST (Leonard and Richards, 2012) and its predecessor, 

fusedTriplets (Jachiet et al., 2014). CompositeSearch is a high throughput C++ program for 

detecting gene remodelling events in SSNs constructed using BLASTP (Altschul, 1997). 

CompositeSearch detects families acting as articulation points (composite families) between at 

least two otherwise unrelated families (component families) and differs from fdfBLAST by 

searching for all instances of gene remodelling, not just differentially distributed gene fusion 

events, thus CompositeSearch is a sensitive detection tool, whereas fdfBLAST is a selective 

detection tool. A CompositeSearch analysis identifies gene remodelling in five steps:  

 

(i.): SSN construction 

 

CompositeSearch requires an SSN constructed using BLASTP (tabular 

format (-outfmt 6)) as input. Low complexity sequences and repetitive 

sequences can be detected by BLAST as being highly similar; as these 

potentially non-homologous and relatively common gene architectures could 

cause a potentially high degree of false positive results, they are excluded from 

further analyses using BLAST incorporated “SEG” (-seg yes) and soft masking 

(-soft_masking true) filters. This step is taken as a precaution as the 

implementation of compositional statistics in the BLAST+ algorithm already 

aims to reduce influence from such alignments (Pathmanathan et al., 2018). As 

CompositeSearch requires alignment information in a defined order, the 

executable BLAST command was applied:  
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blastp -query <input file> -db <database file> -out <output file> -seg yes -soft_masking true  

-outfmt “6 qseqid sseqid evalue pident bitscore qstart qend qlen sstart send slen” 

  

  where:  

 

   -query:   Dataset of query sequences (FASTA format) 

   -db:   Database of subject sequences (FASTA format) 

   -out:   Output file  

   -seg   SEG filter 

   -soft_masking:  Soft masking filter 

   -outfmt:  Output file format (6; tabular)  

   qseqid:   Query sequence ID 

   sseqid:   Subject sequence ID 

   evalue:   Expect value (E) 

   pident:   Percentage identity 

   bitscore:  Bitscore 

   qstart:   Start of query alignment (to subject) 

   qend:   End of query alignment (to subject) 

   qlen:   Length of query sequence 

   sstart:   Start of subject alignment (to query) 

   send:   End of subject alignment (to query) 

   slen:   Length of subject sequence   
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BLAST flags between quotation marks (6, qseqid - slen) refer to the 

sequence columns that appear in in the -outfmt6 (tabular) output file. 

  

 

(ii.) “cleanBlastp” executable    

  

The C++ program “cleanBlastp” is provided with CompositeSearch 

which  converts each gene ID (qseqids and sseqids) to a unique integer which 

removes self-hits, removes redundant hits, and in cases where multiple high 

scoring pairs (HSPs) are observed, selects the best hit (based on the lowest e-

value). Three output files are produced by cleanBlastp: 

 

(a.): A “cleanBlast” file with retained BLASTP statistics (in tabular 

format) for CompositeSearch network analyses (explained in 

step (iii.).) 

 

(b.): A “cleanBlast.genes” file containing a list of all converted gene 

  IDs which is used during CompositeSearch analysis. 

 

(c.): A “cleanBlast.dico” file containing gene IDs and their mapped 

integer IDs. This file is not used by CompositeSearch but is 

provided to allow the user to identify genes during downstream 

analyses. 
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The “cleanBlast” and “cleanBlast.genes” files contain data from the 

BLASTP analysis (described in step (i.)) which has been optimised for 

processing by CompositeSearch. This “cleaning” method has been implemented 

to avoid simultaneous memory access issues and to allow CompositeSearch to 

be parallelized for rapid analyses (Pathmanathan et al., 2018)  

 

 

 (iii.) CompositeSearch executable 

 

CompositeSearch, is used to identify instances of gene remodelling between 

homologous gene families. The executable is invoked using the command: 

 

./compositesearch -i cleanBlast file -n cleanBlast.genes -m composites 

-c 80 -p 30 -e 1e-05 -l 20 -x 2 -y 2 

 

  where: 

   -i:  Input file (cleanBlast file produced in step (ii.)) 

   -n:  Input gene file (cleanBlast.genes file) 

   -m:  Mode, only “composites” was used throughout this thesis 

   -c:  Mutual overlap filter (default = 80%) 

   -p:  Minimum percentage identity filter (default = 30%) 

   -e:  Minimum BLASTP e-value filter (default = E ≤ 10) 

    -l:  Maximum overlap allowed between component family 

     alignments against a given composite (default = 20  

     amino acids) 
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    -x  Minimum composite family size filter (default = 1; the 

     reasoning behind why this was increased to 2 during all 

     analyses in this thesis is discussed in section 2.2.2.) 

    -y:  Minimum component family size filter (default = 1; the 

     reasoning behind why this was increased to 2 during all 

     analyses in this thesis is discussed in section 2.2.2.) 

    -t:  Number of threads used 

 

As each flag is used during different steps of a CompositeSearch analysis, they 

are discussed as they arise. The “cleanBlast” and “cleanBlast.genes” files (generated in 

step (ii.)) are processed by CompositeSearch to assign genes to clusters (families) and 

then to determine the presence of gene remodelling events via the identification of 

clusters acting as articulation points between at least two other clusters. 

Genes are clustered into families using a three step method: 

    

   (a.): Edge detection 

 

An edge is established between two gene (vertex) alignments if 

the pident ≥ the user defined minimum pident (-p) and if the e-value ≤ 

the user defined maximum e-value. 

 

   (b.): Vertex clustering: 

 

A Depth First Search (DFS) algorithm is used to cluster vertices 

(with intervertex edges as defined in step (i.)) into connected 
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components (CC) if the mutual coverage score ≥ the user defined 

minimum (-c).  

 

   (c.): Family assignment: 

 

As overextended BLAST alignments may incorrectly introduce 

genes to a family (Mills and Pearson, 2013), a mutual coverage score 

(Smc) is computed for each potential family (as defined by Pathmanethan 

et al., 2018), and instances where Smc < 1 were subjected to Louvian 

community detection (Blondel et al., 2008). The application of Louvian 

community detection is to prevent potential composites and their 

components being assigned to the same families. Genes remaining in 

clusters after DFS and Louvian community detection are considered to 

be gene families. A connectivity score for each family (Cf) is calculated 

using the formula: 

 

Cf=
(2×nE)

#nV×(nV-1)$ 

 

   where: 

    nE:  The sum of edges in a given family; and 

    nV:  The sum of vertices in a given family 

 

The family detection step produces three output files, 

“family.edges” (an edge list between vertices in each family), 

“family.nodes” (a list of vertices (integer gene IDs) assigned to each 
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family), and “family.info” (a tab delimited file containing family 

attributes).  

 

Remodelling events between gene families are determined using 

a two-step method: 

 

     (a.): Non-familial homology extraction 

 

Instances of non-familial homology (edges 

between vertices that are not assigned to the same family) 

are extracted from the “cleanBlast” file. Instances with 

genes assigned to families with sizes < -x (minimum 

composite family size) or -y (minimum component 

family size) are discarded resulting in an non-familial 

SSN (nfSSN). 

    

    (b.): Composite detection 

     

Each gene in each family with a size ≥ -x are 

considered to be potential composites. Each gene in each 

family with a size ≥ -y are considered to be potential 

components. For each potential composite, all hits are 

extracted from the nfSSN and compared. A composite is 

considered to be a bona fide composite if genes from two 

distinct component gene families map to two distinct 
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regions of the composite with an overlap ≥ -l (the 

maximum permitted overlap). If a family contains a 

single bona fide composite it is considered to be a 

“composite family” and all potential component genes 

associated with a bona fide composite are considered to 

be component genes, and their families annotated as such 

(Figure 1.3.3.). Gene families can be both composites 

and components, such instances are discussed in 

subsection 1.1.2.2. 

 

     This step results in the production of two files: 

 

(i.): A “compositesinfo” file containing mean 

alignment information for each composite 

against its associated component gene families; 

and  

 

(ii.): A “compositefamiliesinfo” file containing 

composite family attributes that may be used for 

downstream processing. 
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Figure 1.3.3. A bona fide composite 

 

The graph illustrates relationships between three gene families (A, B, and C). Families A and 

B (annotated as red and blue) are component families and family C (annotated as purple) is a 

composite family. Intrafamilial relationships are annotated as light grey, interfamilial 

relationships used to infer a remodelling event are annotated as gold, and interfamilial 

relationships not used to infer a remodelling relationship are annotated as dark grey. Bars below 

the graph represent BLAST sequence similarity alignments between each sequence. An 

instance of remodelling was ascertained in this graph due to gene C2 acting as an articulation 

point (bona fide composite) between families A and B. Gene C1 is a truncated homolog of C2 

and is assigned to the same family (and therefore a composite), however, as a significant 

sequence similarity relationship was only detected between C1 and members of family B (but 

not between family A) it could not serve as an articulation point and is not a bona fide 

composite.  
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1.4. Statistical tests 

 

This thesis relies heavily on a set of distinct probabilistic statistical methods for the 

inference of significance which are discussed here prior to their usage in Chapters III-V. 

 

1.4.1. Data comparison 

 

  1.4.1.1. Population pairwise comparisons 

 

 Differences between two populations are often ascertained by comparing means using 

a t-test (Student, 1908; Welch, 1947) assuming the data follows a Gaussian distribution. 

However, as data populations in this thesis was anticipated (and later observed) to be highly 

skewed (eg. as observed in gene family sizes (Demuth and Hahn, 2009)), a non-parametric 

Mann-Whitney U test (Mann and Whitney, 1947) was used to compare if two populations were 

stochastically different. Both population medians are stated to be equal under the null 

hypothesis (HO:ηa=ηb;HA:ηa≠ηb) in a Mann-Whitney U test, and the U statistic is calculated 

using the formula: 

 

 Ua= ∑Ra,b −
na(na+1)

2 ; Ub= ∑Ra,b −
nb(nb+1)

2 ;	U = min(Ua,	Ub) 

   

where: 

   a:  Population series a 

   b:  Population series b  

   R:  Rank 

   n:  Population size 
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 The P-value associated with the U statistic is ascertained from the normal distribution 

the corrected Z-statistic (Zc(µ,s2)) using the formulae:  

 

  P = f(Zc(μ,σ2)) = 
1
√2π

e
-(Zc)2

2 ; Zc= 
U - (nanb

2 )

*nanb
12 +(na + nb + 1)∑i=1

k ti3 - ti
(na + nb)(na+ nb - 1),

 

 

  where: 

   f(Zc(μ,σ2)): Function of the corrected Z-score 

   e:  Euler’s number (~2.71828) 

   p:  Archimedes’ constant (~3.14159) 

   n:  Population size 

   i:  Specific rank   

   k:  Number of distinct ranks 

   ti:  Number of subjects (t) sharing a specific rank (i)  

 

  1.4.1.2. Comparison of proportions 

 

 A Fisher's exact test (Fisher, 1922) is a statistical test used to determine if there are non-

random associations, such as similar proportions, between two categorical variables. In 

general, a Fisher’s exact test is a probabilistic test where both proportions (π) are stated to be 

equal under the null hypothesis (HO:π1=π2;HA:π1≠π2) and is calculated using the formula: 

 

P = 
((Xa+Xb)!×(Ya+Yb)!×(Xa+Yb)!×(Xa+Yb)!)

((Xa+Xb+Ya+Yb)!×Xa!×Xb!×Ya!×Yb!)
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  where: 

   Xa:  Subset a of set {X} (a Ì X) 

   Xb:  Remaining groups (b) of set {X} (b = ac) 

   Ya:  Subgroup a of set {Y} (a Ì X) 

   Yb:  Remaining groups (b) of set {Y} (b = ac) 

 

  1.4.1.3. Comparison of data points to data series 

 

 In this thesis, a data series is defined as “a set of discrete, real numbers (data points; n 

≥ 30) from a given experimental dataset”. Each data point may be compared to its series using 

a cumulative distribution function (F) or one dimensional Gaussian Q-function (Q) (Nikolić, 

Perić and Marković, 2017). Both functions are tail distribution probability functions of the 

standard normal distribution, and, as Q is derived from F (Q = 1-F), both are inversely 

correlated with each other. Under the null hypothesis (for F), a given data point (x) is stated to 

be greater than or equal to a random point on a Gaussian distribution F(X) when sampled from 

the data series (HO:F(x)≥F(X);HA:F(x)>F(X)) and for Q, x is stated to be less than or equal to 

F(X) (HO:Q(x)≤1-F(X);HA:Q(x)>1-F(X)). In this thesis, we were concerned with “bursts” 

(data points that were statistically likely to be distributed on the right tail of a Gaussian 

distribution (F(x)≥0.95;Q(x)≤0.05)), so Q was calculated for each data point during such 

comparisons. Q was calculated using 3 steps (Figure 1.4.1.): 

 

 (i.): Determination of normality 

 

As Q requires a sereisto follow a standard gaussian distribution, the data 

series was subjected to a Kolmogorov-Smirnoff (KS) test (a = 0.05) 
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Figure 1.4.1. Q-function pipeline 

 

Each yellow box represents one of three steps in the Q-function pipeline described in 

subsection 1.4.2.3. Each step is connected to its associated process via a grey broken line 

(dashed). Each process is connected to its associated graph via a grey broken line (dotted). 

Graphs were drawn for illustrative purposes and are rough approximations of statistical 

distribution. The graph associated with step 1 depicts a histogram of raw data (x) connected by 

a spline. The left graph associated with step 2 (normality test) depicts g(x) (red) and F/(x) (blue). 

The right graph associated with step 2 (Box-Cox transformation) depicts x subsequent to 

transformation (l(x)). Finally, the graph associated with step 3 depicts g(x) with F(x) and Q(x) 

significance limit boundaries (0.05, 0.95) depicted as green broken lines (dotted).   

Raw data collation Box-Cox transformation Q-function

If Gaussian

Normality test

If not Gaussian

Step 1 Step 2 Step 3
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(Kolmogorov, 1933; Smirnoff, 1948), where a series was considered to follow 

a Gaussian distribution if P > a was observed. Instances where P ≤ a were 

transformed to a Gaussian distribution using a Box-Cox transformation (Box 

and Cox, 1985) and normality was redetermined using a KS test (a = 0.05).  

A KS statistic (T) is calculated using the formula: 

 

T = supx | g(x)-F/(x); g(x)= 
1

σ√2π
e

-0Z2

2 1; Z = 
x - μ

σ ;	F/(x)= 1
n  2 I{xi≤x}

n

i=1

 

 

where: 

 x:  Series variable 

 sup:  Supremum 

 g:  Gaussian function 

 Z:  Z-score (standard score) 

  F/ :  Empirical distribution function 

	 	 	 I{xi≤x}:  Indicator function for events (i) ≤ x 

   n:  Count of elements in a series 

   

A Lilliefors correction (Lilliefors, 1967) is employed to determine that 

T is sampled from a Gaussian distribution using the formulae: 

 

Tn,α= 
αKS(n)

f(n) ;  f(n) = 
αKS(n) + n
√ n 

- 0.1 

 

where: 
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 n:  Sample size 

 a:  Critical alpha (0.05) 

aKS(n):  a for n from KS a table (Smirnoff, 1948) 

 

As n ≤ 50 is observed for every invocation of the KS test, aKS(n) was 

estimated to be 0.895 for each test. Instances where T > Tn,a (P > 0.05) were 

considered to be sampled from a Gaussian distribution. 

 

A Box-Cox transformation is performed using the formula: 

 

(x	+	1)λ=
(x + 1)λ - 1

λ ; λ = (-5,	-4.99,	-4.98,	…,	5) 

 

 where: 

  x:  Series variable 

  l:  Box-Cox power parameter 

 

The mean and standard deviation is computed for each transformed 

series and the l yielding the lowest standard deviation is selected as the most 

appropriate transformation.  

 

 (ii.): Data standardisation 

   

Each transformed series was standardized by transforming each data 

point to its Z-score (standard score) using the formula described in step (i). 
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 (iii.): Calculation of F and Q 

 

The error function (E) was used to calculate F for each Z-score in the series 

using the formulae: 

  

Φ(Z) = 
1
2 71+E + Z

√2
,8 ;  E(x) = 9 1

√2π

x

-∞
e-ydy  

   

where: 

   x:  Independent variable x; integral upper-bound 

   y:  Independent variable y 

   e:  Euler’s number (~2.71828) 

   p:  Archimedes’ constant (~3.14159) 

   dy:  Differential of y 

    

  Q was then calculated by subtracting F from 1.  

 

Every primary invocation of the KS test in this thesis reported each series as non-

Gaussian (P < 0.05) and every Box-Cox transformation invoked to rectify this was successful 

(P > 0.05).  

 

1.4.2.4. Correlations between two data series  
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 A multitude of data series can be extrapolated from object characteristics in a given set, 

for example, series of (i.) genome sizes, (ii.) the sum of genes in a given genomes, and (iii.) 

the sum of chromosomes can be constructed from a set of given genomes. In this thesis, diverse 

characteristics are compared across genomic sets (n ≥ 50). As such characteristics may compare 

a Gaussian series to a non-Gaussian series, correlations were derived using non-parametric 

Spearman’s r correlation matrices (Spearman, 1904). A correlation matrix is a collection (n > 

2) of pairwise correlation tests (eg. Spearman’s r test) where each matrix cell represents one 

test. For a Spearman’s r test each variable is ranked in each series (rank variables), where non-

distinct variables are each assigned to the same rank, and r is calculated using the formula: 

 

ρ = 
σx,y

σx×σy
; sx,y = 

∑ +#xn-μx$ × (yn-μy),
|c|R

 

 

   where: 

    sx,y:  Covariance between series x and y 

    |c|R:  The count of ranks  

    xn:  Data point n is series x    

 

 1.4.3. Control for Type I errors 

 

 A Bonferroni-Dunn correction (Bonferroni adjustment) is applied to every statistical 

test in this thesis to control for Type I errors (Bonferroni, 1936; Dunn, 1959; 1961). A 

Bonferroni correction is an adjustment of the critical a, the maximum permitted P-value 

allowed for the inference of statistical significance. The critical a is adjusted using the formula: 

 

54



 

  

αB=
α
|c| 

  where: 

   a:  Critical a (0.05) 

   |c|:  The count of all comparisons made during a study 

   aB:  The Bonferroni adjusted critical a 

  

 A Bonferroni correction may also be applied to the P-value, where a P-value can be 

adjusted to a maximum of 1, using the formula: 

 

PB= P ×	|c| 

  where: 

   PB:  Bonferroni adjusted P-value  

  

 Significance is determined in probabilistic statistical tests when P ≤ a (or P < a) when 

Type I errors are not controlled. By using a Bonferroni correction, a result is not determined to 

be significant unless P ≤ aB or PB ≤ a, resulting in more robust statistical results. The critical 

a is adjusted in every invocation of the Bonferroni correction throughout this thesis, with the 

exception of results produced by “find_enrichment.py” from GOATOOLS (Klopfenstein et al., 

2018), which adjusts the P-value (subsections 2.2.3.4; 3.2.5.1.). 

  

 1.5. Aims of this thesis  

 

Efforts to understand the effect, scope, and breadth of modular gene evolution and gene 

remodelling have been carried out on small datasets due to the computational limitations 
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imposed by parsing such extensive combinatoric calculations. We aim to uncover the extent of 

remodelling throughout the evolutionary history of the genome. From there, we aim to 

investigate and functional or phylogenomic distribution biases using robust bioinformatic and 

biostatistical methodologies. We believe gene remodelling is an underrepresented and 

underappreciated evolutionary process and aim to highlight its extent and effects.  
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Chapter II: 
 

Bioinformatic and Biostatistical Analyses of 

Gene Remodelling in Fungi  
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2.1. Introduction  

 

2.1.1. Introduction to mycology  

 

Fungi, with more than five million estimated species, constitute one of the most diverse 

and speciose eukaryote kingdoms (Blackwell, 2011). Fungi are excellent candidates for 

assessing trends in eukaryote evolution as they have relatively small genomes, display simple, 

yet specialised cellular morphologies, exhibit short life cycles, and are amenable to genetic 

manipulation (Taylor et al., 1993; Botstein et al., 1997; Pazouki and Panda, 2000; Calvo et al., 

2002; Berger et al., 2005; Alby and Bennett, 2010; Karathia et al., 2011; Leducq, 2014; 

Mohanta and Bae, 2015). The value of fungi to experimental biology is exemplified by 

Saccharomyces cerevisiae (baker’s yeast) being the first eukaryote organism to have its entire 

genome sequenced (Goffeau et al., 1996); by the wealth of highly curated genomic and 

proteomic resource databases available for model fungi (Skrzypek and Hirschman, 2011; 

Stajich et al., 2012; McDowall et al., 2015); and databases dedicated to fungal chromosomal 

architecture and synteny (Byrne and Wolfe, 2005; Fitzpatrick et al., 2010). Fungi occupy a vast 

range of ecological niches from mutualistic internal and external mycobiomes (Brundrett, 

2002; Seed, 2014; Hager and Ghannoum, 2017) to deadly plant and animal pathogens 

(Sanglard, 2002; Rosenblum et al., 2008; Brefort et al., 2009; Ma et al., 2010) and have been 

found occupying niches in hostile environments such as deep sea hydrothermal vents (Le 

Calvez et al., 2009; Burgaud et al., 2014).  

The fungal kingdom is highly diverse, and are known to virtually all known habitable 

ecosystems (Barron, 2003; Le Calvez et al., 2009; Seed, 2014; Mohanta and Bae, 2015). Fungi 

are reported to be the earliest eukaryote lineage to have engaged in terrestrialisation (Liu et al., 

2006), subsequently altering edaphic geochemistry and enabling terrestrialisation in early plant 
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lineages (Bidartondo et al., 2011; Quirk et al., 2015). Due to their incredibly vast 

morphological and biochemical characteristics (Pazouki and Panda, 2000; Calvo et al., 2002) 

and the low probability of fungal macrostructure fossilisation (Redecker et al., 2000), 

phylogenetic relationships between fungal lineages are most accurately reconstructed using 

genomic data (McCarthy and Fitzpatrick, 2017). Fungi are hypothesised to have diverged from 

the metazoa approximately 833-1891 Ma (Betts et al., 2018). At present, there are eight major 

fungal phyla (Spatafora et al., 2017) (Figure 2.1.1.). The Cryptomycota and Microsporidia 

form a clade of deep branching zoosporic true fungi (Bass et al., 2018). The placement of these 

lineages amongst the fungi has been debated due to the lack of chitinous cell walls and a non-

trophic life-cycle, existing as obligate parasites with resultantly reduced gene sets (Capella-

Gutiérrez et al., 2012; James et al., 2013). The Blastocladiomycota and Chytridiomycota both 

constitute aquatic phyla and maintain motile flagella in their spores (James et al., 2006). Both 

Chytridiomycota and Blastocladiomycota are observed to maintain cholesterol as the fatty acid 

constituent of cell walls as opposed to ergosterol (Liu et al., 2006). The loss of the flagellum 

and transition from cell wall cholesterol to ergosterol has been attributed to mycoterrestrial 

evolution, eventually leading to the emergence of the Mucuromycota and later the 

Glomeromycota (Spatafora et al., 2017). The Dikarya are the sister clade to Glomeromycota 

and circumscribes the Ascomycota and Basidiomycota phyla. Dikarya are distinguished from 

other phyla by the maintenance of two distinct nuclei during their life cycles (Spatafora et al., 

2017). Basidiomycota maintain two nuclei during their entire life cycles while Ascomycota 

maintain a second nucleus during reproduction (Gladfelter and Berman, 2009).  

 

2.1.2. Secondary metabolism  
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Figure 2.1.1. Representative phylogeny of the major fungal phyla 

 

This phylogeny was adapted from Spatafora et al. (2017). Each leaf node represents a phylum 

or subphylum. Red and blue circles represent the Ascomycota and Basidiomycota phyla 

respectively. The purple box represents the emergence of the Dikarya. The orange box 

represents the transition from cholesterol to ergosterol during mycoterrestrialisation and 

subsequent loss of flagella (Liu et al., 2006). 
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Secondary metabolites are small, bioactive compounds whose production, while not 

essential for cell viability, may confer considerable fitness in niche environments (Keller et al., 

2005). Like plants and bacteria, fungi have the capacity to produce a wide arsenal of secondary 

metabolites, primarily polyketide synthases (PKS) and non-ribosomal peptide synthases 

(NRPS) (Calvo et al., 2002; Keller et al., 2005; Perrin et al., 2007; Liu et al., 2015). The 

evolution of many secondary metabolic pathways, and the regulatory machinery for these 

pathways, has co-evolved with fungal sexual development, likely as a mechanism to protect 

spores (Calvo et al., 2002). Secondary metabolism is particularly prominent in Pezizomycotina 

(Arvas et al., 2007; Lah et al., 2011). Fungal secondary metabolites also present as potent 

virulence factors for infection of plant and animals hosts, enabling the evolution of many 

devastating pathogens (Idnurm and Howlett, 2001; Perrin et al., 2007; Ma et al., 2010; Calvo 

and Cary, 2015). Such metabolites are of considerable economic value, for example, the 

revolutionary antibiotic, Penicillin, an NRPS, was first isolated from Penicillium notatum 

(Pezizomycotina) in 1929 (Fleming, 1929). This discovery profoundly altered the scope of 

modern medicine by introducing widespread antibiotic use (Gaynes, 2017).  

 

2.1.3. Fungal chromosome dynamics  

 

The relationship between chromosomal aberration and gene remodelling events has 

previously been established (Mitelman et al., 2004; Leonard and Richards, 2012; Kloosterman 

and Hochstenbach, 2014). Large scale chromosomal rearrangements occur frequently 

throughout the course of evolution (Chang et al., 2013). Such rearrangements have been 

observed in cells that have adapted to selective conditions during experimental evolution 

analyses (Gordon et al., 2009; Naseeb et al., 2017). Chromosomal rearrangements in S. 

cerevisiae have been implicated in expanding its nitrogen assimilation repertoire in nitrogen 
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poor environments (Hellborg et al., 2008). This adaption arose via rearrangement of the DAL 

gene cluster to a tightly packed genomic unit, much like a bacterial operon. These structural 

rearrangements allow for rapid co-expression of genes during nitrogen starvation (Wong and 

Wolfe, 2005). Experimental reversions of these rearrangements (to mimic those in Naumovia 

castelii) severely reduced the ability of S. cerevisiae to survive under nitrogen starvation 

(Naseeb and Delneri, 2012).  

Wild type S. cerevisiae sampled from Evolution Canyon, Israel were observed to be 

significantly more copper resistant due to inversions and segmental duplications in 

chromosomes XII and XIII (Chang et al., 2013). When samples of this strain were subjected 

to fluctuating copper concentrations a high frequency of chromosomal reversion to the model 

configuration was observed, which remained fixed in populations not exposed to high copper 

concentrations (Chang et al., 2013). These results suggest that yeast chromosomes are 

malleable and chromosomal rearrangements may serve as a mechanism for rapid adaption. 

Such chromosomal rearrangements also promote gene remodelling events (Leonard and 

Richards, 2012).  

Fungi do not maintain specialised tissues for most, if any, of their life cycles (Mulder 

et al., 2007). A lack of pressure to maintain such structures may allow these species to undergo 

such chromosomal anomalies that may be otherwise deleterious in organisms maintaining 

multicellular anatomies (Mitelman et al., 2004; Raudsepp and Chowdhary, 2016; Potapova and 

Gorbsky, 2017).  

Despite many species possessing intron rich genomes, Fungi have relatively low rates 

of alternative splicing when compared to other eukaryotes (McGuire et al., 2008; Grutzmann 

et al., 2014), with many cases of duplication and subfunctionalisation being associated with 

intron containing genes (Rastogi and Liberles, 2005; Hickman and Rusche, 2010; Marshall et 

al., 2013). Due to the propensity for fungal paralogs to undergo subfunctionalization it is 
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reasonable to assume that these generally follow a “subneofunctionalization” model, whereby 

subfunctionalized paralogs slowly transition toward novel functionality (He and Zhang, 2005).  

One prominent methodology of researching remodelling event evolution, especially via 

gene fusion and fission, is the use of network models over traditional tree models (Haggerty et 

al., 2014). As a fusion gene typically shares ancestry with two unrelated genes, a typical tree 

model is inappropriate (as discussed in subsection 1.1.2.2.1.) instead an N-rooted fusion graph 

or network is used (Haggerty et al., 2014; Coleman et al., 2015). These networks are typically 

either protein-protein interaction networks (PPI) or, as is the case throughout this thesis, 

sequence similarity networks (SSN). In these networks, a gene or protein is displayed as a 

vertex, and its interaction or detected homology to another gene is displayed as an edge 

connecting the two vertices (as discussed in section 1.3.). This method is used as it provides 

greater capacity to visualise composite nodes, HGT, and other combinatorial events on a gene 

and genome level (Haggerty et al., 2014). The use of these methods has allowed for in-depth 

exploration into alternative evolutionary mechanisms such as gene remodelling (Jachiet et al., 

2013; Pathmanathan et al., 2018).  

 

2.2: Methodology 

 

2.2.1: Benchmarking of CompositeSearch 

 

 While CompositeSearch was found to be more sensitive than its predecessors, 

MosaicFinder and fusedTriplets (Jachiet et al., 2013; Pathmanathan et al., 2018) when 

detecting remodelled genes in viruses, there are no reports on its use for eukaryotic remodelling 

event detection. A total of 63 composite genes were reportedly identified in 9 fungal genomes 

(Table 2.2.1.) using fdfBLAST (Leonard and Richards, 2012). We benchmarked 
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CompositeSearch against fdfBLAST on the 9 genomes used by Leonard and Richards (2012). 

We performed a reciprocal BLAST sequence similarity search on the concatenated genome 

dataset using an e-value stringency (cut-off) score (E) of E≤1e-10 to mirror the E used for 

fdfBLAST, we then processed the BLAST output file through cleanBLASTp and 

CompositeSearch using default parameters. Composite genes identified by both fdfBLAST and 

CompositeSearch are reported in Table 2.3.1. 

 

2.2.2: Development of a composite family quality control procedure 

 

 False positive matches (Type I errors) may occur in sequence similarity searches due 

to “poor gene calls” from poorly assembled genomes (Richards, 2018) As CompositeSearch 

identifies gene remodelling events based on partially aligning genes, such reports would 

potentially result in false reports of gene remodelling events. We constructed a pipeline to test 

the effect of poor genome annotation in datasets used for composite detection (Figure 2.2.1.). 

This approach consisted of controlling composite family size (-x) and component family size 

(-y). The pipeline consisted of 7 steps: 

 

(i.):  A subset of genes (5%; n = 4,451) were randomly selected and extracted from 

the dataset. “Pseudo-fissions” were induced in each subset sequence by 

artificially splitting at its midpoint to form two separate sequences. 

 

(ii.): A sequence similarity network (SSN) was constructed using BLAST (E ≤ 1e-05) 

using the parameters required by CompositeSearch as described in subsection 

1.3.2. 
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Table 2.2.1. Fungal genomes used for composite detection by Leonard and Richards, 2012 

 

These 9 reference genomes are sampled from across the fungal Tree of Life and constitute a 

small yet highly diverse dataset. Originally, this dataset also included two Microsporidia, 

however, as no composites were detected in these taxa by Leonard and Richards (2012), they 

were excluded from their published analysis. 

 

Species GenBank ID ngenes Taxonomy 

Allomyces macrogynus 28583 17,600 Blastocladiomycota 
Batrachochytrium dendrobatidis JEL423 109871 8,732 Chytridiomycota 
Coprinopsis cinerea (strain FGSC 9003) 5346 13,394 Basidiomycota; Agaricomycotina 
Ustilago maydis 521 5270 6,522 Basidiomycota; Ustillagomycotina 
Schizosaccharomyces pombe 972h 4896 5,010 Ascomycota; Taphrinomycotina 
Saccharomyces cerevisiae S288c 4932 5,885 Ascomycota; Saccharomycotina 
Neurospora crassa OR74A 5141 9,908 Ascomycota; Pezizomycotina 
Mucor circinelloides f. lusitanicus 29924 10,930 Mucoromycota 
Rhizopus oryzae RA 99880 64495 17,459 Mucoromycota 
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Figure 2.2.1. Effect of low quality genomes in composite detection analyses 

 

This graphic illustrates the pipeline described in subsection 2.2.2. Each level depicts a step in 

the pipeline for each iteration. Solid black lines indicate the directional succession of each step. 

The broken line depicts the generation of the control dataset which does not introduce “pseudo-

fissions” into the dataset.  
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(iii.): A concise SSN was constructed by parsing the SSN through “cleanBlastp” 

(Pathmanathan et al., 2018). This removed self-hits, redundant hits, and selected 

the longest HSP in cases where multiple HSPs were observed between hits. 

  

(iv.): A series of four CompositeSearch analyses were performed on the concise SSN: 

 

(a.): -x ≥ 1; -y ≥ 1 (default settings) 

(b.):  -x ≥ 2; -y ≥ 1 

(c.):  -x ≥ 1; -y ≥ 2 

(d.): -x ≥ 2; -y ≥ 2 

 

A fifth analysis (“strict filter”) was included by extracting composite 

families where the sum of bona fide composites (-xbf) ≥ 2 from the 

“compositefamiliesinfo” output file produced during analysis (d.; -x ≥ 2; -y ≥ 

2). As described in subsection 1.3.2., a bona fide composite is identified as 

having non-overlapping homology to members of two distinct component 

families.   

 

(v.):  Data for each of the five analyses was recorded for downstream comparisons. 

 

(vi.): A series of pseudoreplicates was constructed by performing steps 1-5 100 times,  

and a control dataset (a dataset without pseudofissions) was constructed by 

performing steps 2-5 on the original dataset. 

 

(vii.): Control and experimental datasets were compared:  
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(a.): We assumed 5% of identified composite families from the control 

dataset were false positives (FPC). 

 
(b.): Experimental false positives (FPE) were computed using the formula: 

     

      FPE = (CFE - CFC) + FPC 

 

where: 

   C:  Control dataset (n) 

   E:  Experimental dataset (n) 

   FP:  False positives (n) 

   CF:  Sum of detected composite families (n) 

  

(c.)  A one-tailed Fisher’s exact test (HO:p(x)≤p(X);HO:p(x)>p(X)) 

was performed between control and experimental false positives 

for each iteration (Table 2.3.2., Figure 2.3.1.).  

 

As the purpose of this was to identify a filter where control and experimental false 

positives were statistically similar, a result with an insignificant P-value (P ≥ 0.05) was 

considered to be successful.  

 

2.2.3. Development of a composite gene analysis pipeline 

 

 We developed a modular pipeline for remodelled gene detection and analysis (Figure 

2.2.2.). This pipeline consisted of five modules which are described below (subsections 2.2.3.1-

2.2.3.5.). This pipeline was an attempt to identify: 
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(a.) Gene remodelling trends across the dataset 

(b.) Functional trends in remodelled gene categories 

(c.) Gene remodelling trends across phylogenies 

 

2.2.3.1. Database construction and quality control 

 

A dataset of 107 fungal genomes (Table 2.2.2.) was obtained from Leonard and 

Richards (2012) and taxonomic lineages were obtained from the sources provided by the 

authors. The quality of these genomes were assessed using BUSCO v3.0.2 (Simão et al., 2015; 

Waterhouse et al., 2017) with the fungal single copy orthologous dataset (fungi_odb9) from 

OrthoDB (Zdobnov et al., 2017; Kriventseva et al., 2018). Genome size (Mbp) and GC% were 

obtained from source for each taxon and genome density (ngenes/Mbp) was obtained by dividing 

the number of genes in a given genome by its respective genome size (Table 2.3.3.). Descriptive 

statistics (mean, median, standard deviation, quartiles, and co-efficient of variation (CV)) were 

calculated for collated genomic statistics and BUSCO completion (Table 2.3.4.). The dataset 

consisted of 1,150,995 canonical protein sequences sampled from across five major fungal 

phyla (Ascomycota (71 genomes), Basidiomycota (30 genomes), Blastocladiomycota (1 

genome), Chytridiomycota (2 genomes), and Mucoromycota (3 genomes)). This heavily biased 

towards the Dikarya, and specifically to the Ascomycota, due to the availability of the data at 

the time of Leonard and Richards’ initial publication.  

 

2.2.3.2. CompositeSearch analysis, quality control, and annotation 

 

 A sequence similarity network (SSN) was constructed using BLAST (E ≤ 1e-05) using 

the parameters required by CompositeSearch as discussed in subsection 1.3.2., resulting in  
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Table 2.2.2. Dataset of fungal genomes 

 

Each of the 107 fungal species used in this chapter is provided with its GenBank ID (if applicable), the number of genes observed in its genome 

(ngenes), and its taxonomic lineage. Taxonomic clades are ranked left to right in increasing order of specificity (phylum, subphylum, class, order, 

and family). A total of 101 species (Ascomycota and Basidiomycota) belong within a subkingdom “Dikarya”, and all belong within a subphylum. 

The 6 genomes that do not belong to a subphylum are annotated as “N/A”. 

 
 

Binomial classification GenBank ID ngenes Taxonomic lineage 

Dothistroma septosporum -- 12580 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Mycosphaerellaceae 

Mycosphaerella fijiensis CIRAD86 83344 10313 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Mycosphaerellaceae 

Mycosphaerella graminicola IPO323 54734 10933 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Mycosphaerellaceae 

Septoria musiva -- 10233 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Mycosphaerellaceae 

Septoria populicola -- 9739 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Mycosphaerellaceae 

Baudoinia compniacensis -- 10153 Ascomycota; Pezizomycotina; Dothideomycete; Capnodiales; Teratosphaeriaceae 

Hysterium pulicare -- 12352 Ascomycota; Pezizomycotina; Dothideomycete; Hysteriales; Hysteriaceae 

Rhytidhysteron rufulum -- 12117 Ascomycota; Pezizomycotina; Dothideomycete; Hysteriales; Hysteriaceae 

Alternaria brassicicola ATCC 96836  29001 10688 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Cochliobolus heterostrophus 5016 9633 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Cochliobolus sativus -- 12250 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Leptosphaeria maculans -- 12469 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Pyrenophora teres -- 11799 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Pyrenophora triticirepentis strain Pt1CBFP 45151 12169 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 
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Binomial classification GenBank ID ngenes Taxonomic lineage 

Setosphaeria turcica -- 11702 Ascomycota; Pezizomycotina; Dothideomycete; Pleospoales; Pleosporaceae 

Aspergillus aculeatus -- 10828 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus carbonarius 40993 11624 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus clavatus 5057 9120 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus flavus 5059 12587 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus fumigatus Af293 5085 9887 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus nidulans FGSCA4 41734 10560 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus oryzae RIB40 5062 12063 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Aspergillus terreus NIH 2624 33178 10406 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Neosartorya fischeri (NRRL 181)  36630 10403 Ascomycota; Pezizomycotina; Eurotiomycetes; Eurotiales; Aspergillaceae 

Blastomyces dermatitidis 5039 9522 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Ajellomycetaceae  

Histoplasma capsulatum (strain NAm1) 5037 9251 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Ajellomycetaceae  

Paracoccidioides brasiliensis Pb01 121759 9136 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Ajellomycetaceae  

Microsporum canis CBS 113480 63405 8765 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Arthrodermataceae 

Microsporum gypseum CBS 118893 489714 8876 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Arthrodermataceae 

Trichophyton equinum CBS127.97 63418 8560 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Arthrodermataceae 

Coccidioides immitis RS 5501 10654 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Onygenaceae 

Coccidioides posadasii str. Silveira 199306 10124 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Onygenaceae 

Uncinocarpus reesii 33188 7798 Ascomycota; Pezizomycotina; Eurotiomycetes; Onygenales; Onygenaceae 

Botryotinia cinerea (strain B05.10) 40559 16448 Ascomycota; Pezizomycotina; Leotiomycetes; Helotiales; Sclerotiniaceae 

Sclerotinia sclerotiorum (strain ATCC 18683) 5180 14522 Ascomycota; Pezizomycotina; Leotiomycetes; Helotiales; Sclerotiniaceae 

Cryphonectria parasitica  5116 11184 Ascomycota; Pezizomycotina; Sordariomycete; Diaporthales; Cryphonectriaceae 

Acremonium alcalophilum -- 9521 Ascomycota; Pezizomycotina; Sordariomycete; Glomerellales; Plectosphaerellaceae 

Verticillium alboatrum VaMs.102 526221 10220 Ascomycota; Pezizomycotina; Sordariomycete; Glomerellales; Plectosphaerellaceae 

Verticillium dahliae VdLs.17 27337 10535 Ascomycota; Pezizomycotina; Sordariomycete; Glomerellales; Plectosphaerellaceae 

Trichoderma atroviride IMI 202040 63577 11100 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Hypocreaceae 
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Trichoderma reesei QM6a 51453 9143 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Hypocreaceae 

Trichoderma virens Gv298 29875 11643 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Hypocreaceae 

Fusarium graminearum species complex 5518 13321 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Nectriaceae 

Fusarium oxysporum f. sp. lycopersici 5507 17608 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Nectriaceae 

Fusarium verticillioides 117187 14195 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Nectriaceae 

Nectria haematococca mpVI 70790 15707 Ascomycota; Pezizomycotina; Sordariomycete; Hypocreales; Nectriaceae 

Magnaporthe grisea 7015 148305 11109 Ascomycota; Pezizomycotina; Sordariomycete; Magnaporthales; Magnaporthaceae 

Chaetomium globosum CBS 148.51 38033 11124 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Chaetomiaceae 

Sporotrichum thermophile -- 9166 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Chaetomiaceae 

Thielavia terrestris  35720 9815 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Chaetomiaceae 

Podospora anserina DSM 980 5145 10601 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Lasiosphaeriaceae 

Neurospora crassa OR74A 5141 9908 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Sordariaceae 

Neurospora tetrasperma FGSC 2508  40127 10640 Ascomycota; Pezizomycotina; Sordariomycete; Sordariales; Sordariaceae 

Wickerhamomyces anomalus -- 6423 Ascomycota; Saccharomycotina; Saccharomycetes; Phaffomycetaceae; Wickerhamomyces 

Candida albicans SC5314 5476 6205 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Candida caseinolytica -- 4657 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Candida glabrata CBS 138 5478 5202 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Candida tenuis -- 5533 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Debaryomyces hansenii CBS767 4959 6272 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Spathaspora passalidarum -- 5983 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae 

Yarrowia lipolytica CLIB122 4952 6448 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Dipodascaceae 

Lipomyces starkeyi -- 8192 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Lipomycetaceae 

Hansenula polymorpha -- 5177 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Pichaiaceae 

Pichia membranifaciens -- 5546 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Pichaiaceae 

Pichia stipitis CBS 6054 4924 5807 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Pichaiaceae 

Ashbya gossypii ATCC 10895 33169 4717 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae 
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Saccharomyces cerevisiae S288c 4932 5885 Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae 

Schizosaccharomyces cryophilus oy26 653667 5057 Ascomycota; Taphrinomycotina; Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae 

Schizosaccharomyces japonicus yFS27 4897 4814 Ascomycota; Taphrinomycotina; Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae 

Schizosaccharomyces octosporus yFS286 4899 4925 Ascomycota; Taphrinomycotina; Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae 

Schizosaccharomyces pombe 972h 4896 5010 Ascomycota; Taphrinomycotina; Schizosaccharomycetes; Schizosaccharomycetales; Schizosaccharomycetaceae 

Agaricus bisporus var. burnettii JB137-S8 597362 11289 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Agaricaceae 

Schizophyllum commune H48 5334 13181 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Agaricaceae 

Pleurotus ostreatus 5322 11603 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Pleurotaceae 

Fomitopsis pinicola -- 14724 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Polyporaceae 

Trametes versicolor -- 14296 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Polyporaceae 

Wolfiporia cocos -- 12746 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Polyporaceae 

Coprinopsis cinerea (strain FGSC 9003) 5346 13394 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Psathyrellaceae 

Laccaria bicolor (strain S238NH82) 29883 19036 Basidiomycota; Agaricomycotina; Agaricomycete; Agaricales; Tricholomataceae 

Auricularia delicata -- 23577 Basidiomycota; Agaricomycotina; Agaricomycete; Auriculariales; Auriculariaceae 

Coniophora putinea -- 13761 Basidiomycota; Agaricomycotina; Agaricomycete; Boletales; Coniophorineae 

Serpula lacrymans S7.3 85982 14495 Basidiomycota; Agaricomycotina; Agaricomycete; Boletales; Coniophorineae 

Phlebia brevispora -- 16170 Basidiomycota; Agaricomycotina; Agaricomycete; Corticales; Corticiaceae 

Punctularia strigosozonata -- 11538 Basidiomycota; Agaricomycotina; Agaricomycete; Corticiales; Punctulariaceae 

Gloeophyllum trabeum -- 11846 Basidiomycota; Agaricomycotina; Agaricomycete; Gloeophyllales; Gloeophyllaceae 

Fomitiporia mediterranea -- 11333 Basidiomycota; Agaricomycotina; Agaricomycete; Hymenochaetales; Hymenochaetaceae 

Ganoderma sp. -- 12910 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Ganodermataceae 

Bjerkandera adusta -- 15473 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Meruliaceae 

Ceriporiopsis subvermispora -- 12125 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Phanerochaetaceae 

Phanerochaete chrysosporium RP78 5306 10048 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Phanerochaetaceae 

Phlebiopsis gigantea -- 11891 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Phanerochaetaceae 

Dichomitus squalens -- 12290 Basidiomycota; Agaricomycotina; Agaricomycete; Polyporales; Polyporaceae 
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Heterobasidion annosum 13563 12299 Basidiomycota; Agaricomycotina; Agaricomycete; Russulales; Bondarzewiaceae 

Dacryopinax sp. -- 10242 Basidiomycota; Agaricomycotina; Dacrymycete; Dacrymycetales; Dacrymycetaceae 

Cryptococcus neoformans var. grubii H99 5207 6967 Basidiomycota; Agaricomycotina; Tremellomycete; Tremellales; Tremellaceae 

Tremella mesenterica 5217 8313 Basidiomycota; Agaricomycotina; Tremellomycete; Tremellales; Tremellaceae 

Rhodotorula graminis -- 7283 Basidiomycota; Pucciniomycotina; Microbotryomycetes; Sporidiobolales; Sporidiobolales 

Sporobolomyces roseus IAM 13481 40563 5536 Basidiomycota; Pucciniomycotina; Microbotryomycetes; Sporidiobolales; Sporidiobolales 

Melampsora laricis-populina 203908 16831 Basidiomycota; Pucciniomycotina; Pucciniomycetes; Pucciniales; Melampsoraceae  

Puccinia graminis f. sp. tritici 5297 20566 Basidiomycota; Pucciniomycotina; Pucciniomycetes; Pucciniales; Pucciniaceae 

Ustilago maydis 521 5270 6522 Basidiomycota; Ustilaginomycotina; Ustilaginomycetes; Ustilaginales; Ustilaginaceae 

Allomyces macrogynus 28583 17600 Blastocladiomycota; N/A; Blastocladiomycetes; Blastocladiales; Blastocladiaceae 

Batrachochytrium dendrobatidis JEL423 109871 8732 Chytridiomycota; N/A; Chytridiomycetes; Rhizophydiales; Rhizophydiales 

Spizellomyces punctatus 109760 8804 Chytridiomycota; N/A; Chytridiomycetes; Spizellomycetales; Spizellomycetaceae 

Mucor circinelloides f. lusitanicus  29924 10930 Mucoromycota; Mucuromycotina; Mucoromycetes; Mucorales; Mucoraceae  

Phycomyces blakesleeanus 4837 16528 Mucoromycota; Mucuromycotina; Mucoromycetes; Mucorales; Phycomycetaceae 

Rhizopus oryzae RA 99880 64495 17459 Mucoromycota; Mucuromycotina; Mucoromycetes; Mucorales; Rhizopodaceae 
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Figure 2.2.2. Remodelled gene analysis pipeline 

 

The orange box represents the initial genome database construction and quality control using 

BUSCO (QC[a]) with an appropriate BUSCO set from OrthoDB (subsection 2.2.3.1.). The red 

box represents a phylogeny construction by aligning groups of highly distributed orthologs 

(using MUSCLE) and merging them to construct a superalignment which is used to build a 

phylogeny using PhyML with a model as decided by ProtTest (subsection 2.2.3.4.). The purple 

box represents assigning PFAM and GO terms to each gene using InterProScan, and assignin 

putative “Domains-of-origin” using the method described by Cotton and McInerney, 2010. The 

green box represents the identification of remodelled genes using BLASTP and 

ComposteSearch. The second round of quality control (QC[b]) refers to the family-size control 

strategy discussed in subsection 2.2.3.2.). Solid arrows represent the “flow” of data and dashed 

arrows refer to data mergers, where analyses rely on the output of two datasers. Finally, the 

blue box refers to the collation and analysis of data (section 2.2.3.). 

  

Database construction 
and QC[a]

Phylogeny
construction

Gene annotation
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1.325e12 pairwise sequence comparisons. The SSN was parsed through “cleanBlastp” to 

produce a concise SSN. The functionality of “cleanBlastp” is discussed in subsection 1.3.2. 

CompositeSearch was performed on the concise SSN using default parameters with composite 

family size control (-x ≥ 2) and component family size control (-y ≥ 2) parameters. The strict 

filter protocol (as described in section 2.2.2.) was applied to reduce potential Type I errors. 

Genes were annotated with a remodelling category (RC) as per subsection 1.1.2.2. 

 

2.2.3.3. Trends in gene family sizes 

 

Descriptive statistics were computed for family sizes in each RC (Table 2.3.5., Figure 

2.3.2.). As considerable variation was observed (CV ≤ 294.6%), datasets were compared using 

a two-tailed Mann-Whitney U test (HO:h1=h2;HA:h1≠h2).  A Bonferroni correction was applied 

(a = 0.05; |c| = C!
|#$| = 6; aB = 8.33e-03) and a P ≤ aB was considered statistically significant 

(Table 2.3.6). 

 

 2.2.3.4. Phylogenetic and character state reconstruction 

   

  2.2.3.4.1. Phylogenetic reconstruction 

 

  A phylogeny of the organisms in this analysis was constructed by obtaining all yeast 

“euKaryote Orthologous Groups” (KOGs) (Tatusov et al., 2003) from JGI 

(https://www.genome.jgi.doe.gov) and searching them against our dataset using BLASTP 

(E≤1e-20). KOG sequences were retained for phylogenetic construction if they were present in 

95% (~102 species), resulting in 277 KOG sequences that were sampled for reconstruction. 

The reciprocal best BLAST hits was identified for each of the 277 KOGs in each species (if 
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present) and was extracted as the representative sequence for that species resulting in the 

creation of 277 KOG families. Each KOG family was aligned using MUSCLE v6 with default 

parameters (Edgar, 2004). Poorly aligned positions and other non-informative positions (such 

as positions with no substitutions or only one substitution) were removed from each alignment 

(resulting in removal of the entire gene alignment in 28 cases) by using Gblocks v0.91b with 

default parameters (Castresana, 2000). A total of 249 KOG families were retained for 

phylogenetic reconstruction. A superalignment was constructed from the 249 alignments using 

FASconCAT v1.0 with default parameters (Kuck and Meusemann, 2010). Bootstrap support 

for internal branches were assessed in PhyML v3.0 (Guindon et al., 2010) using 100 bootstrap 

samples and the LG+I+G (Le and Gascuel, 2008) model, as selected by ProtTest v3.0 (Darriba 

et al., 2011). A majority-rule consensus tree was then constructed using PAUP* (Swafford, 

2002) and visualised using iTOL v3 (Letunic and Bork, 2016) (Figure 2.3.3.).  

 

  2.2.3.4.2. Character state reconstruction 

 

 A presence-absence matrix was constructed for each CompositeSearch defined 

sequence family for each species. Each branch was assigned a node ID using the “naked -; 

tplot;” functions with “Tree analysis with New Technology” (TNT) v1.5 (Goloboff et al., 

2008). The TNT “-apo” function was used to plot character states from a presence-absence 

matrix of gene families to their inferred branches on an independently constructed phylogeny 

(Figure 2.3.4.), this function also determines whether a character state (trait; T) was gained 

(birthed; Tb) and lost (decayed; Td) for each branch on the phylogeny by comparing families 

with its preceding branch. As TNT does not assign any character states to the root node or any 

node immediately succeeding it, we appended two “pseudo-outgroups” to the phylogenetic 
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Newick file and to the presence-absence matrix (Figure 2.3.4.) For the presence-absence 

matrix, each pseudo-outgroup was assigned a “0” (absence) for each character state.  

 

2.2.3.4.3. Comparison of homoplastic proportions 

  

Any character state that was observed to have been gained more than once by TNT  

(Tb(ƒ>1)) across the phylogeny was considered homoplastic. We calculated the “homoplastic 

proportion” (HP) for each RC (HPRC) using the formula: 

 

HPRC= 
S(Tb(FS > 1))

S(Tb)  

 

A two-tailed Fisher’s exact test (HO:p(x)=p(X);HA:p(x)≠p(X)) was used to compare HP 

rates between each RC. A Bonferroni correction was applied (a = 0.05; |c| = C!
|#$| = 6; aB = 

8.33e-03) and a P ≤ aB was considered statistically significant (Table 2.3.7). 

 

2.2.3.4.4. Construction of rate series 

 

The sum of RC trait births (Tb) and decays (Td) were calculated for each branch. We 

calculated the Tb/Meganuum (Ma; ƒb) and Td/Ma (ƒd) using the formula: 

 

 ƒ% = 
Tx

k´τ ; τ =
DT
LP  

where: 

 ƒ: Frequency (rate) 

 Tx: The sum of birthed traits (Tb) or decayed traits (Td) at a given branch 
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 k: Branch length 

 τ: “Time constant” 

 DT: Divergence time of eukaryotes 

 LP: Longest root-to-leaf path in our phylogeny 

 

Fungal molecular clock studies are fraught with difficulties due to the lack of reliable 

fossil records for accurate node calibration (Berbee and Taylor, 2009; Prieto and Wedin, 2013). 

A highly calibrated molecular clock analysis of species across the Tree of Life estimated 

Dikarya to have reportedly between 392.1-1823 Ma (Betts et al., 2018). The farthest child 

(longest path; LP) from the root of Dikarya (Node 118 in our phylogeny (Figure 2.3.4)) was 

reported to be Pichia membranifaciens (k = 0.61630503). We calculated τ using 392.1 and 

1823 Ma as DT. This indicated that k = 1 represents 636.21 to 2957.95 Ma. As 2957.97 Ma is 

considerably greater than the divergence time for Eukaryotes (Betts et al., 2018), we 

determined τ = 636.21 to be most appropriate. When adjusted for the LP from the root (P. 

membranifaciens; LP = 0.88999) the divergence time for the MCRA was determined to be 

566.22 Ma. This timepoint was also deemed suitable as established Chytridiomycota and 

Blastocladiomycota fossils (our earliest diverging lineages) have dated to approximately the 

Devonian-Carboniferous Periods (400-300 Ma; Krings et al., 2009a; Krings et al., 2009b) and 

the suspected Glomeromycota or Mucuromycota Prototaxites loganii has been dated to the 

Middle Devonian (386 Ma; Retallack and Landing, 2014). We calculated fx for each branch 

using the formula described in subsection 2.2.3.3.2.2. (Table 2.3.5.). The root node was 

excluded from further analyses as it did not possess a k. 

 

2.2.3.4.4.1. Comparison of rates between and within nodes and tips 
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 For each RC, three sets of ƒb and ƒd  descriptive statistics were calculated (Table 2.3.8.) 

for each of: 

 

(a.) The entire phylogeny  

(b.)  The subset of internal nodes within the phylogeny (branches) 

(c.) The subset of tip nodes within the phylogeny (leaves) 

 

For each RC, to determine whether considerable differences exist between tips (µƒx(t)) 

and nodes (µƒx(n)) Mann-Whitney U tests (HO:h1=h2;HA:h1≠h2) were used to compare: 

 

 (a.) µƒb(n) and µƒb(t) 

(b.) µƒd(n) and µƒd(t) 

 

A Bonferroni correction was applied (a = 0.05; |c| = 2; aB = 0.025) was applied to each 

set and instances where P ≤ aB were considered statistically significant. 

To determine whether considerable rate differences exist between RCs within each set, 

Mann-Whitney U tests (HO:h1=h2;HA:h1≠h2) were used to compare: 

 

(a.) Each µƒb(n) to each other µƒb(n)  

(b.) Each µƒb(t) to each other µƒb(t) 

(c.) Each µƒd(n) to each other µƒd(n) 

(d.) Each µƒd(t) to each other µƒd(t) 
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Again, a Bonferroni correction was applied (a = 0.05; |c| = C!
|#$| = 6; aB = 8.33e-03) 

was applied to each set and a P ≤ aB) was considered statistically significant (Table 2.3.9.) 

 

2.2.3.4.4.2.. Investigation for evolutionary bursts 

 

An evolutionary burst is a significant increase in ƒb or ƒd compared to the background 

rate. To determine the presence of any evolutionary bursts, rate series were transformed to a 

Gaussian distribution using a Box-Cox transformation and bursts were determined by using a 

Q-function (HO:Q(x)>1-F(x);HA:Q(x)≤1-F(x)) as described in subsection 1.4.1.3. This 

procedure was implemented for:  

 

(a.) ƒb and ƒd for all tips and internal nodes ({fx(y)}; y) 

(b.)  ƒb(n) and ƒd(n) only ({ƒx(n)}; x) 

 

A Bonferroni correction was applied to each set (a = 0.05; |c(y)| = 212; |c(x)| = 105; aB(y) 

= 2.6e-04; aB(x) = 4.8e-04) and instances where P(y) ≤ aB(y) or P(x) ≤ aB(x) were considered 

statistically significant (Tables 2.3.9.-10..) 

 

2.2.3.5. Gene annotation (function and origin) 

 

2.2.3.5.1 Functional annotation of each RC  

 

 Each sequence in the dataset was assigned a PFAM domain (Bateman et al., 2004) and 

gene ontology (GO) functional terms (Ashburner et al., 2000) using InterProScan v5 (Jones et 

al., 2014) using the “PfamA” model (E≤1e-03) and “--goterms” flag. GO terms for each 
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sequences were grouped into a “GO-slim” subset (broad category) terms using the 

“map_to_slim.py” script from GOATOOLS (Klopfenstein et al., 2018) using the curated 

generic ontology map (produced by https://www.geneontology.org). Each sequence was 

mapped back to its CompositeSearch defined family and RC annotation. For each RC, 

overrepresentated GO terms were identified by comparing to the background of all other genes 

in the dataset using the “find_enrichment.py” script from GOATOOLS. The 

“find_enrichment.py” script uses a applies a Bonferroni correction to P-values to report 

statistical significance (PB = P ´ |c|; PB(max) < 1) and instances where PB ≤ 0.05 were considered 

significantly overrepresented (Tables 2.3.12.-19.).  

 

2.2.3.5.2. Functional enrichments during the divergence of Pezizomycotina 

 

Considerable phenotypic innovations are hypothesised to have emerged during the 

divergence of Pezizomycotina from Saccharomycotina, such as a wide expansion in secondary 

metabolism (Wisecaver et al., 2014) and a transition from a predominantly asexual life cycle 

to being predominantly sexual (Ojeda-Lopéz et al., 2018). The transition from asexuality to 

sexuality has led to a bias towards the maintenance of a multicellular teleomorph during at least 

some of the life cycle (in most species (Wynns, 2015)) as opposed to only maintaining a yeast-

like unicellular anamorph (Nagy et al., 2018). Pezizomycotina reportedly underwent 

considerable genomic expansions and genomic rearrangements during this divergence, leading 

to larger, more complex genomes and more rapid evolutionary rates when compared to other 

Ascomycota subphyla (Kelkar and Ochman, 2012). Due to the correlations between genome 

rearrangement and gene remodelling (Leonard and Richards, 2012), and between gene 

remodelling and phenotype evolution (Richards et al., 2006; Alvelar et al., 2014) it was 

hypothesised that gene remodelling may be correlated with some of the innovations observed 
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during this transition. Genes for each RC were extracted from families assigned to Node 115 

(the root of Pezizomycotina), resulting in four sets. Again, overrepresentation was established 

for each RC set using “find_enrichment.py” using all genes from all sampled Pezizomycotina 

as a background and the curated Aspergillus GO-slim ontology map (Table 2.3.20.). In all 

cases, a Bonferroni correction was applied to the P-value and instances where PB ≤ 0.05 were 

considered significantly overrepresented.  

 

  2.2.3.5.3. Gene origin annotation 

 

A method for assigning genes to a potential “Domain-of-origin” (Bacteria, Archaea, or 

Eukaryote; DO) has previously been described (Cotton & McInerney, 2010). Each gene in the 

dataset was searched (E≤1e-06) against a large bacterial and archaeal dataset obtained from 

McCarthy & Fitzpatrick (2016). If a gene unambiguously returns hits in only one DO (bacteria 

or archaea), it was considered to originate in that DO. If a gene was reported to have hits in 

both DOs, it was annotated as “Undefined Prokaryote”. This annotation is necessary to prevent 

DO mis-annotation due to the possibility of HGT between bacteria and archaea. If a hit was 

not reported for a gene it was considered to be of eukaryote origin. DOs were assigned to each 

family by majority rule of their associated genes (Table 2.3.21.). For each RC, DOs were 

compared to all other DOs using a two-tailed Fisher’s exact test (HO:p(x)=p(X);HA:p(x)≠p(X)). 

A Bonferroni correction was applied (a = 0.05; |c| = C!
|#$| = 6; aB = 8.33e-03) and instances 

where P ≤ aB were considered statistically significant. 

 

2.2.3.6. Trends between gene remodelling and genome characteristics 

 

83



 

  

 As discussed in subsection 2.1.4., fungal genomes have been observed to undergo 

frequent rounds of WGD and chromosomal rearrangements, thus providing an environment 

that promotes gene remodelling events. “Retained remodelling events” (or “internal 

remodelling events”) were established for each genome using the protocol discussed in 

subsection 2.2.3.2 (Figure 2.2.3.). Genome remodelling category proportions (RCPs) were 

calculated for genes obtained from the “globally remodelled” dataset (GRCP) and the “retained 

remodelling” subset (RRCP) by dividing the number of genes in each RC assigned to a given 

genome by the number of genes in the genome (Tables 2.3.23.-24; Figure 2.3.5.).   

 

2.2.3.6.2. Correlations between genomic characteristics and genomic 

remodelled proportions 

 

We collected data for four genomic characteristics for each of our sampled taxa for 

comparative analyses: 

 

(a.) Genome size (Mbp) 

 (b.) Genome density (ngenes/Mbp) 

 (c.) Genome guanine-cytosine content (GC %); and 

  (d.) BUSCO genome completeness (C%) 

 

Genome size and GC% for each fungal genome assembly was obtained from their 

respective repositories (Table 2.3.3.). Genome density was calculated by dividing the sum of 

genes in a given genome by its genome size. BUSCO completeness (%) was obtained from 

section 2.2.2. and RCPs were obtained from subsection 2.2.3.5.1. (Table 2.3.21.). Correlations 

were established using a Spearman’s r correlation test (HO:X1∝X2;HA:X1∝̸X2) between each  
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Figure 2.2.3. Global remodelling vs internal (retained remodelling) 

 

The top image displays “global remodelling” where remodelling events are detected within 

multigenome datasets. The bottom image displays “internal remodelling”, a subset of global 

remodelling where both component families and the composite family are required to be 

observed within the same genome. Higher rates of internal remodelling are expected for 

genomes that have underwent WGD events due to subsequent chromosomal restructuring post-

WGD. Only Gene C in Genome Y is observed to be “internally remodelled”. 
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RCP and each of the four genomic characteristics (Figure 2.3.6.) A Bonferroni correction was 

applied (a = 0.05; |c| = 5; aB = 0.01) to each set and a P ≤ aB was considered statistically 

significant. This procedure was performed on both the globally remodelled and internally 

remodelled datasets. 

 

2.3. Results 

 

2.3.1: Detection of composite genes identified by both fdfBLAST and CompositeSearch  

 

All composite genes were searched against the 54 fusions (of a reported 63) provided 

by Leonard and Richards (2012) using BLASTp (E≤1e-50) and a mutual coverage of 90%. The 

reciprocal best hits were selected based on lowest e-value score. This analysis returned hits for 

52 of the 58 queried fusion sequences provided by Leonard and Richard (SI; 2012) (Table 

2.3.1.) thus illustrating the effectiveness of CompositeSearch. Fusions unidentified by 

CompositeSearch did not possess two non-overlapping component families. 

 

2.3.2: Effect of controlling remodelled family sizes for type I error reduction 

 

Investigations into whether controlling composite and component family sizes would 

minimize Type I errors in composite detection were performed. It was found that controlling 

either composites or components lead to a considerable reduction in errors. Restricting 

component families to contain a minimum of 2 constituent genes and restricting composite 

families to contain a minimum of 2 bona fide composite genes (-x(bf) ≥ 2; -y ≥ 2) lead to a 

statistically insignificant difference between the control and experimental datasets (Table 

2.3.2.; Figure 2.3.1.). These results indicate that these measures are successful in curtailing  
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Table 2.3.1. Composite genes identified by both fdfBLAST and CompositeSearch 

 

Each composite gene identified by both packages was assigned its “Fusion ID” (Leonard and 

Richards, 2012), its composite family ID, and its remodelling category. A total of 52 genes 

were identified, of which 42 (80.77%) were observed to be nested composites. 

 
 

Fusion ID Composite family Remodelling category 

Fusion_46_XP_013958031 F59067 Strict composite 
Fusion_10_XP_011394556 F26749 Nested composite 
Fusion_11_XP_011387847 F42983 Nested composite 
Fusion_12_XP_001837408 F24039 Nested composite 
Fusion_13_XP_011392186 F49622 Nested composite 
Fusion_14_XP_011391823 F153 Strict composite 
Fusion_15_XP_011386537 F25597 Nested composite 
Fusion_16_XP_002475223 F11272 Nested composite 
Fusion_17_XP_013025771 F10645 Nested composite 
Fusion_18_XP_013024184 F10952 Nested composite 
Fusion_19_NP_593279 F39079 Nested composite 
Fusion_1_XP_011390436 F62013 Strict composite 
Fusion_20_NP_593238 F32521 Nested composite 
Fusion_21_NP_594836 F45115 Strict composite 
Fusion_22_NP_595325 F82042 Strict composite 
Fusion_23_XP_013021078 F567 Nested composite 
Fusion_24_NP_587822 F36060 Nested composite 
Fusion_25_NP_588353 F26239 Nested composite 
Fusion_26_NP_588314 F30380 Nested composite 
Fusion_27_XP_001729752 F46089 Strict composite 
Fusion_29_XP_001729201 F21421 Nested composite 
Fusion_2_NP_009575 F8546 Nested composite 
Fusion_30_NP_594305 F55554 Nested composite 
Fusion_31_Ept02722 F13970 Nested composite 
Fusion_33_XP_003711695 F22075 Nested composite 
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Fusion ID Composite family Remodelling category 
Fusion_34_XP_001402280 F44699 Nested composite 
Fusion_35_XP_964702 F26746 Nested composite 
Fusion_36_XP_002470642 F33988 Nested composite 
Fusion_37_XP_003655292 F21030 Nested composite 
Fusion_39_XP_013939227 F41438 Nested composite 
Fusion_3_NP_009652 F21777 Nested composite 
Fusion_40_XP_001273409 F6256 Nested composite 
Fusion_41_Elq37550 F26451 Nested composite 
Fusion_43_XP_003303532 F22310 Nested composite 
Fusion_44_Eha22344 F41895 Nested composite 
Fusion_45_XP_006453987 F30712 Nested composite 
Fusion_47_XP_001932096 F6215 Nested composite 
Fusion_48_XP_003296895 F70420 Nested composite 
Fusion_4_NP_014575 F50877 Nested composite 
Fusion_50_50574 F39066 Nested composite 
Fusion_51_XP_012052038 F39078 Nested composite 
Fusion_53_XP_001903306 F3907 Strict composite 
Fusion_55_XP_008030890 F43617 Strict composite 
Fusion_57_Aaw40768 F45813 Nested composite 
Fusion_58_XP_001220095 F61041 Strict composite 
Fusion_59_XP_008024409 F3806 Nested composite 
Fusion_60_Oal07102 F42519 Nested composite 
Fusion_62_XP_006682148 F80820 Nested composite 
Fusion_6_Kne57841 F45915 Strict composite 
Fusion_7_Kne72089 F590 Nested composite 
Fusion_8_Xp_011388676 F21108 Nested composite 
Fusion_9_Gaq46133 F48168 Nested composite 
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Table 2.3.2. Effect of poor genome quality on composite detection analyses 

 

Each of the five detection stringency criteria (composites ≥ x; components ≥ y) are displayed for each of the 100 experimental iterations. Within 

each criteria, for each iteration, five values are presented, (i.) the sum of composites detected in the control (C), and (ii.) experimental (E) datasets 

with (iii., iv.) the sums of type I errors associated with C and E, and (v.) the P-value derived from each iteration. Insignificant results (P > 0.05; n 

= 100 (100%)) were only observed when bona fide composite and component family sizes were controlled, illustrating the effectiveness of this 

implementation in controlling type I errors. 

 

 

Composites ≥ 1, Components ≥ 1 Composites ≥ 2, Components ≥ 1 Composites ≥ 1, Components ≥ 2 Composites ≥ 2, Components ≥ 2 Composites (bona fide) ≥ 2, Components ≥ 2 

C E 
Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P 

1 8113 9098 405 1390 <0.0001 2683 3777 134 1228 <0.0001 2818 3966 140 1288 <0.0001 1105 1137 55 87 0.0058 658 669 32 43 0.132 

2 8683 9881 434 1632 <0.0001 2985 4400 149 1564 <0.0001 2953 4187 55 1289 <0.0001 1181 1211 59 89 0.0104 506 513 25 32 0.222 

3 8883 10018 444 1579 <0.0001 2826 3878 141 1193 <0.0001 2922 3980 56 1114 <0.0001 1126 1149 56 79 0.0333 497 500 24 27 0.396 

4 8771 9897 438 1564 <0.0001 2839 3999 141 1301 <0.0001 2928 4330 57 1459 <0.0001 1073 1098 53 78 0.0211 510 519 25 34 0.158 

5 8775 9933 438 1596 <0.0001 2774 3643 138 1007 <0.0001 2762 3817 58 1113 <0.0001 1132 1159 56 83 0.0163 458 466 22 30 0.175 

6 8317 9330 415 1428 <0.0001 2703 3900 135 1332 <0.0001 2806 3960 59 1213 <0.0001 1129 1158 56 85 0.0111 559 564 27 32 0.309 

7 8877 10011 443 1577 <0.0001 2616 3453 130 967 <0.0001 2741 3920 60 1239 <0.0001 1197 1233 59 95 0.0031 530 536 26 32 0.264 

8 8400 9555 420 1575 <0.0001 2574 3825 128 1379 <0.0001 2851 3912 61 1122 <0.0001 1119 1153 55 89 0.0038 655 663 32 40 0.213 

9 8339 9418 416 1495 <0.0001 2966 3885 148 1067 <0.0001 2973 4304 62 1393 <0.0001 1066 1091 53 78 0.0211 606 617 30 41 0.126 

10 8130 9208 406 1484 <0.0001 2537 3485 126 1074 <0.0001 2812 3870 63 1121 <0.0001 1208 1239 60 91 0.009 497 505 24 32 0.184 

11 8721 9912 436 1627 <0.0001 2684 3738 134 1188 <0.0001 2881 3893 64 1076 <0.0001 1168 1203 58 93 0.0037 641 651 32 42 0.156 

12 8585 9765 429 1609 <0.0001 2543 3329 127 913 <0.0001 2968 3948 65 1045 <0.0001 1143 1176 57 90 0.0053 671 676 33 38 0.325 

13 8591 9779 429 1617 <0.0001 2946 3951 147 1152 <0.0001 2835 4134 66 1365 <0.0001 1077 1107 53 83 0.008 688 695 34 41 0.252 

14 8571 9704 428 1561 <0.0001 2767 4034 138 1405 <0.0001 2890 4039 67 1216 <0.0001 1092 1116 54 78 0.0262 701 706 35 40 0.329 

15 8293 9412 414 1533 <0.0001 2814 3801 140 1127 <0.0001 2825 4104 68 1347 <0.0001 1077 1105 53 81 0.0119 548 552 27 31 0.354 

16 8007 9061 400 1454 <0.0001 2527 3757 126 1356 <0.0001 2839 3946 69 1176 <0.0001 1185 1209 59 83 0.0307 499 508 24 33 0.153 
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Composites ≥ 1, Components ≥ 1 Composites ≥ 2, Components ≥ 1 Composites ≥ 1, Components ≥ 2 Composites ≥ 2, Components ≥ 2 Composites (bona fide) ≥ 2, Components ≥ 2 

C E 
Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P 

17 8652 9820 432 1600 <0.0001 2820 4062 141 1383 <0.0001 2757 4080 70 1393 <0.0001 1154 1190 57 93 0.0028 530 534 26 30 0.351 

18 8196 9223 409 1436 <0.0001 2830 3714 141 1025 <0.0001 2945 3865 71 991 <0.0001 1166 1192 58 84 0.021 486 488 24 26 0.448 

19 8652 9766 432 1546 <0.0001 2562 3742 128 1308 <0.0001 2984 4181 72 1269 <0.0001 1170 1197 58 85 0.0176 691 699 34 42 0.22 

20 8874 9985 443 1554 <0.0001 2957 4132 147 1322 <0.0001 2773 3735 73 1035 <0.0001 1145 1169 57 81 0.0289 522 525 26 29 0.399 

21 8536 9694 426 1584 <0.0001 2785 4030 139 1384 <0.0001 2886 4188 74 1376 <0.0001 1189 1212 59 82 0.0363 568 573 28 33 0.312 

22 8027 9072 401 1446 <0.0001 2746 3594 137 985 <0.0001 2986 4019 75 1108 <0.0001 1207 1242 60 95 0.0041 637 643 31 37 0.28 

23 8708 9846 435 1573 <0.0001 2682 3602 134 1054 <0.0001 2814 3903 76 1165 <0.0001 1129 1160 56 87 0.0075 526 534 26 34 0.192 

24 8636 9844 431 1639 <0.0001 2966 4333 148 1515 <0.0001 2863 4219 77 1433 <0.0001 1114 1147 55 88 0.0047 612 619 30 37 0.24 

25 8831 10024 441 1634 <0.0001 2747 4029 137 1419 <0.0001 2900 4183 78 1361 <0.0001 1095 1117 54 76 0.0372 572 577 28 33 0.312 

26 8777 9954 438 1615 <0.0001 2557 3789 127 1359 <0.0001 2868 3950 79 1161 <0.0001 1139 1165 56 82 0.0196 609 619 30 40 0.15 

27 8635 9699 431 1495 <0.0001 2675 3689 133 1147 <0.0001 2982 4363 80 1461 <0.0001 1094 1124 54 84 0.0084 548 555 27 34 0.23 

28 8738 9834 436 1532 <0.0001 2805 3692 140 1027 <0.0001 2848 4206 81 1439 <0.0001 1111 1143 55 87 0.0058 487 495 24 32 0.184 

29 8866 10053 443 1630 <0.0001 2795 3726 139 1070 <0.0001 2872 3847 82 1057 <0.0001 1070 1102 53 85 0.0053 555 566 27 38 0.116 

30 8621 9786 431 1596 <0.0001 2999 4388 149 1538 <0.0001 2784 3725 83 1024 <0.0001 1064 1093 53 82 0.0098 496 501 24 29 0.299 

31 8199 9228 409 1438 <0.0001 2907 4288 145 1526 <0.0001 2863 4242 84 1463 <0.0001 1137 1169 56 88 0.0061 596 599 29 32 0.404 

32 8925 10002 446 1523 <0.0001 2681 3639 134 1092 <0.0001 2888 4191 85 1388 <0.0001 1115 1148 55 88 0.0047 476 478 23 25 0.447 

33 8758 9891 437 1570 <0.0001 2838 3699 141 1002 <0.0001 2798 4028 86 1316 <0.0001 1126 1154 56 84 0.0135 515 518 25 28 0.397 

34 8203 9203 410 1410 <0.0001 2790 4039 139 1388 <0.0001 2889 4059 87 1257 <0.0001 1091 1119 54 82 0.0124 447 449 22 24 0.446 

35 8922 10112 446 1636 <0.0001 2818 3696 140 1018 <0.0001 2787 4155 88 1456 <0.0001 1065 1098 53 86 0.0043 472 478 23 29 0.253 

36 8770 9893 438 1561 <0.0001 2532 3639 126 1233 <0.0001 2924 4299 89 1464 <0.0001 1177 1204 58 85 0.0175 519 523 25 29 0.348 

37 8935 10010 446 1521 <0.0001 2633 3849 131 1347 <0.0001 2773 3769 90 1086 <0.0001 1092 1120 54 82 0.0124 598 603 29 34 0.314 

38 8370 9434 418 1482 <0.0001 2568 3460 128 1020 <0.0001 2761 4027 91 1357 <0.0001 1183 1215 59 91 0.0071 600 606 30 36 0.277 

39 8217 9219 410 1412 <0.0001 2660 3791 133 1264 <0.0001 2898 4045 92 1239 <0.0001 1059 1090 52 83 0.0061 471 473 23 25 0.447 

40 8822 9949 441 1568 <0.0001 2838 4160 141 1463 <0.0001 2867 3831 93 1057 <0.0001 1139 1163 56 80 0.028 565 570 28 33 0.312 

41 8713 9910 435 1632 <0.0001 2504 3498 125 1119 <0.0001 2789 3885 94 1190 <0.0001 1063 1094 53 84 0.0065 518 524 25 31 0.26 

42 8560 9710 428 1578 <0.0001 2801 4162 140 1501 <0.0001 2817 4109 95 1387 <0.0001 1087 1116 54 83 0.0102 517 526 25 34 0.158 

43 8486 9617 424 1555 <0.0001 2739 3996 136 1393 <0.0001 2965 4312 96 1443 <0.0001 1136 1163 56 83 0.0163 527 530 26 29 0.399 

44 8358 9452 417 1511 <0.0001 2969 3906 148 1085 <0.0001 2761 3722 97 1058 <0.0001 1062 1094 53 85 0.0053 572 579 28 35 0.234 

45 8747 9899 437 1589 <0.0001 2641 3551 132 1042 <0.0001 2883 4189 98 1404 <0.0001 1198 1225 59 86 0.0182 577 582 28 33 0.312 

46 8639 9845 431 1637 <0.0001 2974 3866 148 1040 <0.0001 2851 3932 99 1180 <0.0001 1154 1178 57 81 0.0289 691 697 34 40 0.288 

47 8272 9290 413 1431 <0.0001 2790 4093 139 1442 <0.0001 2760 4127 100 1467 <0.0001 1088 1118 54 84 0.0084 571 580 28 37 0.169 

48 8617 9761 430 1574 <0.0001 2863 3836 143 1116 <0.0001 2851 3825 101 1075 <0.0001 1130 1161 56 87 0.0075 490 499 24 33 0.154 

49 8380 9538 419 1577 <0.0001 2686 3684 134 1132 <0.0001 2810 3984 102 1276 <0.0001 1051 1074 52 75 0.0293 620 623 31 34 0.407 

50 8901 10037 445 1581 <0.0001 2514 3374 125 985 <0.0001 2839 3887 103 1151 <0.0001 1155 1188 57 90 0.0052 504 513 25 34 0.158 

51 8846 9992 442 1588 <0.0001 2889 4283 144 1538 <0.0001 2967 4245 104 1382 <0.0001 1152 1175 57 80 0.0343 502 505 25 28 0.398 
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Composites ≥ 1, Components ≥ 1 Composites ≥ 2, Components ≥ 1 Composites ≥ 1, Components ≥ 2 Composites ≥ 2, Components ≥ 2 Composites (bona fide) ≥ 2, Components ≥ 2 

C E 
Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P 

52 8909 9999 445 1535 <0.0001 2712 3963 135 1386 <0.0001 2923 4063 105 1245 <0.0001 1126 1160 56 90 0.0041 578 587 28 37 0.169 

53 8852 9914 442 1504 <0.0001 2586 3841 129 1384 <0.0001 2962 3957 106 1101 <0.0001 1069 1096 53 80 0.0145 480 489 24 33 0.154 

54 8309 9455 415 1561 <0.0001 2501 3727 125 1351 <0.0001 2775 3688 107 1020 <0.0001 1080 1105 54 79 0.0219 528 534 26 32 0.264 

55 8856 9945 442 1531 <0.0001 2547 3583 127 1163 <0.0001 2826 3972 108 1254 <0.0001 1172 1203 58 89 0.0082 509 514 25 30 0.303 

56 8342 9494 417 1569 <0.0001 2602 3640 130 1168 <0.0001 2800 3930 109 1239 <0.0001 1074 1106 53 85 0.0053 516 524 25 33 0.188 

57 8642 9808 432 1598 <0.0001 2694 3966 134 1406 <0.0001 2897 4202 110 1415 <0.0001 1109 1140 55 86 0.0072 509 519 25 35 0.131 

58 8074 9134 403 1463 <0.0001 2656 3579 132 1055 <0.0001 2829 4165 111 1447 <0.0001 1157 1188 57 88 0.0079 460 465 23 28 0.296 

59 8450 9485 422 1457 <0.0001 2998 4342 149 1493 <0.0001 2882 4158 112 1388 <0.0001 1075 1108 53 86 0.0042 599 608 29 38 0.173 

60 8493 9649 424 1580 <0.0001 2882 4223 144 1485 <0.0001 2890 3915 113 1138 <0.0001 1132 1163 56 87 0.0075 599 602 29 32 0.404 

61 8825 9955 441 1571 <0.0001 2676 3893 133 1350 <0.0001 2794 3878 114 1198 <0.0001 1202 1239 60 97 0.0027 536 541 26 31 0.306 

62 8389 9518 419 1548 <0.0001 2541 3348 127 934 <0.0001 2776 3984 115 1323 <0.0001 1182 1205 59 82 0.0363 470 472 23 25 0.447 

63 8338 9357 416 1435 <0.0001 2967 3907 148 1088 <0.0001 2808 3743 116 1051 <0.0001 1207 1238 60 91 0.009 496 500 24 28 0.346 

64 8061 9165 403 1507 <0.0001 2723 3586 136 999 <0.0001 2944 3911 117 1084 <0.0001 1174 1199 58 83 0.0251 507 515 25 33 0.188 

65 8625 9762 431 1568 <0.0001 2934 3935 146 1147 <0.0001 2968 4251 118 1401 <0.0001 1089 1114 54 79 0.0219 619 627 30 38 0.207 

66 8260 9262 413 1415 <0.0001 2615 3727 130 1242 <0.0001 2890 4071 119 1300 <0.0001 1152 1180 57 85 0.014 619 624 30 35 0.317 

67 8127 9169 406 1448 <0.0001 2856 4089 142 1375 <0.0001 2842 4165 120 1443 <0.0001 1080 1102 54 76 0.0372 503 508 25 30 0.303 

68 8493 9528 424 1459 <0.0001 2971 4341 148 1518 <0.0001 2987 4335 121 1469 <0.0001 1200 1234 60 94 0.005 566 573 28 35 0.234 

69 8656 9850 432 1626 <0.0001 2775 3707 138 1070 <0.0001 2919 4120 122 1323 <0.0001 1182 1216 59 93 0.0047 549 558 27 36 0.166 

70 8534 9720 426 1612 <0.0001 2766 4015 138 1387 <0.0001 2955 4241 123 1409 <0.0001 1163 1191 58 86 0.0146 647 657 32 42 0.156 

71 8141 9263 407 1529 <0.0001 2873 4123 143 1393 <0.0001 2762 3729 124 1091 <0.0001 1177 1204 58 85 0.0175 500 507 25 32 0.223 

72 8755 9854 437 1536 <0.0001 2738 4097 136 1495 <0.0001 2793 3818 125 1150 <0.0001 1104 1132 55 83 0.013 672 676 33 37 0.366 

73 8346 9355 417 1426 <0.0001 2600 3462 130 992 <0.0001 2922 3896 126 1100 <0.0001 1077 1104 53 80 0.0144 576 580 28 32 0.356 

74 8211 9269 410 1468 <0.0001 2894 3982 144 1232 <0.0001 2923 4198 127 1402 <0.0001 1201 1226 60 85 0.0267 553 559 27 33 0.268 

75 8765 9901 438 1574 <0.0001 2506 3368 125 987 <0.0001 2899 4132 128 1361 <0.0001 1082 1105 54 77 0.0313 604 607 30 33 0.406 

76 8702 9804 435 1537 <0.0001 2762 3891 138 1267 <0.0001 2951 4251 129 1429 <0.0001 1174 1205 58 89 0.0082 506 509 25 28 0.398 

77 8165 9159 408 1402 <0.0001 2931 4024 146 1239 <0.0001 2789 3774 130 1115 <0.0001 1120 1143 56 79 0.0333 617 628 30 41 0.126 

78 8317 9384 415 1482 <0.0001 2733 3575 136 978 <0.0001 2921 3856 131 1066 <0.0001 1166 1198 58 90 0.0068 621 627 31 37 0.28 

79 8826 9915 441 1530 <0.0001 2610 3888 130 1408 <0.0001 2793 3795 132 1134 <0.0001 1141 1174 57 90 0.0053 532 538 26 32 0.264 

80 8419 9576 420 1577 <0.0001 2806 4137 140 1471 <0.0001 2906 3837 133 1064 <0.0001 1186 1211 59 84 0.0259 636 646 31 41 0.153 

81 8954 10190 447 1683 <0.0001 2794 3816 139 1161 <0.0001 2840 3899 134 1193 <0.0001 1169 1192 58 81 0.0353 575 583 28 36 0.2 

82 8377 9409 418 1450 <0.0001 2683 3582 134 1033 <0.0001 2895 4070 135 1310 <0.0001 1191 1217 59 85 0.0217 649 658 32 41 0.183 

83 8488 9621 424 1557 <0.0001 2592 3506 129 1043 <0.0001 2955 4074 136 1255 <0.0001 1109 1141 55 87 0.0058 544 549 27 32 0.309 

84 8339 9489 416 1566 <0.0001 2776 4010 138 1372 <0.0001 2897 4286 137 1526 <0.0001 1116 1143 55 82 0.0157 600 609 30 39 0.177 

85 8861 10018 443 1600 <0.0001 2802 3771 140 1109 <0.0001 2881 3816 138 1073 <0.0001 1059 1085 52 78 0.0168 472 475 23 26 0.394 

86 8539 9646 426 1533 <0.0001 2872 3891 143 1162 <0.0001 2777 3688 139 1050 <0.0001 1199 1237 59 97 0.002 610 617 30 37 0.24 
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Composites ≥ 1, Components ≥ 1 Composites ≥ 2, Components ≥ 1 Composites ≥ 1, Components ≥ 2 Composites ≥ 2, Components ≥ 2 Composites (bona fide) ≥ 2, Components ≥ 2 

C E 
Type I 
Errors 

(C) 

Type I 
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(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
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(E) 
P C E 

Type I 
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(C) 

Type I 
Errors 

(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
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(E) 
P C E 

Type I 
Errors 

(C) 

Type I 
Errors 

(E) 
P 

87 8062 9066 403 1407 <0.0001 2982 4250 149 1417 <0.0001 2765 3644 140 1019 <0.0001 1199 1235 59 95 0.0031 534 540 26 32 0.264 

88 8876 9982 443 1549 <0.0001 2778 3803 138 1163 <0.0001 2823 4017 141 1335 <0.0001 1072 1097 53 78 0.0211 476 482 23 29 0.253 

89 8915 9984 445 1514 <0.0001 2758 3773 137 1152 <0.0001 2747 3763 142 1158 <0.0001 1203 1239 60 96 0.0033 595 603 29 37 0.203 

90 8467 9520 423 1476 <0.0001 2933 3953 146 1166 <0.0001 2799 4125 143 1469 <0.0001 1189 1216 59 86 0.0182 508 513 25 30 0.303 

91 8773 9983 438 1648 <0.0001 2532 3347 126 941 <0.0001 2770 3837 144 1211 <0.0001 1069 1097 53 81 0.0119 621 626 31 36 0.32 

92 8211 9236 410 1435 <0.0001 2626 3728 131 1233 <0.0001 2749 3595 145 991 <0.0001 1072 1096 53 77 0.0253 531 537 26 32 0.264 

93 8724 9867 436 1579 <0.0001 2946 4394 147 1595 <0.0001 2749 3958 146 1355 <0.0001 1180 1217 59 96 0.0025 610 615 30 35 0.317 

94 8701 9883 435 1617 <0.0001 2779 3894 138 1253 <0.0001 2853 3745 147 1039 <0.0001 1114 1143 55 84 0.0107 695 699 34 38 0.368 

95 8840 9928 442 1530 <0.0001 2707 3914 135 1342 <0.0001 2925 4056 148 1279 <0.0001 1061 1093 53 85 0.0053 512 517 25 30 0.303 

96 8676 9862 433 1619 <0.0001 2705 3610 135 1040 <0.0001 2803 4057 149 1403 <0.0001 1191 1215 59 83 0.0307 452 459 22 29 0.21 

97 8037 9040 401 1404 <0.0001 2831 3922 141 1232 <0.0001 2901 4063 150 1312 <0.0001 1197 1226 59 88 0.0126 617 625 30 38 0.207 

98 8690 9900 434 1644 <0.0001 2765 3925 138 1298 <0.0001 2810 4019 151 1360 <0.0001 1150 1173 57 80 0.0343 535 543 26 34 0.192 

99 8502 9589 425 1512 <0.0001 2779 4103 138 1462 <0.0001 2770 3663 152 1045 <0.0001 1056 1085 52 81 0.0093 619 624 30 35 0.317 

100 8914 10160 445 1691 <0.0001 2780 4082 139 1441 <0.0001 2832 4120 153 1441 <0.0001 1209 1241 60 92 0.0074 617 629 30 42 0.105 
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Figure 2.3.1: Effect of poor genome quality on composite detection analyses  

 

Each error rate (C and E) for the five stringency criteria are plotted (as annotated in the legend) 

as per Table 2.3.2. This figure serves as a visual aid to further demonstrate the effectiveness of 

controlling the sum of bona fide composite genes in a composite family alongside controlling 

component family sizes in comparison to other stringency criteria. 
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Type I errors resulting from potential cases poor genome annotation and was therefore used in 

every CompositeSearch analysis throughout this thesis. 

 

2.3.3. Fungal genome dataset quality control and genomic statistics 

 

Genome completeness and genomic statistics were collated (Table 2.3.3). A mean 

completeness score (C) of 95.6±4.0% (C ∈ {77.2, …, 100}) was observed across the 107 

species (Table 2.2.4). A large standard deviation was observed for duplicated BUSCO genes 

(2.47±8.01) due to a massive amount of duplicates in Allomyces macrogynus (72.1%). As A. 

macrogynus is autotetraploid (Emerson and Wilson, 1954; Albertin and Marullo, 2012), such 

high levels of duplication in expected single copy orthologs is not surprising.  

 

2.3.4. Gene remodelling is rampant in fungi 

 

In total, of the 1,150,918 protein coding sequences in our dataset, 111,768 (9.71%) were 

excluded due to low complexity as detected by BLAST or due to being a singleton, resulting 

in a sample of 1,039,150 genes within 81,476 non-singleton families (Table 2.3.5; Figure 

2.3.2). Remodelled genes accounted for approximately 73.89% of all sampled genes and 

50.39% of all families, with the remaining 26.11% of genes and 49.69% of families being non-

remodelled. Nested composites had the highest representation of all remodelled genes, 

accounting for 33.97% of all sampled genes (and 21.25% of all families) and strict components 

were best represented amongst remodelled families, accounting for 26.51% of all families (and 

18.72% of all genes). These results illustrate that approximately 60.13% of all fungal genes, 

68.04% of all sampled genes, and 49.69% of families have a history in remodelling.
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Table 2.3.3. Completeness and characteristics for 107 fungal genomes 

 

Each taxon is annotated with its genome size (GS), GC content, number of genes, genome density, and genome completeness. Genome 

completeness is given as a percentage of expected orthologs where C is “completeness”. Completeness is the cumulation of singleton (S) and 

duplicated (D) orthologs. Fragmented (F) and missing (M) orthologs detract from C. Taxa are arranged based on their taxonomic clades. 

 

 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Dothistroma septosporum Ascomycota; Pezizomycotina 30.68 52.4 12580 410.039 96.9 96.9 0 2.4 0.7 

Mycosphaerella fijiensis CIRAD86 Ascomycota; Pezizomycotina 73.73 45.2 10313 139.875 93.5 92.8 0.7 2.1 4.4 

Mycosphaerella graminicola IPO323 Ascomycota; Pezizomycotina 39.68 51.2 10933 275.529 97.9 97.9 0 0.7 1.4 

Septoria musiva Ascomycota; Pezizomycotina 28.92 51.1 10233 353.838 98.9 98.6 0.3 1 0.1 

Septoria populicola Ascomycota; Pezizomycotina 32.11 50.3 9739 303.301 99 99 0 1 0 

Baudoinia compniacensis Ascomycota; Pezizomycotina 21.88 54.8 10513 480.484 95.9 95.9 0 3.4 0.7 

Hysterium pulicare Ascomycota; Pezizomycotina 38.25 48.8 12352 322.928 94.8 93.8 1 4.5 0.7 

Rhytidhysteron rufulum Ascomycota; Pezizomycotina 39.86 47.9 12117 303.989 94.8 94.1 0.7 3.1 2.1 

Alternaria brassicicola ATCC 96836  Ascomycota; Pezizomycotina 31.04 50.8 10688 344.33 85.9 84.5 1.4 10 4.1 

Cochliobolus heterostrophus  Ascomycota; Pezizomycotina 32.09 50.7 9633 300.187 96.2 96.2 0 1 2.8 

Cochliobolus sativus Ascomycota; Pezizomycotina 33.21 49.8 12250 368.865 98.6 98.3 0.3 0.3 1.1 

Leptosphaeria maculans Ascomycota; Pezizomycotina 45.12 45.3 12469 276.352 94.4 94.1 0.3 4.8 0.8 

Pyrenophora teres Ascomycota; Pezizomycotina 54.1 45.3 11799 218.096 98.2 97.2 1 1 0.8 

Pyrenophora triticirepentis strain Pt1CBFP Ascomycota; Pezizomycotina 37.36 50.9 12169 325.723 96.2 95.9 0.3 2.4 1.4 
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 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Setosphaeria turcica Ascomycota; Pezizomycotina 43.01 51.2 11702 272.076 96.2 95.5 0.7 2.8 1 

Aspergillus aculeatus Ascomycota; Pezizomycotina 35.19 50.9 10828 307.701 97.9 97.2 0.7 0.7 1.4 

Aspergillus carbonarius Ascomycota; Pezizomycotina 34.12 51.7 11624 340.68 93.1 87.2 5.9 1 5.9 

Aspergillus clavatus Ascomycota; Pezizomycotina 27.85 45.2 9120 327.469 98.6 98.6 0 1 0.4 

Aspergillus flavus Ascomycota; Pezizomycotina 39.91 48.4 12587 315.385 93.8 92.8 1 4.5 1.7 

Aspergillus fumigatus Af293 Ascomycota; Pezizomycotina 28.81 49.8 9887 343.179 96.5 96.2 0.3 2.4 1.1 

Aspergillus nidulans FGSCA4 Ascomycota; Pezizomycotina 30.07 50.3 10560 351.181 98.9 98.6 0.3 1 0.1 

Aspergillus oryzae RIB40 Ascomycota; Pezizomycotina 36.58 48.3 12063 329.77 89.6 88.6 1 4.1 6.3 

Aspergillus terreus NIH 2624 Ascomycota; Pezizomycotina 29.23 52.9 10406 356.004 90 89 1 6.2 3.8 

Neosartorya fischeri (NRRL 181)  Ascomycota; Pezizomycotina 31.77 49.5 10403 327.447 98.2 97.9 0.3 1.4 0.4 

Blastomyces dermatitidis Ascomycota; Pezizomycotina 66.27 37.1 9522 143.685 95.8 95.5 0.3 3.8 0.4 

Histoplasma capsulatum (strain NAm1) Ascomycota; Pezizomycotina 33.03 46.3 9251 280.079 86.6 86.6 0 10.7 2.7 

Paracoccidioides brasiliensis Pb01 Ascomycota; Pezizomycotina 32.93 42.9 9136 277.437 94.5 94.5 0 4.1 1.4 

Microsporum canis CBS 113480 Ascomycota; Pezizomycotina 23.26 47.5 8765 376.827 97.9 97.2 0.7 1.7 0.4 

Microsporum gypseum CBS 118893 Ascomycota; Pezizomycotina 23.27 48.4 8876 381.435 96.6 95.9 0.7 2.8 0.6 

Trichophyton equinum CBS127.97 Ascomycota; Pezizomycotina 24.16 47.3 8560 354.305 93.7 93.4 0.3 4.5 1.8 

Coccidioides immitis RS Ascomycota; Pezizomycotina 29.02 46 10654 367.126 97.9 95.5 2.4 1.7 0.4 

Coccidioides posadasii str. Silveira Ascomycota; Pezizomycotina 27.58 46.6 10124 367.078 91.7 91.4 0.3 5.5 2.8 

Uncinocarpus reesii Ascomycota; Pezizomycotina 22.35 48.6 7798 348.904 85.9 85.9 0 10 4.1 

Botryotinia cinerea (strain B05.10) Ascomycota; Pezizomycotina 42.63 42 16448 385.832 89.3 88.6 0.7 8.6 2.1 

Sclerotinia sclerotiorum ATCC 18683 Ascomycota; Pezizomycotina 38.91 48.6 14522 373.22 94.8 94.5 0.3 4.5 0.7 

Cryphonectria parasitica  Ascomycota; Pezizomycotina 49.6 50.8 11184 225.484 97.9 97.9 0 1.7 0.4 

Acremonium alcalophilum Ascomycota; Pezizomycotina 54.42 46.4 9521 174.954 99.7 99.7 0 0.3 0 
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 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Verticillium alboatrum VaMs.102 Ascomycota; Pezizomycotina 36.46 56.5 10220 280.307 77.2 76.9 0.3 19.7 3.1 

Verticillium dahliae VdLs.17 Ascomycota; Pezizomycotina 33.9 55.6 10535 310.767 93.4 93.4 0 5.5 1.1 

Trichoderma atroviride IMI 202040 Ascomycota; Pezizomycotina 36.14 49.7 11100 307.139 98.2 97.9 0.3 0.3 1.5 

Trichoderma reesei QM6a Ascomycota; Pezizomycotina 32.68 53.6 9143 279.774 99.3 99.3 0 0.3 0.4 

Trichoderma virens Gv298 Ascomycota; Pezizomycotina 39.02 49.2 11643 298.385 96.9 96.9 0 1.4 1.7 

Fusarium graminearum species complex Ascomycota; Pezizomycotina 36.46 48.3 13321 365.359 99 99 0 0.7 0.3 

Fusarium oxysporum f. sp. lycopersici Ascomycota; Pezizomycotina 61.39 48.4 17608 286.822 94.4 94.1 0.3 3.8 1.8 

Fusarium verticillioides Ascomycota; Pezizomycotina 41.84 48.7 14195 339.269 95.8 95.5 0.3 3.1 1.1 

Nectria haematococca mpVI Ascomycota; Pezizomycotina 51.29 50.8 15707 306.239 98.2 97.2 1 0.3 1.5 

Magnaporthe grisea 7015 Ascomycota; Pezizomycotina 44.56 47.8 11109 249.304 87.9 87.9 0 5.5 6.6 

Chaetomium globosum CBS 148.51 Ascomycota; Pezizomycotina 34.34 55.6 11124 323.937 85.9 85.9 0 10.3 3.8 

Sporotrichum thermophile Ascomycota; Pezizomycotina 38.74 51.4 8806 227.31 94.1 94.1 0 3.1 2.8 

Thielavia terrestris  Ascomycota; Pezizomycotina 36.91 54.7 9815 265.917 98.3 97.6 0.7 0.3 1.4 

Podospora anserina DSM 980 Ascomycota; Pezizomycotina 34.72 52.2 10601 305.328 98.3 97.6 0.7 1.7 0 

Neurospora crassa OR74A Ascomycota; Pezizomycotina 41.1 48.2 9908 241.071 99.3 96.9 2.4 0.7 0 

Neurospora tetrasperma FGSC 2508  Ascomycota; Pezizomycotina 39.15 49.4 10640 271.775 97.5 97.2 0.3 1 1.5 

Wickerhamomyces anomalus Ascomycota; Saccharomycotina 14.15 35 6423 453.922 95.2 94.5 0.7 3.1 1.7 

Candida albicans SC5314 Ascomycota; Saccharomycotina 14.28 33.5 6205 434.524 99.6 99.3 0.3 0.3 0.1 

Candida caseinolytica Ascomycota; Saccharomycotina 9.18 45.4 4657 507.298 92 91.7 0.3 2.8 5.2 

Candida glabrata CBS 138 Ascomycota; Saccharomycotina 12.47 38.6 5202 417.161 99.3 96.9 2.4 0.7 0 

Candida tenuis Ascomycota; Saccharomycotina 10.75 43 5533 514.698 95.5 95.5 0 0.7 3.8 

Debaryomyces hansenii CBS767 Ascomycota; Saccharomycotina 12.18 36.3 6272 514.943 100 99.7 0.3 0 0 

Spathaspora passalidarum Ascomycota; Saccharomycotina 13.18 37.5 5983 453.945 96.9 96.9 0 3.1 0 
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 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Yarrowia lipolytica CLIB122 Ascomycota; Saccharomycotina 20.55 49 6448 313.771 98.6 98.6 0 1 0.4 

Lipomyces starkeyi Ascomycota; Saccharomycotina 21.27 47 8192 385.143 95.5 93.8 1.7 3.4 1.1 

Hansenula polymorpha Ascomycota; Saccharomycotina 8.9 47.9 5177 581.685 96.2 95.9 0.3 2.8 1 

Pichia membranifaciens Ascomycota; Saccharomycotina 11.43 45.1 5546 485.214 98.3 98.3 0 1 0.7 

Pichia stipitis CBS 6054 Ascomycota; Saccharomycotina 15.44 41.2 5807 376.101 97.2 96.9 0.3 1 1.8 

Ashbya gossypii ATCC 10895 Ascomycota; Saccharomycotina 9.14 51.7 4717 516.083 98.6 98.6 0 1.4 0 

Saccharomyces cerevisiae S288c Ascomycota; Saccharomycotina 12.16 38.2 5885 483.964 99.6 91.7 7.9 0.3 0.1 

Schizosaccharomyces cryophilus oy26 Ascomycota; Taphrinomycotina 11.55 37.7 5057 437.835 99.3 91.7 7.6 0.7 0 

Schizosaccharomyces japonicus yFS275 Ascomycota; Taphrinomycotina 11.73 44.1 4814 410.401 98.6 91.4 7.2 1.4 0 

Schizosaccharomyces octosporus yFS286 Ascomycota; Taphrinomycotina 11.63 37.9 4925 423.474 99.6 91.7 7.9 0.3 0.1 

Schizosaccharomyces pombe 972h Ascomycota; Taphrinomycotina 12.59 36 5010 397.935 100 91.7 8.3 0 0 

Agaricus bisporus var. burnettii JB137-S8 Basidiomycota; Agaricomycotina 32.61 46.7 11289 346.182 94.8 94.1 0.7 1.7 3.5 

Schizophyllum commune H48 Basidiomycota; Agaricomycotina 38.48 57.4 13181 342.542 97.6 95.9 1.7 1.4 1 

Pleurotus ostreatus Basidiomycota; Agaricomycotina 34.36 50.76 11603 337.689 99.4 96.6 2.8 0.3 0.3 

Fomitopsis pinicola Basidiomycota; Agaricomycotina 41.61 55.4 14724 353.857 98.3 96.6 1.7 1.7 0 

Trametes versicolor Basidiomycota; Agaricomycotina 44.79 57.4 14296 319.178 96.2 95.5 0.7 0.7 3.1 

Wolfiporia cocos Basidiomycota; Agaricomycotina 50.48 52 12746 252.496 99 97.6 1.4 0.3 0.7 

Coprinopsis cinerea (strain FGSC 9003) Basidiomycota; Agaricomycotina 36.19 51.6 13394 370.102 96.9 95.9 1 2.8 0.3 

Laccaria bicolor (strain S238NH82) Basidiomycota; Agaricomycotina 58.68 47 19036 324.404 95.2 93.1 2.1 1.7 3.1 

Auricularia delicata Basidiomycota; Agaricomycotina 43.2 57.1 23577 545.764 97.2 93.4 3.8 1 1.8 

Coniophora putinea Basidiomycota; Agaricomycotina 42.97 52.3 13761 320.247 95.5 93.8 1.7 1 3.5 

Serpula lacrymans S7.3 Basidiomycota; Agaricomycotina 42.79 45.3 14495 338.747 93.4 93.1 0.3 3.1 3.5 

Phlebia brevispora Basidiomycota; Agaricomycotina 46.4 52 16170 348.491 97.3 94.5 2.8 2.1 0.6 
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 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Punctularia strigosozonata Basidiomycota; Agaricomycotina 34.17 54.9 11538 337.665 94.5 93.8 0.7 1.4 4.1 

Gloeophyllum trabeum Basidiomycota; Agaricomycotina 37.18 52.9 11846 318.612 97.6 96.6 1 2.1 0.3 

Fomitiporia mediterranea Basidiomycota; Agaricomycotina 63.35 41.7 11333 178.895 98.3 96.9 1.4 0.7 1 

Ganoderma sp. Basidiomycota; Agaricomycotina 43.29 56.1 12910 298.221 99 98.3 0.7 0.7 0.3 

Bjerkandera adusta Basidiomycota; Agaricomycotina 40.2 54.8 15473 384.9 98.3 97.6 0.7 0.7 1 

Ceriporiopsis subvermispora Basidiomycota; Agaricomycotina 37.87 53.8 12125 320.174 88.9 88.6 0.3 1.7 9.4 

Phanerochaete chrysosporium RP78 Basidiomycota; Agaricomycotina 29.84 57 10048 336.729 94.5 93.8 0.7 1.4 4.1 

Phlebiopsis gigantea Basidiomycota; Agaricomycotina 27.9 54.7 11891 426.201 98.2 97.2 1 0.7 1.1 

Dichomitus squalens Basidiomycota; Agaricomycotina 42.75 55 12290 287.485 94.4 93.4 1 1 4.6 

Heterobasidion annosum Basidiomycota; Agaricomycotina 27.98 52.9 12299 439.564 95.8 95.5 0.3 3.4 0.8 

Dacryopinax sp. Basidiomycota; Agaricomycotina 29.5 52 10242 347.186 95.9 94.5 1.4 1 3.1 

Cryptococcus neoformans var. grubii H99 Basidiomycota; Agaricomycotina 18.92 48.2 6967 368.235 98.6 97.9 0.7 1 0.4 

Tremella mesenterica Basidiomycota; Agaricomycotina 28.64 46.8 8313 290.258 97.2 96.9 0.3 2.4 0.4 

Rhodotorula graminis Basidiomycota; Pucciniomycotina 20.78 67.8 7283 350.481 96.2 95.9 0.3 2.8 1 

Sporobolomyces roseus IAM 13481 Basidiomycota; Pucciniomycotina 20.8 53.8 5536 266.154 87.2 86.9 0.3 7.9 4.9 

Melampsora laricis-populina Basidiomycota; Pucciniomycotina 97.8 41 16831 172.096 95.9 93.8 2.1 3.4 0.7 

Puccinia graminis f. sp. tritici Basidiomycota; Pucciniomycotina 81.6 43.3 20566 252.034 88.9 80.3 8.6 7.9 3.2 

Ustilago maydis 521 Basidiomycota; Ustilaginomycotina 19.66 54 6522 331.74 92.1 91.4 0.7 4.5 3.4 

Allomyces macrogynus Blastocladiomycota 57.06 60.5 17600 308.447 96.6 24.5 72.1 3.1 0.3 

Batrachochytrium dendrobatidis JEL423 Chytridiomycota 23.9 39.4 8732 365.356 97.2 94.8 2.4 1.7 1.1 

Spizellomyces punctatus Chytridiomycota 23.91 47.6 8804 368.214 95.2 92.4 2.8 2.4 2.4 

Mucor circinelloides f. lusitanicus  Mucoromycota 36.57 42.2 10930 298.879 96.2 73.8 22.4 2.8 1 

Phycomyces blakesleeanus Mucoromycota 53.37 35.8 16528 309.687 94.5 78.3 16.2 2.4 3.1 
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 Genomic statistics 
BUSCO completeness (%) 
(fungi_odb v.09; n = 230) 

Binomial classification Taxonomic clade 
GS 

(Mbp) 
GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) 

C S D F M 

Rhizopus oryzae RA 99880 Mucoromycota 39.06 35.4 17459 446.979 83.4 52.4 31 12.1 4.5 
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Table 2.3.4. Descriptive statistics for 107 fungal genomes 

 

Descriptive statistics calculated for each category in Table 2.3.3. Column IDs are annotated as 

per Table 2.3.3.  

 
 

Genome statistics BUSCO completeness (%) 

GS 
(Mbp) 

GC 
(%) 

Genes 
(n) 

Density 
(n/Mbp) C S D F M 

Minimum 8.9 33.5 4657 140 77.2 24.5 0 0 0 

 h0.25 23.9 45.3 8765 298 94.5 92.8 0.3 1 0.4 

 h (h0.50) 34.2 48.8 10640 338 96.5 95.5 0.7 1.7 1.1 

 h0.75 41.6 52.2 12352 376 98.3 97.2 1.4 3.4 2.8 

Maximum 97.8 67.8 23577 582 100 99.7 72.1 19.7 9.4 

 µ 34.2±15.5 48.4±6.11 10757±3632 341.0±81.7 95.6±4.0 93.10±9.14 2.47±8.01 2.72±3.0 1.71±1.76 

CV 45.3% 12.6% 33.8% 23.9% 4.18% 9.81% 324% 110% 103% 
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Table 2.3.5. Extent of remodelled genes and families in fungi 
 
 

The number (n) of genes in the entire dataset (Genes(a)), the sum of genes in the sampled dataset 

(Genes(s); Genes(a) – Excluded), and the number of gene families attributed to each RC are 

presented with their associated proportion (%) within their respective populations. The 

“Excluded” category is only observed in Genes(a) as genes in this category were not used for 

sampling by CompositeSearch,  and thus were excluded from Genes(s) and Families 

respectively 

 
 

 n % 
RC Genes(a) Genes(s) Families Genes(a) Genes(s) Families 
NC 353039 353039 17317 30.67 41.58 21.25 
SC 30110 30110 2067 2.62 3.55 2.54 
SN 194513 194513 21603 16.90 22.91 26.51 
NR 271309 271309 40489 23.57 31.96 49.69 
Excluded 301947 N/A N/A 26.24 N/A N/A 
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Figure 2.3.2. Extent of remodelled genes and families in fungi 

 

Each pie chart represents one of three datasets (Genes(a), Genes(s), and Families) from Table 

2.3.2. Again, the “Excluded” category is only observed in Genes(a) as genes in this category 

were not used for sampling by CompositeSearch,  and thus were excluded from Genes(s) and 

Families respectively 
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2.3.5. Variance in gene family sizes 

  

 Gene families were observed to display incredible variation for each RC (C.V. = 

145.8% - 294.6%) with considerable bias observed towards smaller families (h0.25 ≤ 3;  h0.50 ≤ 

5; h0.75 ≤ 18 (Table 2.3.6.). Nested composites were observed to be most variant (C.V. = 

294.6%) and to have the largest range (2 ≥ n ≤ 1933) compared to other categories (2 ≥ n ≤ 

320). On average, nested composites were reported to form larger families (n = 20.39±60.07) 

than other RC categories (nSC = 14.57±21.25; nSN = 9.0±16.81; nNR = 6.7±12.15) (Figure 

2.3.4.).  Family sizes for each RC were observed to be significantly different (P ≤ aB ≤ 8.33e-

03) from each other (P ≤ 2.79e-05) with the exception of NC vs. NR (P = 0.11) using a two-

tailed Mann-Whitney U test (Table 2.3.7.).  

 

2.3.6. Comparison of evolutionary rates 

 

 2.3.6.1. Phylogenetic annotation 

 

 A phylogeny was constructed using 277 highly distributed (present in n ≥ 102 (~95%) 

species) KOG gene family alignments (Figure 2.3.3.). Internal nodes were annotated as per the 

“-apo” function in TNT (Figure 2.3.4.). All major clades are in their correct placements as 

Chyrididomycota was basal to Blastocladiomycota (thus constituting the “zoosporic true 

fungi” (ZTF)), the ZTF were basal to the Mucoromycota (thus forming the “monokaryotes”), 

and the monokaryotes were basal to the Dikarya (Spatafora et al., 2016).  
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Table 2.3.6. Descriptive statistics for fungal gene family sizes 

 

Statistics describing family size distribution characteristics were tabulated for each RC. Each 

RC is assigned a mean (µ), median (h), quartiles (h0.25, 0.50, 0.75), minima, maxima, and CV. 

 
 

 NC SC SN NR 

n 17317 2067 21603 40489 
Minimum 2.00 2.00 2.00 2.00 
h0.25 3.00 2.00 2.00 2.00 
h (h0.50) 5.00 5.00 3.00 3.00 
h0.75 18.0 17.0 7.00 5.00 
Maximum 1933 178 320 225 
µ 20.4±60.1 14.6±21.2 9.00±16.8 6.70±12.1 
CV 295% 146% 187% 181% 
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Table 2.3.7. Comparison of fungal family size distributions 

 

Samples (a.) and (b.) refer to the RCs being tested. The Mann-Whitney U statistic (U) is 

provided alongside a P-value for each comparison. All comparisons were considered 

statistically significant (P ≤ aB ≤ 8.33e-03) except for NC vs. NR (P = 0.11).  

 
 

Sample (a.) Sample (b.) U P 

NC SC 7.19e08 6.48e-38 
NC SN 5.41e08 6.19e-89 
NC NR 4.41e08 0.11 
SC SN 4.28e08 5.00e-15 
SC NR 3.56e08 2.79e-05 
SN NR 2.48e08 7.02e-31 
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Figure 2.3.3: Representative fungal phylogeny 

 

This fungal phylogeny constructed from a maximum likelihood superalignment 249 highly 

distributed KOG genes (nspecies ≥ 102). We were content with the placement of all higher 

taxonomic clades in this tree with the exception of one contentious species, Ustiago maydis. In 

this tree U. maydis represents the Ustillagomycotina subphylum (smut fungi), which should be 

sister to the Agaricomycotina and not the Pucciniomycotina as displayed here (Spatafora et al., 

2017). This could just be due to the complement of genes in this particular species, and perhaps 

a larger Ustilagomycotina sample size would better resolve their phylogenetic placement.  

Rhizopus oryzae

Aspergillus clavatus

Podospora anserina
Yarrowia lipolytica

Allomyces macrogynus
Fomitopsis 

pinico
la

Trichoderma atroviride

Ph
leb

iop
sis

 gi
ga

nte
a

Wickerhamomyces anomalus

Saccharomyces cerevisiae

Aspergillus carbonarius

Neosartorya fischeri

Debaryomyces hansenii

Paracocci
dioides 

brasili
ensis

Rhodotorula graminis

Schizosaccharomyces octosporus

C
oniophora putinea

Auricularia delicata

Fusarium oxysporum

Aspergillus nidulans

Pichia membranifaciens

Fom
itiporia m

editerranea

Candida albicans

Tr
am

ete
s v

ers
ico

lor

Verticillium dahliae

Ag
ar

ic
us

 b
isp

or
us

Microsporum gypseum
M

yc
os

ph
ae

re
lla

 g
ra

m
in

ic
ol

a

Ustilago maydis

Aspergillus flavus

Phycomyces blakesleeanus

Pyre
no

ph
ora

 ter
es

Lipomyces starkeyi

Le
pt

os
ph

ae
ria

 m
ac

ul
an

s

Microsporum canis

Hy
ste

riu
m 

pu
lic

ar
e

Blasto
myce

s derm
atitid

is

Botryotinia cinerea

D
acryopinax sp.

Pyre
no

ph
ora

 tri
tic

ire
pe

nti
s

Se
pt

or
ia

 m
us

iv
a Neurospora tetrasperm

a
M

agnaporthe grisea

Se
tos

ph
ae

ria
 tu

rc
ica

Spizellomyces punctatus

C
haetom

ium
 globosum

Gan
od

erm
a s

p.

Coccidioides immitis

Coc
hli

ob
olu

s h
ete

ro
str

op
hu

s

Se
pt

or
ia

 p
op

ul
ic

ol
a

Spathaspora passalidarum

Verticillium alboatrum

Aspergillus terreus

Rh
yt

id
hy

ste
ro

n 
ru

fu
lu

m

Wolfip
oria

 co
cos

Coccidioides posadasii

Sc
hi

zo
ph

yl
lu

m
 c

om
m

un
e

D
ot

hi
str

om
a 

se
pt

os
po

ru
m

Hansenula polymorpha

Ph
leb

ia
 b

re
vis

po
ra

Aspergillus fumigatus

Acremonium alcalophilum

Sporobolomyces roseus

La
cc

ar
ia

 b
ic

ol
or

Ba
ud

oi
ni

a 
co

m
pn

ia
ce

ns
is

Fusarium graminearum

Candida tenuis

G
loeophyllum

 trabeum

Cryphonectria parasitica

Puccinia graminis

Schizosacch
aromyce

s ja
ponicus

M
elampsora laricis populina

Alte
rn

ar
ia 

br
as

sic
ico

la

Pl
eu

ro
tu

s o
str

ea
tu

s

Trem
ella m

esenterica

Trichophyton equinum

Sporotrichum
 therm

ophile

Aspergillus oryzae

Cryptococcus neoformans

Trichoderma reesei

Schizosaccharomyces cryophilus

Ashbya gossypii

Bj
er

ka
nd

er
a a

du
sta

Batrachochytrium dendrobatidis

Dich
om

itu
s s

qu
ale

ns

Sclerotinia sclerotiorum

Mucor circinelloides

Ph
an

er
oc

ha
ete

 ch
ry

so
sp

or
iu

m

Candida glabrata

Neurospora crassa

Schizosaccharomyces pombe

Thielavia terrestris

Coc
hli

ob
olu

s s
ati

vu
s

Pichia stipitis

Ceri
po

rio
psi

s s
ub

ver
misp

ora

Candida caseinolytica

Histo
plasma capsulatum

Trichoderma virens
Co

pr
in

op
sis

 c
in

er
ea

H
et

er
ob

as
id

io
n 

an
no

su
m

Punctularia strigosozonata

Aspergillus aculeatus

Uncinocarpus reesii

Fusarium verticillioides

Nectria haematococca

M
yc

os
ph

ae
re

lla
 fi

jie
ns

is

Se
rp

ul
a 

la
cr

ym
an

s

100

100

100

100

80

100

100

100

100

100

100

60

10
0

100

10
0

100

100

100

100

100

100

100

100

100

100

100

100

100

10
0

10
0

100
100

100

100

100

100

100

100

100

100

100

10
0

10
0

100

100

100

100

10
0

10
0

100

100

60

100

10
0

20

60

80

100

10
0

100

10
0

100

10
0

100

100

100

100

100

10
0

100

100

80

100

10
0

100

100

20
100

80

100

10
0

100

100

100

100

100

10
0

10
0

100

100

10
0

100

10
0

10
0

100

100

10
0

100

10
0

10
0

100

10
0

100

100
80

100

10
0

100

100

10
0

10
0

80

10
0

10
0

10
0

10
0

80

20

40

100

100

100

80

100

100

10
0

10
0

100

100

100

10
0

10
0

100

10
0

100

100

100

10
0

50

10
0

100

100

100

100

100

100

100

100

100

100

100

100

100

100

10
0

10
0

100

10
0

10
0

100

10
0

100

100

100

60

100

100

100

100

100

100

100

10
0

100

100

10
0

10
0

10
0

100

60

100

100

10
0

10
0

100

100

100

100

10
0

100

10
0

100

10
0

100

100

100

100

10
0

10
0

100

100

100

100

100

100

100

100

100

100

100

10
0

10
0

0.09433

0.03625

0.01791

0.05222

0.14986

0.278

0.32531

0.0524

0.0
532

5

0.02965

0.01666

0.
01

47
2

0.0
21

46

0.00848

0.0
47

07

0.13145

0.04403

0.13074

0.03725

0.12868

0.08473

0.01476

0.00868

0.03393

0.02696

0.01156

0.07547

0.02698

0.
02

13
9

0.
02

58
6

0.0
484

5
0.07439

0.02
497

0.03231

0.0587
5

0.15482

0.01321

0.10471

0.16579

0.01032

0.02071

0.
09

98

0.0
08

79

0.20064

0.03626

0.10468

0.04257

0.
01

67
7

0.0
29

58

0.0
082

4

0.0223
7

0.0
09

16

0.08031

0.0
37

44

0.00631

0.02086
0.21

869

0.0213

0.
07

94
8

0.01
26

0.
04

26
4

0.01597

0.
01

48

0

0.25164

0.02886

0.00879

0.03237

0.08821

0.0
02
12

0.0
272

0.059

0.
00

76
9

0.186
08

0.
05

30
1

0.04535

0.00
942

0.06
382

0.1289

0.05994

0.01169

0.
03

54
2

0.05179

0.0
195

3

0.05056

0.09877

0.06334

0.0
13
53

0.0
12
71

0.0323
5

0.18579

0.
02

61
2

0.02504

0.0
22
56

0.
00

15
8

0.02
39

0.01928

0.0
11
73

0.12441

0.
02

86
5

0.0
11

64

0.13835

0.
05

6

0.05005

0.07662
0.00622

0.018
17

0.0
21
76

0.01115

0.00052

0.0
24

45

0.
00

29
8

0.06
656

0.0
57

6

0.0
10

84

0.
01

19

0.
03

08
4

0.04653

0.
00

69
7

0.
01

28

0.06798

0.04867

0.065

0.0314

0.03358

0.03467

0.
05

02
4

0.0
17

81

0.0
447

8

0.03023

0.0091
2

0.
11

63
6

0.
04

51
6

0.12161

0.
05

11
6

0.01332

0.06178

0.07603

0.
11

15
1

0.04257

0.
06

48
4

0.0211

0.07832

0.06494

0.12487

0.15767

0.01643

0.0
317

0.08281

0.10997

0.13029

0.05153

0.1
068

3

0.11327

0.09223

0.0
66
11

0.0
20
55

0.02453

0.
06

49
6

0.0
03
03

0.01857

0.0
16
96

0.0902

0.11396

0.01
433

0.
01

50
6

0.00
915

0.03313

0.0379

0.09461

0.01933

0.02
108

0.12199

0.0
48

98

0.04779

0.1992

0.0
36
3

0.0
54

82

0.0
35
14

0.0
136

4

0.03194

0.02006

0.05455

0.
01

98
9

0.
03

19
8

0.09761

0.00101

0.05
342

0.04429

0.0
03

2

0.07389

0.0
94
48

0.3663
7

0.
04

56

0.0
686

8

0.01496

0.01072

0.13415

0.
11

86
5

0.
08

73
3

0.09835

0.04066

0.06
59

0.043
04

0.00104

0.018

0.04937

0.03765

0.03697

0.0672
8

0.0379

0.
06

00
8

0.
08

90
7

Taxonomy

Pezizomycotina

Saccharomycotina

Taphrinomycotina

Agaricomycotina

Pucciniomycotina

Ustillagomycotina

Blastocladiomycota

Chytridiomycota

Mucoromycota

107



 

  

 
 
Figure 2.3.4: Representative fungal phylogeny annotated with internal node annotations 

 

An illustration of the representative fungal phylogeny (Figure 2.3.3) with the two pseudo-

outgroups prepended to the original root node and annotated using TNT (as per subsection 

2.2.3.4.2.) 
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2.3.4.2. Remodelled genes are more homoplastic than non-remodelled genes 
 

When sampled from across the entire phylogeny (all data), significant differences (P ≤ 

a ≤ 8.33e-03) were observed between all comparisons (P ≤ 7.10e-03) except for between NC and 

RC (P = 0.497) (Table 2.3.7.). Remodelled genes were considerably more homoplastic than 

non-remodelled genes (HPNR = 0.305), where composite genes were observed to be most 

homoplastic (HPNC = 0.487; HPSC = 0.464; HPSN = 0.433). 

When sampled from exclusively from internal nodes, again, all comparisons were 

observed to be significantly different (P ≤ 3.40e-14) except for between NC and RC (P = 0.671). 

Again, remodelled genes were observed to be more homoplastic (HPNC = 0.120; HPSC = 0.123; 

HPSN = 0.073) in comparison to non-remodelled families (HPNR = 0.058).  

These results suggest that remodelled genes, especially strict and nested composites, 

are much more likely to disobey Dollo’s Law of Irreversibility (Dollo, 1893; Gould, 1970) and 

evolve through multiple, independent events, which would be expected of fused genes 

(Leonard and Richards, 2012). These results also highlight the extent of homoplasy in tips (leaf 

nodes) in comparison to internal nodes from the increases observed due to their inclusion. 

 

2.3.6.3. Dynamic evolutionary rates observed within and between remodelling 

categories 

 

When sampled from across the phylogeny, birth rates displayed considerable variation 

(0.00846 ≤ fb ≤ 416.4;  221.1 ≤ CV ≤ 276.1) within each RC (Table 2.3.8.). Significant 

differences (P ≤ a ≤ 8.33e-03) were observed between each RC (P ≤ 1.72e-05) except for 

between NC and SN (P = 0.952) (Table 2.3.9). Even greater variance rates were observed for 

decay rates within each RC (0.00846 ≤ fb ≤ 322;  315.8 ≤ CV ≤ 377.8), however significant  
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Table 2.3.8. Homoplastic proportion comparisons between fungal remodelling categories 

 

Pairwise comparisons between each HPRC (RC(a) and RC(b)) sampled from across (i.) the entire 

phylogeny and (ii.) exclusively from internal nodes are displayed. The sum of homoplastic 

families (nH) and all families (nall) used to calculate the HPs are shown. Significant P-values 

(P ≤ aB ≤ 8.33e-03) are emboldened. 

 
 

 RC(a) RC(b)  

Dataset RC(a) RC(b) nH nall HP nH nall HP P 

A
ll 

da
ta

 

NC SC 8431 17317 0.487 978 2107 0.464 4.97e-02 

NC SN 8431 17317 0.487 9418 21727 0.433 7.50e-26 

NC NR 8431 17317 0.487 12350 40489 0.305 0 

SC SN 978 2107 0.464 9418 21727 0.433 7.10e-03 

SC NR 978 2107 0.464 12350 40489 0.305 4.31e-50 

SN NR 9418 21727 0.433 12350 40489 0.305 2.73e-222 

Ex
cl

us
iv

el
y 

in
te

rn
al

 n
od

es
 

NC SC 2080 17317 0.120 260 2107 0.123 0.671 

NC SN 2080 17317 0.120 1593 21727 0.073 2.42e-55 

NC NR 2080 17317 0.120 2334 40489 0.058 1.21e-137 

SC SN 260 2107 0.123 1593 21727 0.073 1.61e-14 

SC NR 260 2107 0.123 2334 40489 0.058 4.24e-28 

SN NR 1593 21727 0.073 2334 40489 0.058 3.40e-14 
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Table 2.3.9: Descriptive statistics for observed evolutionary rates in fung 

Descriptive statistics for evolutionary birth (fb) and decay (fd) rates were calculated. The considerable variance observed in across the entire 

phylogeny (CV ≤ 378.8%) is due to the considerable differences between leaf and branch node subsets (Table 2.3.9). In particular, considerable 

variance is observed in the subset of leaf nodes (CV ≤ 309.4%), which is due to using a small k during transformation. 

 RC µ s SE CV(%) Min. Max. h0.25 h0.50 h0.75 

Entire 
phylogeny 
(n = 212) 

fb 

NC 14.59 40.27 2.766 276.1 0.00846 416.4 2.722 6.464 12.13 

SC 1.859 4.83 0.3317 259.8 0.00846 42.56 0.391 0.8433 1.617 

SN 14.7 38.28 2.629 260.5 0.00846 328.1 3.001 6.259 11.72 

NR 21.59 48.6 3.338 225.1 0.00846 405.2 4.93 10.18 19.44 

fd 

NC 6.992 25.48 1.75 364.4 0.004832 322 0.6173 0.6173 5.216 

SC 0.955 3.016 0.2071 315.8 0.004832 37.79 0.08478 0.3211 0.833 

SN 5.11 18.22 1.251 356.5 0.004832 226.8 0.4969 1.6 3.667 

NR 6.602 25.01 1.717 378.8 0.004832 314.5 0.5778 2.244 4.643 

Exclusively 
internal nodes 

(n = 105) 

fb 

NC 6.852 6.071 0.5925 88.61 0.02664 30.11 2.288 4.787 10.93 

SC 0.9429 0.8233 0.08035 87.32 0.02443 3.285 0.3006 0.6578 1.315 

SN 6.784 7.742 0.7556 114.1 0.02664 60.62 2.369 4.789 8.424 

NR 13.36 15.9 1.552 119.1 0.02664 95.57 3.855 7.982 15.52 

fd 

NC 2.242 3.245 0.3167 144.8 0.01015 23.5 0.518 0.518 2.891 

SC 0.394 0.6931 0.06764 175.9 0.01015 5.306 0.06323 0.1765 0.3956 

SN 1.62 2.092 0.2041 129.1 0.01015 13.14 0.3583 0.9843 2.064 

NR 1.938 2.47 0.2411 127.5 0.01015 14.91 0.44 0.9515 2.697 

Exclusively 
leaf nodes 
(n = 107) 

fb 

NC 22.18 55.45 5.36 250.0 0.00846 416.4 4.325 7.49 15.17 

SC 2.758 6.642 0.6421 240.8 0.00846 42.56 0.5263 0.9193 1.971 

SN 22.46 52.31 5.057 232.9 0.00846 328.1 4.371 8.919 15.49 

NR 29.66 65.73 6.354 221.6 0.00846 405.2 5.873 11.83 21.18 

fd 

NC 11.65 35.18 3.401 301.9 0.004832 322 1.159 1.159 7.901 

SC 1.506 4.125 0.3988 274.0 0.004832 37.79 0.168 0.5102 1.107 

SN 8.535 25.15 2.431 294.7 0.004832 226.8 0.941 2.749 6.096 

NR 11.18 34.58 3.343 309.4 0.004832 314.5 1.095 3.66 8.107 
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Table 2.3.10. Comparison of family birth and decay rates in fungi  

 

Pairwise comparisons between each HPRC (RC(a) and RC(b)) sampled from across (i.) the entire 

phylogeny and (ii.) exclusively from internal nodes are displayed. The U statistic and P-values 

are provided for each comparison. Statistically significant comparisons (P ≤ a ≤ 8.33e-03) are 

emboldened. 

 
 

  RC(a) RC(b) U P 

A
ll

 d
at

a  

fb 

NC SC 39883 2.56e-43 
NC SN 22395.5 0.952 
NC NR 17060 1.79e-05 
SC SN 4977 1.01e-43 
SC NR 3663 2.93e-50 
SN NR 17048 1.72e-05 

fd 

NC SC 35982 9.36e-27 
NC SN 24967 0.048 
NC NR 22974 0.691 
SC SN 10376 9.06e-22 
SC NR 9469 6.62e-25 
SN NR 20515 0.121 

E
xc

lu
si

ve
ly

 in
te

rn
al

 n
od

es
 

(b
ra

n
ch

es
)  

fb 

NC SC 9983.5 3.20e-24 
NC SN 5698.5 0.674 
NC NR 4061.5 9.86e-04 
SC SN 1098.5 1.19e-23 
SC NR 780.5 6.17e-27 
SN NR 3870.5 1.93e-04 

fd 

NC SC 8990 2.85e-15 
NC SN 6220.5 0.108 
NC NR 5823 0.481 
SC SN 2399 1.55e-12 
SC NR 2254 1.37e-13 
SN NR 5113.5 0.365 

E
xc

lu
si

ve
ly

 le
af

 n
od

es
  

fb 

NC SC 10031.5 1.93e-21 
NC SN 5473 0.579 
NC NR 4444.5 4.73e-03 
SC SN 1302.5 1.63e-22 
SC NR 994.5 1.59e-25 
SN NR 4592.5 0.0125 

fd 

NC SC 9305 2.69e-15 
NC SN 6434.5 0.117 
NC NR 5758 0.942 
SC SN 2447 4.64e-13 
SC NR 2113 1.55e-15 
SN NR 5035.5 0.128 

112



 

  

rate differences were only observed between SC and each other RC (P ≤ 9.06e-22) and not 

between any other comparison (P > 0.048).  

Comparatively, when sampled from the subset of exclusively internal nodes, 

considerably less variance was observed for both birth rates (0.00846 ≤ fb ≤ 322;  87.37 ≤ CV 

≤ 119.1) and decay rates (0.02443 ≤ fb ≤ 95.57;  127.5 ≤ CV ≤ 175.9) respectively for each RC. 

Again, only significant differences were observed between SC and each other RC (P ≤ 1.55e-

12) and not between any other comparison (P > 0.108).  

Finally, when sampled from the subset of exclusively leaf nodes, considerable variation 

in birth rates (0.00846 ≤ fb ≤ 416.4;  221.6 ≤ CV ≤ 250) and decay rates (0.004832 ≤ fb ≤ 322;  

274 ≤ CV ≤ 309.4) respectively for each RC. Significant differences in birth rates were 

observed between each SC comparison (P ≤ 1.93e-21) and between NC and SN (P = 4.73e-03). 

Significant decay rate differences (P ≤ 4.64e-13) were only observed between SC comparisons.  

Significant differences (P ≤ a ≤ 0.0125) were observed between internal exclusive 

nodes and leaf exclusive nodes for each specific RC (eg. NC vs NC) for both birth rates (P ≤ 

9.27e-03) and decay rates (P ≤ 1.51e-06) (Table 2.3.10). 

These results suggest that despite the considerable variance observed within RCs, with 

the exception of SCs, RCs evolve at a relatively similar rate. The significant evolutionary rate 

increases observed between internal nodes and leaf nodes in each RC is likely due to genomic 

innovation during speciation (Gogarten and Townsend, 2005). Synapomorphic families 

observed at internal nodes were evolutionarily “successful”, meaning they were retained post 

speciation events. Such differences were expected as genome sequencing provides a “snapshot 

in time” (Klimke et al., 2011) of a given genome, with no guarantee that an innovation will 

persist. The evolutionary rate increase is likely influenced by homoplasy and epaktologous 

events which would be consistant with the HP differences observed in Table 2.3.7. 
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Table 2.3.11. Comparison of evolutionary rates between internal and leaf nodes 

 

Each test samples gene families of the same RC and compares those sampled from leaves to 

those sampled from internal nodes. U is the Mann-Whitney U statistic. Every result was 

considered statistically significant (P ≤ aB ≤ 0.0125). 

 
  

RC U P 

fb 

NC 4170 1.19e-03 
SC 4455 9.27e-03 
SN 3703 1.82e-05 
NR 4438 8.29e-03 

fd 

NC 3268 1.44e-07 
SC 3469 1.51e-06 
SN 3158 3.66e-08 
NR 2959 2.65e-09 
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2.3.6.3. Evolution via gene remodelling is clocklike in Fungi 

 

When sampling from across the phylogeny, significant evolutionary bursts (P ≤ aB ≤ 

2.35e-04) were only observed during two speciation events (Table 2.3.11). Significant bursts of 

nested composite births (fb = 416.44/Ma; P = 5.7e-05), strict component births (fb = 307.012/Ma; 

P = 2.2e-04), and non-remodelled family births (fb = 404.28/Ma; P = 2.2e-04) were observed 

during the divergence of Coccidioides immitis from its MRCA with Coccidoides posadasii. 

Significant bursts of strict component births (fb = 328.06/Ma; P = 1.7e-04), non-remodelled 

family births (fb = 405.16/Ma; P = 2.0e-04), nested composite decay (fd = 322.01/Ma; P = 9.5e-

05), strict component decay (fd = 226.77/Ma; P = 1.0e-04), and non-remodelled family decay (fd 

= 314.45/Ma; P = 8.44e-05) were observed during the divergence of Fusarium verticillioides 

from its MRCA with Fusarium oxysporum. These results are influenced by short branch 

lengths associated with C. immitis (k = 0.0005; Table 2.3.11) and F. verticillioides (k = 0.001).  

When sampling from the subset of internal branches, a significant burst (P ≤ 4.76e-04) 

was only observed for strict component births (fb = 60.62/Ma; P = 3.0e-04) in “Node_196”,    

branch within genus Fusarium, representing the divergence of the MRCA of F. verticillioides 

and F. oxysporum (Fov-MCRA) from F. graminearum (Table 2.3.12). In contrast to the 

branches representing C. immitis and F. verticilliodes, the branch length for “Node_196” (k = 

0.01169) was within the average branch lengths for internal branches (0.04169±0.03859), 

however, the sum of strict component families assigned to this branch (n = 450) was 

considerably greater (n > µ + (3´s)) than the mean assignment of strict component families 

per internal branch (109.4±89.987). 

 The burst observed at “Node_196” corresponds to genomic expansions during the 

divergence of Fov-MCRA from F. graminearum (Ma et al., 2010). These expansions are
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Table 2.3.12. Evolutionary bursts across the fungal phylogeny 

 

Each site (branch or leaf node) is annotated with its associated branch length (k), character state changes (Tb and Td), birth and decay rates (fb and 

fd) and their associated P-values derived from a Q-function (P(fb) and P(fd)). l values used for Box-Cox transformation are given beneath Q-

function RC identifiers. Significant evolutionary bursts (P ≤ aB ≤ 2.36e-04) are emboldened and underlined in the P(fb) and P(fd) columns. 

Significant bursts were observed at two sites, the leaf nodes representing speciation events for Coccoides immitis and Fusarium verticilliodes, 

respectively. Significant P-values are emboldened. 

 
 
 
 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Acremonium 
alcalophilum 

0.061776 238 29 192 321 161 23 85 108 6.081 0.763 4.911 8.193 4.122 0.611 2.188 2.773 0.502 0.501 0.568 0.559 0.323 0.3 0.401 0.398 

Agaricus 
bisporus 

0.079481 326 33 336 527 157 25 135 180 6.467 0.672 6.664 10.442 3.125 0.514 2.69 3.579 0.484 0.541 0.478 0.487 0.387 0.341 0.352 0.339 

Allomyces 
macrogynus 

0.325309 487 69 855 1934 0 0 0 0 2.358 0.338 4.136 9.349 0.005 0.005 0.005 0.005 0.755 0.737 0.617 0.52 0.997 0.997 0.997 0.997 

Alternaria 
brassicicola 

0.06611 243 31 296 303 448 57 274 414 5.801 0.761 7.061 7.228 10.675 1.379 6.538 9.867 0.516 0.502 0.461 0.594 0.14 0.147 0.169 0.142 

Ashbya 
gossypii 

0.121993 34 4 50 57 35 8 32 67 0.451 0.064 0.657 0.747 0.464 0.116 0.425 0.876 0.96 0.97 0.937 0.951 0.787 0.716 0.76 0.66 

Aspergillus 
aculeatus 

0.040663 294 50 235 401 159 22 126 146 11.403 1.971 9.123 15.539 6.185 0.889 4.909 5.682 0.315 0.226 0.384 0.368 0.237 0.222 0.221 0.24 

Aspergillus 
carbonarius 

0.014757 307 35 289 414 236 32 158 161 32.807 3.835 30.89 44.204 25.244 3.515 16.936 17.256 0.086 0.098 0.097 0.111 0.046 0.05 0.052 0.073 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Aspergillus 
clavatus 

0.017915 167 26 156 288 74 11 32 46 14.74 2.369 13.775 25.356 6.58 1.053 2.895 4.124 0.245 0.184 0.267 0.231 0.224 0.191 0.335 0.307 

Aspergillus 
flavus 

0.032367 275 34 203 357 140 9 92 98 13.403 1.7 9.907 17.385 6.847 0.486 4.516 4.808 0.271 0.264 0.359 0.335 0.217 0.354 0.238 0.274 

Aspergillus 
fumigatus 

0.013323 197 24 175 221 142 22 158 166 23.359 2.949 20.763 26.19 16.87 2.713 18.758 19.701 0.142 0.141 0.169 0.222 0.082 0.069 0.045 0.06 

Aspergillus 
nidulans 

0.020712 274 30 253 371 91 11 71 86 20.87 2.353 19.276 28.231 6.982 0.911 5.464 6.602 0.164 0.186 0.185 0.204 0.213 0.217 0.201 0.21 

Aspergillus 
oryzae 

0.037896 240 25 411 279 248 29 190 253 9.996 1.078 17.088 11.613 10.328 1.244 7.922 10.535 0.353 0.393 0.212 0.455 0.146 0.163 0.138 0.132 

Aspergillus 
terreus 

0.033578 353 56 330 416 186 37 157 199 16.571 2.668 15.494 19.52 8.754 1.779 7.396 9.362 0.216 0.16 0.236 0.301 0.172 0.113 0.149 0.15 

Auricularia 
delicata 

0.165791 789 109 983 1569 0 0 0 0 7.49 1.043 9.329 14.885 0.009 0.009 0.009 0.009 0.439 0.404 0.377 0.381 0.995 0.989 0.994 0.994 

Batrachochytrium 
dendrobatidis 

0.199203 271 30 359 460 0 0 0 0 2.146 0.245 2.841 3.638 0.008 0.008 0.008 0.008 0.775 0.811 0.714 0.761 0.996 0.992 0.995 0.995 

Baudoinia 
compniacensis 

0.064841 277 27 316 490 112 13 68 94 6.739 0.679 7.684 11.902 2.739 0.339 1.673 2.303 0.471 0.538 0.435 0.448 0.418 0.445 0.466 0.442 

Bjerkandera 
adusta 

0.048984 362 51 437 780 70 12 62 107 11.648 1.669 14.055 25.061 2.278 0.417 2.022 3.466 0.309 0.268 0.262 0.233 0.462 0.392 0.42 0.346 

Blastomyces 
dermatitidis 

0.01953 237 30 157 262 51 7 38 46 19.155 2.495 12.716 21.167 4.185 0.644 3.139 3.783 0.183 0.173 0.288 0.279 0.32 0.289 0.316 0.326 

Botryotinis 
cinerea 

0.063341 355 43 412 463 185 31 118 120 8.834 1.092 10.249 11.514 4.616 0.794 2.953 3.003 0.389 0.39 0.349 0.458 0.298 0.244 0.33 0.38 

Candida 
albicans 

0.080313 79 9 93 163 49 3 55 80 1.566 0.196 1.84 3.21 0.979 0.078 1.096 1.585 0.834 0.854 0.806 0.786 0.652 0.798 0.566 0.53 

Candida 
caseinolytica 

0.366372 133 17 172 194 71 6 61 82 0.575 0.077 0.742 0.837 0.309 0.03 0.266 0.356 0.946 0.96 0.927 0.945 0.843 0.931 0.831 0.814 

Candida 
glabrata 

0.097608 30 6 35 77 40 4 26 46 0.499 0.113 0.58 1.256 0.66 0.081 0.435 0.757 0.955 0.929 0.946 0.914 0.728 0.792 0.756 0.689 

Candida 
tenuis 

0.157671 97 5 112 192 74 11 56 63 0.977 0.06 1.126 1.924 0.748 0.12 0.568 0.638 0.899 0.974 0.882 0.867 0.705 0.709 0.707 0.721 

Ceriporiopsis 
subvermispora 

0.094478 264 25 333 479 149 19 137 220 4.409 0.433 5.557 7.986 2.496 0.333 2.296 3.677 0.596 0.672 0.532 0.566 0.44 0.45 0.389 0.333 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Chaetomium 
globosum 

0.076624 360 21 249 347 233 43 224 312 7.405 0.451 5.128 7.139 4.8 0.903 4.615 6.421 0.443 0.66 0.556 0.598 0.289 0.219 0.233 0.216 

Coccidioides 
immitis 

0.000517 136 13 100 132 45 3 31 48 416.441 42.556 307.012 404.283 139.827 12.159 97.271 148.946 5.7e-05 4.30e-04 2.23e-04 2.18e-04 0.001 0.008 0.001 0.001 

Coccidioides 
posadasii 

0.009125 102 18 161 143 172 23 95 117 17.743 3.273 27.906 24.805 29.801 4.134 16.537 20.326 0.2 0.122 0.113 0.236 0.036 0.04 0.054 0.058 

Cochliobolus 
heterostrophus 

0.024454 256 27 233 247 281 35 163 362 16.519 1.8 15.041 15.941 18.126 2.314 10.541 23.333 0.217 0.249 0.244 0.36 0.074 0.084 0.099 0.047 

Cochliobolus 
sativus 

0.003197 242 32 240 340 56 8 46 44 119.461 16.223 118.477 167.638 28.022 4.424 23.106 22.122 0.005 0.006 0.006 0.006 0.039 0.037 0.032 0.051 

Coniophora 
putinea 

0.104709 405 47 456 701 150 17 153 208 6.095 0.721 6.86 10.538 2.267 0.27 2.312 3.137 0.501 0.519 0.469 0.485 0.463 0.504 0.387 0.369 

Coprinopsis 
cinerea 

0.118645 374 47 336 631 186 25 139 188 4.968 0.636 4.465 8.373 2.477 0.344 1.855 2.504 0.562 0.558 0.596 0.552 0.442 0.441 0.441 0.422 

Cryphonectria 
parasitica 

0.109973 499 63 476 713 59 12 45 59 7.146 0.915 6.818 10.205 0.858 0.186 0.657 0.858 0.453 0.444 0.471 0.494 0.679 0.602 0.678 0.664 

Cryptococcus 
neoformans 

0.094612 227 31 189 337 18 1 17 17 3.788 0.532 3.157 5.615 0.316 0.033 0.299 0.299 0.638 0.612 0.688 0.662 0.84 0.921 0.815 0.837 

Dacryopinax sp. 0.18579 0 0 0 0 665 56 372 423 0.008 0.008 0.008 0.008 5.634 0.482 3.156 3.587 >0.999 >0.999 >0.999 >0.999 0.256 0.356 0.315 0.338 

Debaryomyces 
hansenii 

0.075474 120 18 158 281 24 3 35 39 2.52 0.396 3.311 5.873 0.521 0.083 0.75 0.833 0.74 0.697 0.676 0.65 0.769 0.786 0.651 0.67 

Dichomitus 
squalens 

0.036296 223 26 313 383 98 24 111 171 9.7 1.169 13.598 16.629 4.287 1.083 4.85 7.449 0.362 0.369 0.27 0.348 0.314 0.186 0.224 0.188 

Dothistroma 
septosporum 

0.045165 257 35 301 510 111 13 78 130 8.979 1.253 10.51 17.784 3.898 0.487 2.749 4.559 0.384 0.349 0.342 0.328 0.336 0.353 0.347 0.285 

Fomitiporia 
mediterranea 

0.104677 338 50 378 615 30 4 29 48 5.09 0.766 5.691 9.25 0.465 0.075 0.45 0.736 0.555 0.5 0.525 0.523 0.786 0.806 0.75 0.694 

Fomitopsis 
pinicola 

0.053252 433 52 568 775 96 7 97 123 12.81 1.564 16.795 22.905 2.863 0.236 2.893 3.66 0.283 0.286 0.217 0.257 0.407 0.539 0.335 0.334 

Fusarium 
graminearum 

0.021103 178 12 152 248 94 18 63 77 13.333 0.968 11.396 18.547 7.076 1.415 4.767 5.81 0.272 0.427 0.319 0.316 0.211 0.143 0.227 0.235 

Fusarium 
oxysporum 

0.010319 330 22 411 568 136 9 83 136 50.419 3.503 62.757 86.672 20.868 1.523 12.795 20.868 0.04 0.111 0.027 0.032 0.061 0.133 0.077 0.056 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Fusarium 
verticillioides 

0.00104 180 17 216 267 212 24 149 207 273.634 27.212 328.058 405.16 322.011 37.795 226.768 314.452 3.29e-04 2.00e-03 1.71e-04 2.15e-04 9.50e-05 8.94e-04 1.12e-04 8.44e-05 

Ganoderma sp. 0.021757 209 32 288 393 98 9 89 121 15.171 2.384 20.878 28.464 7.152 0.722 6.502 8.814 0.238 0.183 0.167 0.202 0.208 0.264 0.17 0.16 

Gloeophyllum 
trabeum 

0.082815 332 52 512 709 63 10 51 67 6.32 1.006 9.737 13.476 1.215 0.209 0.987 1.291 0.491 0.415 0.364 0.41 0.606 0.572 0.59 0.576 

Hansenula 
polymorpha 

0.121609 159 13 145 167 103 12 72 123 2.068 0.181 1.887 2.171 1.344 0.168 0.944 1.603 0.782 0.867 0.802 0.851 0.584 0.627 0.6 0.527 

Heterobasidion 
annosum 

0.087328 354 46 542 671 196 20 123 175 6.39 0.846 9.773 12.095 3.546 0.378 2.232 3.168 0.487 0.469 0.363 0.443 0.357 0.417 0.396 0.367 

Histoplasma 
capsulatum 

0.068685 188 22 206 237 294 39 184 226 4.325 0.526 4.737 5.446 6.751 0.915 4.234 5.195 0.602 0.615 0.579 0.669 0.219 0.216 0.251 0.258 

Hysterium 
pulicare 

0.035422 404 52 306 514 164 21 122 157 17.971 2.352 13.623 22.852 7.322 0.976 5.458 7.011 0.197 0.186 0.27 0.258 0.204 0.204 0.201 0.199 

Laccaria 
bicolor 

0.111506 434 60 708 969 169 13 104 141 6.132 0.86 9.994 13.673 2.396 0.197 1.48 2.002 0.5 0.464 0.357 0.406 0.45 0.586 0.495 0.475 

Leptosphaeria 
maculans 

0.053006 258 30 251 398 196 18 118 179 7.68 0.919 7.473 11.832 5.842 0.563 3.529 5.338 0.432 0.443 0.443 0.45 0.248 0.319 0.29 0.252 

Lipomyces 
starkeyi 

0.186085 368 58 388 472 45 5 29 31 3.117 0.498 3.286 3.995 0.389 0.051 0.253 0.27 0.689 0.631 0.678 0.742 0.813 0.87 0.837 0.849 

Magnaporthe 
grisea 

0.124413 335 39 345 485 308 29 192 225 4.245 0.505 4.371 6.14 3.904 0.379 2.438 2.855 0.607 0.627 0.602 0.638 0.335 0.416 0.375 0.391 

Melampsora 
laricis-populina 

0.092229 488 70 603 967 67 4 35 44 8.334 1.21 10.294 16.497 1.159 0.085 0.614 0.767 0.407 0.359 0.348 0.35 0.617 0.782 0.692 0.686 

Microsporum 
canis 

0.009418 147 16 114 180 52 5 36 49 24.701 2.837 19.193 30.209 8.846 1.001 6.175 8.345 0.131 0.148 0.186 0.188 0.171 0.2 0.179 0.169 

Microsporus 
gypseum 

0.012602 145 15 113 165 74 11 62 64 18.21 1.996 14.219 20.705 9.355 1.497 7.858 8.107 0.194 0.223 0.258 0.285 0.161 0.135 0.139 0.173 

Mucor 
circinelloides 

0.054553 160 27 190 287 40 4 17 37 4.639 0.807 5.503 8.298 1.181 0.144 0.519 1.095 0.582 0.484 0.535 0.555 0.612 0.665 0.724 0.613 

Mycosphaerella 
fijiensis 

0.060081 303 39 354 434 301 40 232 340 7.953 1.046 9.287 11.38 7.901 1.073 6.096 8.921 0.421 0.403 0.378 0.462 0.19 0.187 0.181 0.158 

Mycosphaerella 
graminicola 

0.04264 270 37 315 471 165 20 100 148 9.99 1.401 11.649 17.399 6.119 0.774 3.723 5.493 0.353 0.316 0.313 0.334 0.239 0.249 0.278 0.246 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Nectria 
haematococca 

0.03697 477 57 392 603 70 11 72 88 20.322 2.466 16.709 25.679 3.019 0.51 3.104 3.784 0.17 0.175 0.218 0.227 0.395 0.342 0.319 0.326 

Neosartorya 
fischeri 

0.008676 242 25 227 356 61 10 51 59 44.026 4.711 41.308 64.68 11.233 1.993 9.421 10.871 0.052 0.072 0.06 0.058 0.133 0.099 0.114 0.128 

Neurospora 
crassa 

0.00101 107 21 110 148 41 6 24 30 168.109 34.245 172.779 231.929 65.376 10.896 38.914 48.254 0.002 0.001 0.002 0.002 0.008 0.009 0.012 0.013 

Neurospora 
tetrasperma 

0.019285 90 11 93 118 108 23 84 106 7.417 0.978 7.662 9.699 8.884 1.956 6.928 8.721 0.442 0.424 0.436 0.509 0.17 0.101 0.159 0.161 

Node112 0.045345 82 10 51 74 14 1 6 13 2.877 0.381 1.802 2.6 0.52 0.069 0.243 0.485 0.709 0.706 0.81 0.823 0.769 0.82 0.843 0.768 

Node113 0.020864 173 31 124 167 10 1 6 6 13.108 2.411 9.417 12.656 0.829 0.151 0.527 0.527 0.276 0.18 0.374 0.429 0.685 0.654 0.721 0.754 

Node114 0.011563 150 23 101 181 3 0 6 6 20.525 3.262 13.865 24.739 0.544 0.136 0.952 0.952 0.168 0.123 0.265 0.237 0.762 0.679 0.598 0.643 

Node115 0.044031 417 51 250 273 48 9 41 79 14.922 1.856 8.96 9.781 1.749 0.357 1.499 2.856 0.242 0.241 0.389 0.507 0.524 0.431 0.492 0.391 

Node116 0.033931 74 7 52 56 30 2 24 40 3.474 0.371 2.455 2.64 1.436 0.139 1.158 1.899 0.661 0.714 0.748 0.821 0.569 0.674 0.553 0.487 

Node117 0.12487 64 7 44 58 40 2 29 39 0.818 0.101 0.566 0.743 0.516 0.038 0.378 0.504 0.918 0.94 0.947 0.952 0.77 0.908 0.779 0.762 

Node118 0.04653 21 0 9 9 29 8 24 43 0.743 0.034 0.338 0.338 1.013 0.304 0.845 1.486 0.926 0.991 0.973 0.981 0.645 0.473 0.625 0.544 

Node119 0.078317 66 2 45 31 0 0 0 0 1.345 0.06 0.923 0.642 0.02 0.02 0.02 0.02 0.857 0.973 0.906 0.959 0.988 0.961 0.986 0.987 

Node120 0.057596 35 2 23 23 0 0 0 0 0.982 0.082 0.655 0.655 0.027 0.027 0.027 0.027 0.898 0.956 0.937 0.958 0.983 0.939 0.981 0.982 

Node121 0.048674 400 43 246 321 0 0 0 0 12.949 1.421 7.976 10.398 0.032 0.032 0.032 0.032 0.28 0.312 0.424 0.489 0.98 0.924 0.977 0.978 

Node122 0.042568 0 0 0 0 0 0 0 0 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.999 0.989 0.999 0.999 0.977 0.91 0.973 0.975 

Node123 0.011903 92 18 70 117 61 12 52 46 12.281 2.509 9.376 15.582 8.187 1.717 6.999 6.206 0.294 0.172 0.376 0.367 0.184 0.117 0.157 0.222 

Node124 0.014721 19 5 29 45 16 1 10 13 2.135 0.641 3.203 4.912 1.815 0.214 1.174 1.495 0.776 0.556 0.685 0.695 0.515 0.566 0.55 0.543 
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Node125 0.014804 30 2 28 40 22 2 14 24 3.291 0.319 3.079 4.353 2.442 0.319 1.593 2.654 0.675 0.752 0.695 0.723 0.445 0.461 0.477 0.408 

Node126 0.0128 35 3 38 54 21 4 21 27 4.421 0.491 4.789 6.754 2.701 0.614 2.701 3.438 0.596 0.636 0.576 0.613 0.421 0.299 0.351 0.348 

Node127 0.006965 29 1 22 34 9 0 5 8 6.77 0.451 5.19 7.898 2.257 0.226 1.354 2.031 0.47 0.66 0.552 0.569 0.464 0.551 0.516 0.472 

Node128 0.026124 42 4 41 58 5 0 2 1 2.587 0.301 2.527 3.55 0.361 0.06 0.181 0.12 0.734 0.766 0.741 0.766 0.823 0.844 0.877 0.924 

Node129 0.030842 149 27 117 177 0 0 0 0 7.644 1.427 6.014 9.071 0.051 0.051 0.051 0.051 0.433 0.311 0.509 0.529 0.968 0.869 0.963 0.966 

Node130 0.034674 406 46 258 340 0 0 0 0 18.449 2.131 11.741 15.458 0.045 0.045 0.045 0.045 0.191 0.208 0.311 0.369 0.972 0.885 0.967 0.97 

Node131 0.058997 0 0 0 0 20 1 14 18 0.027 0.027 0.027 0.027 0.559 0.053 0.4 0.506 0.999 0.994 0.999 0.999 0.757 0.863 0.77 0.761 

Node132 0.037652 0 0 0 0 4 0 4 6 0.042 0.042 0.042 0.042 0.209 0.042 0.209 0.292 0.999 0.986 0.999 0.998 0.885 0.896 0.861 0.84 

Node133 0.098772 79 8 44 55 29 4 20 30 1.273 0.143 0.716 0.891 0.477 0.08 0.334 0.493 0.865 0.901 0.93 0.941 0.782 0.795 0.798 0.765 

Node134 0.003028 20 3 25 81 9 2 11 18 10.902 2.077 13.497 42.569 5.191 1.557 6.23 9.864 0.328 0.214 0.272 0.118 0.273 0.13 0.177 0.142 

Node135 0.011734 74 7 78 200 22 1 14 10 10.047 1.072 10.582 26.925 3.081 0.268 2.009 1.474 0.351 0.396 0.34 0.215 0.39 0.506 0.421 0.546 

Node136 0.054824 110 14 127 283 29 0 14 17 3.182 0.43 3.67 8.142 0.86 0.029 0.43 0.516 0.684 0.673 0.65 0.561 0.678 0.935 0.758 0.758 

Node137 0.045604 172 19 111 175 15 2 17 15 5.963 0.689 3.86 6.066 0.551 0.103 0.62 0.551 0.508 0.533 0.636 0.642 0.759 0.741 0.69 0.746 

Node138 0.028646 133 23 96 144 2 0 6 2 7.353 1.317 5.322 7.956 0.165 0.055 0.384 0.165 0.445 0.334 0.545 0.567 0.906 0.858 0.777 0.9 

Node139 0.016957 102 15 64 74 5 0 5 5 9.547 1.483 6.025 6.952 0.556 0.093 0.556 0.556 0.366 0.3 0.508 0.605 0.758 0.764 0.711 0.745 

Node140 0.149864 97 7 149 279 66 8 49 54 1.028 0.084 1.573 2.937 0.703 0.094 0.524 0.577 0.893 0.954 0.834 0.802 0.717 0.761 0.722 0.739 

Node141 0.031404 28 5 52 59 14 0 7 14 1.452 0.3 2.653 3.003 0.751 0.05 0.4 0.751 0.846 0.766 0.73 0.798 0.704 0.872 0.77 0.69 
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Node142 0.128676 75 1 42 90 57 5 29 41 0.928 0.024 0.525 1.112 0.708 0.073 0.366 0.513 0.905 0.995 0.952 0.925 0.715 0.81 0.784 0.759 

Node143 0.050053 77 15 45 96 34 9 22 17 2.449 0.502 1.445 3.046 1.099 0.314 0.722 0.565 0.746 0.629 0.847 0.796 0.628 0.465 0.658 0.742 

Node144 0.037245 47 6 46 50 26 4 16 16 2.026 0.295 1.983 2.152 1.139 0.211 0.717 0.717 0.786 0.77 0.792 0.852 0.62 0.569 0.66 0.699 

Node145 0.058749 59 14 56 73 7 1 3 9 1.605 0.401 1.525 1.98 0.214 0.054 0.107 0.268 0.829 0.693 0.839 0.864 0.883 0.862 0.923 0.851 

Node146 0.024533 190 25 121 261 94 3 60 45 12.237 1.666 7.816 16.786 6.087 0.256 3.908 2.947 0.295 0.269 0.43 0.345 0.24 0.518 0.268 0.384 

Node147 0.018571 39 5 27 43 8 0 5 2 3.385 0.508 2.37 3.724 0.762 0.085 0.508 0.254 0.668 0.626 0.755 0.757 0.702 0.783 0.728 0.857 

Node148 0.00879 62 6 33 46 6 0 5 4 11.265 1.252 6.08 8.404 1.252 0.179 1.073 0.894 0.318 0.349 0.506 0.551 0.6 0.611 0.571 0.655 

Node149 0.047793 223 19 160 266 10 1 11 11 7.367 0.658 5.295 8.781 0.362 0.066 0.395 0.395 0.444 0.548 0.546 0.539 0.822 0.829 0.772 0.8 

Node150 0.067278 247 35 193 255 7 2 5 10 5.794 0.841 4.532 5.981 0.187 0.07 0.14 0.257 0.517 0.471 0.592 0.645 0.895 0.818 0.901 0.855 

Node151 0.013209 98 10 91 213 11 2 11 11 11.78 1.309 10.947 25.464 1.428 0.357 1.428 1.428 0.306 0.336 0.33 0.229 0.57 0.431 0.504 0.554 

Node152 0.032306 234 26 294 604 109 18 63 95 11.434 1.314 14.353 29.436 5.352 0.924 3.114 4.671 0.314 0.335 0.256 0.194 0.266 0.214 0.318 0.28 

Node153 0.008481 61 4 45 75 27 4 29 34 11.491 0.927 8.525 14.085 5.189 0.927 5.56 6.487 0.313 0.44 0.404 0.397 0.273 0.214 0.198 0.214 

Node154 0.030228 150 22 151 296 31 5 16 34 7.852 1.196 7.904 15.443 1.664 0.312 0.884 1.82 0.425 0.363 0.427 0.37 0.535 0.466 0.615 0.498 

Node155 0.042568 174 24 148 314 0 0 0 0 6.462 0.923 5.502 11.631 0.037 0.037 0.037 0.037 0.484 0.442 0.535 0.455 0.977 0.91 0.973 0.975 

Node156 0.099798 149 29 136 193 38 4 21 21 2.362 0.472 2.158 3.055 0.614 0.079 0.346 0.346 0.754 0.647 0.775 0.795 0.741 0.797 0.793 0.818 

Node157 0.009157 109 13 113 196 23 5 19 31 18.882 2.403 19.568 33.815 4.12 1.03 3.433 5.493 0.186 0.181 0.181 0.163 0.323 0.195 0.296 0.246 

Node158 0.029582 39 11 48 74 25 2 18 23 2.125 0.638 2.604 3.985 1.381 0.159 1.01 1.275 0.777 0.557 0.735 0.742 0.578 0.64 0.585 0.579 
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Node159 0.021386 64 11 60 137 17 3 15 26 4.777 0.882 4.483 10.142 1.323 0.294 1.176 1.984 0.573 0.456 0.595 0.496 0.587 0.482 0.55 0.477 

Node160 0.017813 72 9 69 115 21 1 23 25 6.442 0.882 6.177 10.236 1.941 0.176 2.118 2.294 0.485 0.456 0.501 0.493 0.499 0.615 0.408 0.443 

Node161 0.008789 34 6 27 56 13 1 9 17 6.26 1.252 5.008 10.194 2.504 0.358 1.788 3.219 0.493 0.349 0.563 0.495 0.439 0.431 0.449 0.363 

Node162 0.013638 94 12 100 217 30 4 28 24 10.949 1.498 11.64 25.124 3.573 0.576 3.342 2.881 0.326 0.297 0.313 0.233 0.356 0.314 0.302 0.389 

Node163 0.031702 73 16 80 160 32 3 19 12 3.669 0.843 4.016 7.982 1.636 0.198 0.992 0.645 0.647 0.47 0.625 0.566 0.539 0.585 0.589 0.719 

Node164 0.023896 70 7 45 86 69 5 20 21 4.67 0.526 3.026 5.723 4.604 0.395 1.381 1.447 0.58 0.616 0.699 0.657 0.298 0.406 0.512 0.551 

Node165 0.064938 307 27 335 904 23 2 24 26 7.455 0.678 8.133 21.905 0.581 0.073 0.605 0.654 0.441 0.538 0.418 0.269 0.75 0.812 0.694 0.716 

Node166 0.036247 46 5 68 158 18 0 9 16 2.038 0.26 2.992 6.895 0.824 0.043 0.434 0.737 0.785 0.798 0.702 0.607 0.687 0.891 0.756 0.694 

Node167 0.025037 14 5 22 50 1 0 5 2 0.942 0.377 1.444 3.202 0.126 0.063 0.377 0.188 0.903 0.71 0.848 0.786 0.926 0.837 0.78 0.888 

Node168 0.113266 105 3 140 324 16 3 4 17 1.471 0.056 1.957 4.51 0.236 0.056 0.069 0.25 0.844 0.977 0.795 0.715 0.873 0.857 0.949 0.859 

Node169 0.026975 10 0 17 24 2 0 5 11 0.641 0.058 1.049 1.457 0.175 0.058 0.35 0.699 0.938 0.975 0.891 0.9 0.901 0.849 0.792 0.704 

Node170 0.059942 58 3 83 258 30 5 18 29 1.547 0.105 2.203 6.792 0.813 0.157 0.498 0.787 0.835 0.936 0.771 0.611 0.689 0.644 0.732 0.681 

Node171 0.015968 26 5 49 112 6 1 9 6 2.658 0.591 4.922 11.123 0.689 0.197 0.984 0.689 0.728 0.581 0.568 0.468 0.72 0.587 0.591 0.707 

Node172 0.008238 34 5 26 60 24 4 9 32 6.678 1.145 5.152 11.639 4.77 0.954 1.908 6.296 0.474 0.376 0.555 0.455 0.291 0.208 0.434 0.219 

Node173 0.012714 52 6 40 55 16 2 12 9 6.552 0.865 5.069 6.923 2.102 0.371 1.607 1.236 0.48 0.462 0.559 0.606 0.481 0.422 0.475 0.586 

Node174 0.00622 101 12 115 154 92 20 51 58 25.774 3.285 29.312 39.167 23.5 5.306 13.14 14.909 0.124 0.122 0.105 0.133 0.052 0.028 0.075 0.088 

Node175 0.016433 118 11 86 159 78 7 61 39 11.383 1.148 8.322 15.304 7.556 0.765 5.93 3.826 0.315 0.375 0.411 0.372 0.198 0.252 0.186 0.324 

123



 

  

 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Node176 0.010719 75 14 53 130 27 3 19 21 11.144 2.199 7.918 19.209 4.106 0.587 2.933 3.226 0.321 0.2 0.426 0.306 0.324 0.31 0.332 0.363 

Node177 0.036259 81 8 63 101 48 2 24 45 3.555 0.39 2.774 4.422 2.124 0.13 1.084 1.994 0.655 0.7 0.72 0.719 0.478 0.69 0.569 0.476 

Node178 0.016658 37 8 47 75 22 10 23 25 3.586 0.849 4.529 7.171 2.17 1.038 2.265 2.453 0.653 0.468 0.592 0.596 0.473 0.193 0.392 0.427 

Node179 0.022372 186 27 292 1023 55 10 42 44 13.138 1.967 20.586 71.944 3.934 0.773 3.021 3.162 0.276 0.226 0.17 0.047 0.334 0.249 0.325 0.367 

Node180 0.032349 77 8 107 221 38 7 20 33 3.79 0.437 5.248 10.787 1.895 0.389 1.02 1.652 0.638 0.669 0.549 0.478 0.505 0.41 0.583 0.52 

Node181 0.018174 44 6 23 57 28 1 17 12 3.892 0.605 2.076 5.016 2.508 0.173 1.557 1.124 0.631 0.573 0.783 0.69 0.439 0.62 0.483 0.607 

Node182 0.010843 135 18 114 305 41 5 29 43 19.714 2.754 16.67 44.357 6.088 0.87 4.349 6.378 0.176 0.153 0.218 0.111 0.24 0.226 0.246 0.217 

Node183 0.02146 71 11 47 107 23 3 11 10 5.274 0.879 3.516 7.91 1.758 0.293 0.879 0.806 0.544 0.457 0.661 0.569 0.523 0.483 0.616 0.676 

Node184 0.031942 77 7 83 103 29 7 37 44 3.838 0.394 4.134 5.118 1.476 0.394 1.87 2.214 0.635 0.698 0.617 0.685 0.563 0.406 0.438 0.451 

Node185 0.006311 26 9 22 28 8 1 6 11 6.725 2.491 5.729 7.223 2.242 0.498 1.744 2.989 0.472 0.173 0.523 0.594 0.465 0.348 0.455 0.381 

Node186 0.154817 249 26 278 490 0 0 0 0 2.538 0.274 2.833 4.985 0.01 0.01 0.01 0.01 0.738 0.787 0.715 0.691 0.994 0.987 0.994 0.994 

Node187 0.02055 132 21 167 362 41 6 28 38 10.173 1.683 12.85 27.765 3.212 0.535 2.218 2.983 0.348 0.266 0.286 0.208 0.38 0.331 0.397 0.381 

Node188 0.035135 106 12 98 208 13 2 10 10 4.787 0.582 4.429 9.35 0.626 0.134 0.492 0.492 0.573 0.585 0.598 0.52 0.737 0.682 0.734 0.765 

Node189 0.007692 80 7 74 128 40 4 31 35 16.552 1.635 15.326 26.361 8.378 1.022 6.539 7.357 0.217 0.274 0.239 0.221 0.18 0.196 0.169 0.191 

Node190 0.016766 46 8 47 75 9 1 16 12 4.406 0.844 4.5 7.125 0.937 0.187 1.594 1.219 0.597 0.47 0.594 0.598 0.661 0.6 0.477 0.589 

Node191 0.025855 108 5 97 158 22 1 22 15 6.626 0.365 5.958 9.666 1.398 0.122 1.398 0.973 0.476 0.718 0.512 0.51 0.575 0.705 0.509 0.638 

Node192 0.0272 118 20 117 210 67 5 42 54 6.877 1.214 6.819 12.193 3.93 0.347 2.485 3.178 0.465 0.358 0.471 0.441 0.334 0.439 0.37 0.366 
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Node193 0.017997 126 11 161 307 40 13 29 30 11.092 1.048 14.149 26.9 3.581 1.223 2.62 2.707 0.323 0.402 0.26 0.216 0.355 0.165 0.358 0.404 

Node194 0.026958 262 30 199 432 32 1 22 24 15.335 1.808 11.661 25.247 1.924 0.117 1.341 1.458 0.235 0.247 0.312 0.232 0.502 0.715 0.519 0.549 

Node195 0.037903 110 15 107 156 23 4 12 13 4.603 0.664 4.479 6.511 0.995 0.207 0.539 0.581 0.584 0.545 0.595 0.623 0.649 0.573 0.717 0.738 

Node196 0.011693 223 17 450 710 130 27 68 82 30.11 2.42 60.623 95.573 17.609 3.764 9.275 11.157 0.099 0.179 0.029 0.026 0.077 0.046 0.116 0.124 

Node197 0.113963 60 6 93 162 47 4 35 55 0.841 0.097 1.296 2.248 0.662 0.069 0.497 0.772 0.915 0.943 0.863 0.846 0.728 0.821 0.732 0.685 

Node198 0.019885 210 34 200 381 39 7 36 33 16.678 2.767 15.888 30.195 3.162 0.632 2.925 2.688 0.215 0.152 0.23 0.188 0.384 0.293 0.332 0.405 

Node199 0.131449 165 12 197 342 44 0 17 25 1.985 0.155 2.368 4.101 0.538 0.012 0.215 0.311 0.79 0.89 0.756 0.736 0.763 0.983 0.857 0.832 

Node200 0.050559 27 7 15 20 5 0 7 5 0.87 0.249 0.497 0.653 0.187 0.031 0.249 0.187 0.911 0.808 0.955 0.958 0.895 0.928 0.84 0.889 

Node201 0.02886 44 4 16 26 9 1 4 9 2.451 0.272 0.926 1.471 0.545 0.109 0.272 0.545 0.746 0.788 0.905 0.899 0.761 0.73 0.828 0.749 

Node202 0.065903 151 24 167 371 39 6 23 29 3.625 0.596 4.007 8.872 0.954 0.167 0.572 0.716 0.65 0.578 0.626 0.536 0.657 0.629 0.705 0.699 

Node203 0.00915 73 13 83 182 42 9 38 24 12.712 2.405 14.43 31.436 7.387 1.718 6.7 4.295 0.285 0.181 0.255 0.179 0.202 0.117 0.165 0.298 

Node204 0.049373 159 18 207 360 7 1 10 6 5.094 0.605 6.622 11.493 0.255 0.064 0.35 0.223 0.555 0.573 0.48 0.458 0.865 0.835 0.791 0.871 

Node205 0.128902 225 21 215 467 7 2 1 3 2.756 0.268 2.634 5.707 0.098 0.037 0.024 0.049 0.719 0.792 0.732 0.658 0.941 0.911 0.983 0.967 

Node206 0.051792 277 32 339 1398 79 10 46 81 8.437 1.002 10.319 42.458 2.428 0.334 1.426 2.489 0.403 0.416 0.347 0.118 0.446 0.449 0.504 0.424 

Node207 0.015061 63 9 77 97 34 4 32 41 6.679 1.044 8.14 10.227 3.653 0.522 3.444 4.383 0.474 0.404 0.418 0.494 0.351 0.337 0.295 0.294 

Node208 0.013527 142 24 192 656 34 3 30 57 16.617 2.905 22.427 76.344 4.067 0.465 3.602 6.74 0.216 0.143 0.153 0.042 0.326 0.365 0.285 0.206 

Node209 0.134154 107 22 161 205 21 1 14 21 1.265 0.269 1.898 2.414 0.258 0.023 0.176 0.258 0.866 0.791 0.8 0.835 0.863 0.951 0.88 0.855 
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Node210 0.063819 47 9 77 196 10 2 8 8 1.182 0.246 1.921 4.852 0.271 0.074 0.222 0.222 0.876 0.81 0.798 0.698 0.858 0.809 0.854 0.871 

Node211 0.066565 114 4 169 356 12 0 6 5 2.716 0.118 4.014 8.43 0.307 0.024 0.165 0.142 0.723 0.924 0.625 0.55 0.843 0.95 0.886 0.912 

Node212 0.218688 307 31 342 509 67 4 27 20 2.214 0.23 2.465 3.666 0.489 0.036 0.201 0.151 0.768 0.824 0.747 0.76 0.779 0.913 0.865 0.907 

Node213 0.056002 148 18 221 873 75 11 45 44 4.182 0.533 6.231 24.531 2.133 0.337 1.291 1.263 0.611 0.611 0.498 0.239 0.477 0.446 0.528 0.581 

Node214 0.011153 168 17 183 278 33 5 19 27 23.817 2.537 25.931 39.319 4.792 0.846 2.819 3.946 0.138 0.17 0.126 0.132 0.29 0.231 0.341 0.317 

Node215 0.051531 160 18 179 370 55 12 36 55 4.911 0.58 5.49 11.316 1.708 0.397 1.129 1.708 0.565 0.587 0.536 0.463 0.529 0.405 0.559 0.512 

Node216 0.052398 305 29 303 750 144 16 75 85 9.179 0.9 9.119 22.528 4.35 0.51 2.28 2.58 0.378 0.449 0.384 0.262 0.311 0.342 0.391 0.415 

Paracoccidioides 
brasiliensis 

0.048447 161 21 140 189 158 28 105 120 5.256 0.714 4.575 6.164 5.159 0.941 3.439 3.926 0.545 0.522 0.589 0.637 0.274 0.211 0.296 0.318 

Phanerochaete 
chrysosporium 

0.031977 259 29 307 374 347 38 243 355 12.78 1.475 15.14 18.433 17.106 1.917 11.994 17.499 0.283 0.302 0.242 0.318 0.08 0.104 0.084 0.071 

Phlebia 
brevispora 

0.051163 481 55 694 851 108 13 55 75 14.808 1.72 21.351 26.175 3.349 0.43 1.72 2.335 0.244 0.26 0.163 0.222 0.371 0.384 0.459 0.439 

Phlebiopsis 
gigantea 

0.047068 229 24 352 471 111 16 99 148 7.681 0.835 11.788 15.762 3.74 0.568 3.339 4.976 0.432 0.473 0.309 0.363 0.345 0.317 0.302 0.267 

Phycomyces 
blakesleeanus 

0.088207 378 34 399 422 28 0 13 12 6.754 0.624 7.128 7.538 0.517 0.018 0.249 0.232 0.47 0.564 0.458 0.582 0.77 0.967 0.839 0.867 

Pichia 
membranifaciens 

0.200642 86 16 105 170 101 11 65 105 0.682 0.133 0.83 1.34 0.799 0.094 0.517 0.83 0.934 0.91 0.916 0.908 0.693 0.762 0.725 0.67 

Pichia 
stipitis 

0.073887 79 10 113 198 19 4 28 49 1.702 0.234 2.425 4.233 0.425 0.106 0.617 1.064 0.819 0.82 0.75 0.729 0.8 0.735 0.691 0.619 

Pleurotus 
ostreatus 

0.064965 396 47 412 714 136 14 95 150 9.605 1.161 9.992 17.299 3.315 0.363 2.323 3.653 0.365 0.371 0.357 0.336 0.373 0.427 0.386 0.334 

Podospora 
anserina 

0.052217 339 29 260 466 78 15 64 135 10.235 0.903 7.857 14.057 2.378 0.482 1.957 4.094 0.346 0.448 0.428 0.398 0.452 0.356 0.428 0.309 

Puccinia 
graminis 

0.130292 443 55 465 819 95 15 77 94 5.356 0.676 5.622 9.892 1.158 0.193 0.941 1.146 0.54 0.539 0.529 0.503 0.617 0.592 0.601 0.603 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Punctularia 
strigosozonata 

0.098351 376 39 430 681 171 20 128 169 6.025 0.639 6.888 10.899 2.749 0.336 2.062 2.717 0.505 0.556 0.468 0.474 0.417 0.447 0.415 0.403 

Pyrenophora 
teres 

0.002117 294 37 283 322 82 10 95 96 218.992 28.209 210.826 239.778 61.615 8.166 71.265 72.008 0.001 0.001 0.001 0.002 0.009 0.015 0.003 0.006 

Pyrenophora 
triticirepentis 

0.022557 265 33 265 347 150 16 102 135 18.535 2.369 18.535 24.249 10.522 1.185 7.177 9.477 0.19 0.184 0.194 0.242 0.143 0.171 0.153 0.148 

Rhizopus 
oryzae 

0.094333 357 34 504 412 92 16 83 92 5.965 0.583 8.415 6.882 1.55 0.283 1.4 1.55 0.508 0.584 0.408 0.608 0.552 0.492 0.508 0.535 

Rhodotorula 
graminis 

0.074386 271 35 304 472 33 4 36 33 5.747 0.761 6.445 9.995 0.718 0.106 0.782 0.718 0.519 0.502 0.488 0.5 0.713 0.737 0.642 0.699 

Rhytidhysteron 
rufulum 

0.05024 409 40 345 492 166 28 125 144 12.827 1.283 10.825 15.424 5.225 0.907 3.942 4.537 0.282 0.342 0.334 0.37 0.271 0.218 0.266 0.286 

Saccharomyces 
cerevisiae 

0.084726 68 8 74 107 28 3 24 37 1.28 0.167 1.391 2.004 0.538 0.074 0.464 0.705 0.865 0.879 0.853 0.862 0.763 0.808 0.744 0.702 

Schizophyllum 
commune 

0.11636 399 54 497 752 189 19 148 198 5.403 0.743 6.727 10.172 2.567 0.27 2.013 2.688 0.537 0.51 0.475 0.495 0.433 0.504 0.421 0.405 

Schizosaccharomyces 
cryophilus 

0.021077 29 4 46 61 17 4 24 33 2.237 0.373 3.505 4.624 1.342 0.373 1.864 2.536 0.766 0.712 0.662 0.709 0.584 0.42 0.439 0.419 

Schizosaccharomyces 
japonicus 

0.106829 69 12 74 111 28 3 16 20 1.03 0.191 1.103 1.648 0.427 0.059 0.25 0.309 0.893 0.858 0.885 0.886 0.799 0.848 0.839 0.833 

Schizosaccharomyces 
octosporus 

0.024974 31 9 25 51 18 4 17 14 2.014 0.629 1.636 3.273 1.196 0.315 1.133 0.944 0.788 0.561 0.827 0.782 0.61 0.464 0.558 0.644 

Schizosaccharomyces 
pombe 

0.053416 43 6 38 69 14 0 10 16 1.295 0.206 1.148 2.06 0.441 0.029 0.324 0.5 0.863 0.845 0.88 0.858 0.794 0.933 0.803 0.763 

Sclerotinia 
sclerotiorum 

0.020058 384 40 336 395 117 9 66 48 30.169 3.213 26.408 31.031 9.247 0.784 5.25 3.84 0.098 0.125 0.122 0.182 0.163 0.247 0.208 0.323 

Septoria 
musiva 

0.001576 133 19 171 194 72 6 47 53 133.606 19.941 171.495 194.427 72.786 6.979 47.859 53.841 0.004 0.004 0.002 0.004 0.007 0.019 0.008 0.011 

Septoria 
populicola 

0.002978 123 15 138 185 96 19 78 110 65.45 8.445 73.367 98.175 51.199 10.556 41.698 58.588 0.023 0.026 0.019 0.024 0.014 0.01 0.011 0.009 

Serpula 
lacrymans 

0.089065 493 38 626 655 127 25 121 164 8.718 0.688 11.065 11.577 2.259 0.459 2.153 2.912 0.393 0.534 0.327 0.456 0.464 0.368 0.405 0.387 

Setosphaeria 
turcica 

0.011641 251 30 239 410 96 16 72 82 34.027 4.186 32.406 55.496 13.098 2.295 9.857 11.207 0.081 0.086 0.09 0.077 0.112 0.084 0.108 0.123 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Spathaspora 
passalidarum 

0.067977 73 8 124 158 88 13 99 117 1.711 0.208 2.89 3.677 2.058 0.324 2.312 2.728 0.818 0.843 0.71 0.759 0.486 0.457 0.387 0.402 

Spizellomyces 
punctatus 

0.138351 444 43 353 515 0 0 0 0 5.056 0.5 4.022 5.862 0.011 0.011 0.011 0.011 0.557 0.631 0.625 0.651 0.993 0.984 0.993 0.993 

Sporobolomyces 
roseus 

0.076031 152 17 205 245 123 14 84 109 3.163 0.372 4.259 5.086 2.563 0.31 1.757 2.274 0.686 0.713 0.609 0.686 0.434 0.468 0.453 0.445 

Sporotrichum 
thermophile 

0.033132 188 26 187 293 148 14 95 157 8.966 1.281 8.919 13.948 7.069 0.712 4.554 7.496 0.385 0.342 0.39 0.4 0.211 0.267 0.236 0.187 

Thielavia 
terrestris 

0.044292 201 33 218 293 101 16 64 77 7.168 1.207 7.772 10.433 3.62 0.603 2.307 2.768 0.452 0.36 0.432 0.488 0.353 0.303 0.388 0.398 

Trametes 
versicolor 

0.037437 280 34 408 559 70 12 51 77 11.798 1.47 17.172 23.512 2.981 0.546 2.183 3.275 0.305 0.303 0.211 0.25 0.398 0.326 0.401 0.359 

Tremella 
mesenterica 

0.090196 220 31 234 331 37 6 17 25 3.851 0.558 4.095 5.786 0.662 0.122 0.314 0.453 0.634 0.598 0.62 0.654 0.727 0.704 0.808 0.779 

Trichoderma 
atroviride 

0.029649 249 19 187 285 103 14 88 130 13.254 1.06 9.967 15.162 5.514 0.795 4.718 6.945 0.273 0.399 0.358 0.375 0.26 0.244 0.229 0.201 

Trichoderma 
reesei 

0.019329 109 10 105 168 68 11 53 57 8.945 0.895 8.62 13.743 5.611 0.976 4.391 4.716 0.386 0.451 0.401 0.405 0.256 0.204 0.244 0.278 

Trichoderma 
virens 

0.014963 228 27 224 314 62 11 67 78 24.055 2.941 23.635 33.089 6.618 1.261 7.143 8.298 0.136 0.141 0.143 0.167 0.223 0.161 0.154 0.17 

Trichophyton 
equinum 

0.01433 153 22 144 149 211 15 121 140 16.892 2.523 15.905 16.453 23.254 1.755 13.382 15.466 0.212 0.171 0.23 0.351 0.052 0.114 0.073 0.084 

Uncinocarpus 
reesii 

0.043036 203 31 214 282 247 42 199 263 7.451 1.169 7.852 10.336 9.058 1.57 7.305 9.642 0.441 0.369 0.428 0.491 0.166 0.129 0.151 0.145 

Ustilago 
maydis 

0.251644 244 41 234 301 84 15 91 89 1.53 0.262 1.468 1.886 0.531 0.1 0.575 0.562 0.837 0.797 0.845 0.87 0.765 0.749 0.705 0.743 

Verticillium 
alboatrum 

0.065004 250 25 259 225 360 51 220 282 6.069 0.629 6.287 5.465 8.729 1.257 5.344 6.843 0.503 0.561 0.495 0.668 0.173 0.161 0.205 0.204 

Verticillium 
dahliae 

0.021303 251 24 214 286 82 14 49 59 18.593 1.845 15.863 21.175 6.124 1.107 3.689 4.427 0.189 0.243 0.23 0.278 0.239 0.182 0.28 0.292 

Wickerhamomyces 
anomalus 

0.13074 227 21 267 358 44 8 44 43 2.741 0.264 3.222 4.316 0.541 0.108 0.541 0.529 0.721 0.795 0.683 0.725 0.762 0.732 0.716 0.754 

Wolfiporia 
cocos 

0.044784 314 38 389 527 114 19 85 113 11.056 1.369 13.688 18.531 4.036 0.702 3.018 4.001 0.324 0.323 0.268 0.316 0.328 0.27 0.325 0.314 
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 Tb  Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.09 

SC 
l = 0.03 

SN 
l = 0.09 

NR 
l = 0.13 

NC 
l = 0.08 

SC 
l = -0.02 

SN 
l = 0.07  

NR 
l = 0.07 

Yarrowia 
lipolytica 

0.277999 187 27 172 269 58 8 42 37 1.063 0.158 0.978 1.527 0.334 0.051 0.243 0.215 0.889 0.887 0.899 0.895 0.833 0.87 0.843 0.875 
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Table 2.3.13. Investigation for evolutionary bursts across internal nodes of the fungal phylogeny 

 

Each site (branch or leaf node) is annotated with its associated branch length (k), character state changes (Tb and Td), birth and decay rates (fb and 

fd) and their associated P-values derived from a Q-function (P(fb) and P(fd)). l values used for Box-Cox transformations are given beneath the RC 

identifiers in the Q-function columns. Significant evolutionary bursts (P ≤ aB ≤ 2.36e-04) are emboldened and underlined in the P(fb) and P(fd) 

columns. A significant burst was observed at one site, “Node 196”, which represents the divergence of Fusarium verticillioides and F. oxysorum 

from F. graminearum.  

 

 Tb Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.33 

SC 
l = 0.30 

SN 
l = 0.26 

NR 
l = 0.24 

NC 
l = 0.17  

SC 
l = -0.05 

SN 
l = 0.17 

NR 
l = 0.18 

Node112 0.045345 82 10 51 74 14 1 6 13 2.877 0.381 1.802 2.6 0.52 0.069 0.243 0.485 0.7 0.7 0.787 0.802 0.709 0.763 0.803 0.696 

Node113 0.020864 173 31 124 167 10 1 6 6 13.108 2.411 9.417 12.656 0.829 0.151 0.527 0.527 0.137 0.071 0.239 0.363 0.597 0.534 0.642 0.677 

Node114 0.011563 150 23 101 181 3 0 6 6 20.525 3.262 13.865 24.739 0.544 0.136 0.952 0.952 0.04 0.028 0.122 0.154 0.699 0.567 0.477 0.524 

Node115 0.044031 417 51 250 273 48 9 41 79 14.922 1.856 8.96 9.781 1.749 0.357 1.499 2.856 0.102 0.132 0.257 0.451 0.384 0.28 0.34 0.211 

Node116 0.033931 74 7 52 56 30 2 24 40 3.474 0.371 2.455 2.64 1.436 0.139 1.158 1.899 0.642 0.708 0.713 0.8 0.442 0.56 0.418 0.321 

Node117 0.12487 64 7 44 58 40 2 29 39 0.818 0.101 0.566 0.743 0.516 0.038 0.378 0.504 0.915 0.921 0.936 0.936 0.711 0.89 0.72 0.688 

Node118 0.04653 21 0 9 9 29 8 24 43 0.743 0.034 0.338 0.338 1.013 0.304 0.845 1.486 0.923 0.973 0.963 0.968 0.543 0.322 0.512 0.394 

Node119 0.078317 66 2 45 31 0 0 0 0 1.345 0.06 0.923 0.642 0.02 0.02 0.02 0.02 0.86 0.953 0.893 0.944 0.982 0.962 0.98 0.98 

Node120 0.057596 35 2 23 23 0 0 0 0 0.982 0.082 0.655 0.655 0.027 0.027 0.027 0.027 0.898 0.936 0.926 0.943 0.977 0.934 0.973 0.974 

Node121 0.048674 400 43 246 321 0 0 0 0 12.949 1.421 7.976 10.398 0.032 0.032 0.032 0.032 0.141 0.217 0.299 0.43 0.973 0.913 0.968 0.97 

Node122 0.042568 0 0 0 0 0 0 0 0 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.993 0.97 0.995 0.994 0.97 0.893 0.964 0.966 
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 Tb Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.33 

SC 
l = 0.30 

SN 
l = 0.26 

NR 
l = 0.24 

NC 
l = 0.17  

SC 
l = -0.05 

SN 
l = 0.17 

NR 
l = 0.18 

Node123 0.011903 92 18 70 117 61 12 52 46 12.281 2.509 9.376 15.582 8.187 1.717 6.999 6.206 0.157 0.063 0.241 0.292 0.048 0.042 0.032 0.064 

Node124 0.014721 19 5 29 45 16 1 10 13 2.135 0.641 3.203 4.912 1.815 0.214 1.174 1.495 0.776 0.527 0.635 0.663 0.373 0.425 0.414 0.392 

Node125 0.014804 30 2 28 40 22 2 14 24 3.291 0.319 3.079 4.353 2.442 0.319 1.593 2.654 0.659 0.747 0.648 0.694 0.287 0.31 0.322 0.229 

Node126 0.0128 35 3 38 54 21 4 21 27 4.421 0.491 4.789 6.754 2.701 0.614 2.701 3.438 0.557 0.622 0.495 0.572 0.26 0.161 0.18 0.167 

Node127 0.006965 29 1 22 34 9 0 5 8 6.77 0.451 5.19 7.898 2.257 0.226 1.354 2.031 0.386 0.649 0.464 0.522 0.31 0.408 0.371 0.302 

Node128 0.026124 42 4 41 58 5 0 2 1 2.587 0.301 2.527 3.55 0.361 0.06 0.181 0.12 0.729 0.761 0.705 0.742 0.78 0.797 0.847 0.903 

Node129 0.030842 149 27 117 177 0 0 0 0 7.644 1.427 6.014 9.071 0.051 0.051 0.051 0.051 0.336 0.215 0.407 0.477 0.96 0.834 0.952 0.955 

Node130 0.034674 406 46 258 340 0 0 0 0 18.449 2.131 11.741 15.458 0.045 0.045 0.045 0.045 0.057 0.097 0.167 0.295 0.964 0.858 0.957 0.959 

Node131 0.058997 0 0 0 0 20 1 14 18 0.027 0.027 0.027 0.027 0.559 0.053 0.4 0.506 0.994 0.978 0.996 0.995 0.693 0.825 0.707 0.687 

Node132 0.037652 0 0 0 0 4 0 4 6 0.042 0.042 0.042 0.042 0.209 0.042 0.209 0.292 0.992 0.967 0.994 0.993 0.86 0.873 0.827 0.794 

Node133 0.098772 79 8 44 55 29 4 20 30 1.273 0.143 0.716 0.891 0.477 0.08 0.334 0.493 0.867 0.887 0.918 0.925 0.727 0.726 0.745 0.693 

Node134 0.003028 20 3 25 81 9 2 11 18 10.902 2.077 13.497 42.569 5.191 1.557 6.23 9.864 0.197 0.103 0.128 0.05 0.111 0.048 0.042 0.023 

Node135 0.011734 74 7 78 200 22 1 14 10 10.047 1.072 10.582 26.925 3.081 0.268 2.009 1.474 0.227 0.323 0.2 0.134 0.225 0.358 0.256 0.396 

Node136 0.054824 110 14 127 283 29 0 14 17 3.182 0.43 3.67 8.142 0.86 0.029 0.43 0.516 0.67 0.664 0.59 0.512 0.588 0.928 0.691 0.683 

Node137 0.045604 172 19 111 175 15 2 17 15 5.963 0.689 3.86 6.066 0.551 0.103 0.62 0.551 0.439 0.499 0.573 0.604 0.696 0.651 0.599 0.667 

Node138 0.028646 133 23 96 144 2 0 6 2 7.353 1.317 5.322 7.956 0.165 0.055 0.384 0.165 0.352 0.244 0.455 0.52 0.886 0.818 0.716 0.872 

Node139 0.016957 102 15 64 74 5 0 5 5 9.547 1.483 6.025 6.952 0.556 0.093 0.556 0.556 0.246 0.202 0.407 0.563 0.694 0.683 0.628 0.665 

Node140 0.149864 97 7 149 279 66 8 49 54 1.028 0.084 1.573 2.937 0.703 0.094 0.524 0.577 0.893 0.935 0.814 0.78 0.639 0.678 0.643 0.656 

Node141 0.031404 28 5 52 59 14 0 7 14 1.452 0.3 2.653 3.003 0.751 0.05 0.4 0.751 0.848 0.761 0.692 0.776 0.623 0.838 0.707 0.59 

Node142 0.128676 75 1 42 90 57 5 29 41 0.928 0.024 0.525 1.112 0.708 0.073 0.366 0.513 0.904 0.98 0.941 0.908 0.637 0.748 0.726 0.684 

Node143 0.050053 77 15 45 96 34 9 22 17 2.449 0.502 1.445 3.046 1.099 0.314 0.722 0.565 0.743 0.614 0.83 0.773 0.52 0.313 0.557 0.661 

Node144 0.037245 47 6 46 50 26 4 16 16 2.026 0.295 1.983 2.152 1.139 0.211 0.717 0.717 0.787 0.765 0.766 0.833 0.51 0.429 0.559 0.602 

Node145 0.058749 59 14 56 73 7 1 3 9 1.605 0.401 1.525 1.98 0.214 0.054 0.107 0.268 0.832 0.685 0.82 0.845 0.857 0.824 0.904 0.809 

Node146 0.024533 190 25 121 261 94 3 60 45 12.237 1.666 7.816 16.786 6.087 0.256 3.908 2.947 0.159 0.164 0.307 0.268 0.085 0.371 0.104 0.203 

Node147 0.018571 39 5 27 43 8 0 5 2 3.385 0.508 2.37 3.724 0.762 0.085 0.508 0.254 0.65 0.611 0.723 0.731 0.619 0.709 0.651 0.817 
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 Tb Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.33 

SC 
l = 0.30 

SN 
l = 0.26 

NR 
l = 0.24 

NC 
l = 0.17  

SC 
l = -0.05 

SN 
l = 0.17 

NR 
l = 0.18 

Node148 0.00879 62 6 33 46 6 0 5 4 11.265 1.252 6.08 8.404 1.252 0.179 1.073 0.894 0.186 0.263 0.403 0.502 0.483 0.48 0.441 0.542 

Node149 0.047793 223 19 160 266 10 1 11 11 7.367 0.658 5.295 8.781 0.362 0.066 0.395 0.395 0.351 0.517 0.457 0.487 0.779 0.776 0.71 0.74 

Node150 0.067278 247 35 193 255 7 2 5 10 5.794 0.841 4.532 5.981 0.187 0.07 0.14 0.257 0.451 0.421 0.515 0.609 0.872 0.76 0.878 0.815 

Node151 0.013209 98 10 91 213 11 2 11 11 11.78 1.309 10.947 25.464 1.428 0.357 1.428 1.428 0.171 0.247 0.189 0.147 0.444 0.28 0.355 0.405 

Node152 0.032306 234 26 294 604 109 18 63 95 11.434 1.314 14.353 29.436 5.352 0.924 3.114 4.671 0.181 0.245 0.113 0.113 0.106 0.099 0.148 0.106 

Node153 0.008481 61 4 45 75 27 4 29 34 11.491 0.927 8.525 14.085 5.189 0.927 5.56 6.487 0.179 0.382 0.275 0.326 0.111 0.099 0.054 0.059 

Node154 0.030228 150 22 151 296 31 5 16 34 7.852 1.196 7.904 15.443 1.664 0.312 0.884 1.82 0.325 0.28 0.303 0.295 0.399 0.315 0.499 0.334 

Node155 0.042568 174 24 148 314 0 0 0 0 6.462 0.923 5.502 11.631 0.037 0.037 0.037 0.037 0.406 0.383 0.442 0.392 0.97 0.893 0.964 0.966 

Node156 0.099798 149 29 136 193 38 4 21 21 2.362 0.472 2.158 3.055 0.614 0.079 0.346 0.346 0.752 0.635 0.746 0.773 0.672 0.729 0.738 0.764 

Node157 0.009157 109 13 113 196 23 5 19 31 18.882 2.403 19.568 33.815 4.12 1.03 3.433 5.493 0.053 0.071 0.053 0.086 0.156 0.086 0.128 0.08 

Node158 0.029582 39 11 48 74 25 2 18 23 2.125 0.638 2.604 3.985 1.381 0.159 1.01 1.275 0.777 0.529 0.697 0.716 0.454 0.516 0.459 0.439 

Node159 0.021386 64 11 60 137 17 3 15 26 4.777 0.882 4.483 10.142 1.323 0.294 1.176 1.984 0.528 0.402 0.519 0.439 0.466 0.332 0.413 0.309 

Node160 0.017813 72 9 69 115 21 1 23 25 6.442 0.882 6.177 10.236 1.941 0.176 2.118 2.294 0.407 0.402 0.397 0.435 0.353 0.484 0.242 0.268 

Node161 0.008789 34 6 27 56 13 1 9 17 6.26 1.252 5.008 10.194 2.504 0.358 1.788 3.219 0.419 0.263 0.478 0.437 0.281 0.279 0.288 0.182 

Node162 0.013638 94 12 100 217 30 4 28 24 10.949 1.498 11.64 25.124 3.573 0.576 3.342 2.881 0.196 0.198 0.17 0.15 0.189 0.173 0.133 0.209 

Node163 0.031702 73 16 80 160 32 3 19 12 3.669 0.843 4.016 7.982 1.636 0.198 0.992 0.645 0.624 0.42 0.559 0.519 0.404 0.448 0.465 0.629 

Node164 0.023896 70 7 45 86 69 5 20 21 4.67 0.526 3.026 5.723 4.604 0.395 1.381 1.447 0.537 0.598 0.653 0.621 0.133 0.255 0.365 0.401 

Node165 0.064938 307 27 335 904 23 2 24 26 7.455 0.678 8.133 21.905 0.581 0.073 0.605 0.654 0.346 0.506 0.292 0.187 0.684 0.751 0.606 0.626 

Node166 0.036247 46 5 68 158 18 0 9 16 2.038 0.26 2.992 6.895 0.824 0.043 0.434 0.737 0.786 0.793 0.657 0.566 0.599 0.866 0.689 0.594 

Node167 0.025037 14 5 22 50 1 0 5 2 0.942 0.377 1.444 3.202 0.126 0.063 0.377 0.188 0.902 0.703 0.83 0.763 0.91 0.787 0.72 0.857 

Node168 0.113266 105 3 140 324 16 3 4 17 1.471 0.056 1.957 4.51 0.236 0.056 0.069 0.25 0.846 0.957 0.769 0.685 0.844 0.816 0.936 0.819 

Node169 0.026975 10 0 17 24 2 0 5 11 0.641 0.058 1.049 1.457 0.175 0.058 0.35 0.699 0.933 0.954 0.878 0.882 0.879 0.805 0.736 0.608 

Node170 0.059942 58 3 83 258 30 5 18 29 1.547 0.105 2.203 6.792 0.813 0.157 0.498 0.787 0.838 0.918 0.741 0.57 0.602 0.521 0.656 0.577 

Node171 0.015968 26 5 49 112 6 1 9 6 2.658 0.591 4.922 11.123 0.689 0.197 0.984 0.689 0.722 0.557 0.484 0.407 0.644 0.45 0.467 0.612 

Node172 0.008238 34 5 26 60 24 4 9 32 6.678 1.145 5.152 11.639 4.77 0.954 1.908 6.296 0.392 0.297 0.467 0.391 0.127 0.095 0.27 0.062 
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 Tb Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.33 

SC 
l = 0.30 

SN 
l = 0.26 

NR 
l = 0.24 

NC 
l = 0.17  

SC 
l = -0.05 

SN 
l = 0.17 

NR 
l = 0.18 

Node173 0.012714 52 6 40 55 16 2 12 9 6.552 0.865 5.069 6.923 2.102 0.371 1.607 1.236 0.4 0.409 0.473 0.564 0.33 0.27 0.319 0.448 

Node174 0.00622 101 12 115 154 92 20 51 58 25.774 3.285 29.312 39.167 23.5 5.306 13.14 14.909 0.017 0.027 0.014 0.062 0.002 0.006 0.005 0.007 

Node175 0.016433 118 11 86 159 78 7 61 39 11.383 1.148 8.322 15.304 7.556 0.765 5.93 3.826 0.182 0.296 0.284 0.298 0.057 0.125 0.047 0.144 

Node176 0.010719 75 14 53 130 27 3 19 21 11.144 2.199 7.918 19.209 4.106 0.587 2.933 3.226 0.19 0.089 0.302 0.226 0.157 0.17 0.161 0.181 

Node177 0.036259 81 8 63 101 48 2 24 45 3.555 0.39 2.774 4.422 2.124 0.13 1.084 1.994 0.635 0.693 0.679 0.691 0.327 0.58 0.438 0.307 

Node178 0.016658 37 8 47 75 22 10 23 25 3.586 0.849 4.529 7.171 2.17 1.038 2.265 2.453 0.632 0.417 0.515 0.553 0.321 0.085 0.224 0.25 

Node179 0.022372 186 27 292 1023 55 10 42 44 13.138 1.967 20.586 71.944 3.934 0.773 3.021 3.162 0.137 0.116 0.046 0.01 0.167 0.123 0.155 0.186 

Node180 0.032349 77 8 107 221 38 7 20 33 3.79 0.437 5.248 10.787 1.895 0.389 1.02 1.652 0.613 0.659 0.46 0.418 0.36 0.259 0.456 0.362 

Node181 0.018174 44 6 23 57 28 1 17 12 3.892 0.605 2.076 5.016 2.508 0.173 1.557 1.124 0.604 0.548 0.756 0.658 0.28 0.491 0.329 0.476 

Node182 0.010843 135 18 114 305 41 5 29 43 19.714 2.754 16.67 44.357 6.088 0.87 4.349 6.378 0.046 0.048 0.081 0.045 0.085 0.107 0.087 0.061 

Node183 0.02146 71 11 47 107 23 3 11 10 5.274 0.879 3.516 7.91 1.758 0.293 0.879 0.806 0.489 0.403 0.605 0.522 0.382 0.333 0.501 0.57 

Node184 0.031942 77 7 83 103 29 7 37 44 3.838 0.394 4.134 5.118 1.476 0.394 1.87 2.214 0.609 0.691 0.549 0.652 0.434 0.255 0.276 0.278 

Node185 0.006311 26 9 22 28 8 1 6 11 6.725 2.491 5.729 7.223 2.242 0.498 1.744 2.989 0.389 0.065 0.426 0.551 0.312 0.202 0.296 0.199 

Node186 0.154817 249 26 278 490 0 0 0 0 2.538 0.274 2.833 4.985 0.01 0.01 0.01 0.01 0.734 0.782 0.673 0.66 0.99 0.991 0.989 0.989 

Node187 0.02055 132 21 167 362 41 6 28 38 10.173 1.683 12.85 27.765 3.212 0.535 2.218 2.983 0.222 0.161 0.142 0.126 0.214 0.187 0.229 0.2 

Node188 0.035135 106 12 98 208 13 2 10 10 4.787 0.582 4.429 9.35 0.626 0.134 0.492 0.492 0.527 0.563 0.524 0.466 0.667 0.57 0.659 0.693 

Node189 0.007692 80 7 74 128 40 4 31 35 16.552 1.635 15.326 26.361 8.378 1.022 6.539 7.357 0.078 0.17 0.098 0.139 0.046 0.087 0.038 0.045 

Node190 0.016766 46 8 47 75 9 1 16 12 4.406 0.844 4.5 7.125 0.937 0.187 1.594 1.219 0.559 0.42 0.518 0.555 0.564 0.465 0.322 0.452 

Node191 0.025855 108 5 97 158 22 1 22 15 6.626 0.365 5.958 9.666 1.398 0.122 1.398 0.973 0.395 0.712 0.411 0.455 0.45 0.601 0.361 0.518 

Node192 0.0272 118 20 117 210 67 5 42 54 6.877 1.214 6.819 12.193 3.93 0.347 2.485 3.178 0.38 0.275 0.359 0.375 0.167 0.287 0.2 0.185 

Node193 0.017997 126 11 161 307 40 13 29 30 11.092 1.048 14.149 26.9 3.581 1.223 2.62 2.707 0.191 0.332 0.117 0.134 0.188 0.068 0.187 0.224 

Node194 0.026958 262 30 199 432 32 1 22 24 15.335 1.808 11.661 25.247 1.924 0.117 1.341 1.458 0.095 0.14 0.17 0.149 0.356 0.614 0.373 0.399 

Node195 0.037903 110 15 107 156 23 4 12 13 4.603 0.664 4.479 6.511 0.995 0.207 0.539 0.581 0.542 0.514 0.52 0.583 0.548 0.434 0.636 0.655 

Node196 0.011693 223 17 450 710 130 27 68 82 30.11 2.42 60.623 95.573 17.609 3.764 9.275 11.157 0.009 0.07 3.26e-04 0.003 0.006 0.012 0.016 0.016 

Node197 0.113963 60 6 93 162 47 4 35 55 0.841 0.097 1.296 2.248 0.662 0.069 0.497 0.772 0.913 0.925 0.848 0.826 0.654 0.764 0.657 0.582 
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 Tb Td fb fd P(fb) P(fd) 

Site  k NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.33 

SC 
l = 0.30 

SN 
l = 0.26 

NR 
l = 0.24 

NC 
l = 0.17  

SC 
l = -0.05 

SN 
l = 0.17 

NR 
l = 0.18 

Node198 0.019885 210 34 200 381 39 7 36 33 16.678 2.767 15.888 30.195 3.162 0.632 2.925 2.688 0.076 0.048 0.09 0.108 0.219 0.156 0.162 0.226 

Node199 0.131449 165 12 197 342 44 0 17 25 1.985 0.155 2.368 4.101 0.538 0.012 0.215 0.311 0.792 0.877 0.723 0.709 0.702 0.987 0.822 0.784 

Node200 0.050559 27 7 15 20 5 0 7 5 0.87 0.249 0.497 0.653 0.187 0.031 0.249 0.187 0.91 0.802 0.944 0.943 0.872 0.918 0.799 0.858 

Node201 0.02886 44 4 16 26 9 1 4 9 2.451 0.272 0.926 1.471 0.545 0.109 0.272 0.545 0.743 0.783 0.893 0.881 0.699 0.635 0.784 0.67 

Node202 0.065903 151 24 167 371 39 6 23 29 3.625 0.596 4.007 8.872 0.954 0.167 0.572 0.716 0.628 0.554 0.56 0.484 0.56 0.502 0.621 0.602 

Node203 0.00915 73 13 83 182 42 9 38 24 12.712 2.405 14.43 31.436 7.387 1.718 6.7 4.295 0.147 0.071 0.112 0.1 0.059 0.042 0.036 0.121 

Node204 0.049373 159 18 207 360 7 1 10 6 5.094 0.605 6.622 11.493 0.255 0.064 0.35 0.223 0.503 0.549 0.37 0.396 0.834 0.784 0.736 0.835 

Node205 0.128902 225 21 215 467 7 2 1 3 2.756 0.268 2.634 5.707 0.098 0.037 0.024 0.049 0.712 0.786 0.694 0.622 0.928 0.895 0.976 0.957 

Node206 0.051792 277 32 339 1398 79 10 46 81 8.437 1.002 10.319 42.458 2.428 0.334 1.426 2.489 0.295 0.35 0.208 0.051 0.289 0.297 0.355 0.246 

Node207 0.015061 63 9 77 97 34 4 32 41 6.679 1.044 8.14 10.227 3.653 0.522 3.444 4.383 0.392 0.334 0.292 0.436 0.183 0.193 0.127 0.117 

Node208 0.013527 142 24 192 656 34 3 30 57 16.617 2.905 22.427 76.344 4.067 0.465 3.602 6.74 0.077 0.041 0.036 0.008 0.159 0.217 0.119 0.054 

Node209 0.134154 107 22 161 205 21 1 14 21 1.265 0.269 1.898 2.414 0.258 0.023 0.176 0.258 0.868 0.785 0.776 0.815 0.832 0.949 0.851 0.814 

Node210 0.063819 47 9 77 196 10 2 8 8 1.182 0.246 1.921 4.852 0.271 0.074 0.222 0.222 0.877 0.804 0.774 0.667 0.825 0.746 0.818 0.836 

Node211 0.066565 114 4 169 356 12 0 6 5 2.716 0.118 4.014 8.43 0.307 0.024 0.165 0.142 0.716 0.908 0.559 0.501 0.807 0.948 0.858 0.888 

Node212 0.218688 307 31 342 509 67 4 27 20 2.214 0.23 2.465 3.666 0.489 0.036 0.201 0.151 0.768 0.817 0.712 0.735 0.722 0.897 0.832 0.882 

Node213 0.056002 148 18 221 873 75 11 45 44 4.182 0.533 6.231 24.531 2.133 0.337 1.291 1.263 0.578 0.594 0.394 0.157 0.326 0.295 0.385 0.442 

Node214 0.011153 168 17 183 278 33 5 19 27 23.817 2.537 25.931 39.319 4.792 0.846 2.819 3.946 0.024 0.061 0.022 0.061 0.126 0.111 0.17 0.138 

Node215 0.051531 160 18 179 370 55 12 36 55 4.911 0.58 5.49 11.316 1.708 0.397 1.129 1.708 0.517 0.564 0.443 0.401 0.391 0.254 0.426 0.352 

Node216 0.052398 305 29 303 750 144 16 75 85 9.179 0.9 9.119 22.528 4.35 0.51 2.28 2.58 0.262 0.394 0.25 0.179 0.145 0.197 0.222 0.237 
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evidenced by the contrasting genome sizes and gene counts (ngenes) between these three species 

(Table 2.3.3.), where a genome size minimal difference (Dmin) = 14.476% (5.38 Mbp) and ngenes 

Dmin = 6.561% (n = 874) was observed between F. graminearum and F. verticilloides (which 

had a smaller genome and ngenes than F. oxysporum. These expansions are evidenced by 

considerably different chromosome numbers (nchr) amongst these species, where F. 

graminearum possesses an nchr of 4, F. verticilloides an nchr of 11-12, and F. oxysporum an nchr 

of 15 (Gale et al., 2005; Ma et al., 2010). The bursts observed during the speciation of F. 

oxysporum directly correspond to the HGT event between an unidentified Fusarium and F. 

oxysporum allowing for a broader host range (Ma et al., 2010). 

 

2.3.7. Functional overrepresentations in remodelled fungal genes 

  

 2.3.7.1: Nested composite genes are likely to be involved in pathogenicty but unlikely 

to be involved in secondary metabolism 

 

Nested composites were observed to be overrepresented for transmembrane transport 

process (BP) ontologs (GO:0055085; PB ≤ 4.38e-05) (Table 2.3.11), signal transduction 

(GO:0007615; PB  = 3.85e-03), and macromolecular modification (GO:0043412; PB = 7.60e-03). 

Overrepresentation was also observed for cellular component (CC) ontologs associated with 

the extracellular region (GO:0005576, GO:0044421; PB ≤ 8.24e-06). These ontologies are 

commonly associated secreted as effectors (Vivek-Ananth et al., 2018). A. fumigatus genes 

from families with these overrepresented ontologs (eg. acetylxylan esterase (axe1; 

XP_748362.1; enzyme commission number (EC):3.1.1.72), cellobiohydrolase 

(AFUA_3G01910; XP_748511.1; E.C:3.2.1.91), and endo-1,4-b-xylanase (AFUA_6G13610;  
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XP_751237.1; E.C:3.2.1.8)) were previously reported to not only be secreted, but to play a role 

in phytopathogenicity through the degradation of plant cell walls (Rodriguez-Moreno et al., 

2017; Uhse and Djamei, 2018). Conversely, while secondary metabolites are associated with 

pathogenic processes (Pusztahelyi et al., 2015), nested composite genes were observed to be 

significantly underrepresented for primary metabolism (GO:0044238; PB  = 0.0139) and 

secondary metabolism (PB = 1.36e-03) (Table 2.3.12). Interestingly, phytopathogenic 

secretome-associated genes (such as those mentioned above) were commonly associated with 

primary metabolism (GO:0044238). 

 Interactions between pathogenic fungi and their hosts are complex, and are engaged in 

a constant evolutionary arms race (Möller and Stuckenbrock, 2017), where advanced invasion 

strategies emerged in response to advanced plant defences. Due to these factors, perhaps it is 

not surprising to observe secretome-related genes to be further remodelled. Genes involved in 

secondary metabolism are usually large, multidomain, and multifunctional (Pasek et al., 2006), 

and commonly share evolutionary histories with primary metabolic pathways (Smith and Tsai, 

2007). Due to these factors, an overrepresentation of secondary metabolic genes was 

reasonably expected, but this was not the case.  

  

2.3.7.2. Strict composite genes are likely to be involved in pathogenicity and 

metabolism but not secretion 

 

In direct contrast to what was observed for nested composites, strict composites were 

statistically likely to be involved in primary metabolism (PB = 4.59e-03) (Table 2.3.13) and 

secondary metabolism (PB = 4.41e-04) and statistically unlikely to be involved in signal 

transduction (PB = 1.35e-03) (Table 2.3.14) or transmembrane transport (PB = 3.48e-03). A. 

fumigatus genes from families with overrepresented ontologs for primary metabolism (eg.  
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Table 2.3.14: Overrepresented GO-slims in nested composite genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly overrepresented. 

 

GO ID Type GO term p̂(n)  p̂(N)  Depth P PB 

GO:0032196 BP transposition 518/215494 537/401320 2 5.11e-06 1.21e-03 

GO:0050789 BP regulation of biological process 4016/215494 5515/401320 2 1.62e-05 3.85e-03 

GO:0050794 BP regulation of cellular process 4016/215494 5515/401320 3 1.62e-05 3.85e-03 

GO:0007165 BP signal transduction 4016/215494 5515/401320 4 1.62e-05 3.85e-03 

GO:0065007 BP biological regulation 5196/215494 7963/401320 1 1.97e-05 4.67e-03 

GO:0043412 BP macromolecule modification 15729/215494 21692/401320 4 3.21e-05 7.60e-03 

GO:0036211 BP protein modification process 15729/215494 21692/401320 5 3.21e-05 7.60e-03 

GO:0006464 BP cellular protein modification process 15729/215494 21692/401320 6 3.21e-05 7.60e-03 

GO:0055085 BP transmembrane transport 30576/215494 39724/401320 4 4.38e-05 0.0104 

GO:0051179 BP localization 35756/215494 53205/401320 1 4.99e-05 0.0118 

GO:0051234 BP establishment of localization 35756/215494 53205/401320 2 4.99e-05 0.0118 

137



 

  

GO ID Type GO term p̂(n)  p̂(N)  Depth P PB 

GO:0006810 BP transport 35756/215494 53205/401320 3 4.99e-05 0.0118 

GO:0005773 CC vacuole 51/215494 54/401320 5 1.57e-06 3.71e-04 

GO:0005615 CC extracellular space 169/215494 222/401320 2 2.84e-06 6.72e-04 

GO:0044421 CC extracellular region part 170/215494 226/401320 1 3.51e-06 8.31e-04 

GO:0005576 CC extracellular region 957/215494 1368/401320 1 8.24e-06 1.95e-03 

GO:0005634 CC nucleus 12453/215494 19392/401320 5 3.14e-05 7.43e-03 

GO:0043227 CC membrane-bounded organelle 12913/215494 22063/401320 2 3.28e-05 7.78e-03 

GO:0043231 CC intracellular membrane-bounded organelle 12913/215494 22063/401320 4 3.28e-05 7.78e-03 

GO:0044430 CC cytoskeletal part 326/215494 557/401320 4 0.0241 1 

GO:0005694 CC chromosome 607/215494 1051/401320 5 0.00845 1 

GO:0005815 CC microtubule organizing center 326/215494 557/401320 5 0.0241 1 

GO:0060090 MF molecular adaptor activity 93/215494 99/401320 2 1.36e-06 3.23e-04 

GO:0030674 MF protein binding, bridging 93/215494 99/401320 3 1.36e-06 3.23e-04 

GO:0032182 MF ubiquitin-like protein binding 181/215494 189/401320 3 2.47e-06 5.85e-04 

GO:0004386 MF helicase activity 1612/215494 2011/401320 7 8.92e-06 2.11e-03 

GO:0008289 MF lipid binding 1159/215494 1961/401320 2 1.16e-05 2.76e-03 

GO:0008092 MF cytoskeletal protein binding 1979/215494 2945/401320 3 1.19e-05 2.83e-03 

GO:0019899 MF enzyme binding 2471/215494 3537/401320 3 1.34e-05 3.17e-03 
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GO ID Type GO term p̂(n)  p̂(N)  Depth P PB 

GO:0003924 MF GTPase activity 5127/215494 5881/401320 7 1.64e-05 3.90e-03 

GO:0016887 MF ATPase activity 5203/215494 5630/401320 7 1.65e-05 3.91e-03 

GO:0016746 MF transferase activity, transferring acyl groups 2537/215494 4434/401320 3 1.69e-05 4.01e-03 

GO:0005515 MF protein binding 5050/215494 7948/401320 2 1.93e-05 4.58e-03 

GO:0016798 MF hydrolase activity, acting on glycosyl bonds 5383/215494 9306/401320 3 2.14e-05 5.08e-03 

GO:0140110 MF transcription regulator activity 7626/215494 10273/401320 1 2.23e-05 5.30e-03 

GO:0003700 MF DNA-binding transcription factor activity 7626/215494 10273/401320 2 2.23e-05 5.30e-03 

GO:0016817 MF hydrolase activity, acting on acid anhydrides 11503/215494 13032/401320 3 2.49e-05 5.91e-03 

GO:0016818 MF hydrolase activity, acting on acid anhydrides, 
 in phosphorus-containing anhydrides 11503/215494 13032/401320 4 2.49e-05 5.91e-03 

GO:0016462 MF pyrophosphatase activity 11503/215494 13032/401320 5 2.49e-05 5.91e-03 

GO:0017111 MF nucleoside-triphosphatase activity 11503/215494 13032/401320 6 2.49e-05 5.91e-03 

GO:0016301 MF kinase activity 12881/215494 16743/401320 4 2.81e-05 6.67e-03 

GO:0003677 MF DNA binding 13048/215494 20257/401320 4 3.22e-05 7.62e-03 

GO:0005215 MF transporter activity 14310/215494 21900/401320 1 3.27e-05 7.76e-03 

GO:0022857 MF transmembrane transporter activity 14310/215494 21900/401320 2 3.27e-05 7.76e-03 

GO:0016772 MF transferase activity, transferring phosphorus-containing groups 14858/215494 21794/401320 3 3.34e-05 7.91e-03 

GO:0016740 MF transferase activity 21955/215494 38813/401320 2 4.38e-05 0.0104 

GO:0016787 MF hydrolase activity 25514/215494 40915/401320 2 4.50e-05 0.0107 
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GO ID Type GO term p̂(n)  p̂(N)  Depth P PB 

GO:0016491 MF oxidoreductase activity 27272/215494 45921/401320 2 4.65e-05 0.011 

GO:0003674 MF molecular function 180450/215494 325539/401320 0 5.82e-05 0.0138 

GO:0043167 MF ion binding 77731/215494 107256/401320 2 6.56e-05 0.0155 

GO:0005488 MF binding 88301/215494 132438/401320 1 7.12e-05 0.0169 

GO:0003824 MF catalytic activity 81114/215494 141848/401320 1 7.18e-05 0.017 
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Table 2.3.15: Underrepresented GO-slims in nested composite genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly underrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0048856 BP anatomical structure development 3/215494 31/401320 2 4.48e-07 1.06e-04 

GO:0051301 BP cell division 0/215494 87/401320 2 1.31e-06 3.10e-04 

GO:0007059 BP chromosome segregation 44/215494 289/401320 2 2.73e-06 6.47e-04 

GO:0000278 BP mitotic cell cycle 24/215494 303/401320 3 3.54e-06 8.39e-04 

GO:0007049 BP cell cycle 54/215494 352/401320 2 3.86e-06 9.15e-04 

GO:0034622 BP cellular protein-containing complex assembly 4/215494 313/401320 5 3.89e-06 9.22e-04 

GO:0022618 BP ribonucleoprotein complex assembly 4/215494 313/401320 6 3.89e-06 9.22e-04 

GO:0071826 BP ribonucleoprotein complex subunit organization 4/215494 313/401320 4 3.89e-06 9.22e-04 

GO:0006914 BP autophagy 61/215494 478/401320 4 4.12e-06 9.75e-04 

GO:0061919 BP process utilizing autophagic mechanism 61/215494 478/401320 2 4.12e-06 9.75e-04 

GO:0051169 BP nuclear transport 186/215494 517/401320 5 4.14e-06 9.81e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0006913 BP nucleocytoplasmic transport 186/215494 517/401320 6 4.14e-06 9.81e-04 

GO:0007005 BP mitochondrion organization 8/215494 542/401320 4 4.62e-06 1.10e-03 

GO:0051604 BP protein maturation 47/215494 513/401320 5 4.72e-06 1.12e-03 

GO:0061024 BP membrane organization 88/215494 516/401320 3 5.02e-06 1.19e-03 

GO:0007034 BP vacuolar transport 0/215494 802/401320 4 5.47e-06 1.30e-03 

GO:0019748 BP secondary metabolic process 313/215494 896/401320 2 5.74e-06 1.36e-03 

GO:0007010 BP cytoskeleton organization 316/215494 781/401320 4 5.80e-06 1.38e-03 

GO:0044085 BP cellular component biogenesis 195/215494 914/401320 2 6.07e-06 1.44e-03 

GO:0022613 BP ribonucleoprotein complex biogenesis 195/215494 914/401320 3 6.07e-06 1.44e-03 

GO:0042254 BP ribosome biogenesis 195/215494 914/401320 4 6.07e-06 1.44e-03 

GO:0006886 BP intracellular protein transport 135/215494 919/401320 8 6.45e-06 1.53e-03 

GO:0006605 BP protein targeting 135/215494 919/401320 9 6.45e-06 1.53e-03 

GO:0006457 BP protein folding 30/215494 1039/401320 2 7.05e-06 1.67e-03 

GO:0051641 BP cellular localization 321/215494 1440/401320 2 7.51e-06 1.78e-03 

GO:0051649 BP establishment of localization in cell 321/215494 1440/401320 3 7.51e-06 1.78e-03 

GO:0046907 BP intracellular transport 321/215494 1440/401320 4 7.51e-06 1.78e-03 

GO:0044248 BP cellular catabolic process 470/215494 1301/401320 3 8.17e-06 1.94e-03 

GO:0006091 BP generation of precursor metabolites and energy 88/215494 1417/401320 3 8.17e-06 1.94e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0051276 BP chromosome organization 699/215494 1844/401320 4 9.54e-06 2.26e-03 

GO:0006790 BP sulfur compound metabolic process 9/215494 1672/401320 3 9.54e-06 2.26e-03 

GO:0032502 BP developmental process 5/215494 33/401320 1 1.02e-05 2.41e-03 

GO:0016071 BP mRNA metabolic process 852/215494 2039/401320 7 1.03e-05 2.44e-03 

GO:0006397 BP mRNA processing 852/215494 2039/401320 8 1.03e-05 2.44e-03 

GO:0006396 BP RNA processing 852/215494 2039/401320 7 1.03e-05 2.44e-03 

GO:0042592 BP homeostatic process 1180/215494 2448/401320 3 1.11e-05 2.64e-03 

GO:0065008 BP regulation of biological quality 1180/215494 2448/401320 2 1.11e-05 2.64e-03 

GO:0065003 BP protein-containing complex assembly 482/215494 2472/401320 4 1.12e-05 2.65e-03 

GO:0043933 BP protein-containing complex subunit organization 482/215494 2472/401320 3 1.12e-05 2.65e-03 

GO:0022607 BP cellular component assembly 487/215494 2992/401320 3 1.18e-05 2.79e-03 

GO:0051186 BP cofactor metabolic process 310/215494 3046/401320 3 1.19e-05 2.82e-03 

GO:0006996 BP organelle organization 1023/215494 3167/401320 3 1.26e-05 2.99e-03 

GO:0016192 BP vesicle-mediated transport 2097/215494 5466/401320 4 1.69e-05 4.00e-03 

GO:0034660 BP ncRNA metabolic process 2486/215494 5991/401320 7 1.74e-05 4.13e-03 

GO:0006399 BP tRNA metabolic process 2486/215494 5991/401320 8 1.74e-05 4.13e-03 

GO:0050896 BP response to stimulus 2994/215494 6331/401320 1 1.75e-05 4.15e-03 

GO:0006950 BP response to stress 2994/215494 6331/401320 2 1.75e-05 4.15e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016043 BP cellular component organization 1592/215494 6188/401320 2 1.77e-05 4.20e-03 

GO:0042886 BP amide transport 2600/215494 5930/401320 5 1.78e-05 4.22e-03 

GO:0045184 BP establishment of protein localization 2600/215494 5930/401320 4 1.78e-05 4.22e-03 

GO:0033036 BP macromolecule localization 2600/215494 5930/401320 2 1.78e-05 4.22e-03 

GO:0071705 BP nitrogen compound transport 2600/215494 5930/401320 4 1.78e-05 4.22e-03 

GO:0071702 BP organic substance transport 2600/215494 5930/401320 4 1.78e-05 4.22e-03 

GO:0015833 BP peptide transport 2600/215494 5930/401320 6 1.78e-05 4.22e-03 

GO:0008104 BP protein localization 2600/215494 5930/401320 3 1.78e-05 4.22e-03 

GO:0015031 BP protein transport 2600/215494 5930/401320 7 1.78e-05 4.22e-03 

GO:0019752 BP carboxylic acid metabolic process 2550/215494 7482/401320 5 1.84e-05 4.35e-03 

GO:0006520 BP cellular amino acid metabolic process 2550/215494 7482/401320 6 1.84e-05 4.35e-03 

GO:0006082 BP organic acid metabolic process 2550/215494 7482/401320 3 1.84e-05 4.35e-03 

GO:0043436 BP oxoacid metabolic process 2550/215494 7482/401320 4 1.84e-05 4.35e-03 

GO:0009056 BP catabolic process 2171/215494 6927/401320 2 1.88e-05 4.45e-03 

GO:0071840 BP cellular component organization or biogenesis 1787/215494 7102/401320 1 1.91e-05 4.54e-03 

GO:0016070 BP RNA metabolic process 3338/215494 8030/401320 6 1.92e-05 4.56e-03 

GO:0006259 BP DNA metabolic process 3968/215494 7926/401320 6 1.98e-05 4.70e-03 

GO:0006629 BP lipid metabolic process 3440/215494 9168/401320 3 2.15e-05 5.09e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0043604 BP amide biosynthetic process 276/215494 9985/401320 5 2.15e-05 5.10e-03 

GO:0043603 BP cellular amide metabolic process 276/215494 9985/401320 4 2.15e-05 5.10e-03 

GO:0044249 BP cellular biosynthetic process 276/215494 9985/401320 3 2.15e-05 5.10e-03 

GO:0034645 BP cellular macromolecule biosynthetic process 276/215494 9985/401320 5 2.15e-05 5.10e-03 

GO:0044271 BP cellular nitrogen compound biosynthetic process 276/215494 9985/401320 4 2.15e-05 5.10e-03 

GO:0009059 BP macromolecule biosynthetic process 276/215494 9985/401320 4 2.15e-05 5.10e-03 

GO:1901576 BP organic substance biosynthetic process 276/215494 9985/401320 3 2.15e-05 5.10e-03 

GO:1901566 BP organonitrogen compound biosynthetic process 276/215494 9985/401320 4 2.15e-05 5.10e-03 

GO:0043043 BP peptide biosynthetic process 276/215494 9985/401320 6 2.15e-05 5.10e-03 

GO:0006518 BP peptide metabolic process 276/215494 9985/401320 5 2.15e-05 5.10e-03 

GO:0006412 BP translation 276/215494 9985/401320 7 2.15e-05 5.10e-03 

GO:0090304 BP nucleic acid metabolic process 7306/215494 15956/401320 5 2.81e-05 6.66e-03 

GO:0005975 BP carbohydrate metabolic process 8213/215494 16166/401320 3 2.83e-05 6.71e-03 

GO:0006725 BP cellular aromatic compound metabolic process 7591/215494 16648/401320 3 2.87e-05 6.80e-03 

GO:0046483 BP heterocycle metabolic process 7591/215494 16648/401320 3 2.87e-05 6.80e-03 

GO:0006139 BP nucleobase-containing compound metabolic process 7591/215494 16648/401320 4 2.87e-05 6.80e-03 

GO:1901360 BP organic cyclic compound metabolic process 7591/215494 16648/401320 3 2.87e-05 6.80e-03 

GO:0044281 BP small molecule metabolic process 5238/215494 17822/401320 2 2.91e-05 6.90e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0044267 BP cellular protein metabolic process 16003/215494 31675/401320 5 3.86e-05 9.16e-03 

GO:0019538 BP protein metabolic process 16017/215494 31990/401320 4 3.98e-05 9.44e-03 

GO:1901564 BP organonitrogen compound metabolic process 18566/215494 39471/401320 3 4.36e-05 0.0103 

GO:0044260 BP cellular macromolecule metabolic process 19971/215494 39601/401320 4 4.37e-05 0.0104 

GO:0009058 BP biosynthetic process 13170/215494 42776/401320 2 4.54e-05 0.0108 

GO:0043170 BP macromolecule metabolic process 23211/215494 47834/401320 3 4.71e-05 0.0112 

GO:0034641 BP cellular nitrogen compound metabolic process 18407/215494 52479/401320 3 4.98e-05 0.0118 

GO:0006807 BP nitrogen compound metabolic process 34511/215494 76971/401320 2 5.81e-05 0.0138 

GO:0044237 BP cellular metabolic process 34484/215494 79144/401320 2 5.87e-05 0.0139 

GO:0071704 BP organic substance metabolic process 35368/215494 76658/401320 2 5.85e-05 0.0139 

GO:0044238 BP primary metabolic process 35368/215494 76658/401320 2 5.85e-05 0.0139 

GO:0009987 BP cellular process 39538/215494 90607/401320 1 6.19e-05 0.0147 

GO:0008152 BP metabolic process 49860/215494 112739/401320 1 6.70e-05 0.0159 

GO:0007009 BP plasma membrane organization 0/215494 11/401320 4 2.10e-04 0.0497 

GO:0000229 CC cytoplasmic chromosome 6/215494 107/401320 6 2.28e-06 5.40e-04 

GO:0005730 CC nucleolus 200/215494 497/401320 5 4.10e-06 9.73e-04 

GO:0042579 CC microbody 201/215494 480/401320 5 4.31e-06 1.02e-03 

GO:0005777 CC peroxisome 201/215494 480/401320 6 4.31e-06 1.02e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016020 CC membrane 91/215494 502/401320 1 4.59e-06 1.09e-03 

GO:0005886 CC plasma membrane 91/215494 502/401320 2 4.59e-06 1.09e-03 

GO:0005856 CC cytoskeleton 10/215494 450/401320 5 5.19e-06 1.23e-03 

GO:0005739 CC mitochondrion 115/215494 1210/401320 5 6.49e-06 1.54e-03 

GO:0005783 CC endoplasmic reticulum 93/215494 927/401320 5 7.06e-06 1.67e-03 

GO:0005737 CC cytoplasm 1216/215494 4855/401320 3 1.49e-05 3.53e-03 

GO:0005622 CC intracellular 899/215494 7889/401320 2 1.90e-05 4.50e-03 

GO:1990904 CC ribonucleoprotein complex 201/215494 9786/401320 2 2.15e-05 5.08e-03 

GO:0005840 CC ribosome 201/215494 9786/401320 5 2.15e-05 5.08e-03 

GO:0043232 CC intracellular non-membrane-bounded organelle 1017/215494 11783/401320 4 2.35e-05 5.56e-03 

GO:0043228 CC non-membrane-bounded organelle 1017/215494 11783/401320 2 2.35e-05 5.56e-03 

GO:0044444 CC cytoplasmic part 667/215494 12564/401320 3 2.47e-05 5.85e-03 

GO:0044428 CC nuclear part 372/215494 803/401320 4 3.31e-05 7.83e-03 

GO:0032991 CC protein-containing complex 5360/215494 34280/401320 1 4.03e-05 9.54e-03 

GO:0043229 CC intracellular organelle 13927/215494 33803/401320 3 4.07e-05 9.64e-03 

GO:0043226 CC organelle 14009/215494 34799/401320 1 4.12e-05 9.77e-03 

GO:0044424 CC intracellular part 15468/215494 39026/401320 2 4.27e-05 0.0101 

GO:0044464 CC cell part 16807/215494 42555/401320 1 4.46e-05 0.0106 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0005575 CC cellular_component 59207/215494 122687/401320 0 6.93e-05 0.0164 

GO:0042393 MF histone binding 55/215494 164/401320 3 3.02e-06 7.16e-04 

GO:0003729 MF mRNA binding 21/215494 311/401320 5 3.63e-06 8.60e-04 

GO:0008134 MF transcription factor binding 101/215494 317/401320 3 4.47e-06 1.06e-03 

GO:0019843 MF rRNA binding 5/215494 616/401320 5 5.61e-06 1.33e-03 

GO:0051082 MF unfolded protein binding 444/215494 1067/401320 3 6.98e-06 1.66e-03 

GO:0016765 MF transferase activity,  
transferring alkyl or aryl (other than methyl) groups 369/215494 1381/401320 3 8.03e-06 1.90e-03 

GO:0016810 MF hydrolase activity,  
acting on carbon-nitrogen (but not peptide) bonds 643/215494 1820/401320 3 8.34e-06 1.98e-03 

GO:0016791 MF phosphatase activity 532/215494 1699/401320 5 8.99e-06 2.13e-03 

GO:0042578 MF phosphoric ester hydrolase activity 532/215494 1699/401320 4 8.99e-06 2.13e-03 

GO:0008135 MF translation factor activity, RNA binding 164/215494 2158/401320 5 9.94e-06 2.36e-03 

GO:0045182 MF translation regulator activity 164/215494 2158/401320 1 9.94e-06 2.36e-03 

GO:0090079 MF translation regulator activity, nucleic acid binding 164/215494 2158/401320 4 9.94e-06 2.36e-03 

GO:0030234 MF enzyme regulator activity 195/215494 2649/401320 2 1.08e-05 2.56e-03 

GO:0098772 MF molecular function regulator 195/215494 2649/401320 1 1.08e-05 2.56e-03 

GO:0016853 MF isomerase activity 1715/215494 4244/401320 2 1.46e-05 3.47e-03 

GO:0016779 MF nucleotidyltransferase activity 1977/215494 5051/401320 4 1.48e-05 3.50e-03 

GO:0008168 MF methyltransferase activity 1926/215494 5544/401320 4 1.61e-05 3.81e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016741 MF transferase activity, transferring one-carbon groups 1926/215494 5544/401320 3 1.61e-05 3.81e-03 

GO:0016788 MF hydrolase activity, acting on ester bonds 2546/215494 5627/401320 3 1.64e-05 3.89e-03 

GO:0016757 MF transferase activity, transferring glycosyl groups 2272/215494 5667/401320 3 1.65e-05 3.92e-03 

GO:0016874 MF ligase activity 3199/215494 6591/401320 2 1.73e-05 4.09e-03 

GO:0016829 MF lyase activity 2042/215494 6527/401320 2 1.76e-05 4.18e-03 

GO:0003723 MF RNA binding 2404/215494 9993/401320 4 2.17e-05 5.14e-03 

GO:0003735 MF structural constituent of ribosome 207/215494 10102/401320 2 2.19e-05 5.19e-03 

GO:0140096 MF catalytic activity, acting on a protein 5649/215494 11340/401320 2 2.31e-05 5.49e-03 

GO:0008233 MF peptidase activity 5649/215494 11340/401320 3 2.31e-05 5.49e-03 

GO:0005198 MF structural molecule activity 960/215494 11671/401320 1 2.44e-05 5.78e-03 

GO:1901363 MF heterocyclic compound binding 15446/215494 30244/401320 2 3.80e-05 8.99e-03 

GO:0003676 MF nucleic acid binding 15446/215494 30244/401320 3 3.80e-05 8.99e-03 

GO:0097159 MF organic cyclic compound binding 15446/215494 30244/401320 2 3.80e-05 8.99e-03 
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malate synthase (acuE;  XP_747723.1; E.C:2.3.3.9), a,a-trehalose phosphatase subunit Tps2 

(tps2; XP_755036.1; E.C: 3.1.3.12), and chorismate mutase/prephenate dehydratase 

(AFUA_5G05690; XP_754063.1; E.C:5.4.99.5)) were, again, involved in pathogenicity 

(Olivas et al., 2008; Al-Bader et al., 2010; Pérez et al., 2015; Xiaowei et al., 2019). Chorismate 

synthase is a constituent of the highly remodelled shikimate pathway (Richards et al., 2006). 

These observations further highlight the evolutionary arms-race between pathogenic fungi and 

their hosts as mentioned above, and their prevalence amongst remodelled genes is not 

surprising. 

 

2.3.7.3. Strict component genes are likely involved in mitosis and DNA repair 

 

Strict component genes were observed to be significantly likely to be involved in stress 

responses (GO:0006950; PB = 3.35e-03) (Table 2.3.15) and in the mitotic cell cycle 

(GO:0000278, GO:0007059, GO:0051301; PB ≤ 6.0e-03) and unlikely to be associated with 

regulatory processes (GO:0050789, GO:0050794, GO:0065007, GO:0140110; PB ≤ 4.29e-03) 

(Table 2.3.16). Strict component A. fumigatus genes from families with overrepresented 

ontologs for stress response (eg. endonuclease III homolog (ntg1; XP_749248.1; 

E.C:4.2.99.15), mitochondrial genome maintenance protein mgm101 (AFUA_2G09560; 

XP_755290.1; (no assigned EC number)), and UV-endonuclease (uve1; XP_750978.1; E.C:3.-

.-.-)) commonly facilitate the maintenance of nuclear and organelle genome integrity after 

exposure to physical stressors (Heijink et al., 2013; Verna and Idnrum, 2013; Bakhoum et al., 

2017). Comparatively, the strict component A. fumigatus gene associated with mitosis (eg. 

CHL4 family chromosome segregation protein (AFUA_4G06540; XP_752172.1; (no assigned 

EC number))) aids in de novo kinetochore assembly and sister chromatid adhesion during 

replication (Mythreye and Bloom, 2003).  
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Table 2.3.16. Overrepresented GO-slims in strict composite genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly overrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0061919 BP process utilizing autophagic mechanism 93/13168 478/401320 2 8.67e-07 2.05e-04 

GO:0006914 BP autophagy 93/13168 478/401320 4 8.67e-07 2.05e-04 

GO:0051301 BP cell division 16/13168 87/401320 2 9.44e-07 2.24e-04 

GO:0007005 BP mitochondrion organization 60/13168 542/401320 4 1.28e-06 3.04e-04 

GO:0051169 BP nuclear transport 100/13168 517/401320 5 1.37e-06 3.24e-04 

GO:0006913 BP nucleocytoplasmic transport 100/13168 517/401320 6 1.37e-06 3.24e-04 

GO:0007059 BP chromosome segregation 34/13168 289/401320 2 1.44e-06 3.40e-04 

GO:0019748 BP secondary metabolic process 249/13168 896/401320 2 1.86e-06 4.41e-04 

GO:0044248 BP cellular catabolic process 98/13168 1301/401320 3 2.34e-06 5.54e-04 

GO:0046907 BP intracellular transport 144/13168 1440/401320 4 2.50e-06 5.94e-04 

GO:0051649 BP establishment of localization in cell 144/13168 1440/401320 3 2.50e-06 5.94e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0051641 BP cellular localization 144/13168 1440/401320 2 2.50e-06 5.94e-04 

GO:0006457 BP protein folding 74/13168 1039/401320 2 2.86e-06 6.78e-04 

GO:0006091 BP generation of precursor metabolites and energy 106/13168 1417/401320 3 2.96e-06 7.00e-04 

GO:0006996 BP organelle organization 161/13168 3167/401320 3 3.77e-06 8.95e-04 

GO:0065003 BP protein-containing complex assembly 150/13168 2472/401320 4 4.03e-06 9.55e-04 

GO:0043933 BP protein-containing complex subunit organization 150/13168 2472/401320 3 4.03e-06 9.55e-04 

GO:0022607 BP cellular component assembly 150/13168 2992/401320 3 4.16e-06 9.87e-04 

GO:0016192 BP vesicle-mediated transport 311/13168 5466/401320 4 5.14e-06 1.22e-03 

GO:0016043 BP cellular component organization 293/13168 6188/401320 2 5.65e-06 1.34e-03 

GO:0034660 BP ncRNA metabolic process 381/13168 5991/401320 7 5.66e-06 1.34e-03 

GO:0006399 BP tRNA metabolic process 381/13168 5991/401320 8 5.66e-06 1.34e-03 

GO:0016070 BP RNA metabolic process 409/13168 8030/401320 6 5.87e-06 1.39e-03 

GO:0045184 BP establishment of protein localization 316/13168 5930/401320 4 6.04e-06 1.43e-03 

GO:0015833 BP peptide transport 316/13168 5930/401320 6 6.04e-06 1.43e-03 

GO:0071705 BP nitrogen compound transport 316/13168 5930/401320 4 6.04e-06 1.43e-03 

GO:0071702 BP organic substance transport 316/13168 5930/401320 4 6.04e-06 1.43e-03 

GO:0008104 BP protein localization 316/13168 5930/401320 3 6.04e-06 1.43e-03 

GO:0033036 BP macromolecule localization 316/13168 5930/401320 2 6.04e-06 1.43e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0042886 BP amide transport 316/13168 5930/401320 5 6.04e-06 1.43e-03 

GO:0015031 BP protein transport 316/13168 5930/401320 7 6.04e-06 1.43e-03 

GO:0043436 BP oxoacid metabolic process 710/13168 7482/401320 4 6.97e-06 1.65e-03 

GO:0006520 BP cellular amino acid metabolic process 710/13168 7482/401320 6 6.97e-06 1.65e-03 

GO:0006082 BP organic acid metabolic process 710/13168 7482/401320 3 6.97e-06 1.65e-03 

GO:0019752 BP carboxylic acid metabolic process 710/13168 7482/401320 5 6.97e-06 1.65e-03 

GO:0006629 BP lipid metabolic process 641/13168 9168/401320 3 7.38e-06 1.75e-03 

GO:0009056 BP catabolic process 299/13168 6927/401320 2 9.47e-06 2.24e-03 

GO:0005975 BP carbohydrate metabolic process 670/13168 16166/401320 3 9.90e-06 2.35e-03 

GO:0044281 BP small molecule metabolic process 1145/13168 17822/401320 2 1.02e-05 2.43e-03 

GO:0009058 BP biosynthetic process 1933/13168 42776/401320 2 1.44e-05 3.42e-03 

GO:0071704 BP organic substance metabolic process 2887/13168 76658/401320 2 1.94e-05 4.59e-03 

GO:0044238 BP primary metabolic process 2887/13168 76658/401320 2 1.94e-05 4.59e-03 

GO:0008152 BP metabolic process 4406/13168 112739/401320 1 2.34e-05 5.55e-03 

GO:0008150 BP biological_process 8532/13168 247920/401320 0 2.42e-05 5.74e-03 

GO:0007034 BP vacuolar transport 48/13168 802/401320 4 9.15e-05 0.0217 

GO:0071840 BP cellular component organization or biogenesis 293/13168 7102/401320 1 1.09e-04 0.0259 

GO:0007010 BP cytoskeleton organization 47/13168 781/401320 4 1.09e-04 0.0259 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0006605 BP protein targeting 44/13168 919/401320 9 0.0154 1 

GO:0006886 BP intracellular protein transport 44/13168 919/401320 8 0.0154 1 

GO:0044428 CC nuclear part 57/13168 803/401320 4 1.26e-06 2.99e-04 

GO:0000228 CC nuclear chromosome 54/13168 306/401320 6 1.40e-06 3.31e-04 

GO:0016020 CC membrane 57/13168 502/401320 1 1.91e-06 4.52e-04 

GO:0005886 CC plasma membrane 57/13168 502/401320 2 1.91e-06 4.52e-04 

GO:0005694 CC chromosome 54/13168 1051/401320 5 1.68e-03 0.398 

GO:0044422 CC organelle part 59/13168 1360/401320 1 0.0325 1 

GO:0044446 CC intracellular organelle part 59/13168 1360/401320 3 0.0325 1 

GO:0051082 MF unfolded protein binding 74/13168 1067/401320 3 1.65e-06 3.90e-04 

GO:0016810 MF hydrolase activity,  
acting on carbon-nitrogen (but not peptide) bonds 257/13168 1820/401320 3 3.35e-06 7.95e-04 

GO:0016779 MF nucleotidyltransferase activity 337/13168 5051/401320 4 5.59e-06 1.32e-03 

GO:0016829 MF lyase activity 363/13168 6527/401320 2 6.00e-06 1.42e-03 

GO:0016757 MF transferase activity, transferring glycosyl groups 343/13168 5667/401320 3 6.32e-06 1.50e-03 

GO:0016874 MF ligase activity 496/13168 6591/401320 2 6.64e-06 1.57e-03 

GO:0003723 MF RNA binding 471/13168 9993/401320 4 6.87e-06 1.63e-03 

GO:0008233 MF peptidase activity 608/13168 11340/401320 3 7.87e-06 1.87e-03 

GO:0140096 MF catalytic activity, acting on a protein 608/13168 11340/401320 2 7.87e-06 1.87e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016740 MF transferase activity 1448/13168 38813/401320 2 1.57e-05 3.72e-03 

GO:0008168 MF methyltransferase activity 240/13168 5544/401320 4 2.90e-05 6.86e-03 

GO:0016741 MF transferase activity, transferring one-carbon groups 240/13168 5544/401320 3 2.90e-05 6.86e-03 

GO:0045182 MF translation regulator activity 103/13168 2158/401320 1 2.12e-04 0.0502 

GO:0090079 MF translation regulator activity, nucleic acid binding 103/13168 2158/401320 4 2.12e-04 0.0502 

GO:0008135 MF translation factor activity, RNA binding 103/13168 2158/401320 5 2.12e-04 0.0502 

GO:0016746 MF transferase activity, transferring acyl groups 181/13168 4434/401320 3 3.42e-03 0.81 

GO:0016765 MF transferase activity,  
transferring alkyl or aryl (other than methyl) groups 63/13168 1381/401320 3 9.94e-03 1 
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Table 2.3.17. Underrepresented GO-slims in strict composite genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly underrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0032196 BP transposition 0/13168 537/401320 2 1.12e-06 2.64e-04 

GO:0042254 BP ribosome biogenesis 0/13168 914/401320 4 1.50e-06 3.55e-04 

GO:0022613 BP ribonucleoprotein complex biogenesis 0/13168 914/401320 3 1.50e-06 3.55e-04 

GO:0044085 BP cellular component biogenesis 0/13168 914/401320 2 1.50e-06 3.55e-04 

GO:1901361 BP organic cyclic compound catabolic process 5/13168 823/401320 4 2.86e-06 6.78e-04 

GO:0046700 BP heterocycle catabolic process 5/13168 823/401320 4 2.86e-06 6.78e-04 

GO:0044270 BP cellular nitrogen compound catabolic process 5/13168 823/401320 4 2.86e-06 6.78e-04 

GO:0034655 BP nucleobase-containing compound catabolic process 5/13168 823/401320 5 2.86e-06 6.78e-04 

GO:0019439 BP aromatic compound catabolic process 5/13168 823/401320 4 2.86e-06 6.78e-04 

GO:1901575 BP organic substance catabolic process 5/13168 823/401320 3 2.86e-06 6.78e-04 

GO:0006790 BP sulfur compound metabolic process 3/13168 1672/401320 3 3.46e-06 8.20e-04 

156



 

  

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016071 BP mRNA metabolic process 28/13168 2039/401320 7 3.53e-06 8.37e-04 

GO:0006396 BP RNA processing 28/13168 2039/401320 7 3.53e-06 8.37e-04 

GO:0006397 BP mRNA processing 28/13168 2039/401320 8 3.53e-06 8.37e-04 

GO:0042592 BP homeostatic process 13/13168 2448/401320 3 3.62e-06 8.59e-04 

GO:0065008 BP regulation of biological quality 13/13168 2448/401320 2 3.62e-06 8.59e-04 

GO:0050789 BP regulation of biological process 58/13168 5515/401320 2 5.71e-06 1.35e-03 

GO:0007165 BP signal transduction 58/13168 5515/401320 4 5.71e-06 1.35e-03 

GO:0050794 BP regulation of cellular process 58/13168 5515/401320 3 5.71e-06 1.35e-03 

GO:0006950 BP response to stress 133/13168 6331/401320 2 6.11e-06 1.45e-03 

GO:0050896 BP response to stimulus 133/13168 6331/401320 1 6.11e-06 1.45e-03 

GO:0006259 BP DNA metabolic process 134/13168 7926/401320 6 6.94e-06 1.65e-03 

GO:0065007 BP biological regulation 71/13168 7963/401320 1 7.26e-06 1.72e-03 

GO:1901566 BP organonitrogen compound biosynthetic process 157/13168 9985/401320 4 7.79e-06 1.85e-03 

GO:0044271 BP cellular nitrogen compound biosynthetic process 157/13168 9985/401320 4 7.79e-06 1.85e-03 

GO:0009059 BP macromolecule biosynthetic process 157/13168 9985/401320 4 7.79e-06 1.85e-03 

GO:0006412 BP translation 157/13168 9985/401320 7 7.79e-06 1.85e-03 

GO:0043043 BP peptide biosynthetic process 157/13168 9985/401320 6 7.79e-06 1.85e-03 

GO:0006518 BP peptide metabolic process 157/13168 9985/401320 5 7.79e-06 1.85e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0044249 BP cellular biosynthetic process 157/13168 9985/401320 3 7.79e-06 1.85e-03 

GO:0034645 BP cellular macromolecule biosynthetic process 157/13168 9985/401320 5 7.79e-06 1.85e-03 

GO:0043604 BP amide biosynthetic process 157/13168 9985/401320 5 7.79e-06 1.85e-03 

GO:0043603 BP cellular amide metabolic process 157/13168 9985/401320 4 7.79e-06 1.85e-03 

GO:1901576 BP organic substance biosynthetic process 157/13168 9985/401320 3 7.79e-06 1.85e-03 

GO:0061024 BP membrane organization 2/13168 516/401320 3 1.02e-05 2.43e-03 

GO:0043412 BP macromolecule modification 447/13168 21692/401320 4 1.03e-05 2.44e-03 

GO:0006464 BP cellular protein modification process 447/13168 21692/401320 6 1.03e-05 2.44e-03 

GO:0036211 BP protein modification process 447/13168 21692/401320 5 1.03e-05 2.44e-03 

GO:0044267 BP cellular protein metabolic process 604/13168 31675/401320 5 1.33e-05 3.14e-03 

GO:0019538 BP protein metabolic process 607/13168 31990/401320 4 1.34e-05 3.19e-03 

GO:0044260 BP cellular macromolecule metabolic process 738/13168 39601/401320 4 1.43e-05 3.39e-03 

GO:0055085 BP transmembrane transport 1011/13168 39724/401320 4 1.47e-05 3.48e-03 

GO:0043170 BP macromolecule metabolic process 1150/13168 47834/401320 3 1.55e-05 3.66e-03 

GO:0034641 BP cellular nitrogen compound metabolic process 1456/13168 52479/401320 3 1.72e-05 4.08e-03 

GO:0006807 BP nitrogen compound metabolic process 2242/13168 76971/401320 2 1.99e-05 4.72e-03 

GO:0022618 BP ribonucleoprotein complex assembly 0/13168 313/401320 6 4.72e-05 0.0112 

GO:0034622 BP cellular protein-containing complex assembly 0/13168 313/401320 5 4.72e-05 0.0112 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0071826 BP ribonucleoprotein complex subunit organization 0/13168 313/401320 4 4.72e-05 0.0112 

GO:0000278 BP mitotic cell cycle 0/13168 303/401320 3 6.96e-05 0.0165 

GO:0071941 BP nitrogen cycle metabolic process 1/13168 386/401320 3 7.58e-05 0.018 

GO:0051604 BP protein maturation 3/13168 513/401320 5 8.91e-05 0.0211 

GO:0071554 BP cell wall organization or biogenesis 0/13168 250/401320 2 4.98e-04 0.118 

GO:0044237 BP cellular metabolic process 2478/13168 79144/401320 2 8.04e-03 1 

GO:0005777 CC peroxisome 0/13168 480/401320 6 9.39e-07 2.23e-04 

GO:0042579 CC microbody 0/13168 480/401320 5 9.39e-07 2.23e-04 

GO:0030312 CC external encapsulating structure 0/13168 902/401320 2 2.06e-06 4.88e-04 

GO:0005618 CC cell wall 0/13168 902/401320 3 2.06e-06 4.88e-04 

GO:0005783 CC endoplasmic reticulum 0/13168 927/401320 5 2.84e-06 6.73e-04 

GO:0005576 CC extracellular region 7/13168 1368/401320 1 2.86e-06 6.78e-04 

GO:0044430 CC cytoskeletal part 2/13168 557/401320 4 3.67e-06 8.70e-04 

GO:0005815 CC microtubule organizing center 2/13168 557/401320 5 3.67e-06 8.70e-04 

GO:0005622 CC intracellular 125/13168 7889/401320 2 6.64e-06 1.57e-03 

GO:1990904 CC ribonucleoprotein complex 157/13168 9786/401320 2 7.24e-06 1.72e-03 

GO:0005840 CC ribosome 157/13168 9786/401320 5 7.24e-06 1.72e-03 

GO:0043228 CC non-membrane-bounded organelle 215/13168 11783/401320 2 8.00e-06 1.90e-03 

159



 

  

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0043232 CC intracellular non-membrane-bounded organelle 215/13168 11783/401320 4 8.00e-06 1.90e-03 

GO:0044444 CC cytoplasmic part 193/13168 12564/401320 3 8.35e-06 1.98e-03 

GO:0005634 CC nucleus 421/13168 19392/401320 5 9.69e-06 2.30e-03 

GO:0043227 CC membrane-bounded organelle 457/13168 22063/401320 2 1.11e-05 2.63e-03 

GO:0043231 CC intracellular membrane-bounded organelle 457/13168 22063/401320 4 1.11e-05 2.63e-03 

GO:0005856 CC cytoskeleton 1/13168 450/401320 5 1.31e-05 3.10e-03 

GO:0043229 CC intracellular organelle 672/13168 33803/401320 3 1.32e-05 3.13e-03 

GO:0043226 CC organelle 708/13168 34799/401320 1 1.38e-05 3.28e-03 

GO:0032991 CC protein-containing complex 801/13168 34280/401320 1 1.40e-05 3.31e-03 

GO:0044424 CC intracellular part 815/13168 39026/401320 2 1.44e-05 3.41e-03 

GO:0044464 CC cell part 875/13168 42555/401320 1 1.57e-05 3.73e-03 

GO:0005575 CC cellular_component 3467/13168 122687/401320 0 2.32e-05 5.49e-03 

GO:0005730 CC nucleolus 3/13168 497/401320 5 1.21e-04 0.0286 

GO:0019843 MF rRNA binding 0/13168 616/401320 5 1.09e-06 2.58e-04 

GO:0004386 MF helicase activity 0/13168 2011/401320 7 3.06e-06 7.26e-04 

GO:0008289 MF lipid binding 20/13168 1961/401320 2 3.07e-06 7.28e-04 

GO:0004518 MF nuclease activity 3/13168 3928/401320 4 4.14e-06 9.81e-04 

GO:0008092 MF cytoskeletal protein binding 52/13168 2945/401320 3 4.49e-06 1.06e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016853 MF isomerase activity 49/13168 4244/401320 2 5.09e-06 1.21e-03 

GO:0003924 MF GTPase activity 11/13168 5881/401320 7 5.55e-06 1.32e-03 

GO:0016788 MF hydrolase activity, acting on ester bonds 44/13168 5627/401320 3 5.87e-06 1.39e-03 

GO:0016887 MF ATPase activity 0/13168 5630/401320 7 5.89e-06 1.40e-03 

GO:0005515 MF protein binding 168/13168 7948/401320 2 6.12e-06 1.45e-03 

GO:0016798 MF hydrolase activity, acting on glycosyl bonds 164/13168 9306/401320 3 6.49e-06 1.54e-03 

GO:0003735 MF structural constituent of ribosome 157/13168 10102/401320 2 6.72e-06 1.59e-03 

GO:0140110 MF transcription regulator activity 156/13168 10273/401320 1 7.00e-06 1.66e-03 

GO:0003700 MF DNA-binding transcription factor activity 156/13168 10273/401320 2 7.00e-06 1.66e-03 

GO:0005198 MF structural molecule activity 157/13168 11671/401320 1 8.22e-06 1.95e-03 

GO:0016818 MF hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides 11/13168 13032/401320 4 8.50e-06 2.01e-03 

GO:0016817 MF hydrolase activity, acting on acid anhydrides 11/13168 13032/401320 3 8.50e-06 2.01e-03 

GO:0016462 MF pyrophosphatase activity 11/13168 13032/401320 5 8.50e-06 2.01e-03 

GO:0017111 MF nucleoside-triphosphatase activity 11/13168 13032/401320 6 8.50e-06 2.01e-03 

GO:0016301 MF kinase activity 284/13168 16743/401320 4 9.23e-06 2.19e-03 

GO:0003677 MF DNA binding 322/13168 20257/401320 4 1.11e-05 2.64e-03 

GO:1901363 MF heterocyclic compound binding 793/13168 30244/401320 2 1.27e-05 3.01e-03 

GO:0003676 MF nucleic acid binding 793/13168 30244/401320 3 1.27e-05 3.01e-03 

161



 

  

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0097159 MF organic cyclic compound binding 793/13168 30244/401320 2 1.27e-05 3.01e-03 

GO:0016787 MF hydrolase activity 1084/13168 40915/401320 2 1.46e-05 3.45e-03 

GO:0003674 MF molecular_function 10008/13168 325539/401320 0 1.97e-05 4.66e-03 

GO:0043167 MF ion binding 2216/13168 107256/401320 2 2.18e-05 5.17e-03 

GO:0005488 MF binding 3063/13168 132438/401320 1 2.43e-05 5.75e-03 

GO:0008134 MF transcription factor binding 0/13168 317/401320 3 4.80e-05 0.0114 

GO:0098772 MF molecular function regulator 52/13168 2649/401320 1 6.10e-05 0.0144 

GO:0030234 MF enzyme regulator activity 52/13168 2649/401320 2 6.10e-05 0.0144 

GO:0003729 MF mRNA binding 0/13168 311/401320 5 7.56e-05 0.0179 

GO:0016772 MF transferase activity, transferring phosphorus-containing groups 621/13168 21794/401320 3 2.02e-04 0.048 

GO:0032182 MF ubiquitin-like protein binding 0/13168 189/401320 3 3.38e-03 0.801 

GO:0042393 MF histone binding 0/13168 164/401320 3 7.33e-03 1 

GO:0019899 MF enzyme binding 89/13168 3537/401320 3 9.06e-03 1 

GO:0042578 MF phosphoric ester hydrolase activity 41/13168 1699/401320 4 0.0473 1 

GO:0016791 MF phosphatase activity 41/13168 1699/401320 5 0.0473 1 
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Table 2.3.18. Overrepresented GO-slims in strict component genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly overrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0051301 BP cell division 63/86709 87/401320 2 1.35e-06 3.20e-04 

GO:0071826 BP ribonucleoprotein complex subunit organization 134/86709 313/401320 4 2.48e-06 5.87e-04 

GO:0034622 BP cellular protein-containing complex assembly 134/86709 313/401320 5 2.48e-06 5.87e-04 

GO:0022618 BP ribonucleoprotein complex assembly 134/86709 313/401320 6 2.48e-06 5.87e-04 

GO:0007059 BP chromosome segregation 113/86709 289/401320 2 2.80e-06 6.64e-04 

GO:0051169 BP nuclear transport 172/86709 517/401320 5 3.84e-06 9.10e-04 

GO:0006913 BP nucleocytoplasmic transport 172/86709 517/401320 6 3.84e-06 9.10e-04 

GO:0061024 BP membrane organization 159/86709 516/401320 3 4.89e-06 1.16e-03 

GO:0006886 BP intracellular protein transport 303/86709 919/401320 8 5.50e-06 1.30e-03 

GO:0006605 BP protein targeting 303/86709 919/401320 9 5.50e-06 1.30e-03 

GO:0006457 BP protein folding 318/86709 1039/401320 2 5.70e-06 1.35e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0051641 BP cellular localization 475/86709 1440/401320 2 6.90e-06 1.63e-03 

GO:0051649 BP establishment of localization in cell 475/86709 1440/401320 3 6.90e-06 1.63e-03 

GO:0046907 BP intracellular transport 475/86709 1440/401320 4 6.90e-06 1.63e-03 

GO:0022607 BP cellular component assembly 765/86709 2992/401320 3 9.00e-06 2.13e-03 

GO:0043933 BP protein-containing complex subunit organization 678/86709 2472/401320 3 9.00e-06 2.13e-03 

GO:0065003 BP protein-containing complex assembly 678/86709 2472/401320 4 9.00e-06 2.13e-03 

GO:0065008 BP regulation of biological quality 717/86709 2448/401320 2 9.10e-06 2.16e-03 

GO:0042592 BP homeostatic process 717/86709 2448/401320 3 9.10e-06 2.16e-03 

GO:0051186 BP cofactor metabolic process 847/86709 3046/401320 3 9.76e-06 2.31e-03 

GO:0016192 BP vesicle-mediated transport 1455/86709 5466/401320 4 1.24e-05 2.95e-03 

GO:0050896 BP response to stimulus 1706/86709 6331/401320 1 1.41e-05 3.35e-03 

GO:0006950 BP response to stress 1706/86709 6331/401320 2 1.41e-05 3.35e-03 

GO:0009056 BP catabolic process 1799/86709 6927/401320 2 1.49e-05 3.53e-03 

GO:0006259 BP DNA metabolic process 1939/86709 7926/401320 6 1.59e-05 3.78e-03 

GO:0006629 BP lipid metabolic process 2461/86709 9168/401320 3 1.70e-05 4.03e-03 

GO:0044249 BP cellular biosynthetic process 2573/86709 9985/401320 3 1.82e-05 4.32e-03 

GO:1901576 BP organic substance biosynthetic process 2573/86709 9985/401320 3 1.82e-05 4.32e-03 

GO:0009059 BP macromolecule biosynthetic process 2573/86709 9985/401320 4 1.82e-05 4.32e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0043603 BP cellular amide metabolic process 2573/86709 9985/401320 4 1.82e-05 4.32e-03 

GO:0044271 BP cellular nitrogen compound biosynthetic process 2573/86709 9985/401320 4 1.82e-05 4.32e-03 

GO:1901566 BP organonitrogen compound biosynthetic process 2573/86709 9985/401320 4 1.82e-05 4.32e-03 

GO:0006518 BP peptide metabolic process 2573/86709 9985/401320 5 1.82e-05 4.32e-03 

GO:0034645 BP cellular macromolecule biosynthetic process 2573/86709 9985/401320 5 1.82e-05 4.32e-03 

GO:0043604 BP amide biosynthetic process 2573/86709 9985/401320 5 1.82e-05 4.32e-03 

GO:0043043 BP peptide biosynthetic process 2573/86709 9985/401320 6 1.82e-05 4.32e-03 

GO:0006412 BP translation 2573/86709 9985/401320 7 1.82e-05 4.32e-03 

GO:0044281 BP small molecule metabolic process 4522/86709 17822/401320 2 2.47e-05 5.85e-03 

GO:0000278 BP mitotic cell cycle 97/86709 303/401320 3 2.53e-05 6.00e-03 

GO:0009058 BP biosynthetic process 10877/86709 42776/401320 2 3.68e-05 8.72e-03 

GO:0034641 BP cellular nitrogen compound metabolic process 12336/86709 52479/401320 3 4.01e-05 9.50e-03 

GO:0008152 BP metabolic process 25649/86709 112739/401320 1 5.52e-05 0.0131 

GO:0016043 BP cellular component organization 1461/86709 6188/401320 2 1.46e-04 0.0345 

GO:0007049 BP cell cycle 105/86709 352/401320 2 3.46e-04 0.082 

GO:0090304 BP nucleic acid metabolic process 3623/86709 15956/401320 5 6.36e-04 0.151 

GO:0051276 BP chromosome organization 459/86709 1844/401320 4 7.34e-04 0.174 

GO:0033036 BP macromolecule localization 1383/86709 5930/401320 2 1.32e-03 0.313 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0008104 BP protein localization 1383/86709 5930/401320 3 1.32e-03 0.313 

GO:0045184 BP establishment of protein localization 1383/86709 5930/401320 4 1.32e-03 0.313 

GO:0071702 BP organic substance transport 1383/86709 5930/401320 4 1.32e-03 0.313 

GO:0071705 BP nitrogen compound transport 1383/86709 5930/401320 4 1.32e-03 0.313 

GO:0042886 BP amide transport 1383/86709 5930/401320 5 1.32e-03 0.313 

GO:0015833 BP peptide transport 1383/86709 5930/401320 6 1.32e-03 0.313 

GO:0015031 BP protein transport 1383/86709 5930/401320 7 1.32e-03 0.313 

GO:0032502 BP developmental process 13/86709 33/401320 1 0.0189 1 

GO:0048856 BP anatomical structure development 13/86709 31/401320 2 0.0137 1 

GO:0006725 BP cellular aromatic compound metabolic process 3704/86709 16648/401320 3 0.0405 1 

GO:0046483 BP heterocycle metabolic process 3704/86709 16648/401320 3 0.0405 1 

GO:1901360 BP organic cyclic compound metabolic process 3704/86709 16648/401320 3 0.0405 1 

GO:0006139 BP nucleobase-containing compound metabolic process 3704/86709 16648/401320 4 0.0405 1 

GO:0051604 BP protein maturation 137/86709 513/401320 5 6.12e-03 1 

GO:0016020 CC membrane 213/86709 502/401320 1 3.60e-06 8.53e-04 

GO:0005886 CC plasma membrane 213/86709 502/401320 2 3.60e-06 8.53e-04 

GO:0042579 CC microbody 177/86709 480/401320 5 3.78e-06 8.97e-04 

GO:0005777 CC peroxisome 177/86709 480/401320 6 3.78e-06 8.97e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0030312 CC external encapsulating structure 376/86709 902/401320 2 5.43e-06 1.29e-03 

GO:0005618 CC cell wall 376/86709 902/401320 3 5.43e-06 1.29e-03 

GO:0005622 CC intracellular 2174/86709 7889/401320 2 1.52e-05 3.61e-03 

GO:1990904 CC ribonucleoprotein complex 2558/86709 9786/401320 2 1.78e-05 4.23e-03 

GO:0005840 CC ribosome 2558/86709 9786/401320 5 1.78e-05 4.23e-03 

GO:0043228 CC non-membrane-bounded organelle 2985/86709 11783/401320 2 1.94e-05 4.59e-03 

GO:0043232 CC intracellular non-membrane-bounded organelle 2985/86709 11783/401320 4 1.94e-05 4.59e-03 

GO:0044444 CC cytoplasmic part 3049/86709 12564/401320 3 2.02e-05 4.79e-03 

GO:0032991 CC protein-containing complex 9227/86709 34280/401320 1 3.41e-05 8.07e-03 

GO:0044464 CC cell part 9452/86709 42555/401320 1 1.40e-03 0.331 

GO:0005694 CC chromosome 269/86709 1051/401320 5 2.07e-03 0.491 

GO:0005856 CC cytoskeleton 124/86709 450/401320 5 2.83e-03 0.672 

GO:0042393 MF histone binding 105/86709 164/401320 3 2.39e-06 5.67e-04 

GO:0051082 MF unfolded protein binding 321/86709 1067/401320 3 5.30e-06 1.26e-03 

GO:0042578 MF phosphoric ester hydrolase activity 657/86709 1699/401320 4 6.95e-06 1.65e-03 

GO:0016791 MF phosphatase activity 657/86709 1699/401320 5 6.95e-06 1.65e-03 

GO:0016765 MF transferase activity,  
transferring alkyl or aryl (other than methyl) groups 412/86709 1381/401320 3 6.99e-06 1.66e-03 

GO:0016810 MF hydrolase activity,  
acting on carbon-nitrogen (but not peptide) bonds 486/86709 1820/401320 3 7.24e-06 1.71e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0045182 MF translation regulator activity 656/86709 2158/401320 1 8.12e-06 1.93e-03 

GO:0090079 MF translation regulator activity, nucleic acid binding 656/86709 2158/401320 4 8.12e-06 1.93e-03 

GO:0008135 MF translation factor activity, RNA binding 656/86709 2158/401320 5 8.12e-06 1.93e-03 

GO:0008289 MF lipid binding 540/86709 1961/401320 2 8.19e-06 1.94e-03 

GO:0098772 MF molecular function regulator 984/86709 2649/401320 1 9.32e-06 2.21e-03 

GO:0030234 MF enzyme regulator activity 984/86709 2649/401320 2 9.32e-06 2.21e-03 

GO:0019899 MF enzyme binding 887/86709 3537/401320 3 1.12e-05 2.64e-03 

GO:0016788 MF hydrolase activity, acting on ester bonds 1376/86709 5627/401320 3 1.32e-05 3.13e-03 

GO:0016741 MF transferase activity, transferring one-carbon groups 1413/86709 5544/401320 3 1.33e-05 3.15e-03 

GO:0008168 MF methyltransferase activity 1413/86709 5544/401320 4 1.33e-05 3.15e-03 

GO:0016779 MF nucleotidyltransferase activity 1238/86709 5051/401320 4 1.34e-05 3.17e-03 

GO:0016874 MF ligase activity 1705/86709 6591/401320 2 1.38e-05 3.27e-03 

GO:0003735 MF structural constituent of ribosome 2546/86709 10102/401320 2 1.72e-05 4.08e-03 

GO:0016798 MF hydrolase activity, acting on glycosyl bonds 2227/86709 9306/401320 3 1.75e-05 4.14e-03 

GO:0003723 MF RNA binding 2532/86709 9993/401320 4 1.84e-05 4.35e-03 

GO:0005198 MF structural molecule activity 3024/86709 11671/401320 1 1.86e-05 4.42e-03 

GO:0016853 MF isomerase activity 1030/86709 4244/401320 2 4.00e-05 9.48e-03 

GO:0003674 MF molecular function 72609/86709 325539/401320 0 4.66e-05 0.011 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0016829 MF lyase activity 1524/86709 6527/401320 2 6.45e-04 0.153 

GO:0140096 MF catalytic activity, acting on a protein 2556/86709 11340/401320 2 0.0146 1 

GO:0008233 MF peptidase activity 2556/86709 11340/401320 3 0.0146 1 
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Table 2.3.19. Underrepresented GO-slims in strict component genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly underrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0071941 BP nitrogen cycle metabolic process 17/86709 386/401320 3 3.03e-06 7.17e-04 

GO:0032196 BP transposition 17/86709 537/401320 2 3.55e-06 8.42e-04 

GO:0007005 BP mitochondrion organization 35/86709 542/401320 4 3.97e-06 9.40e-04 

GO:1901575 BP organic substance catabolic process 88/86709 823/401320 3 4.39e-06 1.04e-03 

GO:0019439 BP aromatic compound catabolic process 88/86709 823/401320 4 4.39e-06 1.04e-03 

GO:0044270 BP cellular nitrogen compound catabolic process 88/86709 823/401320 4 4.39e-06 1.04e-03 

GO:0046700 BP heterocycle catabolic process 88/86709 823/401320 4 4.39e-06 1.04e-03 

GO:1901361 BP organic cyclic compound catabolic process 88/86709 823/401320 4 4.39e-06 1.04e-03 

GO:0034655 BP nucleobase-containing compound catabolic process 88/86709 823/401320 5 4.39e-06 1.04e-03 

GO:0044085 BP cellular component biogenesis 15/86709 914/401320 2 5.18e-06 1.23e-03 

GO:0022613 BP ribonucleoprotein complex biogenesis 15/86709 914/401320 3 5.18e-06 1.23e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0042254 BP ribosome biogenesis 15/86709 914/401320 4 5.18e-06 1.23e-03 

GO:0007010 BP cytoskeleton organization 111/86709 781/401320 4 5.65e-06 1.34e-03 

GO:0044248 BP cellular catabolic process 151/86709 1301/401320 3 5.95e-06 1.41e-03 

GO:0061919 BP process utilizing autophagic mechanism 63/86709 478/401320 2 6.01e-06 1.43e-03 

GO:0006914 BP autophagy 63/86709 478/401320 4 6.01e-06 1.43e-03 

GO:0006790 BP sulfur compound metabolic process 177/86709 1672/401320 3 6.74e-06 1.60e-03 

GO:0006091 BP generation of precursor metabolites and energy 125/86709 1417/401320 3 6.77e-06 1.60e-03 

GO:0050789 BP regulation of biological process 811/86709 5515/401320 2 1.26e-05 2.98e-03 

GO:0050794 BP regulation of cellular process 811/86709 5515/401320 3 1.26e-05 2.98e-03 

GO:0007165 BP signal transduction 811/86709 5515/401320 4 1.26e-05 2.98e-03 

GO:0006396 BP RNA processing 359/86709 2039/401320 7 1.38e-05 3.27e-03 

GO:0016071 BP mRNA metabolic process 359/86709 2039/401320 7 1.38e-05 3.27e-03 

GO:0006397 BP mRNA processing 359/86709 2039/401320 8 1.38e-05 3.27e-03 

GO:0065007 BP biological regulation 1528/86709 7963/401320 1 1.67e-05 3.95e-03 

GO:0043412 BP macromolecule modification 3063/86709 21692/401320 4 2.69e-05 6.37e-03 

GO:0036211 BP protein modification process 3063/86709 21692/401320 5 2.69e-05 6.37e-03 

GO:0006464 BP cellular protein modification process 3063/86709 21692/401320 6 2.69e-05 6.37e-03 

GO:0044267 BP cellular protein metabolic process 5636/86709 31675/401320 5 3.17e-05 7.50e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0019538 BP protein metabolic process 5720/86709 31990/401320 4 3.23e-05 7.66e-03 

GO:0044260 BP cellular macromolecule metabolic process 7575/86709 39601/401320 4 3.55e-05 8.41e-03 

GO:1901564 BP organonitrogen compound metabolic process 7367/86709 39471/401320 3 3.56e-05 8.43e-03 

GO:0055085 BP transmembrane transport 4052/86709 39724/401320 4 3.64e-05 8.62e-03 

GO:0043170 BP macromolecule metabolic process 9343/86709 47834/401320 3 3.89e-05 9.23e-03 

GO:0051179 BP localization 7334/86709 53205/401320 1 4.03e-05 9.55e-03 

GO:0051234 BP establishment of localization 7334/86709 53205/401320 2 4.03e-05 9.55e-03 

GO:0006810 BP transport 7334/86709 53205/401320 3 4.03e-05 9.55e-03 

GO:0009987 BP cellular process 19029/86709 90607/401320 1 5.11e-05 0.0121 

GO:0044238 BP primary metabolic process 16098/86709 76658/401320 2 5.36e-05 0.0127 

GO:0071704 BP organic substance metabolic process 16098/86709 76658/401320 2 5.36e-05 0.0127 

GO:0008150 BP biological_process 50281/86709 247920/401320 0 5.98e-05 0.0142 

GO:0044237 BP cellular metabolic process 16662/86709 79144/401320 2 7.43e-05 0.0176 

GO:0006996 BP organelle organization 605/86709 3167/401320 3 5.23e-04 0.124 

GO:0006807 BP nitrogen compound metabolic process 16288/86709 76971/401320 2 9.09e-04 0.216 

GO:0019748 BP secondary metabolic process 154/86709 896/401320 2 1.14e-03 0.269 

GO:0007034 BP vacuolar transport 138/86709 802/401320 4 2.27e-03 0.537 

GO:0005730 CC nucleolus 34/86709 497/401320 5 3.20e-06 7.58e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0044428 CC nuclear part 114/86709 803/401320 4 5.09e-06 1.21e-03 

GO:0005783 CC endoplasmic reticulum 87/86709 927/401320 5 6.02e-06 1.43e-03 

GO:0005576 CC extracellular region 210/86709 1368/401320 1 6.33e-06 1.50e-03 

GO:0044422 CC organelle part 221/86709 1360/401320 1 6.94e-06 1.64e-03 

GO:0044446 CC intracellular organelle part 221/86709 1360/401320 3 6.94e-06 1.64e-03 

GO:0005739 CC mitochondrion 194/86709 1210/401320 5 7.34e-06 1.74e-03 

GO:0005634 CC nucleus 3799/86709 19392/401320 5 2.52e-05 5.98e-03 

GO:0043227 CC membrane-bounded organelle 4260/86709 22063/401320 2 2.68e-05 6.36e-03 

GO:0043231 CC intracellular membrane-bounded organelle 4260/86709 22063/401320 4 2.68e-05 6.36e-03 

GO:0005575 CC cellular_component 22547/86709 122687/401320 0 5.69e-05 0.0135 

GO:0005773 CC vacuole 3/86709 54/401320 5 2.43e-03 0.576 

GO:0044424 CC intracellular part 8279/86709 39026/401320 2 0.0484 1 

GO:0060090 MF molecular adaptor activity 2/86709 99/401320 2 1.83e-06 4.34e-04 

GO:0030674 MF protein binding, bridging 2/86709 99/401320 3 1.83e-06 4.34e-04 

GO:0032182 MF ubiquitin-like protein binding 2/86709 189/401320 3 2.08e-06 4.94e-04 

GO:0008134 MF transcription factor binding 0/86709 317/401320 3 2.91e-06 6.89e-04 

GO:0004386 MF helicase activity 173/86709 2011/401320 7 7.24e-06 1.72e-03 

GO:0008092 MF cytoskeletal protein binding 384/86709 2945/401320 3 9.43e-06 2.24e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0004518 MF nuclease activity 719/86709 3928/401320 4 1.16e-05 2.74e-03 

GO:0019843 MF rRNA binding 89/86709 616/401320 5 1.23e-05 2.91e-03 

GO:0003924 MF GTPase activity 719/86709 5881/401320 7 1.31e-05 3.10e-03 

GO:0016887 MF ATPase activity 391/86709 5630/401320 7 1.33e-05 3.15e-03 

GO:0016757 MF transferase activity, transferring glycosyl groups 908/86709 5667/401320 3 1.42e-05 3.36e-03 

GO:0140110 MF transcription regulator activity 1781/86709 10273/401320 1 1.81e-05 4.29e-03 

GO:0003700 MF DNA-binding transcription factor activity 1781/86709 10273/401320 2 1.81e-05 4.29e-03 

GO:0016817 MF hydrolase activity, acting on acid anhydrides 1238/86709 13032/401320 3 2.11e-05 5.01e-03 

GO:0016818 MF hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides 1238/86709 13032/401320 4 2.11e-05 5.01e-03 

GO:0016462 MF pyrophosphatase activity 1238/86709 13032/401320 5 2.11e-05 5.01e-03 

GO:0017111 MF nucleoside-triphosphatase activity 1238/86709 13032/401320 6 2.11e-05 5.01e-03 

GO:0016301 MF kinase activity 2479/86709 16743/401320 4 2.33e-05 5.53e-03 

GO:0003677 MF DNA binding 3790/86709 20257/401320 4 2.51e-05 5.95e-03 

GO:0016772 MF transferase activity, transferring phosphorus-containing groups 3717/86709 21794/401320 3 2.60e-05 6.15e-03 

GO:0005215 MF transporter activity 3008/86709 21900/401320 1 2.71e-05 6.42e-03 

GO:0022857 MF transmembrane transporter activity 3008/86709 21900/401320 2 2.71e-05 6.42e-03 

GO:0016740 MF transferase activity 7356/86709 38813/401320 2 3.58e-05 8.47e-03 

GO:0016787 MF hydrolase activity 7883/86709 40915/401320 2 3.69e-05 8.74e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0043167 MF ion binding 18248/86709 107256/401320 2 5.37e-05 0.0127 

GO:0005488 MF binding 24200/86709 132438/401320 1 5.78e-05 0.0137 

GO:0003824 MF catalytic activity 28917/86709 141848/401320 1 5.93e-05 0.014 

GO:0016491 MF oxidoreductase activity 9664/86709 45921/401320 2 1.92e-03 0.454 

GO:0097159 MF organic cyclic compound binding 6322/86709 30244/401320 2 2.02e-03 0.478 

GO:1901363 MF heterocyclic compound binding 6322/86709 30244/401320 2 2.02e-03 0.478 

GO:0003676 MF nucleic acid binding 6322/86709 30244/401320 3 2.02e-03 0.478 
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DNA repair and mitosis are both highly conserved and tightly coordinated processes 

which can be significantly impaired by mutation (Hakem, 2008). Due to these factors, it is 

surprising to observe these ontologies in any remodelling category. 

 

2.3.7.4. Non-remodelled genes are likely to possess conserved housekeeping functions  

 

As observed in overrepresented strict component ontologs, non-remodelled ontologs 

were enriched for mitotic processes (PB ≤ 8.33e-03) and for ribosomal biogenesis (GO:0042254; 

PB = 1.33e-03) (Tables 2.3.17-18.). As observed in strict components, non-remodelled ontologs 

were also underrepresented for signalling. Due to the highly conserved and coordinated role of 

the ribosome in protein synthesis, it is not surprising that these genes are not remodelled. 

 

 2.3.7.5. Functions of remodelled genes emerging at the root of Pezizomycotina 

correlate to phenotype 

 

 With 53 of 107 species, Pezizomycotina constitute the most speciose clade in our 

dataset  (49.53%; Tables 2.2.2.-2.2.3).  The economic value of Pezizomycotina is reflected by 

their relative volume of sequencing projects compared to other fungal lineages (Geiser et al., 

2006). The divergence of Pezizomycotina from Saccharomycotina is marked by considerable 

changes in phenotype, such as the transition from a predominantly anamorphic lifecycle to a 

predominantly teleomorphic life cycle, a transition towards predominant multicellularity, and 

the expansion of secondary metabolism pathways (Spatafora and Bushley, 2015). When 

remodelled gene families annotated to the root of Pezizomycotina (“Node_115”) were tested 

for functional overrepresentation, considerable coincidences  between function and phenotype 

were observed (Table  2.3.19.).  Strict composites displayed significant overrepresentation for  

176



 

  

Table 2.3.20: Overrepresented GO-slims in non-remodelled genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly overrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0007009 BP plasma membrane organization 11/85510 11/401320 4 4.11e-08 9.73e-06 

GO:0071826 BP ribonucleoprotein complex subunit organization 175/85510 313/401320 4 2.20e-06 5.20e-04 

GO:0034622 BP cellular protein-containing complex assembly 175/85510 313/401320 5 2.20e-06 5.20e-04 

GO:0022618 BP ribonucleoprotein complex assembly 175/85510 313/401320 6 2.20e-06 5.20e-04 

GO:0000278 BP mitotic cell cycle 182/85510 303/401320 3 3.01e-06 7.13e-04 

GO:0007049 BP cell cycle 182/85510 352/401320 2 3.24e-06 7.69e-04 

GO:0061024 BP membrane organization 267/85510 516/401320 3 3.37e-06 7.99e-04 

GO:0007005 BP mitochondrion organization 439/85510 542/401320 4 3.51e-06 8.32e-04 

GO:0007059 BP chromosome segregation 98/85510 289/401320 2 3.52e-06 8.33e-04 

GO:0051604 BP protein maturation 326/85510 513/401320 5 4.08e-06 9.66e-04 

GO:0007010 BP cytoskeleton organization 307/85510 781/401320 4 4.10e-06 9.72e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0061919 BP process utilizing autophagic mechanism 261/85510 478/401320 2 4.11e-06 9.73e-04 

GO:0006914 BP autophagy 261/85510 478/401320 4 4.11e-06 9.73e-04 

GO:0007034 BP vacuolar transport 616/85510 802/401320 4 4.46e-06 1.06e-03 

GO:1901575 BP organic substance catabolic process 321/85510 823/401320 3 4.82e-06 1.14e-03 

GO:0019439 BP aromatic compound catabolic process 321/85510 823/401320 4 4.82e-06 1.14e-03 

GO:0044270 BP cellular nitrogen compound catabolic process 321/85510 823/401320 4 4.82e-06 1.14e-03 

GO:0046700 BP heterocycle catabolic process 321/85510 823/401320 4 4.82e-06 1.14e-03 

GO:1901361 BP organic cyclic compound catabolic process 321/85510 823/401320 4 4.82e-06 1.14e-03 

GO:0034655 BP nucleobase-containing compound catabolic process 321/85510 823/401320 5 4.82e-06 1.14e-03 

GO:0044085 BP cellular component biogenesis 704/85510 914/401320 2 5.61e-06 1.33e-03 

GO:0022613 BP ribonucleoprotein complex biogenesis 704/85510 914/401320 3 5.61e-06 1.33e-03 

GO:0042254 BP ribosome biogenesis 704/85510 914/401320 4 5.61e-06 1.33e-03 

GO:0006886 BP intracellular protein transport 437/85510 919/401320 8 5.95e-06 1.41e-03 

GO:0006605 BP protein targeting 437/85510 919/401320 9 5.95e-06 1.41e-03 

GO:0006457 BP protein folding 617/85510 1039/401320 2 6.07e-06 1.44e-03 

GO:0051641 BP cellular localization 500/85510 1440/401320 2 6.17e-06 1.46e-03 

GO:0051649 BP establishment of localization in cell 500/85510 1440/401320 3 6.17e-06 1.46e-03 

GO:0046907 BP intracellular transport 500/85510 1440/401320 4 6.17e-06 1.46e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0044248 BP cellular catabolic process 582/85510 1301/401320 3 6.25e-06 1.48e-03 

GO:0006790 BP sulfur compound metabolic process 1483/85510 1672/401320 3 7.00e-06 1.66e-03 

GO:0006091 BP generation of precursor metabolites and energy 1098/85510 1417/401320 3 7.07e-06 1.67e-03 

GO:0051276 BP chromosome organization 632/85510 1844/401320 4 7.51e-06 1.78e-03 

GO:0006396 BP RNA processing 800/85510 2039/401320 7 7.53e-06 1.78e-03 

GO:0016071 BP mRNA metabolic process 800/85510 2039/401320 7 7.53e-06 1.78e-03 

GO:0006397 BP mRNA processing 800/85510 2039/401320 8 7.53e-06 1.78e-03 

GO:0043933 BP protein-containing complex subunit organization 1162/85510 2472/401320 3 9.07e-06 2.15e-03 

GO:0065003 BP protein-containing complex assembly 1162/85510 2472/401320 4 9.07e-06 2.15e-03 

GO:0006996 BP organelle organization 1378/85510 3167/401320 3 9.66e-06 2.29e-03 

GO:0051186 BP cofactor metabolic process 1804/85510 3046/401320 3 9.78e-06 2.32e-03 

GO:0022607 BP cellular component assembly 1590/85510 2992/401320 3 9.99e-06 2.37e-03 

GO:0033036 BP macromolecule localization 1631/85510 5930/401320 2 1.28e-05 3.04e-03 

GO:0008104 BP protein localization 1631/85510 5930/401320 3 1.28e-05 3.04e-03 

GO:0045184 BP establishment of protein localization 1631/85510 5930/401320 4 1.28e-05 3.04e-03 

GO:0071702 BP organic substance transport 1631/85510 5930/401320 4 1.28e-05 3.04e-03 

GO:0071705 BP nitrogen compound transport 1631/85510 5930/401320 4 1.28e-05 3.04e-03 

GO:0042886 BP amide transport 1631/85510 5930/401320 5 1.28e-05 3.04e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0015833 BP peptide transport 1631/85510 5930/401320 6 1.28e-05 3.04e-03 

GO:0015031 BP protein transport 1631/85510 5930/401320 7 1.28e-05 3.04e-03 

GO:0016192 BP vesicle-mediated transport 1603/85510 5466/401320 4 1.31e-05 3.11e-03 

GO:0034660 BP ncRNA metabolic process 1799/85510 5991/401320 7 1.42e-05 3.36e-03 

GO:0006399 BP tRNA metabolic process 1799/85510 5991/401320 8 1.42e-05 3.36e-03 

GO:0016043 BP cellular component organization 2842/85510 6188/401320 2 1.46e-05 3.46e-03 

GO:0071840 BP cellular component organization or biogenesis 3546/85510 7102/401320 1 1.50e-05 3.56e-03 

GO:0016070 BP RNA metabolic process 2599/85510 8030/401320 6 1.54e-05 3.64e-03 

GO:0009056 BP catabolic process 2658/85510 6927/401320 2 1.54e-05 3.65e-03 

GO:0006082 BP organic acid metabolic process 2575/85510 7482/401320 3 1.57e-05 3.72e-03 

GO:0043436 BP oxoacid metabolic process 2575/85510 7482/401320 4 1.57e-05 3.72e-03 

GO:0019752 BP carboxylic acid metabolic process 2575/85510 7482/401320 5 1.57e-05 3.72e-03 

GO:0006520 BP cellular amino acid metabolic process 2575/85510 7482/401320 6 1.57e-05 3.72e-03 

GO:0006259 BP DNA metabolic process 1885/85510 7926/401320 6 1.64e-05 3.88e-03 

GO:0006629 BP lipid metabolic process 2626/85510 9168/401320 3 1.73e-05 4.10e-03 

GO:0044249 BP cellular biosynthetic process 6979/85510 9985/401320 3 1.75e-05 4.14e-03 

GO:1901576 BP organic substance biosynthetic process 6979/85510 9985/401320 3 1.75e-05 4.14e-03 

GO:0009059 BP macromolecule biosynthetic process 6979/85510 9985/401320 4 1.75e-05 4.14e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0043603 BP cellular amide metabolic process 6979/85510 9985/401320 4 1.75e-05 4.14e-03 

GO:0044271 BP cellular nitrogen compound biosynthetic process 6979/85510 9985/401320 4 1.75e-05 4.14e-03 

GO:1901566 BP organonitrogen compound biosynthetic process 6979/85510 9985/401320 4 1.75e-05 4.14e-03 

GO:0006518 BP peptide metabolic process 6979/85510 9985/401320 5 1.75e-05 4.14e-03 

GO:0034645 BP cellular macromolecule biosynthetic process 6979/85510 9985/401320 5 1.75e-05 4.14e-03 

GO:0043604 BP amide biosynthetic process 6979/85510 9985/401320 5 1.75e-05 4.14e-03 

GO:0043043 BP peptide biosynthetic process 6979/85510 9985/401320 6 1.75e-05 4.14e-03 

GO:0006412 BP translation 6979/85510 9985/401320 7 1.75e-05 4.14e-03 

GO:0050896 BP response to stimulus 1498/85510 6331/401320 1 1.95e-05 4.62e-03 

GO:0006950 BP response to stress 1498/85510 6331/401320 2 1.95e-05 4.62e-03 

GO:0005975 BP carbohydrate metabolic process 3743/85510 16166/401320 3 2.28e-05 5.41e-03 

GO:0006725 BP cellular aromatic compound metabolic process 4805/85510 16648/401320 3 2.29e-05 5.43e-03 

GO:0046483 BP heterocycle metabolic process 4805/85510 16648/401320 3 2.29e-05 5.43e-03 

GO:1901360 BP organic cyclic compound metabolic process 4805/85510 16648/401320 3 2.29e-05 5.43e-03 

GO:0006139 BP nucleobase-containing compound metabolic process 4805/85510 16648/401320 4 2.29e-05 5.43e-03 

GO:0090304 BP nucleic acid metabolic process 4484/85510 15956/401320 5 2.31e-05 5.48e-03 

GO:0044281 BP small molecule metabolic process 6917/85510 17822/401320 2 2.34e-05 5.55e-03 

GO:0044267 BP cellular protein metabolic process 9432/85510 31675/401320 5 3.17e-05 7.52e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0019538 BP protein metabolic process 9646/85510 31990/401320 4 3.23e-05 7.67e-03 

GO:1901564 BP organonitrogen compound metabolic process 12221/85510 39471/401320 3 3.53e-05 8.37e-03 

GO:0044260 BP cellular macromolecule metabolic process 11317/85510 39601/401320 4 3.63e-05 8.59e-03 

GO:0009058 BP biosynthetic process 16796/85510 42776/401320 2 3.75e-05 8.88e-03 

GO:0043170 BP macromolecule metabolic process 14130/85510 47834/401320 3 3.94e-05 9.35e-03 

GO:0034641 BP cellular nitrogen compound metabolic process 20280/85510 52479/401320 3 4.04e-05 9.58e-03 

GO:0044238 BP primary metabolic process 22305/85510 76658/401320 2 4.70e-05 0.0111 

GO:0071704 BP organic substance metabolic process 22305/85510 76658/401320 2 4.70e-05 0.0111 

GO:0006807 BP nitrogen compound metabolic process 23930/85510 76971/401320 2 4.73e-05 0.0112 

GO:0044237 BP cellular metabolic process 25520/85510 79144/401320 2 4.81e-05 0.0114 

GO:0009987 BP cellular process 29121/85510 90607/401320 1 5.17e-05 0.0122 

GO:0008152 BP metabolic process 32824/85510 112739/401320 1 5.45e-05 0.0129 

GO:0008150 BP biological_process 56460/85510 247920/401320 0 5.96e-05 0.0141 

GO:0071554 BP cell wall organization or biogenesis 79/85510 250/401320 2 1.42e-04 0.0336 

GO:0048856 BP anatomical structure development 15/85510 31/401320 2 7.44e-04 0.176 

GO:0032502 BP developmental process 15/85510 33/401320 1 2.03e-03 0.481 

GO:0030705 BP cytoskeleton-dependent intracellular transport 4/85510 4/401320 5 2.06e-03 0.488 

GO:0040011 BP locomotion 2/85510 2/401320 1 0.0454 1 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0006928 BP movement of cell or subcellular component 2/85510 2/401320 2 0.0454 1 

GO:0008219 BP cell death 3/85510 3/401320 2 9.67e-03 1 

GO:0048870 BP cell motility 2/85510 2/401320 3 0.0454 1 

GO:0000229 CC cytoplasmic chromosome 71/85510 107/401320 6 1.32e-06 3.13e-04 

GO:0005856 CC cytoskeleton 315/85510 450/401320 5 3.62e-06 8.57e-04 

GO:0005730 CC nucleolus 260/85510 497/401320 5 3.73e-06 8.83e-04 

GO:0044428 CC nuclear part 260/85510 803/401320 4 4.56e-06 1.08e-03 

GO:0005783 CC endoplasmic reticulum 747/85510 927/401320 5 5.41e-06 1.28e-03 

GO:0044422 CC organelle part 382/85510 1360/401320 1 6.23e-06 1.48e-03 

GO:0044446 CC intracellular organelle part 382/85510 1360/401320 3 6.23e-06 1.48e-03 

GO:0005739 CC mitochondrion 865/85510 1210/401320 5 6.52e-06 1.55e-03 

GO:0005737 CC cytoplasm 2490/85510 4855/401320 3 1.32e-05 3.13e-03 

GO:0005622 CC intracellular 4691/85510 7889/401320 2 1.57e-05 3.71e-03 

GO:1990904 CC ribonucleoprotein complex 6870/85510 9786/401320 2 1.71e-05 4.05e-03 

GO:0005840 CC ribosome 6870/85510 9786/401320 5 1.71e-05 4.05e-03 

GO:0044444 CC cytoplasmic part 8655/85510 12564/401320 3 2.03e-05 4.81e-03 

GO:0043228 CC non-membrane-bounded organelle 7566/85510 11783/401320 2 2.05e-05 4.85e-03 

GO:0043232 CC intracellular non-membrane-bounded organelle 7566/85510 11783/401320 4 2.05e-05 4.85e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0032991 CC protein-containing complex 18892/85510 34280/401320 1 3.30e-05 7.82e-03 

GO:0043226 CC organelle 12553/85510 34799/401320 1 3.31e-05 7.85e-03 

GO:0043229 CC intracellular organelle 11998/85510 33803/401320 3 3.32e-05 7.86e-03 

GO:0044424 CC intracellular part 14464/85510 39026/401320 2 3.51e-05 8.32e-03 

GO:0044464 CC cell part 15421/85510 42555/401320 1 3.70e-05 8.76e-03 

GO:0005575 CC cellular_component 37466/85510 122687/401320 0 5.60e-05 0.0133 

GO:0016020 CC membrane 141/85510 502/401320 1 3.11e-04 0.0736 

GO:0005886 CC plasma membrane 141/85510 502/401320 2 3.11e-04 0.0736 

GO:0031012 CC extracellular matrix 3/85510 4/401320 2 0.0325 1 

GO:0042995 CC cell projection 2/85510 2/401320 2 0.0454 1 

GO:0120025 CC plasma membrane bounded cell projection 2/85510 2/401320 3 0.0454 1 

GO:0005929 CC cilium 2/85510 2/401320 4 0.0454 1 

GO:0008134 MF transcription factor binding 216/85510 317/401320 3 2.56e-06 6.07e-04 

GO:0003729 MF mRNA binding 220/85510 311/401320 5 2.88e-06 6.83e-04 

GO:0019843 MF rRNA binding 522/85510 616/401320 5 4.28e-06 1.02e-03 

GO:0016765 MF transferase activity, transferring alkyl or aryl (other than methyl) 
groups 537/85510 1381/401320 3 6.28e-06 1.49e-03 

GO:0042578 MF phosphoric ester hydrolase activity 469/85510 1699/401320 4 7.20e-06 1.71e-03 

GO:0016791 MF phosphatase activity 469/85510 1699/401320 5 7.20e-06 1.71e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0045182 MF translation regulator activity 1235/85510 2158/401320 1 8.28e-06 1.96e-03 

GO:0090079 MF translation regulator activity, nucleic acid binding 1235/85510 2158/401320 4 8.28e-06 1.96e-03 

GO:0008135 MF translation factor activity, RNA binding 1235/85510 2158/401320 5 8.28e-06 1.96e-03 

GO:0098772 MF molecular function regulator 1418/85510 2649/401320 1 8.39e-06 1.99e-03 

GO:0030234 MF enzyme regulator activity 1418/85510 2649/401320 2 8.39e-06 1.99e-03 

GO:0016853 MF isomerase activity 1450/85510 4244/401320 2 1.12e-05 2.65e-03 

GO:0004518 MF nuclease activity 1192/85510 3928/401320 4 1.14e-05 2.71e-03 

GO:0016757 MF transferase activity, transferring glycosyl groups 2144/85510 5667/401320 3 1.28e-05 3.03e-03 

GO:0016788 MF hydrolase activity, acting on ester bonds 1661/85510 5627/401320 3 1.29e-05 3.05e-03 

GO:0016741 MF transferase activity, transferring one-carbon groups 1965/85510 5544/401320 3 1.29e-05 3.07e-03 

GO:0008168 MF methyltransferase activity 1965/85510 5544/401320 4 1.29e-05 3.07e-03 

GO:0016779 MF nucleotidyltransferase activity 1499/85510 5051/401320 4 1.31e-05 3.10e-03 

GO:0016829 MF lyase activity 2598/85510 6527/401320 2 1.40e-05 3.31e-03 

GO:0003735 MF structural constituent of ribosome 7192/85510 10102/401320 2 1.75e-05 4.14e-03 

GO:0003723 MF RNA binding 4586/85510 9993/401320 4 1.86e-05 4.41e-03 

GO:0005198 MF structural molecule activity 7530/85510 11671/401320 1 1.87e-05 4.44e-03 

GO:0097159 MF organic cyclic compound binding 7683/85510 30244/401320 2 3.15e-05 7.47e-03 

GO:1901363 MF heterocyclic compound binding 7683/85510 30244/401320 2 3.15e-05 7.47e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0003676 MF nucleic acid binding 7683/85510 30244/401320 3 3.15e-05 7.47e-03 

GO:0140096 MF catalytic activity, acting on a protein 2527/85510 11340/401320 2 0.0105 1 

GO:0008233 MF peptidase activity 2527/85510 11340/401320 3 0.0105 1 

GO:0016810 MF hydrolase activity,  
acting on carbon-nitrogen (but not peptide) bonds 434/85510 1820/401320 3 9.01e-03 1 
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Table 2.3.21: Underrepresented GO-slims in non-remodelled genes 

 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, and its uncorrected and corrected P-values. 

Instances where PB ≤ 0.05 were considered to be significantly overrepresented. 

 

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0032196 BP transposition 2/85510 537/401320 2 4.07e-06 9.65e-04 

GO:0051169 BP nuclear transport 59/85510 517/401320 5 4.45e-06 1.06e-03 

GO:0006913 BP nucleocytoplasmic transport 59/85510 517/401320 6 4.45e-06 1.06e-03 

GO:0050789 BP regulation of biological process 630/85510 5515/401320 2 1.33e-05 3.14e-03 

GO:0050794 BP regulation of cellular process 630/85510 5515/401320 3 1.33e-05 3.14e-03 

GO:0007165 BP signal transduction 630/85510 5515/401320 4 1.33e-05 3.14e-03 

GO:0065007 BP biological regulation 1168/85510 7963/401320 1 1.61e-05 3.81e-03 

GO:0043412 BP macromolecule modification 2453/85510 21692/401320 4 2.64e-05 6.25e-03 

GO:0036211 BP protein modification process 2453/85510 21692/401320 5 2.64e-05 6.25e-03 

GO:0006464 BP cellular protein modification process 2453/85510 21692/401320 6 2.64e-05 6.25e-03 

GO:0055085 BP transmembrane transport 4085/85510 39724/401320 4 3.51e-05 8.33e-03 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0051179 BP localization 8347/85510 53205/401320 1 4.06e-05 9.63e-03 

GO:0051234 BP establishment of localization 8347/85510 53205/401320 2 4.06e-05 9.63e-03 

GO:0006810 BP transport 8347/85510 53205/401320 3 4.06e-05 9.63e-03 

GO:0051301 BP cell division 8/85510 87/401320 2 3.78e-03 0.897 

GO:0005615 CC extracellular space 3/85510 222/401320 2 2.28e-06 5.41e-04 

GO:0000228 CC nuclear chromosome 0/85510 306/401320 6 2.37e-06 5.63e-04 

GO:0044421 CC extracellular region part 6/85510 226/401320 1 2.80e-06 6.64e-04 

GO:0005773 CC vacuole 0/85510 54/401320 5 5.40e-06 1.28e-03 

GO:0005576 CC extracellular region 194/85510 1368/401320 1 5.67e-06 1.34e-03 

GO:0005694 CC chromosome 121/85510 1051/401320 5 5.74e-06 1.36e-03 

GO:0030312 CC external encapsulating structure 59/85510 902/401320 2 5.91e-06 1.40e-03 

GO:0005618 CC cell wall 59/85510 902/401320 3 5.91e-06 1.40e-03 

GO:0005634 CC nucleus 2719/85510 19392/401320 5 2.49e-05 5.89e-03 

GO:0043227 CC membrane-bounded organelle 4433/85510 22063/401320 2 3.29e-05 7.80e-03 

GO:0043231 CC intracellular membrane-bounded organelle 4433/85510 22063/401320 4 3.29e-05 7.80e-03 

GO:0032182 MF ubiquitin-like protein binding 6/85510 189/401320 3 1.81e-06 4.29e-04 

GO:0042393 MF histone binding 4/85510 164/401320 3 2.04e-06 4.84e-04 

GO:0060090 MF molecular adaptor activity 4/85510 99/401320 2 3.03e-06 7.19e-04 
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GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0030674 MF protein binding, bridging 4/85510 99/401320 3 3.03e-06 7.19e-04 

GO:0008289 MF lipid binding 242/85510 1961/401320 2 7.35e-06 1.74e-03 

GO:0004386 MF helicase activity 226/85510 2011/401320 7 8.41e-06 1.99e-03 

GO:0019899 MF enzyme binding 90/85510 3537/401320 3 1.11e-05 2.62e-03 

GO:0016746 MF transferase activity, transferring acyl groups 810/85510 4434/401320 3 1.23e-05 2.92e-03 

GO:0003924 MF GTPase activity 24/85510 5881/401320 7 1.37e-05 3.25e-03 

GO:0016887 MF ATPase activity 36/85510 5630/401320 7 1.39e-05 3.30e-03 

GO:0016874 MF ligase activity 1191/85510 6591/401320 2 1.43e-05 3.40e-03 

GO:0005515 MF protein binding 1072/85510 7948/401320 2 1.68e-05 3.98e-03 

GO:0008092 MF cytoskeletal protein binding 530/85510 2945/401320 3 1.76e-05 4.18e-03 

GO:0016798 MF hydrolase activity, acting on glycosyl bonds 1532/85510 9306/401320 3 1.78e-05 4.21e-03 

GO:0140110 MF transcription regulator activity 710/85510 10273/401320 1 1.83e-05 4.34e-03 

GO:0003700 MF DNA-binding transcription factor activity 710/85510 10273/401320 2 1.83e-05 4.34e-03 

GO:0016817 MF hydrolase activity, acting on acid anhydrides 280/85510 13032/401320 3 2.11e-05 5.01e-03 

GO:0016818 MF hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides 280/85510 13032/401320 4 2.11e-05 5.01e-03 

GO:0016462 MF pyrophosphatase activity 280/85510 13032/401320 5 2.11e-05 5.01e-03 

GO:0017111 MF nucleoside-triphosphatase activity 280/85510 13032/401320 6 2.11e-05 5.01e-03 

GO:0016301 MF kinase activity 1099/85510 16743/401320 4 2.31e-05 5.48e-03 

189



 

  

GO ID Type GO term p̂(n) p̂(N) Depth P PB 

GO:0003677 MF DNA binding 3097/85510 20257/401320 4 2.57e-05 6.08e-03 

GO:0016772 MF transferase activity, transferring phosphorus-containing groups 2598/85510 21794/401320 3 2.75e-05 6.51e-03 

GO:0005215 MF transporter activity 3857/85510 21900/401320 1 2.76e-05 6.54e-03 

GO:0022857 MF transmembrane transporter activity 3857/85510 21900/401320 2 2.76e-05 6.54e-03 

GO:0016787 MF hydrolase activity 6434/85510 40915/401320 2 3.56e-05 8.43e-03 

GO:0016491 MF oxidoreductase activity 7483/85510 45921/401320 2 3.83e-05 9.07e-03 

GO:0003674 MF molecular_function 62472/85510 325539/401320 0 4.74e-05 0.0112 

GO:0043167 MF ion binding 9061/85510 107256/401320 2 5.40e-05 0.0128 

GO:0005488 MF binding 16874/85510 132438/401320 1 5.79e-05 0.0137 

GO:0003824 MF catalytic activity 27099/85510 141848/401320 1 5.82e-05 0.0138 

GO:0016740 MF transferase activity 8054/85510 38813/401320 2 4.84e-03 1 
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Table 2.3.22: Functional overrepresentations at the root of Pezizomycotina 
 

Each GO-slim entry is annotated with its ontology type (biological process (BP), or cellular component (CC), or molecular function (MF)), its 

proportion within the sample (p̂(n)), its proportion within the background (p̂(N)), its annotation depth, its RC, and its uncorrected and corrected P-

values. Instances where PB ≤ 0.05 were considered to be significantly overrepresented.  RCs are separated by a solid line and ontology types (within 

RCs) are separated by a dashed line. 

 

RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NC GO:0050794 BP regulation of cellular process 467/29738 2629/455713 3 5.00e-06 8.21e-04 

NC GO:0007165 BP signal transduction 467/29738 2629/455713 4 5.00e-06 8.21e-04 

NC GO:0043412 BP macromolecule modification 822/29738 9933/455713 4 1.09e-05 1.79e-03 

NC GO:0036211 BP protein modification process 822/29738 9933/455713 5 1.09e-05 1.79e-03 

NC GO:0006464 BP cellular protein modification process 822/29738 9933/455713 6 1.09e-05 1.79e-03 

NC GO:0005975 BP carbohydrate metabolic process 911/29738 9383/455713 3 1.11e-05 1.81e-03 

NC GO:0051179 BP localization 2542/29738 30759/455713 1 1.87e-05 3.06e-03 

NC GO:0051234 BP establishment of localization 2542/29738 30759/455713 2 1.87e-05 3.06e-03 

NC GO:0006810 BP transport 2542/29738 30759/455713 3 1.87e-05 3.06e-03 

NC GO:0008150 BP biological_process 12220/29738 136382/455713 0 3.49e-05 5.72e-03 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NC GO:0042579 CC microbody 41/29738 216/455713 5 1.12e-06 1.83e-04 

NC GO:0005777 CC peroxisome 41/29738 216/455713 6 1.12e-06 1.83e-04 

NC GO:0030312 CC external encapsulating structure 60/29738 261/455713 2 1.72e-06 2.81e-04 

NC GO:0005618 CC cell wall 60/29738 261/455713 3 1.72e-06 2.81e-04 

NC GO:0044422 CC organelle part 83/29738 249/455713 1 1.96e-06 3.21e-04 

NC GO:0044446 CC intracellular organelle part 83/29738 249/455713 3 1.96e-06 3.21e-04 

NC GO:0044428 CC nuclear part 83/29738 249/455713 4 1.96e-06 3.21e-04 

NC GO:0005730 CC nucleolus 83/29738 249/455713 5 1.96e-06 3.21e-04 

NC GO:0005576 CC extracellular region 166/29738 916/455713 1 2.33e-06 3.82e-04 

NC GO:0016298 MF lipase activity 111/29738 519/455713 4 1.79e-06 2.94e-04 

NC GO:0003774 MF motor activity 101/29738 798/455713 7 2.58e-06 4.22e-04 

NC GO:0016788 MF hydrolase activity,  
acting on ester bonds 191/29738 1347/455713 3 3.12e-06 5.11e-04 

NC GO:0016779 MF nucleotidyltransferase activity 276/29738 2466/455713 4 4.42e-06 7.26e-04 

NC GO:0008233 MF peptidase activity 839/29738 5882/455713 3 7.90e-06 1.30e-03 

NC GO:0016301 MF kinase activity 709/29738 6491/455713 4 9.29e-06 1.52e-03 

NC GO:0016773 MF phosphotransferase activity,  
alcohol group as acceptor 709/29738 6491/455713 4 9.29e-06 1.52e-03 

NC GO:0004672 MF protein kinase activity 709/29738 6491/455713 5 9.29e-06 1.52e-03 

NC GO:0016772 MF transferase activity,  
transferring phosphorus-containing groups 985/29738 8957/455713 3 1.03e-05 1.70e-03 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NC GO:0140096 MF catalytic activity, acting on a protein 1548/29738 12373/455713 2 1.11e-05 1.83e-03 

NC GO:0005215 MF transporter activity 1053/29738 13052/455713 1 1.24e-05 2.03e-03 

NC GO:0016740 MF transferase activity 1795/29738 21935/455713 2 1.59e-05 2.60e-03 

NC GO:0005515 MF protein binding 1875/29738 21689/455713 2 1.62e-05 2.66e-03 

NC GO:0016491 MF oxidoreductase activity 4448/29738 26404/455713 2 1.70e-05 2.79e-03 

NC GO:0016787 MF hydrolase activity 3929/29738 31846/455713 2 1.95e-05 3.20e-03 

NC GO:0005488 MF binding 2912/29738 37846/455713 1 2.04e-05 3.34e-03 

NC GO:0003824 MF catalytic activity 10408/29738 88637/455713 1 2.98e-05 4.89e-03 

NC GO:0003674 MF molecular_function 16178/29738 174397/455713 0 3.66e-05 6.00e-03 

SC GO:0019748 BP secondary metabolic process 92/2548 594/455713 2 4.00e-07 6.56e-05 

SC GO:0009404 BP toxin metabolic process 92/2548 484/455713 3 9.09e-07 1.49e-04 

SC GO:0044281 BP small molecule metabolic process 88/2548 4313/455713 2 1.49e-06 2.45e-04 

SC GO:0006082 BP organic acid metabolic process 88/2548 3885/455713 3 2.07e-06 3.39e-04 

SC GO:0043436 BP oxoacid metabolic process 88/2548 3885/455713 4 2.07e-06 3.39e-04 

SC GO:0019752 BP carboxylic acid metabolic process 88/2548 3885/455713 5 2.07e-06 3.39e-04 

SC GO:0006520 BP cellular amino acid metabolic process 88/2548 3885/455713 6 2.07e-06 3.39e-04 

SC GO:0006629 BP lipid metabolic process 74/2548 5010/455713 3 2.16e-06 3.54e-04 

SC GO:0006950 BP response to stress 41/2548 3243/455713 2 4.51e-06 7.40e-04 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

SC GO:0050896 BP response to stimulus 41/2548 3321/455713 1 5.51e-06 9.04e-04 

SC GO:0044237 BP cellular metabolic process 306/2548 34688/455713 2 5.63e-06 9.23e-04 

SC GO:0009987 BP cellular process 306/2548 40381/455713 1 6.27e-06 1.03e-03 

SC GO:0008152 BP metabolic process 380/2548 49074/455713 1 7.02e-06 1.15e-03 

SC GO:0006259 BP DNA metabolic process 41/2548 3658/455713 6 4.65e-05 7.63e-03 

SC GO:0016020 CC membrane 93/2548 11060/455713 1 1.69e-04 0.0277 

SC GO:0003723 MF RNA binding 127/2548 4823/455713 4 2.29e-06 3.76e-04 

SC GO:0016491 MF oxidoreductase activity 221/2548 26404/455713 2 5.09e-06 8.35e-04 

SC GO:0016787 MF hydrolase activity 396/2548 31846/455713 2 5.90e-06 9.67e-04 

SC GO:0003824 MF catalytic activity 654/2548 88637/455713 1 8.76e-06 1.44e-03 

SC GO:0016829 MF lyase activity 43/2548 3814/455713 2 2.57e-05 4.22e-03 

SN GO:0007010 BP cytoskeleton organization 45/11880 425/455713 4 1.25e-06 2.05e-04 

SN GO:0016043 BP cellular component organization 94/11880 2166/455713 2 5.18e-06 8.49e-04 

SN GO:0006996 BP organelle organization 94/11880 2166/455713 3 5.18e-06 8.49e-04 

SN GO:0005975 BP carbohydrate metabolic process 363/11880 9383/455713 3 6.07e-06 9.96e-04 

SN GO:0030312 CC external encapsulating structure 31/11880 261/455713 2 5.06e-07 8.30e-05 

SN GO:0005618 CC cell wall 31/11880 261/455713 3 5.06e-07 8.30e-05 

SN GO:0005886 CC plasma membrane 46/11880 269/455713 2 8.56e-07 1.40e-04 

194



 

  

RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

SN GO:0005694 CC chromosome 49/11880 532/455713 5 1.67e-06 2.73e-04 

SN GO:0005576 CC extracellular region 62/11880 916/455713 1 1.91e-06 3.13e-04 

SN GO:0016853 MF isomerase activity 119/11880 2125/455713 2 2.95e-06 4.83e-04 

SN GO:0008233 MF peptidase activity 294/11880 5882/455713 3 4.59e-06 7.52e-04 

SN GO:0016491 MF oxidoreductase activity 956/11880 26404/455713 2 1.09e-05 1.78e-03 

SN GO:0016787 MF hydrolase activity 1138/11880 31846/455713 2 1.20e-05 1.97e-03 

SN GO:0042578 MF phosphoric ester hydrolase activity 44/11880 828/455713 4 1.46e-05 2.40e-03 

SN GO:0016791 MF phosphatase activity 44/11880 828/455713 5 1.46e-05 2.40e-03 

SN GO:0003824 MF catalytic activity 2706/11880 88637/455713 1 1.91e-05 3.13e-03 

SN GO:0003674 MF molecular_function 4752/11880 174397/455713 0 1.16e-04 0.019 

NR GO:0006457 BP protein folding 44/12198 467/455713 2 6.60e-07 1.08e-04 

NR GO:0044085 BP cellular component biogenesis 49/12198 452/455713 2 9.26e-07 1.52e-04 

NR GO:0022613 BP ribonucleoprotein complex biogenesis 49/12198 452/455713 3 9.26e-07 1.52e-04 

NR GO:0042254 BP ribosome biogenesis 49/12198 452/455713 4 9.26e-07 1.52e-04 

NR GO:0071840 BP cellular component organization or biogenesis 145/12198 2618/455713 1 2.56e-06 4.19e-04 

NR GO:0016192 BP vesicle-mediated transport 225/12198 2696/455713 4 3.59e-06 5.88e-04 

NR GO:1901566 BP organonitrogen compound biosynthetic process 389/12198 4535/455713 4 4.40e-06 7.22e-04 

NR GO:0043603 BP cellular amide metabolic process 389/12198 4535/455713 4 4.40e-06 7.22e-04 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NR GO:0006518 BP peptide metabolic process 389/12198 4535/455713 5 4.40e-06 7.22e-04 

NR GO:0043604 BP amide biosynthetic process 389/12198 4535/455713 5 4.40e-06 7.22e-04 

NR GO:0043043 BP peptide biosynthetic process 389/12198 4535/455713 6 4.40e-06 7.22e-04 

NR GO:0006412 BP translation 389/12198 4535/455713 7 4.40e-06 7.22e-04 

NR GO:0016043 BP cellular component organization 96/12198 2166/455713 2 4.99e-06 8.18e-04 

NR GO:0006996 BP organelle organization 96/12198 2166/455713 3 4.99e-06 8.18e-04 

NR GO:0009058 BP biosynthetic process 567/12198 11413/455713 2 6.83e-06 1.12e-03 

NR GO:0044249 BP cellular biosynthetic process 567/12198 11413/455713 3 6.83e-06 1.12e-03 

NR GO:1901576 BP organic substance biosynthetic process 567/12198 11413/455713 3 6.83e-06 1.12e-03 

NR GO:0044271 BP cellular nitrogen compound biosynthetic process 567/12198 11413/455713 4 6.83e-06 1.12e-03 

NR GO:0009059 BP macromolecule biosynthetic process 567/12198 11413/455713 4 6.83e-06 1.12e-03 

NR GO:0034645 BP cellular macromolecule biosynthetic process 567/12198 11413/455713 5 6.83e-06 1.12e-03 

NR GO:0016070 BP RNA metabolic process 641/12198 14160/455713 6 8.68e-06 1.42e-03 

NR GO:0046483 BP heterocycle metabolic process 723/12198 17717/455713 3 8.90e-06 1.46e-03 

NR GO:1901360 BP organic cyclic compound metabolic process 723/12198 17717/455713 3 8.90e-06 1.46e-03 

NR GO:0006725 BP cellular aromatic compound metabolic process 723/12198 17717/455713 3 8.90e-06 1.46e-03 

NR GO:0006139 BP nucleobase-containing compound metabolic process 723/12198 17717/455713 4 8.90e-06 1.46e-03 

NR GO:0090304 BP nucleic acid metabolic process 723/12198 17717/455713 5 8.90e-06 1.46e-03 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NR GO:0034641 BP cellular nitrogen compound metabolic process 1111/12198 22247/455713 3 1.03e-05 1.69e-03 

NR GO:0043170 BP macromolecule metabolic process 1111/12198 32170/455713 3 1.22e-05 2.01e-03 

NR GO:0006807 BP nitrogen compound metabolic process 1187/12198 34304/455713 2 1.26e-05 2.06e-03 

NR GO:0044237 BP cellular metabolic process 1187/12198 34688/455713 2 1.29e-05 2.11e-03 

NR GO:0009987 BP cellular process 1327/12198 40381/455713 1 1.39e-05 2.28e-03 

NR GO:0071704 BP organic substance metabolic process 1433/12198 48007/455713 2 2.83e-05 4.65e-03 

NR GO:0044238 BP primary metabolic process 1433/12198 48007/455713 2 2.83e-05 4.65e-03 

NR GO:0005783 CC endoplasmic reticulum 48/12198 424/455713 5 6.90e-07 1.13e-04 

NR GO:0044422 CC organelle part 49/12198 249/455713 1 1.30e-06 2.13e-04 

NR GO:0044446 CC intracellular organelle part 49/12198 249/455713 3 1.30e-06 2.13e-04 

NR GO:0044428 CC nuclear part 49/12198 249/455713 4 1.30e-06 2.13e-04 

NR GO:0005730 CC nucleolus 49/12198 249/455713 5 1.30e-06 2.13e-04 

NR GO:0005739 CC mitochondrion 261/12198 622/455713 5 2.21e-06 3.62e-04 

NR GO:0032991 CC protein-containing complex 389/12198 4443/455713 1 4.40e-06 7.22e-04 

NR GO:1990904 CC ribonucleoprotein complex 389/12198 4443/455713 2 4.40e-06 7.22e-04 

NR GO:0005840 CC ribosome 389/12198 4443/455713 5 4.40e-06 7.22e-04 

NR GO:0044444 CC cytoplasmic part 698/12198 5839/455713 3 5.61e-06 9.20e-04 

NR GO:0043228 CC non-membrane-bounded organelle 438/12198 5423/455713 2 5.62e-06 9.21e-04 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NR GO:0043232 CC intracellular non-membrane-bounded organelle 438/12198 5423/455713 4 5.62e-06 9.21e-04 

NR GO:0016020 CC membrane 434/12198 11060/455713 1 7.50e-06 1.23e-03 

NR GO:0043227 CC membrane-bounded organelle 639/12198 14258/455713 2 8.23e-06 1.35e-03 

NR GO:0043231 CC intracellular membrane-bounded organelle 639/12198 14258/455713 4 8.23e-06 1.35e-03 

NR GO:0044464 CC cell part 1076/12198 20268/455713 1 9.29e-06 1.52e-03 

NR GO:0043226 CC organelle 1076/12198 19648/455713 1 9.37e-06 1.54e-03 

NR GO:0043229 CC intracellular organelle 1076/12198 19648/455713 3 9.37e-06 1.54e-03 

NR GO:0044424 CC intracellular part 1076/12198 19738/455713 2 9.80e-06 1.61e-03 

NR GO:0005575 CC cellular_component 3153/12198 69090/455713 0 1.81e-05 2.96e-03 

NR GO:0042578 MF phosphoric ester hydrolase activity 96/12198 828/455713 4 1.25e-06 2.05e-04 

NR GO:0016791 MF phosphatase activity 96/12198 828/455713 5 1.25e-06 2.05e-04 

NR GO:0045182 MF translation regulator activity 224/12198 1067/455713 1 2.42e-06 3.97e-04 

NR GO:0016788 MF hydrolase activity, acting on ester bonds 96/12198 1347/455713 3 2.53e-06 4.15e-04 

NR GO:0016853 MF isomerase activity 118/12198 2125/455713 2 2.84e-06 4.66e-04 

NR GO:0003723 MF RNA binding 448/12198 4823/455713 4 4.53e-06 7.43e-04 

NR GO:0005198 MF structural molecule activity 434/12198 5132/455713 1 4.67e-06 7.65e-04 

NR GO:1901363 MF heterocyclic compound binding 583/12198 16914/455713 2 8.75e-06 1.44e-03 

NR GO:0097159 MF organic cyclic compound binding 583/12198 16914/455713 2 8.75e-06 1.44e-03 
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RC GO ID Type GO term p̂(n) p̂(N) Depth P PB 

NR GO:0003676 MF nucleic acid binding 583/12198 16914/455713 3 8.75e-06 1.44e-03 
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secondary metabolism and toxin production processes (GO:0019748, GO:0009404; PB ≤ 1.49e
-

04). A representative A. fumigatus gene from this this subset (AFUA_6G00680A; 

XP_731488.2) was reported to be a mycotoxin synthase with two oxidase ustYa domains 

(IPR021765). Oxidase ustYa domains catalyse the cyclisation of peptide secondary metabolites 

such as ustiloxins and cyclochlorotines (Umemura et al., 2014).  

 Secondary metabolite production is often expressed during the sexual cycle in 

Pezizomycotina, and are believed to protect spores from predation (Calvo et al., 2002). 

Interestingly, two nested composite A. fumigatus genes overrepresented for signal transduction 

and assigned to “Node_115”, serine-threonine kinase (rim1, XP_755834.1, E.C:2.7.11.1.) and 

adenylate cyclase (AcyA, XP_750741.2, E.C: 4.6.1.1.), are involved in meiosis (Li and 

Mitchell, 1997; Kang et al., 2016). These results highlight the correlation between gene 

remodelling and the major phenotypic transition observed during the divergence of 

Pezizomycotina from Saccharomycotina. 

 

2.3.8: Genes of bacterial origin are statistically more likely to be remodelled than eukaryotic-

originating genes 

 

Families of archaeal origin were not significantly enriched (P ≤ aB ≤ 4.16e
-03) for any 

RC (Table 2.3.22.). Bacterial originating (P ≤ 2.0e
-03) and undefined prokaryote originating (P 

≤ 0.999) families were reported to be as significantly enriched as all RCs except NR. Families 

of eukaryote origin were observed to be enriched for NR (P < 1.0e
-04). Due to the considerable 

rarity of horizontal gene transfer between bacteria and eukaryotes (McCarthy and Fitzpatrick, 

2016), it is likely that the vast majority of gene families with a bacterial or undefined prokaryote 

DO were vertically inherited. Therefore, these results suggest that “more ancient” gene families 

are more much statistically likely to be subjected to remodelling due to their persistence in the  
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Table 2.3.23: “Domains-of-Origin” for each remodelling category 

 

Gene families (as defined by CompositeSearch) were assigned to a “Domain-of-Origin” (DO). 

The sum of genes (n) from each RC and their associated significance (P) for each DO are 

presented. Significant observations (P ≤ aB ≤ 4.16e
-03) are emboldened. 

 

 
Archaea Bacteria Eukaryote Undefined 

prokaryote 

n P n P n P n P 

NC 141 0.654 1319 <1.0e-04 11425 >0.999 3917 <1.0e-04 

SC 27 0.029 162 2.0e-03 1592 >0.999 326 <1.0e-04 

SN 208 0.043 1660 <1.0e-04 16158 >0.999 3701 <1.0e-04 

NR 326 0.977 1879 >0.999 36000 <1.0e-04 2605 >0.999 
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genome over time. It is important to state, however, that 65,175 of 81,446 families (80.02%) 

of genes were of eukaryote origin, and considerably more families of eukaryote origin were 

detected in each RC than in any other DO. These results suggest that while “older” gene 

families are more likely to remodel, considerable remodelling is observed in “younger” 

families also. 

 

2.3.9. Trends between genomic characteristics and remodelling extent in genomes 

  

 RCPs were calculated (Tables 2.3.23.-24.) for each genome and compared to genomic 

characteristics (Table 2.3.3; Figure 2.3.5.). For GRCP, significant positive correlations (P ≤ aB 

≤ 0.01) were observed between genome completeness (as defined by BUSCO) and (a) SN 

genomic proportions (r = 0.4105; P < 1.0e
-04) and (b) NR proportions (r = 0.5298; P < 1.0e

-

04) respectively (Figure 2.3.6). A significant negative correlation was also observed between 

genome completeness and excluded proportions (r = 0.5298; P < 1.0e
-04) and between genome 

size and SN proportions (r = -0.3713; P < 1.0e
-04). These results suggest that using higher 

quality assemblies for gene remodelling analyses results in a greater number genes being 

assigned to strict component or non-remodelling families as opposed to being excluded (due 

to being defined as a singleton by CompositeSearch). This suggests that incomplete genome 

assemblies may result in Type II errors (false negative) in remodelled gene detection. 

For IRCP, significant positive correlations (P ≤ aB ≤ 0.01) were observed between 

genome size and each RCP (r = 0.3298-0.6662; P ≤ 1.0e
-04) except the “excluded” proportion 

where a significant negative correlation was observed (r = -0.4591; P < 1.0e
-04). This is likely 

due to genetic redundancy from events such as WGD and genomic expansions, which would 

promote the clustering of more non-singleton families into non-excluded families. Conversely, 
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Table 2.3.24. GRCPs for each fungal genome 

 

GRCPs (%) were calculated for each genome by dividing the number of remodelled genes per 

RC (n) by the total number of genes in its respective genome.  

 

 
n % 

NC SC SN NR E NC SC SN NR E 

Acremonium alcalophilum 2818 291 1580 2003 2829 29.598 3.056 16.595 21.038 29.713 
Agaricus bisporus 3721 265 2035 2624 2644 32.961 2.347 18.026 23.244 23.421 
Allomyces macrogynus 3009 285 2668 5331 6307 17.097 1.619 15.159 30.290 35.835 
Alternaria brassicicola 2820 260 1672 2318 3618 26.385 2.433 15.644 21.688 33.851 
Ashbya gossypii 1323 119 974 1359 942 28.047 2.523 20.649 28.811 19.970 
Aspergillus aculeatus 4487 381 1906 2687 1367 41.439 3.519 17.603 24.815 12.625 
Aspergillus carbonarius 4778 378 2043 2825 1600 41.105 3.252 17.576 24.303 13.765 
Aspergillus clavatus 3616 317 1832 2530 825 39.649 3.476 20.088 27.741 9.046 
Aspergillus flavus 4643 374 2146 2963 2461 36.887 2.971 17.049 23.540 19.552 
Aspergillus fumigatus 3792 322 1820 2441 1512 38.353 3.257 18.408 24.689 15.293 
Aspergillus nidulans 4237 342 1928 2472 1581 40.123 3.239 18.258 23.409 14.972 
Aspergillus oryzae 4569 312 2232 2665 2285 37.876 2.586 18.503 22.092 18.942 
Aspergillus terreus 4058 323 1857 2266 1902 38.997 3.104 17.845 21.776 18.278 
Auricularia delicata 6148 465 3527 4810 8627 26.076 1.972 14.959 20.401 36.591 
Batrachochytrium dendrobatidis 1889 224 1291 1801 3527 21.633 2.565 14.785 20.625 40.392 
Baudoinia compniacensis 3142 295 1740 2190 3146 29.887 2.806 16.551 20.831 29.925 
Bjerkandera adusta 4729 366 2378 3608 4392 30.563 2.365 15.369 23.318 28.385 
Blastomyces dermatitidis 3017 305 1677 2241 2282 31.685 3.203 17.612 23.535 23.966 
Botryotinia cinerea 3212 252 1776 2641 8567 19.528 1.532 10.798 16.057 52.085 
Candida albicans 1741 180 1256 1917 1111 28.058 2.901 20.242 30.894 17.905 
Candida caseinolytica 1340 127 832 936 1422 28.774 2.727 17.866 20.099 30.535 
Candida glabrata 1444 128 1066 1627 937 27.759 2.461 20.492 31.276 18.012 
Candida tenuis 1716 125 1164 1756 772 31.014 2.259 21.037 31.737 13.953 
Ceriporiopsis subvermispora 4053 292 1941 2601 3238 33.427 2.408 16.008 21.452 26.705 
Chaetomium globosum 3460 285 1674 2249 3456 31.104 2.562 15.049 20.218 31.068 
Coccidioides immitis 2975 306 1773 2960 2640 27.924 2.872 16.642 27.783 24.779 
Coccidioides posadasii 2672 275 1719 2852 2606 26.393 2.716 16.979 28.171 25.741 
Cochliobolus heterostrophus 3848 338 1976 2702 769 39.946 3.509 20.513 28.049 7.983 
Cochliobolus sativus 4247 390 2236 3420 1957 34.669 3.184 18.253 27.918 15.976 
Coniophora putinea 4683 340 2170 2875 3693 34.031 2.471 15.769 20.892 26.837 
Coprinopsis cinerea 3501 296 1979 2926 4692 26.139 2.210 14.775 21.846 35.031 
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n % 

NC SC SN NR E NC SC SN NR E 
Cryphonectria parasitica 3969 333 1907 2460 2515 35.488 2.977 17.051 21.996 22.487 
Cryptococcus neoformans 1916 161 1141 1632 2117 27.501 2.311 16.377 23.425 30.386 
Debaryomyces hansenii 1855 154 1283 2032 4918 18.112 1.504 12.527 19.840 48.018 
Dichomitus squalens 4379 321 2195 2974 2421 69.818 5.118 34.997 47.417 19.699 
Dothistroma septosporum 3580 332 1956 2632 4918 29.129 2.701 15.915 21.416 32.432 
Dsppyopinax sp. 2907 235 1507 1903 1903 23.108 1.868 11.979 15.127 36.028 
Fomitiporia mediterranea 3600 286 1799 2412 3236 31.766 2.524 15.874 21.283 28.554 
Fomitopsis pinicola 4744 390 2570 3374 3646 32.220 2.649 17.454 22.915 24.762 
Fusarium graminearum 4510 387 2277 3241 2906 33.856 2.905 17.093 24.330 21.815 
Fusarium oxysporum 5777 457 3389 4790 3195 32.809 2.595 19.247 27.204 18.145 
Fusarium verticillioides 4640 355 2603 3638 2959 32.688 2.501 18.337 25.629 20.845 
Ganoderma sp. 4431 357 2185 3178 2759 34.322 2.765 16.925 24.617 21.371 
Gloeophyllum trabeum 3713 345 2200 2818 2770 31.344 2.912 18.572 23.789 23.383 
Hansenula polymorpha 1556 124 970 1213 1314 30.056 2.395 18.737 23.431 25.381 
Heterobasidion annosum 3466 261 1901 2333 4338 28.181 2.122 15.457 18.969 35.271 
Histoplasma capsulatum 2393 256 1445 1935 3222 25.867 2.767 15.620 20.917 34.829 
Hysterium pulicare 3898 340 1846 2485 3783 31.558 2.753 14.945 20.118 30.627 
Laccaria bicolor 3852 367 2727 3858 8232 20.235 1.928 14.325 20.267 43.244 
Leptosphaeria maculans 3000 285 1671 2300 5213 24.060 2.286 13.401 18.446 41.808 
Lipomyces starkeyi 2215 232 1254 1571 2920 27.039 2.832 15.308 19.177 35.645 
Magnaporthe grisea 3412 297 1651 2092 3657 30.714 2.674 14.862 18.832 32.919 
Melampsora laricis_populina 3379 356 2385 3562 7149 20.076 2.115 14.170 21.163 42.475 
Microsporum canis 3126 314 1680 2386 1259 35.665 3.582 19.167 27.222 14.364 
Microsporum gypseum 3045 301 1649 2442 1439 34.306 3.391 18.578 27.512 16.212 
Mucor circinelloides 2989 234 1845 2766 3096 27.347 2.141 16.880 25.306 28.326 
Mycosphaerella fijiensis 3344 292 1974 2395 2308 32.425 2.831 19.141 23.223 22.380 
Mycosphaerella graminicola 3414 300 1836 2301 3082 31.227 2.744 16.793 21.046 28.190 
Nectria haematococca 6447 484 2634 3556 2586 41.045 3.081 16.770 22.640 16.464 
Neosartorya fischeri 4127 356 2104 2871 945 39.671 3.422 20.225 27.598 9.084 
Neurospora crassa 3147 324 1858 3349 1230 31.762 3.270 18.753 33.801 12.414 
Neurospora tetrasperma 2958 292 1736 3164 2490 27.801 2.744 16.316 29.737 23.402 
Paracoccidioides brasiliensis 2458 260 1399 1855 3164 26.905 2.846 15.313 20.304 34.632 
Phanerochaete chrysosporium 3428 276 1790 2249 2305 34.116 2.747 17.814 22.383 22.940 
Phlebia brevispora 5092 403 2698 3604 4373 31.490 2.492 16.685 22.288 27.044 
Phlebiopsis gigantea 3630 296 2057 2720 3188 30.527 2.489 17.299 22.874 26.810 
Phycomyces blakesleeanus 5109 299 2488 3075 5557 30.911 1.809 15.053 18.605 33.622 
Pichia membranifaciens 1422 132 921 1231 1840 25.640 2.380 16.607 22.196 33.177 
Pichia stipitis 1885 151 1270 1912 589 32.461 2.600 21.870 32.926 10.143 
Pleurotus ostreatus 3671 321 2051 2833 2727 31.638 2.767 17.676 24.416 23.503 
Podospora anserina 3600 321 1799 2412 2469 33.959 3.028 16.970 22.753 23.290 
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n % 

NC SC SN NR E NC SC SN NR E 
Puccinia graminis 3360 327 2139 3003 11737 16.338 1.590 10.401 14.602 57.070 
Punctularia strigosozonata 3909 308 1950 2697 2674 33.879 2.669 16.901 23.375 23.176 
Pyrenophora teres 3869 358 2242 3465 1865 32.791 3.034 19.002 29.367 15.806 
Pyrenophora triticirepentis 3730 357 2179 3456 2447 30.652 2.934 17.906 28.400 20.108 
Rhizopus oryzae 4914 272 2673 2971 6629 28.146 1.558 15.310 17.017 37.969 
Rhodotorula graminis 1816 168 1163 1561 2575 24.935 2.307 15.969 21.433 35.356 
Rhytidhysteron rufulum 4127 313 1881 2455 3341 34.060 2.583 15.524 20.261 27.573 
Saccharomyces cerevisiae 1668 135 1228 1805 1049 28.343 2.294 20.867 30.671 17.825 
Schizophyllum commune 3667 300 2091 2964 4159 27.820 2.276 15.864 22.487 31.553 
Schizosaccharomyces cryophilus 1565 134 1209 1866 283 30.947 2.650 23.907 36.899 5.596 
Schizosaccharomyces japonicus 1428 130 997 1390 869 29.663 2.700 20.710 28.874 18.052 
Schizosaccharomyces octosporus 1568 156 1197 1905 99 31.838 3.168 24.305 38.680 2.010 
Schizosaccharomyces pombe 1568 136 1171 1759 376 31.297 2.715 23.373 35.110 7.505 
Sclerotinia sclerotiorum 3349 265 1798 2641 6469 23.062 1.825 12.381 18.186 44.546 
Septoria musiva 3312 324 1995 3159 1443 32.366 3.166 19.496 30.871 14.101 
Septoria populicola 3120 306 1980 3045 1288 32.036 3.142 20.331 31.266 13.225 
Serpula lacrymans 4309 271 2404 2616 4895 29.727 1.870 16.585 18.048 33.770 
Setosphaeria turcica 4055 375 2123 3253 1896 34.652 3.205 18.142 27.799 16.202 
Spathaspora passalidarum 1717 141 1235 1883 1007 28.698 2.357 20.642 31.473 16.831 
Spizellomyces punctatus 1616 153 1024 1548 4463 18.355 1.738 11.631 17.583 50.693 
Sporobolomyces roseus 1493 126 902 1101 1914 26.969 2.276 16.293 19.888 34.574 
Sporotrichum thermophile 3128 338 1819 2412 1109 35.521 3.838 20.656 27.390 12.594 
Thielavia terrestris 3319 341 1832 2525 1798 33.816 3.474 18.665 25.726 18.319 
Trametes versicolor 5031 355 2548 3455 2907 35.192 2.483 17.823 24.168 20.334 
Tremella mesenterica 2047 162 1220 1734 3150 24.624 1.949 14.676 20.859 37.892 
Trichoderma atroviride 4308 345 2161 2881 1405 38.811 3.108 19.468 25.955 12.658 
Trichoderma reesei 3565 316 1853 2612 797 38.992 3.456 20.267 28.568 8.717 
Trichoderma virens 4574 377 2283 3111 1298 39.285 3.238 19.608 26.720 11.148 
Trichophyton equinum 2738 286 1563 2239 1734 31.986 3.341 18.259 26.157 20.257 
Uncinocarpus reesii 2520 240 1417 1851 1770 32.316 3.078 18.171 23.737 22.698 
Ustilago maydis 1393 116 735 918 3360 21.358 1.779 11.270 14.075 51.518 
Verticillium alboatrum 3120 267 1721 2388 2724 30.528 2.613 16.840 23.366 26.654 
Verticillium dahliae 3680 326 1939 2788 1802 34.931 3.094 18.405 26.464 17.105 
Wickerhamomyces anomalus 1954 149 1198 1534 1588 30.422 2.320 18.652 23.883 24.724 
Wolfiporia cocos 3993 323 2163 2859 3408 31.327 2.534 16.970 22.431 26.738 
Yarrowia lipolytica 1737 169 961 1309 2272 26.939 2.621 14.904 20.301 35.236 
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Table 2.3.25. IRCPs for each fungal genome 

 

IRCPs (%) were calculated for each genome by dividing the number of remodelled genes per 

RC (n) by the total number of genes in its respective genome.  

 

 
n % 

NC SC SN NR E NC SC SN NR E 

Acremonium alcalophilum 19 18 41 898 8545 0.200 0.189 0.431 9.432 89.749 

Agaricus bisporus 448 235 458 2499 7649 3.968 2.082 4.057 22.137 67.756 

Allomyces macrogynus 624 183 909 8659 7225 3.545 1.040 5.165 49.199 41.051 

Alternaria brassicicola 0 15 27 952 9694 0 0.140 0.253 8.907 90.700 

Ashbya gossypii 0 0 0 415 4302 0 0 0 8.798 91.202 

Aspergillus aculeatus 146 63 295 2508 7816 1.348 0.582 2.724 23.162 72.183 

Aspergillus carbonarius 287 53 429 3297 7558 2.469 0.456 3.691 28.364 65.021 

Aspergillus clavatus 37 25 119 1590 7349 0.406 0.274 1.305 17.434 80.581 

Aspergillus flavus 240 71 275 2525 9476 1.907 0.564 2.185 20.060 75.284 

Aspergillus fumigatus 24 52 139 1626 8046 0.243 0.526 1.406 16.446 81.380 

Aspergillus nidulans 79 60 179 2123 8119 0.748 0.568 1.695 20.104 76.884 

Aspergillus oryzae 183 138 377 2584 8781 1.517 1.144 3.125 21.421 72.793 

Aspergillus terreus 79 67 182 1932 8146 0.759 0.644 1.749 18.566 78.282 

Auricularia delicata 1486 443 1577 6548 13523 6.303 1.879 6.689 27.773 57.357 

Batrachochytrium dendrobatidis 394 131 385 1367 6455 4.512 1.500 4.409 15.655 73.923 

Baudoinia compniacensis 46 11 94 1240 9122 0.438 0.105 0.894 11.795 86.769 

Bjerkandera adusta 355 281 447 3898 10492 2.294 1.816 2.889 25.192 67.808 

Blastomyces dermatitidis 195 17 117 848 8345 2.048 0.179 1.229 8.906 87.639 

Botryotinia cinerea 30 63 98 1317 14940 0.182 0.383 0.596 8.007 90.832 

Candida albicans 0 33 18 924 5230 0 0.532 0.290 14.891 84.287 

Candida caseinolytica 4 6 13 486 4148 0.086 0.129 0.279 10.436 89.070 

Candida glabrata 0 0 0 801 4401 0 0 0 15.398 84.602 

Candida tenuis 5 0 7 886 4635 0.090 0 0.127 16.013 83.770 

Ceriporiopsis subvermispora 327 135 315 2870 8478 2.697 1.113 2.598 23.670 69.922 

Chaetomium globosum 173 18 128 1115 9690 1.555 0.162 1.151 10.023 87.109 

Coccidioides immitis 9 0 6 1225 9414 0.084 0 0.056 11.498 88.361 

Coccidioides posadasii 0 6 24 850 9244 0 0.059 0.237 8.396 91.308 

Cochliobolus heterostrophus 129 27 154 1892 7431 1.339 0.280 1.599 19.641 77.141 

Cochliobolus sativus 122 40 200 2113 9775 0.996 0.327 1.633 17.249 79.796 
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n % 

NC SC SN NR E NC SC SN NR E 

Coniophora putinea 428 175 509 3986 8663 3.110 1.272 3.699 28.966 62.953 

Coprinopsis cinerea 245 57 241 2832 10019 1.829 0.426 1.799 21.144 74.802 

Cryphonectria parasitica 119 38 150 2120 8757 1.064 0.340 1.341 18.956 78.299 

Cryptococcus neoformans 21 13 48 799 6086 0.301 0.187 0.689 11.468 87.355 

Debaryomyces hansenii 15 0 5 1054 9168 0.146 0 0.049 10.291 89.514 

Dichomitus squalens 191 130 303 3110 2538 3.045 2.073 4.831 49.585 40.466 

Dothistroma septosporum 50 24 106 1743 10367 0.407 0.195 0.862 14.182 84.353 

Dsppyopinax sp. 57 51 107 2195 10170 0.453 0.405 0.851 17.448 80.843 

Fomitiporia mediterranea 194 166 336 2519 8118 1.712 1.465 2.965 22.227 71.632 

Fomitopsis pinicola 560 208 548 3792 9616 3.803 1.413 3.722 25.754 65.308 

Fusarium graminearum 44 47 119 2545 10566 0.330 0.353 0.893 19.105 79.318 

Fusarium oxysporum 533 272 741 4467 11595 3.027 1.545 4.208 25.369 65.851 

Fusarium verticillioides 214 91 240 2423 11227 1.508 0.641 1.691 17.069 79.091 

Ganoderma sp. 278 215 456 2910 9051 2.153 1.665 3.532 22.541 70.108 

Gloeophyllum trabeum 123 148 254 2730 8591 1.038 1.249 2.144 23.046 72.522 

Hansenula polymorpha 0 2 7 763 4405 0 0.039 0.135 14.738 85.088 

Heterobasidion annosum 244 81 247 2311 9416 1.984 0.659 2.008 18.790 76.559 

Histoplasma capsulatum 0 4 10 641 8596 0 0.043 0.108 6.929 92.920 

Hysterium pulicare 81 54 150 1906 10161 0.656 0.437 1.214 15.431 82.262 

Laccaria bicolor 485 175 548 4122 13706 2.548 0.919 2.879 21.654 72.000 

Leptosphaeria maculans 15 11 24 960 11459 0.120 0.088 0.192 7.699 91.900 

Lipomyces starkeyi 49 60 132 1468 6483 0.598 0.732 1.611 17.920 79.138 

Magnaporthe grisea 312 48 284 1317 9148 2.809 0.432 2.556 11.855 82.348 

Melampsora laricis_populina 1318 207 940 3818 10548 7.831 1.230 5.585 22.684 62.670 

Microsporum canis 25 13 62 1248 7417 0.285 0.148 0.707 14.238 84.621 

Microsporum gypseum 22 14 48 1171 7621 0.248 0.158 0.541 13.193 85.861 

Mucor circinelloides 236 74 256 3409 6955 2.159 0.677 2.342 31.189 63.632 

Mycosphaerella fijiensis 51 15 81 2061 8105 0.495 0.145 0.785 19.984 78.590 

Mycosphaerella graminicola 46 28 132 1802 8925 0.421 0.256 1.207 16.482 81.634 

Nectria haematococca 493 139 675 4423 9977 3.139 0.885 4.297 28.159 63.519 

Neosartorya fischeri 77 51 165 2178 7932 0.740 0.490 1.586 20.936 76.247 

Neurospora crassa 9 12 36 1193 8658 0.091 0.121 0.363 12.041 87.384 

Neurospora tetrasperma 0 12 29 878 9721 0 0.113 0.273 8.252 91.363 

Paracoccidioides brasiliensis 6 39 47 558 8486 0.066 0.427 0.514 6.108 92.885 

Phanerochaete chrysosporium 272 81 318 2303 7074 2.707 0.806 3.165 22.920 70.402 

Phlebia brevispora 814 343 794 3971 10248 5.034 2.121 4.910 24.558 63.377 

Phlebiopsis gigantea 58 40 197 2462 9134 0.488 0.336 1.657 20.705 76.814 
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n % 

NC SC SN NR E NC SC SN NR E 

Phycomyces blakesleeanus 2472 167 939 3598 9352 14.956 1.010 5.681 21.769 56.583 

Pichia membranifaciens 0 0 0 689 4857 0 0 0 12.423 87.577 

Pichia stipitis 5 6 16 1077 4703 0.086 0.103 0.276 18.547 80.988 

Pleurotus ostreatus 65 91 231 3259 7957 0.560 0.784 1.991 28.088 68.577 

Podospora anserina 57 32 129 1350 9033 0.538 0.302 1.217 12.735 85.209 

Puccinia graminis 1698 194 1021 3070 14583 8.256 0.943 4.965 14.928 70.908 

Punctularia strigosozonata 235 140 302 2853 8008 2.037 1.213 2.617 24.727 69.405 

Pyrenophora teres 97 56 181 1711 9754 0.822 0.475 1.534 14.501 82.668 

Pyrenophora triticirepentis 108 58 140 1652 10211 0.888 0.477 1.150 13.575 83.910 

Rhizopus oryzae 2107 205 1351 4087 9709 12.068 1.174 7.738 23.409 55.610 

Rhodotorula graminis 0 7 12 1070 6194 0 0.096 0.165 14.692 85.047 

Rhytidhysteron rufulum 180 29 288 1876 9744 1.486 0.239 2.377 15.482 80.416 

Saccharomyces cerevisiae 67 4 62 1225 4527 1.138 0.068 1.054 20.816 76.924 

Schizophyllum commune 177 75 329 3432 9168 1.343 0.569 2.496 26.037 69.555 
Schizosaccharomyces 

cryophilus 
0 5 9 789 4254 0 0.099 0.178 15.602 84.121 

Schizosaccharomyces japonicus 0 2 24 709 4079 0 0.042 0.499 14.728 84.732 
Schizosaccharomyces 

octosporus 
2 50 11 781 4081 0.041 1.015 0.223 15.858 82.863 

Schizosaccharomyces pombe 0 0 0 861 4149 0 0 0 17.186 82.814 

Sclerotinia sclerotiorum 173 29 214 1203 12903 1.191 0.200 1.474 8.284 88.851 

Septoria musiva 53 30 62 1408 8680 0.518 0.293 0.606 13.759 84.824 

Septoria populicola 0 11 24 1377 8327 0 0.113 0.246 14.139 85.502 

Serpula lacrymans 940 154 693 2450 10258 6.485 1.062 4.781 16.902 70.769 

Setosphaeria turcica 137 33 218 1902 9412 1.171 0.282 1.863 16.254 80.431 

Spathaspora passalidarum 0 4 4 933 5042 0 0.067 0.067 15.594 84.272 

Spizellomyces punctatus 23 19 52 890 7820 0.261 0.216 0.591 10.109 88.823 

Sporobolomyces roseus 0 8 16 754 4758 0 0.145 0.289 13.620 85.947 

Sporotrichum thermophile 34 38 119 1272 7343 0.386 0.432 1.351 14.445 83.386 

Thielavia terrestris 43 6 85 1388 8293 0.438 0.061 0.866 14.142 84.493 

Trametes versicolor 440 284 833 3829 8910 3.078 1.987 5.827 26.784 62.325 

Tremella mesenterica 272 19 86 882 7054 3.272 0.229 1.035 10.610 84.855 

Trichoderma atroviride 165 51 358 2185 8341 1.486 0.459 3.225 19.685 75.144 

Trichoderma reesei 10 33 102 1530 7468 0.109 0.361 1.116 16.734 81.680 

Trichoderma virens 141 87 226 2677 8512 1.211 0.747 1.941 22.992 73.108 

Trichophyton equinum 11 2 19 956 7572 0.129 0.023 0.222 11.168 88.458 

Uncinocarpus reesii 8 12 28 768 6982 0.103 0.154 0.359 9.849 89.536 

Ustilago maydis 7 8 28 476 6003 0.107 0.123 0.429 7.298 92.042 
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n % 

NC SC SN NR E NC SC SN NR E 

Verticillium alboatrum 67 35 121 1020 8977 0.656 0.342 1.184 9.980 87.838 

Verticillium dahliae 59 44 157 1548 8727 0.560 0.418 1.490 14.694 82.838 

Wickerhamomyces anomalus 11 11 40 1413 4948 0.171 0.171 0.623 21.999 77.036 

Wolfiporia cocos 259 191 506 2687 9103 2.032 1.499 3.970 21.081 71.418 

Yarrowia lipolytica 10 3 16 1118 5301 0.155 0.047 0.248 17.339 82.212 
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Figure 2.3.5.  Representative fungal phylogeny annotated with genomic characteristics 

 

The representative phylogeny (Figure 2.3.3.) was annotated with three datasets, each 

represented as a pie charts.  The internal pie chart illustrates genomic completeness (Table 

2.3.3.) for each species where completeness is annotated as green, fragmentation as orange, 

and missing BUSCO genes as grey. Middle pie charts represent IRCP for each species (Table  

2.3.24) and external pie charts represent GRCPs for each species  (Table 2.3.23). The 5 RCPs 

were annotated purple for NC, red for SC, blue for SN, grey for NR, and black for excluded.
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Figure 2.3.6. Correlation matrix between genomic characteristics and genomic remodelling 

extent  

 

Illustration of effect sizes (Spearman’s r) and their significance (P) between genomic 

characteristics for (a) the globally remodelled dataset and (b) the internally remodelled dataset. 

Each data category is annotated as per the legend. Data calculated from GRCP (Table 2.3.23.) 

is presented on the left, and from IRCP (Table 2.3.24.) on the right. 
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a negative correlation  was observed between genome density and SN proportions (r = -0.3061; 

P= 1.3e
-04) when sampled from IRCP. This was not expected due to the positive correlations 

usually observed between genome size and genome expansion events (Fischer et al., 2014). 

However, as a significant negative correlation (r = 0.3713; P < 1.0e
-04) was observed between 

genome size and SN proportions from GRCP, it could be a case of larger fungal genomes are 

being likely to have undergone polyploidisation (Kellis et al., 2004) which may promote the 

transition of strict components to nested composites. This would likely result in a negative 

correlation for these categories.  

 

2.3.10: A case of gene remodelling in Batrachochytrium dendrobatidis  

 

A cluster of family cliques (40 genes from 7 families) were detected during the 

speciation of Batrachochytrium dendrobatidis (Chytridiomycota; Figures 2.3.7-2.3.8). Of 

these, 4 were strict composites, and 3 were strict components. In each instance, where two 

families shared homology, a complete bipartite graph was observed (whether homology was 

detected as a consequence of remodelling or not). The completeness of this graph suggests that 

these genes were associated with rapid or recent remodelling. As only a single gene (from any 

family) was identified in another genome in our dataset (Spizellomyces punctatus, 

Chytridiomycota) and how all other genes were only identified in B. dendrobatidis it could be 

suggested that these genes were duplicated and expanded to fulfil a specific niche in its 

lifecycle. Each gene in the four composite families shared a peptidase family s41 domain 

(PF03572), which are reported to be potent virulence factors against amphibian hosts 

(Thekkiniath et al., 2013). An identifiable PFAM domain was not detected in any strict 

component gene.  
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Figure 2.3.7: Inter-familial relationships between a subset of genes in B. dendrobatidids  

 

Families that have full connectivity between each vertex (cliques) in Batrachochytrium 

dendrobatidis. The green composite family contains one gene from Spizellomyces punctatus, 

all other families are specific to B. dendrobatidis. Purple families are also composite families. 

Blue component families share homology between each other and to the C-terminus of each 

composite family. Red component families share homology with the N-terminus of each 

composite family.  
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Figure 2.3.8. Relationship between remodelled B. dendrobatidis cliques.  

 

Each composite family forms a clique with each other composite family and each component 

family. Both blue component families form a clique with each other. Red component families 

form a clique with each composite family. Composite families serve as articulation points 

between red and blue component families.  
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2.3.11: A potential case of fission mediated subneofunctionalsation in Saccharomyces 

cerevisiae 

 

Trp1 (SPBC1539.09c) is an essential multifunctional enzyme in Schizosaccharomyces 

pombe where it is involved in tryptophan biosynthesis (Thuriaux et al., 1982). Trp1 was  

reported as a composite by CompositeSearch where two non-homologous components were 

found in S. cerevisiae (trp3 (YKL211C) and trp1 (YDR007W)). This remodelling event was 

found to be a whole gene fusion/fission event by fdfBLAST. S. pombe Trp1 was found to be a 

composite of YKL211C at along N-terminus and YDR007W at its C-terminus (Figure 2.3.9.). 

While this composite was also detected by Leonard & Richards in 2010 it is not amongst the 

list of fusion proteins on Pombase (McDowall et al., 2015). YKL211C and YDR007W are both 

non-essential, null mutants are tryptophan auxotrophic and perform distinct functions during 

tryptophan biosynthesis, all of which are performed by Trp1 in S. pombe (Miozzari et al., 1978; 

Thuriaux et al., 1982). 

 

2.4. Discussion 

 

2.4.1 Gene remodelling is extensive in fungi 

 

Our results illustrate the extent of sequence remodelling throughout the evolution of 

fungi, with 49.94% of all sequences in our dataset having a history of some form of remodelling 

in that timeframe. In addition, we found that composite sequences constitute 32.76% of all 

sampled genes. The primary mechanisms of sequence evolution are duplication, 

recombination, and divergence (Dittmar and Liberles 2011; van Rijk and Bloemendal 2003; 

Leonard and Richards 2012; Przytycka et al. 2006; Patthy 1999) all of which are correlated  
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Figure 2.3.9: Composite tryptophan biosynthesis gene   

 

Differential fusion gene (Trp1; SPB1539.09c) observed in Schizosaccharomyces pombe, each 

component gene (trp3 (YKL211C) and trp1 (YDR007W)) is observed in Saccharomyces 

cerevisiae. A copy of the fusion gene was not observed in S. cerevisiae and a copy of neither 

component gene was found in S. pombe. This image was produced using fdfBLAST (Leonard 

and Richards, 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

216



 

  

with each other to varying degrees (Vogel et al. 2005). To our knowledge, the only other 

published research to look at global scale remodelling was during the benchmarking of 

CompositeSearch and of FusedTriplets, where 21,623 genes out of 204,894 (10.6%) in a viral 

dataset were reported as composite genes (Pathmanathan et al. 2018; Jachiet et al. 2014). The 

sum of composites in fungi has previously been estimated to be approximately 4% and the sum 

of fusion components to be approximately 9% (Durrens et al. 2008; Enright & Ouzounis 2001). 

A study of nine Drosophila species reported approximately 9,000 sequences (approximately of 

fusion components to be approximately 9% (Durrens et al. 2008; Enright & Ouzounis 2001). 

A study of nine Drosophila species reported approximately 9,000 sequences (approximately 

6.62%) that are the product of domain recombination (Wu et al. 2012). Here, using network 

analysis, we report levels of remodelling that are considerably greater than previously reported. 

 

2.4.2. Composite genes are highly homoplastic  

 

It was observed that remodelled families were likely to be homoplastic (P ≤ 0.002), 

larger in comparison to other remodelling categories (P ≤ 7.10e
-03), statistically enriched to be 

of prokaryote origin (P ≤ 2.0e
-03) and unlikely to be of eukaryote origin (P>0.999). There are 

a few possible explanations for these two findings. First of all, the larger family size among 

composites could be due to the CompositeSearch software clustering epaktologs into families. 

Epaktologs are sequences that have independently acquired the same domain architecture, 

meaning that, strictly speaking they are neither orthologs nor paralogs (Haggerty et al. 2014; 

Nagy & Patthy 2011). Larger composite family size is an indication that particular kinds of 

protein more “successful” or “useful”, in other words, more likely to arise in the first place and 

then more likely to persist throughout evolution, once they arise. This would cause composite 

families to be larger than non-composite families on average and also more likely to arise more 
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than once. Composite families are also more likely to be multifunctional (Pasek et al. 2006), 

and therefore, there is less of a requirement to independently transcribe and translate two 

different genes, when instead they can be combined into a single gene. This might influence 

the retention of composite proteins over non-composites. The observation of prokaryote DO 

enrichments across all remodelled categories (except NR) is in agreement with other studies 

highlighting higher duplication rates and expendability of more ancient Prokaryote orthologs 

in Eukaryotes (Jordan et al., 2002; Cotton and McInerney, 2010; Alvarez-Ponce et al., 2013; 

Luo et al., 2015). Synapomorphy gain and loss patterns were compared between leaves and 

branches using multiple Mann-Whitney U tests, where significant differences were observed 

for all categories (P ≤ 1.19e
-03) suggesting that remodelling (and evolution) occurs at a more 

rapid rate during speciation. Only three branches were observed to have an evolutionary burst, 

the C. immitis speciation branch (P ≤ 2.23e
-04), the F. verticillioides speciation branch (P ≤ 

1.71e
-04), and “Node_196” (P = 3.26e

-04). The burst at C. immitis is likely due to its 

exceptionally short branch length (k = 0.000517) and the bursts in “Node_196” and F. 

verticillioides are likely due to large genomic expansions during the divergence from F. 

graminearum. 

These results further corroborate with hypothesis that composites are born at a 

relatively clocklike rate, hence why an insignificant difference in birth rate is observed, and 

why greater proportions of composite families are observed at leaf nodes on average. These 

results are further compounded by the fact that remodelled genes are more likely to have arisen 

in ancient bacterial lineages (P ≤ 0.0001) allowing for more time for homoplasy to occur.  

 

2.4.3. Composite genes emerging at the root of Pezizomycotina are involved in typical 

Pezizomycotina phenotypes 
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Pezizomycotina were the largest clade in our dataset. GO slim terms from composite 

genes that were reported to have emerged at the root of Pezizomycotina were enriched against 

a subset of all genes from Pezizomycotina resulting in the detection of several significant (PB 

≤ 0.05) biological process enrichments (GO:0005975 (carbohydrate metabolic process), 

GO:0007049 (cell cycle), GO:006259 (DNA metabolic process), GO:0019748 (secondary 

metabolic process), and GO:0009404 (toxin metabolic process)). During the emergence of 

Pezizomycotina, the shift to a predominantly multicellular clade, with a predominantly sexual 

lifecycle and a wide effector arsenal was observed (Liu and Hall, 2004; Arvas et al., 2007). 

Cytokinesis ontologs were also enriched. Cytokinesis is the physical process of cell division 

and is essential for the proliferation of a cell line. Despite its importance, ubiquity and partial 

uniformity of steps involved, cytokinesis displays lineage specific differences in its co-

ordination, highly dependent on organism complexity, specifically the development of the 

division plane (Canman et al., 2003). During the evolution of Ascomycota, Taphrinomycotina 

and Sacchromycotina developed synapomorphic mechanisms to optimise nuclear segregation 

(Khmelinskii et al., 2010). A paradigm shift in cytokinetic machinery seems to have coincided 

with the shift to a predominantly multicellular lifecycle during the evolution of 

Pezizomycotina. Enrichments of secondary metabolite processes (GO:0019748) and toxin 

metabolic processes (GO:0009404) coincide the expansions of effector arsenals during the 

evolution of early Pezizomycotina to potent pathogens (Cavalier-Smith, 1992; Demain and 

Fang, 2000; Arvas et al., 2007).  

 

2.4.4. Remodelled genes are likely to be involved in transport, whereas non-remodelled 

genes tend to be involved in housekeeping processes   
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When all genes in each remodelling category were searched for enrichment, eleven 

significantly enriched nested composite ontologies could be directly associated with small 

molecule transport.These results are unsurprising as these ontologies are all directly associated 

with the Major Facilitator Superfamily (MFS) (CL0015) of transporters or proteins that aid in 

their function (Madej, 2014; Yan, 2015). MFS is one of the two most abundant membrane 

bound transporter families in biology (Nelissen et al., 2006) where it is ubiquitously distributed 

across cellular life and has been observed in a multitude of domain architecture combinations, 

where different combinations permit the transport of diverse small molecule repertoire (Madej, 

2014). Significantly enriched non-remodelled ontologies were associated with housekeeping 

functions, specifically transcription, ribosomal structure, and base metabolic precursor 

generation. RNA transcription is a finely tuned, ubiquitous process. Transcription factor 

mutation is usually highly deleterious and altered dosage interferes with epigenetic controls 

(Poveda et al., 2010). It is unsurprising that genes related to such a selectively pressurised 

process would be unaffected by remodelling.  

 

2.4.5. Virulence factors are remodelled in Batrachochytrium dendrobatidis  

 

Each gene in the four composite families in the cluster of complete bipartite graphs 

from B. dendrobatidis shared a peptidase family serine 41 domain (PF03572). The relevance 

of S41 peptidases in Batrachochytrium dendrobatidis have been previously described 

(Thekkiniath et al., 2013), where it was concluded after an exhaustive search of approximately 

6,000 proteomes that a considerable expansion of S41 peptidases was observed in B. 

dendrobatidis. The consequence of B. dendrobatidis infection on tadpoles is usually non-lethal 

keratinization of mouthparts. Metamorphosis in frogs is governed by 3, 5, 3′-triiodothyronine 

(T3), after exposure to T3 Batrachochytrium dendrobatidis zoospores display considerable 
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chemotaxic attraction to T3 and exposure to T3 exhibits increased production of serine proteases 

that function to degrade host defence peptides allowing for advanced pathogen invasion of the 

hosts dermal tissues (Thekkiniath et al., 2013).  

 

2.5. Conclusion  

 

In conclusion, this analysis highlights the extent to which protein remodelling has been 

central to the diversification of fungi. While most studies of protein evolution, tend to focus on 

the treelike parts of evolutionary history, we show that the non-treelike parts can be equally 

interesting. More than seventy percent of the extant sequences we have examined in fungal 

genomes show evidence of remodelling and we have shown some of the factors that have 

influenced this remodelling. With increased sampling of genomes, we expect the proportion of 

proteins where we can detect remodelling in their history will increase – greater sampling of 

genes increases the likelihood of detecting remodelling events. Remodelling of proteins 

provides a rich supply of possibilities for all organisms, in terms of new functions, 

combinations of functions, co-expression of functions and separating functions from one 

another. It is perhaps not surprising that remodelling is so rampant.
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3.1: Introduction to botany 

 

The cultivation of plants has possibly impacted human civilisation more than any other 

factor. Plants, alongside cyanobacteria, guided ancient ecosystem evolution by reducing 

atmospheric CO2 levels and temperature, and by increasing O2 and atmospheric pressure 

through photoautotrophic endeavours (Wallace et al., 2017). Archaeplastida (Viridiplantae 

(‘green’ plants and algae), Rhodophyta (‘red’ algae), Glaucophyta (glaucophyte algae)), 

cyanobacteria (‘blue-green’ algae), and photosynthetic stramenopiles (‘brown’ algae) perform 

the majority of primary metabolic production in any exposed ecosystem and, as such, form the 

beginning of most food webs. The United Nations predict that world populations will approach 

10 billion by 2050, with significant accelerated growth observed in underdeveloped regions of 

Africa and Asia, which is projected to continue indefinitely 

(https://population.un.org/wpp/Publications/). In light of such rapid acceleration in human 

population growth, one of the greatest challenges posed is how to adequately and sustainably 

feed an expanding population (Li and Zhang, 2007; Turner, 2009) despite continued 

devastating losses due to plant pathogens, pests and environmental disasters (Bebber, 

Ramotowski and Gurr, 2013; Bebber et al., 2014; Bebber and Gurr, 2015; Lesk et al., 2016).  

Comparative genomics between economically viable species, may unlock the potential 

for sustainable, higher yielding, more disease resistant, nutritious crop production without 

impacting local ecology or public health. Fossil fuels (such as oil, coal, and methane) are the 

anaerobically decomposed remnants of ancient plant and animal matter (Berner, 2003), and 

have been used for heat and energy production by humans since the Bronze Age (Dodson et 

al., 2014). Fossil fuel consumption has exponentially increased during the course of the 20th 

century, and they have become a highly contentious, highly valuable economic asset with 

devastating environmental effects due to increased atmospheric CO2 and other greenhouse 
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gasses (Cheng and Xiong, 2014; Olson and Lenzmann, 2016). The most striking effect 

observed is the steady increase of global temperatures (Rosenzweig et al., 2008; Trenberth et 

al., 2014) resulting in adverse environmental effects such as the increased instances of 

wildfires, cryosphere decay, rising sea levels, disruption of ecosystems, and ocean acidification 

(Botkin et al., 2007; Hoegh-Guldberg et al., 2007; Jolly et al., 2015; Zhang and Wang, 2015). 

As mentioned above, plant metabolism catalysed the reduction of atmospheric CO2 through 

photosynthetic metabolism. Deforestation has considerably impaired CO2 bioremediation 

(Houghton, 1991; Song et al., 2015). The devastating effects of global warming has prompted 

research into CO2 bioremediation by plants and chlorophyte microalgae through comparative 

genomic mining and biotechnological augmentation (Maeda et al., 1995; Zeiler et al., 1995; 

Raeesossadati et al., 2014; Gonçalves et al., 2016). However, as fossil fuel resources are 

limited, the economic value of fossil fuel has sparked massive genetic engineering projects in 

chlorophytes and diatoms (Hill et al., 2006; Cockerill and Martin, 2008; Gouveia and Oliveira, 

2009; Olson and Lenzmann, 2016). These biofuels are long aliphatic hydrocarbons produced 

via the algal fatty acid synthesis pathway and are the subject of intense research (Miao and Wu, 

2006; Chisti, 2007; Gouveia and Oliveira, 2009; Sani et al., 2013; Nayak et al., 2016).  

Plants, like fungi and bacteria, engage in secondary metabolism (Cavalier-Smith, 1992) 

and produce a wide array of therapeutic compounds and valuable industrial synthons (Aharoni 

and Galili, 2011). With the advent of advanced synthetic biology and systems biology tools, 

understanding the mechanisms underlying the structure and evolution of plant genomes is a 

highly important task if we wish to uncover hidden treasures in future biotechnological efforts.  

Comparative analyses between plants have revealed that their evolutionary histories are 

replete with polyploidisation events (resulting in increased chromosome copy numbers) 

followed by massive chromosomal restructuring events (Jiao et al., 2011; Li et al., 2015). 

These events allow for the process of gene remodelling, specifically fusions, fissions, and exon 
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shuffling events (França et al., 2012; Leonard and Richards, 2012), gene  subfunctionalisation, 

and neofunctionalisation (Rastogi and Liberles, 2005; Conant et al., 2014), and the co-option 

of genes into alternative pathways (True and Carroll, 2002; Cock et al., 2014) which can have 

drastic effects on the metabolic prowess, genotype, and phenotype of a given lineage. 

 Genomic analyses have identified a wealth of such remodelling events throughout the 

Tree of Life (Enright and Ouzounis, 2001; Froy and Gurevitz, 2003; Pasek et al., 2006; 

Nakamura et al., 2007; Nagy and Patthy, 2011; Leonard and Richards, 2012), however these 

analyses generally look at specific events, or specific types of events during plant evolution. 

The expression of fused plant genes in plant hosts has yielded some valuable phenotypes, 

specifically increased salt tolerance in Lolium perenne, an agriculturally important food source 

for grazing animals (Cen et al., 2016), increased trehalose accumulation and decreased abiotic 

stress in Oryza sativa (Garg et al., 2002), increased wax ester biosynthesis in Nicotania 

tabacum (Aslan et al., 2014), and enriched formaldehyde bioremediation by Pelargonium sp. 

‘Frensham’ (geranium) (Song et al., 2010). Comparative analyses of plants and mining for 

remodelling events may provide invaluable knowledge by aiding in the elucidation of their 

complex biochemistries and evolutionary histories.  

 

3.1.1: An overview of plant evolution  

 

Photosynthesis was first achieved by ancient cyanobacteria over 3 billion years ago 

(gigayears ago; Ga; Blankenship, 2010; Betts et al., 2018). Approximately 1033-1891 Ga an 

endosymbiotic event between a cyanobacteria and a non-photosynthetic eukaryote led to the 

evolution of the first photosynthetic eukaryotes, and the subsequent rise of the Archaeplastida 

(Keeling, 2010; Betts et al., 2018). The combined cyanobacterial and archaeplastidian 

photoautotrophies led to a slow accumulation of atmospheric oxygen and ozone, a reduction in 
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CO2 levels, and the subsequent cooling of Earth (Kenrick et al., 2012; Martin and Allen, 2018). 

This ozone layer and thickened atmosphere reduced the levels of irradiating ultraviolet (UV) 

rays in the troposphere (Lowe and Tice, 2007), which is a key factor attributed to the eventual 

myco- and subsequent phytoterrestrialisation events (Bidartondo et al., 2011; Kenrick et al., 

2012). Basal embryophytes (land plants) further expanded oxygen production (Wallace et al., 

2017).  

Chlorophyta are the earliest known diverging Viridiplantae division (phylum) and, with 

the Charophyta, constitute the green algae (Martin et al., 2002; Lewis and McCourt, 2004; 

Nishiyama et al., 2018). The currently accepted hypothesis is that early marine chlorophytes 

adapted to limnic environments and transitioned into complex charophytes (Lewis and 

McCourt, 2004; McCourt et al., 2004; Leliaert et al., 2012; Delwiche and Cooper, 2015; 

Domozych et al., 2016). The transition from aquatic to terrestrial environments led to the 

eventual transition toward the evolution of the multicellular embryophytes (Delwiche and 

Cooper, 2015). Streptophyta is a monophyletic clade and circumscribes charophytes and 

embryophytes (Becker and Marin, 2009).  

Recent phylogenetic studies have grouped embryophytes as the sister taxa to three late 

diverging charophyte lineages, Charophyceae, Coleochaetophyceae, and Zygnematophyceae 

(CCZ clade), with Zygnematophyceae being the most likely closest relative to embryophytes 

(Karol et al., 2001; Guiry, 2013; Lemieux et al., 2016) (Figure 3.1.2.).  

Phragmoplasophyta is a monophyletic clade that encompasses the CCZ clade and 

embryophytes (Wilhelmsson et al., 2017). Phragmoplasophyta are defined by their 

synapomorphic phragmoplast, a structural component which aids in cell wall establishment 

after division cycles (Euteneuer and McIntosh, 1980; Smertenko et al., 2018). The earliest 

branching embryophytes were non-vascular, and were likely very similar to extant bryophytes,  
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Figure 3.1.1. Phylogeny of the Archaeplastida 

 

Rhodophyta and Glaucophyta are basal to Viridiplantae and are not “true plants”. Coloured 

circles indicate a major phenotype transition. The orange circle represents terrestrialisation, 

pink represents vascularisation, green represents the evolution of the modern leaf structure, 

purple represents the development of seeds, and blue represents the evolution of pollen 

(Baldwin and Husband, 2011; Bidartondo et al., 2011). 
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represented by three phyla: Bryophyta (mosses), Anthocerotophyta (hornworts) and 

Marchantiophyta (liverworts) (Mishler and Churchill, 1984; Kenrick and Crane, 1997; 

Nickrent et al., 2000). The exact evolutionary radiation of these divisions within the bryophytes 

is unresolved, with one hypothesis suggesting that bryophytes are, themselves, monophyletic 

and sister to the monophyletic tracheophyte (vascular plants) clade, and the other, more widely 

accepted hypothesis suggesting that Bryophyta and Marchantiophyta constitute a monophyletic 

clade basal to Anthocerotophyta, which, itself, is sister to the vascular tracheophytes 

(Nishiyama and Kato, 1999; Duff et al., 2009; Stotler and Crandall-Stotler, 2009; Ligrone et 

al., 2012; Delwiche and Cooper, 2015; Morris et al., 2018).  

Tracheophytes are divided into two clades, the phylum Lycopodiophyta (club mosses), 

and the superphylum Euphyllophyta (Tomescu, 2009; Vasco et al., 2013). Lycopodiophyta and 

Euphyllophyta are differentiated by leaf vasculature complexity, Lycopodiophyta possess a 

single vascular trace whereas Euphyllophyta possess a complex vascular network. 

Euphyllophyta consist of the divisions Pteridophyta (sporogenic ferns) and Spermatophyta 

(seed plants) (Bennici, 2008; Clarke et al., 2011).  

Ancestral polyploidisation events coincided with significant reproductive strategy 

innovations: the evolution of pollen mediated reproduction, and the development of the coated 

seed. This innovation allowed for the development of seed dormancy, protection against 

desiccation, alternative dispersal mechanisms, and removed the dependence on aquatic 

fertilisation (Baldwin and Husband, 2011; Jiao et al., 2011; Li et al., 2015). A second round of 

polyploidisation led to the divergence of angiosperms (flowering plants) from gymnosperms 

(softwoods) (Van de Peer et al., 2009; Conant et al., 2014). This whole genome duplication 

event coincided with a third significant reproductive innovation: the evolution of flowers 

(Chanderbali et al., 2016). This led to complex symbiotic relationships with arthropods and an 

explosion in plant diversity (Labandeira, 2013).  
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3.1.2 Genome architecture evolution in Viridiplantae  

 

Plant evolutionary history is abound with polyploidisation events (PE) (Blanc et al., 

2003; Adams and Wendel, 2005; Doyle and Egan, 2010; Jiao et al., 2011; Weiss-Schneeweiss 

et al., 2013). Polyploidy can result via intragenomic events, autopolyploidic hybridization, or 

allopolyploidic hybridisation (Arrigo and Barker, 2012). Plant comparative genomics have 

concluded that all angiosperms, and likely all tracheophytes, are ancestrally polyploid, and that 

angiosperms freely undergo polyploidisation (Jiao et al., 2011), whereas PE are less common 

in gymnosperms (Bennett, 2004). Recent PE in angiosperm lineages can be observed alongside 

genomic remnants of the PE ancestral to all angiosperms, and of the PE hypothesised to be 

ancestral to tracheophytes (Soltis et al., 2009).  

Plant genome evolution appears to follow a cyclic PE model (CycPE), where rounds of 

polyploidy occur and are followed by subsequent loss of redundant paralogs, chromosomal 

rearrangements, and the eventual decay of the redundant chromosomes before entering another 

cycle (Wendel et al., 2016). CycPE was first hypothesised after multispecies expressed 

sequence tags (ESTs) comparative analyses, revealed bursts of sequence similarity, duplication 

patterns, and micro- and macrosynteny between distantly related organisms, suggesting an 

ancestral origin (Leitch and Bennett, 2004; Fawcett et al., 2009; Jiao et al., 2011; Wendel et 

al., 2016). A wide range of genomic responses to PE are observed. Early genomic responses 

pertain to the molecular responses to individual genes and to their expression (Jackson and 

Chen, 2010; Arrigo and Barker, 2012). Molecular genetic responses may result in 

pseudogenisation, homologous exchange, or the expansion of incorporated, activated 

transposable elements. Expression level responses likely result in expression bias eventually 

progressing to subfunctionalisation, neofunctionalization, subneofunctionalisation, or 

pseudogenisation, accompanied by chromosomal rearrangements (Lynch and Conery, 2000; 
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Rastogi and Liberles, 2005b; Marques et al., 2008; Albertin and Marullo, 2012). Abiding 

responses, usually result in genomic subfunctionalisation and neofunctionalization, and 

significant chromosomal rearrangement and decay, further resulting in chromosomal number 

reduction (Leitch and Leitch, 2008; Wendel et al., 2016). New species emerging from multiple 

CycPE ultimately display considerable chromosomal architecture changes compared to their 

pre-polyploid progenitor (Jiao et al., 2011; Arrigo and Barker, 2012). Emergent species are 

diploidised by these chromosomal events, while maintaining ohnologs and vestigial PE 

genomic architecture (Conant et al., 2014; Estep et al., 2014; Clark and Donoghue, 2018). 

The fate of duplicate genes, especially ohnologs (homologs arising from a WGD event), 

has intrigued biologists since their discovery. Observations of genomic reduction following 

CycPE may suggest a non-random, selective fate for ohnologs (Conant and Wolfe, 2008; De 

Smet et al., 2013; Panchy et al., 2016). Restored singleton genes (genes that once had an 

ohnolog which has been subsequently deleted) have higher expression patterns and wider 

expression domains than those in duplicated pairs, and are statistically enriched for DNA 

replication and repair, chloroplast function, and other essential housekeeping functions 

(Conant and Wolfe, 2008; Panchy et al., 2016). The selection for these genes to return to a 

singleton state may be due to gene dosage toxicity, or the stoichiometries of protein-protein 

interaction or protein complex assembly (Freeling, 2009; Birchler and Veitia, 2012). For 

example, genes producing monomeric products with few interaction partners or those that are 

non-essential in biological pathways would be under less selection pressure than multimeric 

product genes (those involved in a number of different pathways) or more essential products 

(Bashton and Chothia, 2007).  

Gene biased fractionation (the non-random selection of lost and retained ohnologs from 

each respective donor in a hybridization event) has been observed throughout the angiosperms 

(Wang et al., 2011; Cheng et al., 2012; Freeling et al., 2012; Conant et al., 2014). An ancient 
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example of differential genomic fractionation can be observed from an early Paleozoic (~65 

Ma) intergeneric alloploidization event in ancestral Gossypium sp. (cotton), evidence of which 

is observed in modern lineages (Renny-Byfield et al., 2015). The selection processes governing 

biased fractionation aren’t completely understood but may involve repressibility due to 

adjacency of transposable elements (TEs), leading to fewer constraints and varying levels of 

expendability (Renny-Byfield et al., 2015; Wendel et al., 2016).  

Despite rounds of genome reduction following PE, considerable genome size variation 

and variations in complexity exist between even relatively closely related Viridiplantae 

genomes (Lang et al., 2010; Marroni, Pinosio and Morgante, 2014; Ruhfel et al., 2014), for 

example, the Hordeum vulgare (barley) genome is over 11 times larger than another Poeceae 

grass genome, Oryza sativa (rice; 5.1 Gbp vs. 0.43 Gbp respectively) despite having less 

chromosomes (7 vs. 12 respectively; Goff, 2002; Mayer et al., 2011). Alongside PE, genomes 

may undergo expansion via rapid TE propagation if removal efforts are overwhelmed by 

unequal or illegitimate recombination events (Devos, 2002). Occurrences of lineage specific 

TE amplifications have been observed in plant lineages. Comparative genomics between Oryza 

reveal an approximate 400 Mbp increase, almost doubling in genome size, between O. 

australiensis and O. sativa, mostly due to three retro-TE families (Turcotte et al., 2001; Ma 

and Bennetzen, 2004; Piegu et al., 2006). Interestingly, the TEs responsible for the genomic 

expansion in O. australiensis are present in all other Oryza species, but, with the exception of 

an approximate 200 Mbp genomic expansion in O. granulata estimated to have occurred 

approximately 2 Ma, have remained comparatively inactive (Ma and Bennetzen, 2004; 

Ammiraju et al., 2007), which may suggest an environmental cause for such evolutionary 

bursts. TE amplification is also reported to have been responsible for the tripling in genome 

size between Gossypium species (Hawkins et al., 2006). The genome size variations between 
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members of Oryza and Gossypium represent the dynamics imposed by TE proliferation and 

decay in conjunction with CycPEs.  

Comparative genomic analyses between the TE poor Genlisea aurea and the TE rich 

octopolyploid Paris japonica revealed little variation in gene content despite massive variation 

in genome size (~60 Mbp and >150Gbp respectively) (Pellicer et al., 2010). This observation 

illustrates the enormous effect of TE propagation in genomic expansion, which comparatively 

depreciate the effects of tandem gene duplication in genome expansion and can virtually negate 

the effect of gene loss via genomic fractionation following a PE (Wendel et al., 2016). TEs 

play an important gene regulatory role despite observed gene content consistency and a 

relatively constant TE accumulation and decay rate (Leitch and Leitch, 2008; Schrader et al., 

2014).  

Despite the vast information attained from reference genomes, organisms are constantly 

evolving and adapting such that a single genome does not represent the dynamic genetic 

variation within a species, however these sequences have proved invaluable in resequencing 

efforts, leading to considerably greater insight into genomic variation within resampled species 

(Huang et al., 2009; Huang et al., 2013). Although considerably valuable, resequencing efforts 

are limited by poor quality mapping of short read sequences in species with high TE activity 

or other genomic variations resulting in small indels and intergenic sequences not being 

detected (Kircher and Kelso, 2010; Alkan et al., 2011).  

High throughput systems biology approaches, such as pangenomic and 

pantranscriptomic analyses are used in an attempt to capture as much variation information as 

is possible, and have been used to map variances in a multitude of model plant systems (Hirsch 

et al., 2014; Golicz et al. , 2016; Contreras-Moreira et al., 2017; Sun et al., 2017). 
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3.1.2.1. Evolutionary development via transcription factor co-option  

 

Gene co-option (exaptation) is an evolutionary process where a gene is incorporated 

into a new functional pathway without initially altering its functional biochemistry (True and 

Carrol, 2002). Co-opted genes are often paralogs (or ohnologs) and may be subjected to 

subfunctionalisation or neofunctionalisation after co-option has taken place (McLennan, 2008; 

Hilgers et al., 2018). These genes may also be subjected to gene remodelling which may further 

increase their fitness effects. Gene co-option has been extensively studies in plants, especially 

through transcription factor (TF) co-option during the transition from haplontic predominant 

to diplontic predominant life cycles (Szovenyi et al., 2011; Pires and Dolan, 2012). 

Embryophytes display “alternation of generations” (AG) (the alternation between a 

multicellular haploid gametophyte generation and a diploid sporophyte generation during their 

life cycles; Kenrick, 1994; Graham and Wilcox, 2000). A haplontic lifecycle is exhibited by 

all known green algae where a haploid stage is observed for the majority of the algal life cycle, 

with an ephemeral diploid zygote stage. Conversely, embryophytes display a haplodiplontic 

life cycle, where two mitotic stages with differential ploidy is observed (Niklas and Kutschera, 

2010). In charophytes, only zygotes display diploidy (Haig, 2010; Nishiyama et al., 2018). 

Two competing hypotheses compete to decipher the origin of AG in embryophytes, the 

“homologous theory” (modification theory) and the more widely accepted “antithetic theory” 

(intercalation theory; Bower, 1890; Bennici, 2008). The homologous theory suggests that land 

plants first displayed isomorphic AG, however there is no known genetic support for this and 

only sparse early Devonian fossils which appear to be isomorphic (Thornber, 2006). 

Comparatively, the antithetic theory suggests that that the sporophyte arose through successive 

mitotic division phase insertions during zygotic generation prior to meiotic division resulting 

in a diploidic (sporophytic) embryo on a gametophytic thallus (Bennici, 2008). This 
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protosporophyte is hypothesised to have transitioned from a gametophyte nutritional parasite 

to a metabolically independent sporophyte, followed by subsequent transitionary steps towards 

life cycle dominance (Qiu et al., 2006; Kenrick, 2017). The antithetic theory is supported by 

the triad of (a.) sporophyte absence in charophytes, (b.) gametophyte dominance over 

sporophytes in bryophytes, and (c.) sporophyte dominance over gametophytes in tracheophytes 

(Niklas and Kutschera, 2010).  

A hypothetical model of sporophyte evolution via the co-option of ancient gametophyte 

genes and their regulatory gene networks has been proposed (Szovenyi et al., 2011; Pires and 

Dolan, 2012). This model is based on greater differential expression patterns between 

gametophytes and sporophytes of angiosperms when compared with bryophytes, and that a 

plethora of gametophyte-biased transcription factors are preferentially expressed in 

angiosperm sporophytes. One such example of gametophyte- specific regulatory TF co-option 

to sporophyte regulation can be observed in type II MADS box (MADS-II) TF (Henschel et 

al., 2002; Singer et al., 2007). MADS-II has a distinct, functional evolutionary origin in 

charophytes, where it regulates haploid germ cell differentiation (Tanabe et al., 2005). During 

embryophyte divergence, MADS-II underwent a duplication and subsequent 

neofunctionalization, forming the MIKCC and MIKC* TF families (Henschel et al., 2002; 

Singer et al., 2007). MIKC* retained MADS-II conserved function, regulating gametophyte 

development in embryophytes, whereas MIKCC primarily regulates sporophyte development. 

MIKC* displays differential expression and regulatory functions between bryophytes and 

angiosperms, it is expressed in both bryophyte gametophyte and sporophyte generations, but 

is restricted to sporophyte expression in Arabidopsis thaliana (Quodt et al., 2007). An almost 

complete set of the MIKCC gene family is present in sampled gymnosperms, further expanded 

before the divergence of the basal angiosperm genus, Amborella, and further expanded again 

in crown angiosperms (Münster et al., 1997; Gramzow and Theissen, 2010; Melzer et al., 
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2010). These expansions and diversifications aided in the development of the sporophyte, and 

later, the flower (Tanahashi et al., 2005; Singer, Krogan and Ashton, 2007). This evolutionary 

pattern likely follows an evolution by subneofunctionalisation model (He and Zhang, 2005). 

Comparative studies between Physcomitrella patens, a model Bryophyta, and spermatophytes 

have shed light on the evolution of both embryogenesis and AG (Kimura et al., 2008; Lee et 

al., 2008; Hay and Tsiantis, 2010). Homeodomain transcription factor (TF) control was found 

to be of particular importance in both of these pathways, KNOX family TF repression results 

in the repression of gametophyte body plan development, and BELL family TF repression 

results in either the repression of zygote development or zygote division. An RWP-RK family 

TF in the model liverwort (Marchantiophyta) Marchantia polymorpha was found to control 

dormancy in unfertilized ova and germ cell formation (Chardin et al., 2014). Gametophyte 

reduction is observed in angiosperms when compared to other embryophyte clades (Brandes, 

1973; Kerp, et al., 2003; Borg et al., 2009). MpRWP-RK TF orthologs in A. thaliana (DUO1 

and DUO3) were found to control development of pollen generation cells (Durbarry, 2005; 

Rövekamp et al., 2016). As MpRWP-RK TF was found to complement DUO1 and DUO3 

function in A. thaliana (Durbarry, 2005) it has been hypothesised that sexual reproductive 

control has been conserved since the emergence of early embryophytes. It is possible that 

gametophyte genes (and their regulatory networks) were co-opted or neofunctionalised to 

promote sporophyte evolution during the rise of the spermatophytes (True and Carroll, 2002; 

Teshima and Innan, 2008).  

Some genes with ancient origins are transcriptionally restricted to one lifecycle 

generation, two examples of which are the TALE homeobox TF superclass (Hamant and 

Pautot, 2010; Hudry et al., 2014) and LFY (Tanahashi, 2005). Initiation of the diploid phase in 

the model alga Chlamydomonas reinhardtii (Chlorophyta) lifecycle is achieved by 

heterodimerisation of two TALE proteins, Gsm1p and Gsp1p, whereas embryophytic 
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sporophyte development processes are also under control of TALE homeobox TF, specifically 

KNOX and BELL (Lee et al., 2008). These results suggest that TALE genes may be restricted 

to diploid stages throughout Viridiplantae.  

LFY is a floral meristem regulator in angiosperms, however it is expressed during the 

sporophytic generation throughout streptophyte lineages, where it regulates zygotic cell 

division in non-flowering embryophytes and charophytes (Tanahashi, 2005; Silva et al., 2015). 

These examples illustrate generation phase exclusivity, and highlight the questions of “Where 

did generation phase genes first originate?” and “What were their original pathways (if any) 

before evolving to function as sporophyte regulators?” 

Polycomb-group proteins (PGP) remodel chromatin by methylating lysine 27 on 

histone 3 (H3K27) resulting in epigenetic transcriptional repression (Okano et al., 2009). Two 

interacting PGPs, CLFp and FIEp, have been identified as AG regulators in P. patens 

(Mosquna et al., 2009). Deletion of either CLFp or FIEp in P. patens results in the initiation of 

apogamy (the fertilisation independent generation of sporophytes) (Mosquna et al., 2009; Chen 

et al., 2014). CLFp is homologous to gene products from the E(Z) gene cluster in animals 

(Schatlowski et al., 2010) which are responsible for appropriate epigenetic control of 

embryonic development, suggesting an ancient role for these genes in sexual reproduction. 

CLFp in angiosperms, however, is not implicated in embryogenesis, instead, it regulates the 

floral homeotic gene FLC1 (Jiang et al., 2008). DCLF mutants display altered flowering and 

curled leaf morphologies (Jiang et al., 2008; Chen et al., 2014). The recruitment of CLF as a 

floral repressor likely occurred during the angiosperm divergence from gymnosperms, where 

it may have originally prevented floral gene expression in leaf tissues (Cairney and Pullman, 

2007).  

Due to the dynamic genome architectures observed during the course of divergent 

Viridiplantae evolution, it is reasonable to hypothesise that these genes may have been 
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subneofunctionalised following a PE, subsequently leading to greater gene diversity, 

anatomical evolution, and the emergence of the sporophyte. 

 

3.1.2.2. Metabolic evolution  

 

Due to the “polyploidisation-rearrangement-reduction” model observed during CycPE 

throughout plant evolutionary history, it is likely that new genes may arise at these points 

through gene remodelling events. This is largely due to the favourable conditions for 

remodelling that are observed during the course of the CycPE, namely the influx of new genetic 

material and rampant chromosomal restructuring (Leonard and Richards, 2012). As mentioned 

previously, remodelled genes may be co-opted, subfunctionalised, neofunctionalised, or 

subneofunctionalised (Hellsten et al., 2007; Xia et al., 2016) leading to novel or augmented 

metabolic pathways (Richards et al., 2006). Previous studies have investigated plant gene 

remodelling events, but most work investigates specific fusion genes (Wang, 2006; Aslan et 

al., 2015; Méheust et al., 2016), or comparative analyses that identify differential remodelling 

events between a small set of genomes (eg. Nakamura et al,, 2007). Plant gene fusion events 

have garnered considerable interest due to their influences on secondary metabolism, where 

both component genes (if present) are often co-localised and co-expressed (Hagel and Facchini, 

2017). Gene fusion and fission events are the most well studied remodelling events, where they 

have been attributed to the expansions of protein domain complexities in bacteria (Pasek et al., 

2006). Differential gene fusions are likely to be involved in the same pathway as their 

components, and have been annotated as “extreme clustering”, and may confer niche 

physiological advantages compared to species with unfused components in different 

environments, by ensuring extremely tight control of co- expression and co-localisation of two 

components of their respective pathways (Enright and Ouzounis, 2001; Richards et al., 2006; 
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Fani et al., 2007; Leonard and Richards, 2012; Avelar et al., 2014). As plant evolution is 

abound with CycPEs, and major metabolic and phenotypic innovations are associated with 

ancestral polyploidisation events, it is probable that gene remodelling played a role in their 

establishment. 

 

3.2. Methodology 

 

 The methodology for this chapter largely follows the methodology used in Chapter II, 

any changes made to any protocol described in Chapter II are discussed in detail. 

 

3.2.1. Database construction and quality control 

 

A database of 50 non-canonical Viridiplantae proteomes were constructed from 

PLAZA v4.0 (Van Bel et al., 2018), Gymno-PLAZA v1.0 (Proost et al., 2015), and pico-

PLAZA v2.0 (Vandepoele et al., 2013). The dataset consisted of six Chlorophyta, one 

Bryophyta, one Marchantophyta, one Lycopodiophyta, three Pinophyta (Gymnospermae), and 

38 Angiospermae (Table 3.2.1.). This dataset contained a combined total of 1,672,377 

sequences and is biased towards angiosperms as they are the most widely sampled species due 

to their economic importance. There are only a limited number of sequenced basal 

embryophytes, and only three gymnosperms from Gymno-PLAZA could be used as other 

assemblies were constructed from transcriptomic data, which is not suitable for gene 

remodelling analyses due to elevated levels of truncated sequences in such assemblies (Hara et 

al., 2015). As per subsection 2.2.3.1., genome density, genome size and GC% were obtained 

from source. Genome quality was assessed using BUSCO v3 with default settings with the 

Viridiplantae ortholog dataset from OrthoDB v10 (Kriventseva et al., 2018). Genome size, 
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Table 3.2.1: Dataset of 50 Viridiplantae genomes  

 

Each subset represents a major clade to which its species belongs. The subset ‘Dicot’ represents dicotyledons, and ‘Monocot’ represents 

monocotyledons. The majority of sequenced plant genomes are crops, leading to a bias towards angiosperm lineages. Common names are provided 

for each species (if applicable) and if a common name could not be ascertained, the reasoning behind the species inclusion is provided instead (eg. 

multicellular alga). 

 
Common name/reason Subset Species Source Taxonomy 

Model picoeukaryote Alga Chlamydomonas reinhardtii PicoPlaza v2.0 Chlorophyta; Chlorophyceae; Chlamydomonadales; Chlamydomonadaceae; Chlamydomonas 

Multicellular alga Alga Volvox carteri PicoPlaza v2.0 Chlorophyta; Chlorophyceae; Chlamydomonadales; Volvocaceae; Volvox 

Model picoeukaryote Alga Micromonas commoda PicoPlaza v2.0 Chlorophyta; Mamiellophyceae; Mamiellales; Mamiellaceae; Micromonas 

Model picoeukaryote Alga Ostreococcus lucimarinus PicoPlaza v2.0 Chlorophyta; prasinophytes; Mamiellophyceae; Mamiellales; Bathycoccaceae; Ostreococcus 

Model picoeukaryote Alga Chlorella sp. NC64A PicoPlaza v2.0 Chlorophyta; Trebouxiophyceae; Chlorellales; Chlorellaceae; Chlorella 

Model picoeukaryote Alga Coccomyxa sp. C169 PicoPlaza v2.0 Chlorophyta; Trebouxiophyceae; Trebouxiophyceae incertae sedis; Coccomyxaceae; Coccomyxa 

Basal angiosperm Basal angiosperm Amborella trichopoda DicotPlaza v4.0 Streptophyta; Streptophytina; Amborellales; Amborellaceae; Amborella 

Moss Bryophyte Physcomitrella patens DicotPlaza v4.0 Streptophyta; Streptophytina; Bryopsida; Funariidae; Funariales; Funariaceae; Physcomitrella 

Potato Dicot Solanum tuberosum DicotPlaza v4.0 Streptophyta; Streptophytina; asterids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum 

Tomato Dicot Solanum lycopersicum DicotPlaza v4.0 Streptophyta; Streptophytina; asterids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum; Lycopersicon 

Pepper Dicot Capsicum annuum DicotPlaza v4.0 Streptophyta; Streptophytina; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Capsiceae; Capsicum 

Beet Dicot Beta vulgaris DicotPlaza v4.0 Streptophyta; Streptophytina; eudicotyledons; Gunneridae; Pentapetalae; Caryophyllales; Chenopodiaceae; Betoideae; Beta 

Clementine Dicot Citrus clementina DicotPlaza v4.0 Streptophyta; Streptophytina; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Sapindales; Rutaceae; Aurantioideae; Citrus 

Rape Dicot Brassica rapa DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Brassicales; Brassicaceae; Brassiceae; Brassica 

Thale cress Dicot Arabidopsis thaliana DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Brassicales; Brassicaceae; Camelineae; Arabidopsis 

Papaya Dicot Carica papaya DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Brassicales; Caricaceae; Carica 

Watermelon Dicot Citrullus lanatus DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Cucurbitales; Cucurbitaceae; Benincaseae; Citrullus 
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Common name/reason Subset Species Source Taxonomy 

Cucumber Dicot Cucumis melo DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Cucurbitales; Cucurbitaceae; Benincaseae; Cucumis 

Soybean Dicot Glycine max DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Glycine; Soja 

Barrel clover Dicot Medicago truncatula DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Fabales; Fabaceae; Papilionoideae; Trifolieae; Medicago 

Castor bean Dicot Ricinus communis DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Malpighiales; Euphorbiaceae; Acalyphoideae; Acalypheae; Ricinus 

Cassava Dicot Manihot esculenta DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Malpighiales; Euphorbiaceae; Crotonoideae; Manihoteae; Manihot 

Poplar Dicot Populus trichocarpa DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Malpighiales; Salicaceae; Saliceae; Populus 

Cocoa Dicot Theobroma cacao DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Malvales; Malvaceae; Byttnerioideae; Theobroma 

Cotton Dicot Gossypium raimondii DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Malvales; Malvaceae; Malvoideae; Gossypium 

Eucalyptus Dicot Eucalyptus grandis DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Myrtales; Myrtaceae; Myrtoideae; Eucalypteae; Eucalyptus 

Peach Dicot Prunus persica DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Rosales; Rosaceae; Amygdaloideae; Amygdaleae; Prunus 

Apple Dicot Malus domestica DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Rosales; Rosaceae; Amygdaloideae; Maleae; Malus 

Strawberry Dicot Fragaria vesca DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Rosales; Rosaceae; Rosoideae; Potentilleae; Fragariinae; Fragaria 

Grape Dicot Vitis vinifera DicotPlaza v4.0 Streptophyta; Streptophytina; rosids; Vitales; Vitaceae; Vitis 

Norway spruce Gymnosperm Picea abies GymnoPlaza v1.0 Streptophyta; Streptophytina; Pinidae; Pinales; Pinaceae; Picea 

White spruce Gymnosperm Picea glauca GymnoPlaza v1.0 Streptophyta; Streptophytina; Pinidae; Pinales; Pinaceae; Picea 

Loblolly pine Gymnosperm Pinus taeda GymnoPlaza v1.0 Streptophyta; Streptophytina; Pinidae; Pinales; Pinaceae; Pinus 

Spikemoss Lycopodiophyte Selaginella moellendorffii DicotPlaza v4.0 Streptophyta; Streptophytina; Lycopodiopsida; Selaginellales; Selaginellaceae; Selaginella 

Liverwort Marchantiophyte Marchantia polymorpha DicotPlaza v4.0 Streptophyta; Streptophytina; Marchantiopsida; Marchantiidae; Marchantiales; Marchantiaceae; Marchantia 

Duckweed Monocot Spirodela polyrhiza MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Alismatales; Araceae; Lemnoideae; Spirodela 

Eelgrass Monocot Zostera marina MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Alismatales; Zosteraceae; Zostera 

Orchid Monocot Phalaenopsis equestris MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Asparagales; Orchidaceae; Epidendroideae; Vandeae; Aeridinae; Phalaenopsis 

Pineapple Monocot Ananas comosus MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Bromeliaceae; Bromelioideae; Ananas 

Bamboo Monocot Phyllostachys edulis MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Bambusoideae; Arundinarieae; Arundinariinae; Phyllostachys 

Lawngrass Monocot Zoysia japonica MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Chloridoideae; Zoysieae; Zoysiinae; Zoysia 

African rice Monocot Oryza brachyantha MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Oryzoideae; Oryzeae; Oryzinae; Oryza 

Rice Monocot Oryza sativa ssp. japonica MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Oryzoideae; Oryzeae; Oryzinae; Oryza; Oryza sativa 

Sorghum Monocot Sorghum bicolor MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Panicoideae; Andropogoneae; Sorghinae; Sorghum 

Maize Monocot Zea mays MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Panicoideae; Andropogoneae; Tripsacinae; Zea 

Millet Monocot Setaria italica MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Panicoideae; Paniceae; Cenchrinae; Setaria 

Wild grass Monocot Brachypodium distachyon MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Pooideae; Brachypodieae; Brachypodium 
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Common name/reason Subset Species Source Taxonomy 

Barley Monocot Hordeum vulgare MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Poales; Poaceae; Pooideae; Triticeae; Hordeinae; Hordeum 

Banana Monocot Musa acuminata MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Petrosaviidae; Zingiberales; Musaceae; Musa 

Wheat Monocot Triticum aestivum MonocotPlaza v4.0 Streptophyta; Streptophytina; Liliopsida; Poales; Poaceae; BOP clade; Pooideae; Triticodae; Triticeae; Triticinae; Triticum 
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density and GC% were obtained from source (Table 3.3.1.). Descriptive statistics were 

computed for each data series presented in Table 3.3.1. (Table 3.3.2.). 

 

3.2.2. CompositeSearch analysis, quality control, and annotation 

 

A SSN was constructed using BLASTP (as per subsection 2.2.3.2.) resulting in 2.797e12 

pairwise comparisons. CompositeSearch analysis, remodelled gene quality control, and 

remodelling category annotation was replicated as per subsection 2.2.3.2. The extent of 

remodelled genes and families was computed for the dataset (Table 3.3.3; Figure 3.3.1.) and 

compared to the fungal dataset (Table 2.3.5.) using a Fisher’s exact test 

(HO:p(x)=p(X);HA:p(x)≠p(X)). A Bonferroni correction was applied (a = 0.05; |c| = |RC| = 4; 

aB = 0.0125) and instances where P ≤ aB were considered statistically significant (Table 3.3.4.).  

 

3.2.3. Trends in gene family size   

 

As per subsection 2.2.3., descriptive statistics were computed for RC family sizes 

(Table 3.3.5.). Differences in family sizes between RCs were assessed using Mann-Whitney 

U-tests (HO:h1=h2;HA:h1≠h2). Again, a Bonferroni correction was applied (a = 0.05; |c| = C!
|#$| 

= 6; aB = 8.33e-03) and a P ≤ aB was considered statistically significant (Table 3.3.6.). Family 

sizes were compared for each specific RC (eg. NC vs NC) between fungal (Table 2.3.6) and 

plant datasets using Mann-Whitney U-tests (HO:h1=h2;HA:h1≠h2). A Bonferroni correction 

was applied (a = 0.05; |c| = 4; aB = 0.0125) and a P ≤ aB was considered statistically significant 

(Table 3.3.7.). 

 

3.2.4. Phylogenetic and character state reconstruction 
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3.2.4.1. Phylogenetic reconstruction 

 

Considerable difficulties are associated with resolving Viridiplantae phylogenies using 

molecular data due to the prevalence of ohnologs following frequent polyploidisation events 

(Ruhfel et al., 2014; Van Bel et al., 2018). We attempted phylogeny reconstruction using a 

ubiquitous ortholog gene tree superalignment. Ubiquitous genes from the Viridiplantae odb 

v10 dataset (as used in section 3.1.) were identified by searching against each proteome using 

reciprocal BLASTP (E≤1e-20). A total of 99 genes were observed to be ubiquitous, however, 

as none were observed to be single copy, we selected the reciprocal BLAST best hit for each 

gene from each genome for further analysis. Genes were aligned in each of the 99 gene sets 

using MUSCLE v3.8 (Edgar, 2004) under default parameters. Uninformative alignments were 

removed using gBlocks (Castresana, 2000) with a minimum block size of 5, and concatenated 

into a superalignment using FASconCAT v1.11 (Kück and Meusemann, 2010). The best model 

for protein evolution was ascertained to be the LG+I+G model (Le and Gascuel, 2008) using 

ProtTest v3 (Abascal et al., 2005). A total of 100 constrained bootstrap replicates were 

produced using PhyML v3.0 (Guindon et al., 2010). A consensus tree was constructed from 

the PhyML produced replicates using ‘majority rule’ in PAUP* v3 (Swafford, 2002) and 

visualised using iTOL v3 (Letunic and Bork, 2016) (Figure 3.3.2.). 

Due to the considerable disagreement between our phylogeny and the expected 

phylogeny, we reattempted reconstruction using the 31 ubiquitous orthologs identified by 

Ciccarelli and company (2006) using the same methodology as above. Again, no single copy 

orthologs were detected and the best model of protein evolution was determined to be LG+I+G 

(Figure 3.3.3.). This phylogeny was, again, highly disagreeable with the expected phylogeny. 

To overcome the difficulties in resolving a defensible phylogeny, a “scaffold 

phylogeny” was inferred from PLAZA v4, Gymno-PLAZA v1.0, and Pico-PLAZA v2.0, and 
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used to constrain the construction of a phylogeny using the 99 ubiquitous genes from the 

Viridiplantae odb dataset as above (Figure 3.3.4.). 

 

 3.2.4.2. Character state reconstruction 

 

 Character state reconstruction was completed as per subsection 2.2.3.4.2 using the 

phylogeny constructed in subsection 3.2.4.1. with two “pseudo-outgroups” appended to the 

root (Figure 3.3.5.). 

 

 3.2.4.3. Comparison of homoplastic proportions 

 

Homoplastic proportions were derived using the formula described in subsection 

2.2.3.3.2.1. and compared using a two-tailed Fisher’s exact test (HO:p(x)=p(X);HA:p(x)≠p(X)). 

Again, a Bonferroni correction was applied (a = 0.05; |c| = C!
|#$| = 6; aB = 8.33e-03). Instances 

where P ≤ aB was considered statistically significant (Table 3.3.8.). HPs were compared for 

each specific RC (eg. NC vs NC) between fungal (Table 2.3.7) and plant datasets using Fisher’s 

exact tests (HO:p(x)=p(X);HA:p(x)≠p(X)). A Bonferroni correction was applied (a = 0.05; |c| = 

4; aB = 0.0125) and a P ≤ aB was considered statistically significant (Table 3.3.9.). 

 

 3.2.4.4. Evolutionary rate series construction 

  

 Evolutionary rate series (fx) for each RC was constructed using the formulae described 

in subsection 2.2.3.4.4. Unlike fungi, a comprehensive collection of fossilised Viridiplantae 

structures have been curated (Harris and Davies, 2016), and two separate node calibration 

points have been presented that could be used for t calculation (Betts et al., 2018): 
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 (i.): The root of Embrophyta (Node 58) 

 

Betts and company estimated Embryophyta to have emerged between 

448.5 - 509 Ma. The farthest leaf from Node 58 was observed to be Zoysia 

japonica (FL = 0.63226874), from which in t was calculated to be 709.35 - 

805.04 Ma. The farthest leaf from the root was, again, observed to be Z. 

japonica (FLR = 0.97834456). Adjusting t for FLR suggests that the common 

ancestor for all taxa in our dataset emerged between 725.05 - 822.86 Ma. 

 

(ii.): The root of Angiospermae (Node 55) 

  

Betts and company estimated Angiospermae to have emerged between 

125.9 – 247.3 Ma, much more recent than their embryophyte ancestors. Again, 

farthest leaf from Node 58 was observed to be Z. japonica (LP = 0.44831458), 

from which t was calculated to be 280.8296 - 551.6216 Ma. Adjusting t by LPR, 

the common ancestor of all taxa in our dataset emerged 287.05 - 563.83 Ma. 

  

Fossil evidence was used to select the most appropriate t (t = 805.04 Ma) for rate series 

computation. Chlorophytes are hypothesised to have emerged during the Neoproterozoic Era, 

approximately 541 Ma – 1 Ga (Fang et al., 2017). The Neochlorophyta (“UTC”) clade 

encompasses three chlorophyte classes, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae 

(Derrien et al., 2009). The Ulvophyceae were absent in our dataset, however two 

trebouxiophycean taxa (Chlorella sp. NC64A and Coccomyxa sp. C169) and two 

chlorophycean taxa (Chlamydomonas reinhardtii and Volvox carteri) were represented. 

Evidence from the fossil record suggest that neochlorophytes had already diverged to three 
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distinct chlorophyte lineages by the Neoproterozoic Era specifically the Tonian Era, 720 Ma – 

1 Ga (Butterfield et al., 1994; Arouri et al., 1999; Fang et al., 2017; Del Cortona et al., 2019). 

When FLR is transformed to time using t (derived from Embrophyta), the most recent common 

ancestor to all of our taxa is estimated to have existed between 725.05 - 822.86 Ma. The more 

ancient t was selected to definitively place the MRCA within the Tonian era. 

 

 3.2.4.5. Comparison of rates between and within nodes and tips 

 

 Descriptive statistics were computed for RC evolutionary rates (Table 3.3.10). 

Evolutionary rates were compared for each RC between and within phylogenetic nodes and 

tips using Mann-Whitney U tests (HO:h1=h2;HA:h1≠h2) as per subsection 2.2.3.4.4 (Tables 

3.3.11.-12.). HPs were compared for each specific RC (eg. NC vs NC) between fungal (Table 

2.3.9) and plant datasets using Fisher’s exact tests (HO:p(x)=p(X);HA:p(x)≠p(X)). A Bonferroni 

correction was applied (a = 0.05; |c| = 4; aB = 0.0125) and a P ≤ aB was considered statistically 

significant (Table 3.3.13.). 

 

 3.2.4.6. Investigation for evolutionary bursts 

 

 Evolutionary bursts were detected using a Q-function (HO:Q(x)>1-F(x);HA:Q(x)≤1-

F(x)) as described in subsection 2.2.3.3.2.2. (Tables 3.3.13.-14; Figure 3.3.6.). Bonferroni 

corrections were applied to(a = 0.05; |c(x)| = 99; |c(y)| = 50; aB(x) = 2.6e-04; aB(y) = 4.8e-04) and 

instances where P(x) ≤ aB(x) or P(y) ≤ aB(y) were considered statistically significant.   

 

 3.2.5. Gene annotation (function and origin) 
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  3.2.5.1. Functional gene annotation 

 

Genes and gene families were assigned PFAM domains and gene ontologies as per 

subsection 2.2.3.4.1. Again, GO-slim subset groupings were completed using the curated 

generic ontology map so results could be easily compared to Chapter II later in this chapter. 

Bonferroni corrected over- and underrepresented GO-slim subsets per RC were detected using 

“find_enrichment.py” as per subsection 2.2.3.4.1. (Table 3.3.15.).  

 

  3.2.5.2. Gene origin annotation 

 

 Potential DOs were assigned to each gene and gene family using the 

methodology described in subsection 2.2.3.4.3. DOs were compared to all other DOs using a 

two-tailed Fisher’s exact test (HO:p(x)=p(X);HA:p(x)≠p(X)) for each RC. A Bonferroni 

correction was applied (a = 0.05; |c| = C!
|#$| = 6; aB = 8.33e-03) and instances where P ≤ aB 

were considered statistically significant (Table 3.3.13.). HPs were compared for each specific 

RC (eg. NC vs NC) between fungal (Table 2.3.22) and plant datasets using Fisher’s exact tests 

(HO:p(x)=p(X);HA:p(x)≠p(X)). A Bonferroni correction was applied (a = 0.05; |c| = 4; aB = 

0.0125) and a P ≤ aB was considered statistically significant (Table 3.3.16.). 

 

3.2.6: Trends between gene remodelling and genomic characteristics 

 

 GRCPs and IRCPs were calculated for each genome as per subsection 2.2.3.5.1 (Tables 

3.3.17.-18.). Data for four genomic characteristics (genome size, genome density, GC%, and 

BUSCO completeness) were collated for each sampled taxa as per subsection 2.2.3.5.1.1. 

Again, correlations were established using a Spearman’s r correlation test 
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(HO:X1∝X2;HA:X1∝̸X2) between each RCP and each of the four genomic characteristics (Figure 

3.3.7.). A Bonferroni correction was applied (a = 0.05; |c| = 5; aB = 0.01) to each set and a P 

≤ aB was considered statistically significant.   

 

3.3. Results 

 

3.3.1. Genome quality and characteristics 

 

Genomic characteristics and quality (BUSCO completeness) were computed for each 

species (Table 3.3.1.). On average, a high level of genome completion (88.95±14.86%)  was 

observed (Table 3.3.2.), however, a small subset of genomes (n = 6) exhibited completeness 

(C) below one standard deviation from the mean (C < 74.09%, (“below average”)). All three 

Gymnospermae (Picea abies, Picea glauca, and Pinus taeda), Hordeum vulgare, Malus 

domestica, and Zoysia japonica were observed to possess below average completion. The three 

gymnosperm species have been used extensively in plant genome evolutionary analyses 

(Proost et al., 2014; Van Bel et al., 2018) without any reported quality issues, so it was 

hypothesised that their reported deficit in completeness (C ≤ 63.7) was due to one of two 

prominent reasons:  

 

(i.): Gene set bias in the orthologous database 

 

Gymnospermae are known to possess highly divergent gene sets when 

compared to other Viridiplantae lineages (De La Tore et al., 2019), yet no  
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Table 3.3.1. Completeness and characteristics for 50 Viridiplantae genomes 

 

Each taxon is annotated with its genome size (GS), GC content, number of genes, genome 

density, and genome completeness. Genome completeness is given as a percentage of expected 

orthologs where C is “completeness”. Completeness is the cumulation of singleton (S) and 

duplicated (D) orthologs. Fragmented (F) and missing (M) orthologs detract from C. 

 

 Genome characteristics BUSCO completeness (%) 
(Viridiplantae_odb v10; n = 430) 

Species 
Genes 

(n) 
GS 

(Mbp) 
GC 
(%) 

Density 
(n/Mbp) 

C S D F M 

Amborella trichopoda 26846 706.495 38.1 38.00 97.4 96.5 0.9 2.1 0.5 

Ananas comosus 27024 447.645 38.17 60.37 94.2 90.5 3.7 2.3 3.5 

Arabidopsis thaliana 27655 119.669 36.05 231.10 98.6 98.4 0.2 1.2 0.2 

Beta vulgaris 26920 566.55 37.31 47.52 98.8 97.4 1.4 0.9 0.3 

Brachypodium distachyon 34310 271.299 46.41 126.47 97.7 97 0.7 2.3 0 

Brassica rapa 40492 284.129 35.83 142.51 98.1 82.1 16 0.9 1 

Capsicum annuum 35884 3063.86 35.36 11.71 92.3 90 2.3 3.3 4.4 

Carica papaya 27768 370.419 39.01 74.96 78.6 76.3 2.3 14.2 7.2 

Chlamydomonas reinhardtii 17741 107.1 61.95 165.65 97.2 96.3 0.9 1.2 1.6 

Chlorella sp. NC64A 9761 46.16 65.5 211.46 84.9 83.7 1.2 8.4 6.7 

Citrullus lanatus 23440 365.45 33.81 64.14 98.4 97.2 1.2 1.4 0.2 

Citrus clementina 24533 301.365 35.2 81.41 90 88.6 1.4 7 3 

Coccomyxa sp. C169 9994 48.8266 52.9 204.68 84.4 82.8 1.6 5.6 10 

Cucumis melo 27427 374.928 34.9 73.15 91.2 90.5 0.7 5.1 3.7 

Eucalyptus grandis 36349 691.43 39.99 52.57 97.2 93.7 3.5 1.9 0.9 

Fragaria vesca 32381 214.373 38.91 151.05 91.9 90 1.9 2.8 5.3 

Glycine max 56044 979.046 35.12 57.24 99.7 38.1 61.6 0.2 0.1 

Gossypium raimondii 37505 761.565 33.53 49.25 99.8 92.1 7.7 0.2 0 

Hordeum vulgare 24282 1779.49 44.9 13.65 63.3 60.5 2.8 24.9 11.8 

Malus domestica 53922 703.358 39.359 76.66 64.6 55.8 8.8 22.8 12.6 

Manihot esculenta 33033 582.279 38.01 56.73 99 92.3 6.7 0.7 0.3 

Marchantia polymorpha 19287 225.761 42.5 85.43 97.2 96.5 0.7 1.2 1.6 

Medicago truncatula 50894 412.924 34.05 123.25 97.7 91.9 5.8 0.7 1.6 

Micromonas commoda 10103 21.1093 63.82 478.60 89.7 86 3.7 4.9 5.4 

Musa acuminata 36528 472.231 40.73 77.35 95.5 88.8 6.7 4 0.5 

Oryza brachyantha 32037 259.908 41.1 123.26 94.9 93.7 1.2 3.3 1.8 

Oryza sativa ssp. japonica 42189 374.423 43.58 112.68 96.1 94.9 1.2 3.3 0.6 

Ostreococcus lucimarinus 7805 13.2049 60.44 591.07 83.2 77.9 5.3 6 10.8 
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 Genome characteristics BUSCO completeness (%) 
(Viridiplantae_odb v10; n = 430) 

Species 
Genes 

(n) 
GS 

(Mbp) 
GC 
(%) 

Density 
(n/Mbp) 

C S D F M 

Phalaenopsis equestris 29431 1064.2 35.1 27.66 87.9 85.1 2.8 9.1 3 

Phyllostachys edulis 31987 2075 44.66 15.42 76.5 62.1 14.4 12.1 11.4 

Physcomitrella patens 32926 472.081 33.89 69.75 97.9 84.4 13.5 0.9 1.2 

Picea abies 66632 11961.4 37.9 5.57 34.4 29.5 4.9 40.9 24.7 

Picea glauca 28909 24633.1 44.58 1.17 63.7 57.9 5.8 19.8 16.5 

Pinus taeda 84446 22103.6 34.8 3.82 46.8 39.8 7 20.9 32.3 

Populus trichocarpa 42950 434.29 34.15 98.90 97.2 79.1 18.1 2.3 0.5 

Prunus persica 26873 227.569 37.67 118.09 99.5 97.4 2.1 0.2 0.3 

Ricinus communis 31221 350.622 34.4 89.04 95.8 95.3 0.5 2.8 1.4 

Selaginella moellendorffii 22285 212.315 45.3 104.96 94.4 87.4 7 2.1 3.5 

Setaria italica 34584 405.868 46.17 85.21 97.7 95.6 2.1 1.6 0.7 

Solanum lycopersicum 34725 828.349 35.7 41.92 97.5 97 0.5 1.9 0.6 

Solanum tuberosum 39028 705.934 35.06 55.29 84.7 83.5 1.2 4.4 10.9 

Sorghum bicolor 34211 709.345 44.16 48.23 96.3 95.1 1.2 3.5 0.2 

Spirodela polyrhiza 19623 42.72 136.67 459.34 91.9 91.2 0.7 6.3 1.8 

Theobroma cacao 29232 324.88 34.99 89.98 99.8 99.8 0 0 0.2 

Triticum aestivum 103537 14547.3 46.05 7.12 99.1 9.3 89.8 0.9 0 

Vitis vinifera 26346 486.197 35.03 54.19 96.5 95.3 1.2 3 0.5 

Volvox carteri 15544 137.684 55.3 112.90 84.4 82.8 1.6 4.7 10.9 

Zea mays 39498 2135.08 46.91 18.50 86.2 79.5 6.7 10 3.8 

Zostera marina 20450 203.914 38.9 100.29 98.6 97 1.6 0.2 1.2 

Zoysia japonica 53625 334.384 42.6 160.37 49.3 43.7 5.6 30.2 20.5 
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Table 3.3.2. Descriptive statistics for Viridiplantae genomic characteristics 

 

The minimum (Min), maximum (Max), median (h), quartiles (hx), mean (µ), standard error 

(SE), and coefficient of variation (CV) are presented for each genomic characteristic.  

 

 

Genome characteristics 
(n = 50) 

BUSCO completeness (%) 
(Viridiplantae_odb v10; n = 430) 

Genes 
(n) 

GS 
(Mbp) 

GC 
(%) 

Density 
(n/Mbp) 

Complete Singleton Duplicated Fragmented Missing 

Min 7805 13.2 33.53 1.17 34.4 9.3 0 0 0 

 h0.25 24470 227.1 35.12 48.05 84.85 79.4 1.2 1.2 0.5 

 h (h0.50) 31604 409.4 38.91 77.01 95.65 90 2.2 2.9 1.6 

 h0.75 37886 722.4 45 123.3 97.75 95.38 6.7 6.475 6.825 

Max 103537 24633 136.7 591.1 99.8 99.8 89.8 40.9 32.3 

µ 33604±17380 1979±5121 43.33±15.74 107±116.9 88.95±14.86 82.15±20.19 6.808±15.08 6.212±8.576 4.834±6.892 

SE 2458 724.2 2.225 16.54 2.102 2.855 2.132 1.213 0.9746 

CV (%) 51.72 258.7 36.32 109.3 16.71 24.57 221.5 138.1 142.6 
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Gymnospermae were used for the construction of Viridiplantae_odb v.10 

(Kriventseva et al., 2018).  

 

(ii.): Gene evolution patterns in Gymnospermae 

 

Gene evolution in Gymnospermae is markedly different to other 

Viridiplantae lineages (De La Tore et al., 2017). In gymnosperms, genes slowly 

acquire insertions in their nucleotide and resultant amino acid sequences. These 

accumulations may result in the misidentification of a singleton BUSCO gene 

(S) as a fragment (F) if an ortholog exceeds two standard deviations from the 

average length used to construct the model BUSCO gene (Waterhouse et al., 

2018). This argument is strengthened when the mean fragmentation rate is 

gymnosperms (27.2±11.88%) is compared to non-gymnosperms (4.87±6.45%). 

 

The reported lack of genome completeness observed in H. vulgare (C = 63.3%) could 

be due to the use of an older, perhaps incomplete or inferior quality assembly genome on 

PLAZA v4.0. The reported genome source was Ensembl Genomes ASM32608v1 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-35/). however, an updated H. vulgare 

(IBSC_v2) genome assembly has been uploaded to Ensembl Genomes (Mascher et al., 2017). 

The sum of protein coding genes in ASM32608v1 was reported by PLAZA v4 to be 24,282 

whereas a total of 39,841 were reported in IBSC_v2 (a difference of 15,559 genes (an inflation 

of 164.08%). A BUSCO analysis using the conserved eukaryote ortholog database reported 

98% completion during reassembly (Mascher et al., 2017).  

 The completion deficit (C = 49.3%) in Z. japonica is derived from high levels of 

fragmented and missing BUSCO sets (F = 30.2%; M = 20.5%). The Z. japonica sequencing 
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project reported genomic completeness of 94.7% (Tanaka et al., 2016) using the CEGMA core 

eukaryote gene dataset (Parra et al., 2007). Previous studies have placed Z. japonica as an early 

diverging member of the Poaceae PACMAD clade (eg. Van Bel et al., 2018), and it displays a 

relatively long branch (k = 0.274) in our phylogenetic analyses which provides support for 

divergence based fragmentation and losses. It may be the case, as with the gymnosperms, that 

the missing and fragmented BUSCO sets may reflect the evolutionary history of Z. japonica.  

 Finally, the completion deficit observed in M. domestica (C = 64.6%) is attributable to 

a considerable amount of fragmentation in BUSCO set hits (F = 22.8%). Again, as in the 

gymnosperms and Z. japonica, this may merely reflect the evolutionary history of M. 

domestica.  Extensive WGD and genomic reorganisations have been reported during the recent 

evolutionary history of M. domestica and closely related species (eg. Pyrae spp.) compared to 

other, more distantly related, plant lineages (Xiang et al., 2016). These evolutionary dynamics  

have resulted in significant differences in gene content, architecture and sizes between the 

genomes of  M. domestica and other Angiospermae (Velasco et al., 2010). Such events may 

have caused considerable difference in gene length resulting in higher rates of fractionation as 

expected in the Gymnospermae. 

 Genome incompleteness can be observed even in high quality assemblies of type 

species such as Caenorhabditis elegans (C = 85%) and Homo sapiens (C = 89%) (Simão et al., 

2015). The six genomes with “below average” completion were retained for further analyses 

as they were determined to be of high quality (Proost et al., 2015; Van Bel et al., 2018) are of 

high economic importance, and (with the exception of H. vulgare) plausible evolutionary 

reasons could be determined to explain their reported incompleteness.  

 

3.3.2. Extent of gene remodelling in Viridiplantae 
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In total, of the 1,672,377 sequences in this dataset, a total of 488,979 genes (29.28%) 

were excluded due to the removal of low complexity sequences or due to being a singleton, 

resulting in a sample of 1,183,398 genes within 81,112 families (Table 3.3.3; Figure 3.3.1.).  

These results are in stark contrast to what was observed in the fungi (Table 2.3.5.), where 

significant differences (P ≤ aB ≤ 0.0125 (Genes(a): P ≤ aB ≤ 0.01)) were observed between 

every comparison (Table 3.3.3.).  

 

3.3.3. Variance in gene family sizes 

 

As observed in the fungal dataset (section 2.3.3.), gene family sizes displayed 

considerable variation for each RC (129% ≤ CV ≤ 427%) with considerable bias observed 

towards smaller families (h0.25 ≤ 3,  h0.50 ≤ 11, and h0.75 ≤ 31 (Table 3.3.4.). Again, nested 

composites were observed to display the greatest variance (CV = 427%), the widest range (n  

∈	{2, 3 …, 9093}) and largest mean (37.99±162.1) when compared to other RCs (129% ≤ CV 

≤ 229%); nSC ∈	{2, 3 …, 335}, nSN ∈	{2, 3 …, 442}, nNR ∈	{2, 3 …, 152}; and µ(SC, SN, NR) = 

19.11±24.71, 5.819±13.33, 6.698±10.62 respectively). Family sizes were reported to be 

significantly different (P ≤ aB ≤ 8.33e-03) to each other when using a Mann-Whitney U-test (P 

≤ 4.79e-121) (Table 3.3.5.). Again, stark contrasts (P ≤ 2.37e-208) were observed when families 

belonging to each specific RC were compared to their counterparts in the fungal dataset (Tables 

2.3.7., 3.3.6). These contrasts are due to the observations of consistently larger means and 

medians observed in Viridiplantae family sizes when compared to the fungi (Tables 2.3.6., 

3.3.4). 

 

 3.3.4. Comparison of evolutionary rates 
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Table 3.3.3. Extent of remodelled genes and families in Viridiplantae 

 

The number (n) of genes in the entire dataset (Genes(a)), the sum of genes in the sampled dataset 

(Genes(s); Genes(a) – Excluded), and the number of gene families attributed to each RC are 

presented with their associated proportion (%) within their respective populations. The 

“Excluded” category is only observed in Genes(a) as genes in this category were not used for 

sampling by CompositeSearch, and thus were excluded from Genes(s) and Families 

respectively.  

 

 
n % 

Genes(a) Genes(s) Families Genes(a) Genes(s) Families 

NC 774886 774886 20399 46.33 65.48 25.15 

SC 48440 48440 2535 2.90 4.09 3.13 

SN 196083 196083 33695 11.72 16.57 41.54 
NR 163989 163989 244823 9.81 13.86 30.18 

Excluded 488979 N/A 29.24 N/A 
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Figure 3.3.1. Extent of remodelled gene and family extent in Viridiplantae 

 

Each pie chart represents one of three datasets (Genes(a), Genes(s), and Families) from Table 

3.3.2. Again, the “Excluded” category is only observed in Genes(a) as genes in this category 

were not used for sampling by CompositeSearch, and thus were excluded from Genes(s) and 

Families respectively. 
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SN
NR
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Table 3.3.4. Comparison of remodelling extent in fungi and plants 

 

The remodelling extent is presented for plants (%V) and fungi (%F) for the 4 RCs in the 

“sampled” datasets (Genes(s) and Families) and for the 4 RCs and “excluded” genes in the entire 

dataset (Genes(a)). All comparisons were observed to be significantly different (Genes(s), 

Families: P ≤ aB ≤ 0.0125; Genes(a): P ≤ aB ≤ 0.01) 

 

 

 %V %F P 

Genes(a)  

NC 46.33 30.67 0 
SC 2.90 2.62 3.02e-45 
SN 11.72 16.90 0 
NR 9.81 23.57 0 
Excluded 29.24 26.24 0 

Genes(s) 

NC 65.48 41.58 0 
SC 4.09 3.55 3.77e-89 
SN 16.57 22.91 0 
NR 13.86 31.96 0 

Families 

NC 25.15 21.25 2.64e-77 
SC 3.13 2.54 8.44e-13 
SN 41.54 26.51 0 
NR 30.18 49.69 0 
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Table 3.3.5. Descriptive statistics for gene family sizes in Viridiplantae 

 

Statistics describing family size distribution characteristics were tabulated for each RC. Each 

RC is assigned a mean (μ), median (h), quartiles (h0.25, 0.50, 0.75), minima, maxima, and CV.  

 

 NC SC SN NR 

n 20399 2535 33695 24483 
Min 2 2 2 2 
h0.25 3 3 2 2 
h (h0.50) 8 11 2 3 
h0.75 31 25 4 6 
Max 9093 335 442 192 
µ 37.99±162.1 19.11±24.71 5.819±13.33 6.698±10.62 
SE 1.135 0.491 0.072 0.0679 
CV (%) 426.7 129.3 229.0 158.6 
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Table 3.3.6. Comparison of family sizes between RCs in Viridiplantae 

 

RC(a) and RC(b) refer to the RCs being tested. The Mann-Whitney U statistic (U) is provided 

alongside a P-value for each comparison. All comparisons were considered statistically 

significant (P ≤ aB ≤ 8.33e-03). 

 

 

RC(a) RC(b) U P 
NC SC 6.55e08 0 
NC SN 5.30e08 0 
NC NR 2.76e07 5.35e-197 
SC SN 2.23e08 4.79e-121 
SC NR 5.55e06 0 
SN NR 7.37e06 0 
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Table 3.3.7. Comparison of RC family sizes between fungi and plants 

 

Family sizes from each RC were compared between the fungal and plant datasets. A U statistic 

is provided alongside a P-value for each comparison. All comparisons were reported to be 

significantly different (P ≤ a ≤ 0.0125). 

 
 

U P 

NC 5.77e08 0 
SC 4.23e08 0 
SN 1.55e07 0 
NR 1.34e07 2.37e-208 
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3.3.4.1. Phylogenetic annotation 

 

After two failed attempts to reconstruct a phylogeny (Figures 3.3.2.-3.3.3.), a 

phylogeny was constructed using 99 ubiquitous gene family alignments from the OrthoDB 

Viridiplantae_odb 10 dataset (as used for BUSCO analyses) with a scaffold obtained from Van 

Bel et al., 2018 (Figures 3.3.4.). Internal nodes were annotated as per the “-apo” function in 

TNT (Figure 3.3.5.).  

 

3.3.4.2. Remodelled genes are more homoplastic than non-remodelled genes in 

Viridiplantae 

 

As observed in the fungal dataset (subsection 2.3.4.2.), significant differences (P ≤  aB	

≤ 8.33e-03) were observed between all comparisons (P ≤ 4.60e-19) when sampled from across 

the entire phylogeny (Table 3.3.8.). As observed in fungal families, remodelled gene families 

were observed to be significantly more homoplastic (0.458 ≤ HP ≤ 0.609) than non-remodelled 

families (HPNR = 0.35; P ≤ 1.69e-140). SC were observed to be the most homoplastic families 

(HPSC = 0.609) amongst remodelled families (HPNC = 0.497, HPSN = 0.458; P ≤ 1.14e-26). In 

fungi, a supremum difference (supHP) of 0.54 is observed between RC, however, in 

Viridiplantae  a supHP of 0.151 is observed. With the prominent exception of NC (P = 0.044), 

significant differences (P ≤  aB ≤ 0.0125) were observed for each specific RC comparison (P 

≤ 2.16e-08) between the fungal and plant datasets when sampled from across entire phylogenies 

(Table 3.3.9.).  

 As observed when sampled from all nodes in the Viridiplantae phylogeny, all 

comparisons were significantly different (P ≤ 4.78e-14) when sampled from the subset of 

internal nodes. However, unlike what was observed when sampled from the entire phylogeny  
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Figure 3.3.2. Unconstrained “BUSCO” phylogeny 

 

A maximum likelihood superalignment of the 99 ubiquitous genes derived from the BUSCO 

viridiplantae_odb v10 database. All lineages are correctly placed, except for those within the 

dicots where all clades are incorrectly placed. This is likely due to dicots evolving through 

continuous rounds of WGD followed by degradation. As this tree resolved all other lineages 

so well, it was chosen as the basis for the constrained tree. 
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Figure 3.3.3. Unconstrained “Cicarelli” phylogeny 

 

Maximum likelihood tree made from a superalignment of the universal orthologs described by 

Cicarelli et al., (2006) without constraints.  In this phylogeny  Selaginella is incorrectly placed 

as basal to all other embryophytes and the Chlorophyceae are incorrectly placed as the outgroup 

in place of the Chlorophyta, despite being reported as late diverging algae (Guiry and Guiry, 

2018). Dicotyledon clades are highly misplaced, for example, Vitis vinifera, is an early 

diverging dicot, however, it is placed deep within the clade, and the mustard plants 

(Brassicaceae) are placed as ancestral to the nightshades (Solanaceae).  
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Figure 3.3.4. Constrained “BUSCO” phylogeny  

 

Consensus phylogeny constructed from a concatenated superalignment of 99 ubiquitous 

orthologous genes with a manually constructed scaffold inferred from Van Bel et al. (2018). 

No bootstrap supports are present as a scaffold was used to restrict phylogenetic topologies. 

The root appears to bifurcate the Chlorophyta, however rerooting at the LCA of Physcomitrella 

patens and Chlamydomonas reinhardtii resolves the topology. We chose to leave the root 

where it is in support of new evidence that Mamiellophyceae is an outgroup to the rest of 

Chlorophyta (Guiry and Guiry, 2018).  
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Figure 3.3.5. Annotated Viridiplantae phylogeny 

 

Internal node IDs (as computed by TNT) were assigned to each node from the constrained 

“BUSCO” phylogeny (Figure 3.3.4.) 
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Table 3.3.8. Comparisons of homoplasy in Viridiplantae remodelling categories 

 

HPs were computed for families in each RC when sampled from across the entire phylogeny 

and for the subset of exclusively internal nodes. The number of homoplastic families per RC 

per set (nH) is presented alongside the total number of families per RC (nall). All comparisons 

were observed to be statistically significant (P ≤ aB ≤ 8.33e-03). 

 

 RC(a) RC(b) 
P 

Set Comparison nH nall HP nH nall HP 

E
nt

ir
e 

ph
yl

og
en

y 

NC vs SC 10144 20399 0.497 1545 2535 0.609 1.14e-26 
NC vs SN 10144 20399 0.497 15423 33695 0.458 4.60e-19 

NC vs NR 10144 20399 0.497 8559 24483 0.350 2.58e-219 

SC vs SN 1545 2535 0.609 15423 33695 0.458 2.49e-49 

SC vs NR 1545 2535 0.609 8559 24483 0.350 1.69e-140 
SN vs NR 15423 33695 0.458 8559 24483 0.350 8.23e-152 

E
xc

lu
si

ve
ly

 in
te

rn
al

 
br

an
ch

es
 

NC vs SC 1617 20399 0.079 319 2535 0.126 4.78e-14 

NC vs SN 1617 20399 0.079 763 33695 0.023 8.05e-205 

NC vs NR 1617 20399 0.079 1235 24483 0.050 1.88e-35 

SC vs SN 319 2535 0.126 763 33695 0.023 1.50e-115 
SC vs NR 319 2535 0.126 1235 24483 0.050 3.56e-43 

SN vs NR 763 33695 0.023 1235 24483 0.050 1.05e-72 
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Table 3.3.9. Comparison of homoplastic proportions between fungi and plants 

 

HPs for each RC (per phylogenetic set) were computed between the Fungi (HPF) and 

Viridiplantae (HPV) respectively. Every comparison was observed to be significantly different 

(P ≤ aB ≤ 0.0125) with the exceptions of NC when sampled from across the entire phylogeny 

(P = 0.044) and for SC when sampled from across the subset of internal nodes (P = 0.824) 

 
 
 

 HPF HPV P 

Entire 
Phylogeny 

NC 0.487 0.497 0.044 
SC 0.464 0.609 4.21e-23 
SN 0.433 0.458 2.16e-08 
NR 0.305 0.350 6.83e-32 

Exclusively 
internal nodes 

NC 0.120 0.079 3.71e-40 
SC 0.123 0.126 0.824 
SN 0.073 0.023 3.63e-178 
NR 0.058 0.050 9.24e-05 
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and in fungi, SN were significantly less homoplastic (HPSN = 0.023; P ≤ 1.05e-72) than all 

other RCs (0.05 ≤ HP ≤ 0.126). Again, SC were observed to be more homoplastic than all 

other RCs (HPSC = 0.126). The Viridiplantae HPSC and HPNR (HPNR = 0.05) for this subset is 

comparable to their fungal counterparts (HPSC = 0.123; HPNR = 0.053), however HPNC (HPNC 

= 0.079) and HPSN are considerably lower than their respective fungal counterparts (HPNC = 

0.12; HPSN = 0.073). With the prominent exception of NC (P = 0.824), significant differences 

(P ≤  aB ≤ 0.0125) were observed for each specific RC comparison (P ≤ 9.24e-05) between the 

fungal and plant datasets when sampled from across phylogenetic internal node subsets. 

 These results are in agreement with those observed for fungi and, as such, suggest that 

remodelled genes, particularly composite genes, are either highly likely to disobey Dollo’s Law 

of Irreversibility or more likely to be epaktologous as first postulated in subsection 2.3.4.2.  

 

3.3.4.3. Evolutionary rate dynamics between remodelling categories 

 

 When sampled from across the phylogeny, birth rates displayed considerable variation 

within each RC (eg. 0.215 ≤ fb ≤ 227; 139 ≤ CV ≤ 173)  (Table 3.3.10.). Significant differences 

(P ≤ a ≤ 8.33e-03) were observed between each SC and each other RC, (P ≤ 7.57e-18), where 

SC were observed to have a much lower fb, but not between any other comparison (P ≥ 0.56) 

(Table 3.3.11.). High variance rates were observed for decay rates within each RC (eg. 0.002 

≤ fd ≤ 50.2; 112 ≤ CV ≤ 140), with significant rate differences observed between each 

comparison (P ≤ 5.27e-04) with the exception of SN vs NR (P = 0.28). While these rates are 

high, they are considerably low when compared to the fungi (fb: 225.1 ≤ CV ≤ 276.1; fd: 315.8 

≤ 378.8) where a greater range in rates (eg. 0.00846 ≤ fb ≤ 416.4; 0.00846 ≤ fd ≤ 322) was also 

observed (subsection 2.3.4.8; Table 2.3.7.). In contrast to the fungi, lower fd were observed in 

Viridiplantae when compared to fb.  
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Table 3.3.10. Descriptive statistics for RC evolutionary rates in Viridiplantae 

 

Descriptive statistics for evolutionary birth (fb) and decay (fd) rates were calculated for the 

entire phylogeny and for each phylogenetic subset (exclusively leaf nodes and exclusively 

internal nodes). 

 
 

 
fb fd 

NC SC SN NR NC SC SN NR 

Entire 
phylogeny 

(n = 99) 

Min. 0.351 0.078 0.215 0.298 0.002 0.002 0.002 0.002 

η0.25 4.25 0.765 3 4.06 1.17 0.25 0.403 0.486 

η (η0.50) 8.45 1.46 8.07 7.89 3.88 0.646 1.37 1.54 

η0.75 13.7 2.37 19 13.9 7.09 1.12 2.07 3.01 

Max. 170 25.7 227 159 50.7 6.67 20.1 25.8 

μ 13±19.3 2.1±2.92 15.4±26.8 12.6±18.4 5.41±6.87 0.903±1.01 1.89±2.56 2.39±3.36 

SE 1.94 0.293 2.69 1.85 0.69 0.102 0.258 0.337 

CV (%) 149 139 173 146 127 112 135 140 

Exclusively 
internal nodes 

(n = 49) 

Min. 0.351 0.078 0.215 0.298 0.002 0.002 0.002 0.002 

η0.25 3.24 0.511 1.89 2.55 0.713 0.171 0.306 0.438 

η (η0.50) 7.49 1.12 3.34 5.07 2.21 0.489 0.787 1.08 

η0.75 9.74 2.01 7.29 11.2 4.21 0.808 1.69 1.94 

Max. 21.9 3.34 26.6 33.4 9.58 2.21 4.7 6.5 

μ 7.43±5.06 1.27±0.851 5.45±5.69 7.34±6.54 2.93±2.65 0.607±0.562 1.14±1.14 1.47±1.47 

SE 0.723 0.122 0.814 0.934 0.379 0.0802 0.163 0.21 

CV (%) 68.2 67.2 104 89.1 90.8 92.5 99.5 100 

Exclusively 
leaf nodes 
(n = 50) 

Min. 1.33 0.261 1.11 1.6 0.004 0.004 0.004 0.004 

η0.25 6.82 1.04 7.98 5.73 2.66 0.352 0.868 0.681 

η (η0.50) 10.7 1.67 16 9.34 5.69 0.863 1.76 2.01 

η0.75 19.3 3.6 28.7 19.2 9.51 1.51 3 3.95 

Max. 170 25.7 227 159 50.7 6.67 20.1 25.8 

μ 18.4±25.7 2.93±3.86 25.2±34.7 17.7±24.1 7.85±8.67 1.19±1.25 2.63±3.28 3.3±4.33 

SE 3.63 0.546 4.91 3.41 1.23 0.177 0.464 0.612 

CV (%) 140 132 137 136 111 105 125 131 
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Table 3.3.11. Comparison of RC evolutionary rates in Viridiplantae 

 

RC(a) and RC(b) refers to the RCs being compared for each rate in each phylogenetic subset. 

At least 3 significant differences (P ≤ aB ≤ 8.33e-03) were observed in each analysis run. 

Interestingly, comparisons with SC were observed to be significantly different in every 

instance (P ≤ 1.00e-03) with the exception of SC vs SN when sampled from across internal 

nodes (P = 0.02). 

 

 RC(a) RC(b) U P 

E
nt

ir
e 

ph
yl

og
en

y 

fb 

NC SC 8927 1.75e-23 

NC SN 5137 0.56 
NC NR 5123.5 0.58 
SC SN 1430.5 7.57e-18 

SC NR 1131 8.87e-21 

SN NR 4834.5 0.87 

fd 

NC SC 7894 1.14e-13 

NC SN 6990.5 2.18e-07 

NC NR 6639.5 1.62e-05 

SC SN 3502.5 5.27e-04 

SC NR 3111 9.10e-06 

SN NR 4468 0.28 

E
xc

lu
si

ve
 in

te
rn

al
 n

od
es

 

fb 

NC SC 2323 1.43e-13 

NC SN 1625 9.83e-03 
NC NR 1346.5 0.51 
SC SN 384 2.42e-09 

SC NR 295 4.70e-11 

SN NR 999.5 0.08 

fd 

NC SC 1970 7.02e-07 

NC SN 1759.5 4.49e-04 

NC NR 1663.5 4.41e-03 

SC SN 918.5 0.02 
SC NR 763.5 8.06e-04 

SN NR 1095.5 0.29 

E
xc

lu
si

ve
 le

af
 n

od
es

 

fb 

NC SC 2204 1.03e-12 

NC SN 981 0.12 
NC NR 1244 0.76 
SC SN 194 8.82e-13 

SC NR 199 1.14e-12 

SN NR 1437 0.09 

fd 

NC SC 2011 8.65e-09 
NC SN 1793 2.60e-05 
NC NR 1715 2.60e-04 
SC SN 791.5 3.70e-03 
SC NR 737 1.00e-03 
SN NR 1083.5 0.41 
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When sampled from the subset of exclusively internal nodes, considerably less variance was 

observed within both fb (eg. 0.298 ≤ fb ≤ 33.4; 67.2 ≤ CV ≤ 104) and fd (eg. 0.002 ≤ fd ≤ 9.58; 

90.8 ≤ CV ≤ 100). Again, significant differences (P ≤ a ≤ 8.33e-03) between RC fb were only 

observed when compared to SC (P ≤ 2.42e-09) but not between other RCs (P ≥ 9.83e-03). 

Comparatively, significant differences between RC fd were observed when compared to NC (P 

≤ 4.41e-03) and between SC and NR (P = 8.06e-04) but not for SC vs SN or SN vs NR (P ≥ 0.02).  

These trends are markedly different to what was observed in fungi, where significant 

differences between all comparisons (except SN vs NR) were observed for fb and only when 

compared to SC for fd. 

 Finally, when sampled from the subset of exclusively leaf nodes (speciation event 

nodes), a relatively high degree of variance was observed for both fb (eg. 1.11 ≤ fb ≤ 227; 132 

≤ CV ≤ 140) and fd (eg. 0.004 ≤ fd ≤ 50.7; 105 ≤ CV ≤ 131) respectively. Significant RC fb  

differences were only observed in comparisons with SC (P ≤ 1.03e-12), however, significant fd 

differences were observed between all comparisons (P ≤ 3.70e-03) except SN vs NR (P = 0.41). 

Birth rate differences are comparable to the fungi where significant differences were also 

observed between all comparisons to SC (P ≤ 1.93e-21) but also for NC vs NR (4.73e-03). Decay 

rates were quite different to fungi. As mentioned above, in Viridiplantae significant differences 

in RC fd during speciation were observed between all comparisons except SN vs NR, however 

in fungi significant differences were only observed when compared to SC.  

 Significant differences (P ≤ aB ≤ 0.0125) were observed for every comparison when 

rates for each specific RC (eg. NC vs NC) were compared between internal and leaf nodes (P 

≤ 8.95e-03) (Table 3.3.12.) where higher medians were observed for leaf nodes in each 

comparison (Table 3.3.7.).  

As observed in fungi, these results suggest that despite the considerable variance 

observed within RCs, with the notable exception of SC, their birth rates are relatively constant.  
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Table 3.3.12. Comparison of evolutionary rates between leaf and internal nodes in 

Viridipantae 

 

Evolutionary rates were compared between leaf and internal node subsets from the 

Viridiplantae phylogeny. Every comparison was observed to be significantly different (P ≤ aB 

≤ 0.0125). 

 
 
 
 

  RC U P 

fb 

NC 686.5 1.66e-04 
SC 725 4.73e-04 
SN 393 5.91e-09 
NR 665 9.01e-05 

fd 

NC 703.5 2.66e-04 
SC 851 8.95e-03 
SN 797.5 2.80e-03 
NR 851 8.95e-03 
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The significant evolutionary rate increases observed between internal nodes and leaf nodes in 

each RC is likely due to genomic innovation during speciation (Gogarten and Townsend, 

2005). These results also support the hypotheses discussed in subsection 3.3.4.2. which posits 

that remodelling events are likely to flout Dollo’s Law and that they are more likely to be 

epaktologous during speciation. Alongside instances of convergent evolution, the simultaneous 

increase in both birth rate and homoplasy suggest that homoplasy is a major driving force 

behind these phenomena. 

Synapomorphic families observed at internal nodes were evolutionarily “successful”, 

meaning they were retained post speciation events. Such differences were expected as genome 

sequencing provides a “snapshot in time” (Klimke et al., 2011) of a given genome, with no 

guarantee that an innovation will persist. The evolutionary rate increase is likely influenced by 

homoplasy and epaktologous events which would be consistent with the HP differences 

observed in Table 3.3.7.  

 Evolutionary rates for each RC (from each phylogenetic set) were compared to each of 

their respective counterparts from the fungal dataset (Table 3.3.13.). Rates were found to be 

remarkably similar when sampled from the entire phylogenies and from the subsets of internal 

nodes. When sampled from across the phylogeny, significant differences (P ≤ aB ≤ 0.0125) 

were only observed in SC birth and decay rates (P ≤ 9.54e-04), and when sampled from the 

internal node subsets, significant differences were only observed in SC decay rates (P = 1.89e-

03). When sampled from the subset of leaf nodes however, significant differences were 

observed, again, for SC birth rates (P = 2.06e-05), for NC decay rates (P = 5.33e-03), and for 

both SN birth and decay rates (P ≤ 0.01). These results suggest that, with the exception of SC, 

remodelled gene families are retained at a consistent rate within both plants and fungi. The 

significant differences observed between the leaf node subsets (speciation events) are likely 

due to the increased number of polyploidisation events during Viridiplantae speciation  
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Table 3.3.13. Comparison of RC evolutionary rates between fungi and plants 

 

Each RC evolutionary rate (from each phylogenetic set) was compared to its counterpart from 

the fungal dataset. SC are the only RC to display significant rate differences (P ≤ aB ≤ 0.0125) 

between fungi and plants when sampled from either (a.) the entire phylogeny or (b.) the subset 

of internal nodes. Significant differences are also observed in SN and NR rate evolution when 

sampled from just leaf nodes. 

 
  U P 

Entire 
phylogeny 

  

fb 

NC 8675 0.014 
SC 7348 2.06e-05 

SN 9517 0.186 
NR 11884 0.06 

fd 

NC 8848 0.026 
SC 8053 9.54e-04 

SN 12126 0.027 
NR 12147 0.025 

Exclusively 
internal nodes 

  

fb 

NC 2216 0.195 
SC 1934 0.016 
SN 2902 0.167 
NR 3127 0.024 

fd 

NC 2073 0.064 
SC 1753 1.89e-03 

SN 2793 0.339 
NR 2698 0.559 

Exclusively 
leaf nodes 

fb 

NC 2092 0.028 
SC 1696 2.27e-04 

SN 1794 9.08e-04 

NR 2815 0.5992 

fd 

NC 2289 0.1464 
SC 2204 0.076 
SN 3360 0.01 

NR 3415 5.33e-03 
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resulting in greater family genesis when compared to the fungi (Albertin and Marullo, 2012; 

Clark and Donohue, 2018) 

 

3.3.4.4. Gene remodelling is ‘clocklike’ in Viridiplantae  

 

Only one site of evolutionary bursts (P ≤ aB ≤ 5.05e-04), the speciation of Triticum 

aestivum, was reported across the Viridiplantae phylogeny where bursts in NC (fb = 170.35/Ma; 

P = 4.87e-04) and NR (fb = 158.98/Ma; P = 4.65e-04) were observed (Table 3.3.13.), no bursts 

in fd were observed at any site along the phylogeny. Similarly to these conservative results, no 

bursts (P ≤ 1.02e-03) were observed when sampled from the subset of internal branches (Table 

3.3.14.). These sparse results are consistent with those observed in fungi (subsection 2.3.4.3.) 

suggesting that evolution via gene remodelling is relatively clocklike. The bursts observed 

during the speciation of T. aestivum are consistent with the two rounds of allopolyploidisation 

attributed to its genome evolution (Matsuoka, 2011), where these massive redundant genetic 

influxes promote rampant remodelling events (Leonard and Richards, 2012). 

 

 3.3.4.5. Functional overrepresentations in remodelling categories 

 

(i.): Overrepresentations exclusive to nested composites 

 

NC exclusive BP ontologs were observed to be significantly 

overrepresented (PB ≤ 0.05) for growth (GO:0040007; PB = 1.04e-03), 

macromolecule modification (GO:0005975, GO:0019538, GO:0043412, 

GO:0044260, GO:0044267, GO:1901564; PB ≤ 0.0127), biological quality 

regulation (GO:0007165, GO:0042592, GO:0050794, GO:0065008; PB ≤ 4.76e-  
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Table 3.3.14. Evolutionary rates in Viridiplantae 

 

For each RC at each node, the sum of gained (Tb) and lost (Td) synapomorphies are presented alongside their rates (fx) and the probability that a 

burst was observed (P(fx)). l values used for Box-Cox transformations and branch lengths (k) used to calculate rates are also provided. 

  

 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.037 

SC 
l = 0.026 

SN 
l = 0.044 

NR 
l = 0.106 

NC 
l = 0.295 

SC 
l = 0.295 

SN 
l = 0.27 

NR 
l = 0.261 

Amborella trichopoda 0.09600 830 149 1224 1018 142 19 31 23 10.753 1.941 15.851 13.185 1.850 0.259 0.414 0.311 0.386 0.350 0.272 0.304 0.643 0.717 0.727 0.800 

Ananas comosus 0.09610 710 134 793 697 424 62 107 124 9.190 1.745 10.263 9.022 5.493 0.814 1.396 1.616 0.450 0.393 0.397 0.440 0.338 0.389 0.427 0.445 

Arabidopsis thaliana 0.03099 342 58 314 336 192 27 59 98 13.750 2.365 12.628 13.509 7.737 1.122 2.405 3.969 0.292 0.276 0.336 0.295 0.236 0.281 0.265 0.190 

Beta vulgaris 0.11180 593 130 626 763 283 35 87 66 6.600 1.455 6.966 8.488 3.155 0.400 0.978 0.744 0.584 0.468 0.517 0.463 0.505 0.611 0.530 0.646 

Brachypodium distachyon 0.02567 260 60 396 389 170 17 29 50 12.632 2.952 19.214 18.875 8.276 0.871 1.452 2.468 0.324 0.202 0.223 0.192 0.217 0.366 0.415 0.321 

Brassica rapa 0.04744 662 117 714 520 147 19 54 63 17.358 3.089 18.720 13.640 3.875 0.524 1.440 1.676 0.214 0.189 0.230 0.292 0.445 0.532 0.418 0.435 

Capsicum annum 0.06913 759 91 1237 466 366 59 104 153 13.657 1.653 22.247 8.392 6.595 1.078 1.887 2.767 0.295 0.415 0.190 0.467 0.283 0.294 0.336 0.288 

Carica papaya 0.14703 815 101 1492 605 1036 197 338 374 6.894 0.862 12.613 5.120 8.761 1.673 2.864 3.168 0.567 0.681 0.336 0.643 0.201 0.161 0.216 0.250 

Chlamydomonas reinhardtii 0.11045 355 67 315 623 83 7 20 18 4.004 0.765 3.554 7.018 0.945 0.090 0.236 0.214 0.764 0.724 0.711 0.533 0.770 0.874 0.813 0.844 

Chlorella sp. NC64A 0.28594 370 82 384 508 147 26 46 38 1.612 0.361 1.673 2.211 0.643 0.117 0.204 0.169 0.947 0.914 0.867 0.859 0.821 0.845 0.831 0.866 

Citrullus lanatus 0.07601 537 86 637 482 281 34 95 137 8.792 1.422 10.427 7.893 4.609 0.572 1.569 2.255 0.468 0.478 0.393 0.490 0.392 0.505 0.392 0.347 

Citrus clementina 0.04019 555 112 805 589 399 71 143 197 17.185 3.493 24.913 18.236 12.364 2.225 4.451 6.120 0.217 0.155 0.166 0.201 0.117 0.094 0.111 0.097 

Coccomyxa sp. C169 0.25699 469 82 327 431 73 12 19 30 2.272 0.401 1.585 2.088 0.358 0.063 0.097 0.150 0.900 0.896 0.875 0.869 0.877 0.903 0.897 0.876 

Cucumis melo 0.02156 638 104 1044 661 372 61 97 131 36.817 6.050 60.210 38.142 21.491 3.572 5.646 7.605 0.055 0.053 0.044 0.053 0.034 0.028 0.070 0.063 

Eucalyptus grandis 0.09636 807 128 942 652 407 79 157 161 10.416 1.663 12.156 8.418 5.260 1.031 2.037 2.088 0.399 0.413 0.347 0.466 0.352 0.309 0.313 0.370 

Fragaria vesca 0.11475 518 76 666 473 461 78 183 242 5.618 0.833 7.220 5.131 5.001 0.855 1.992 2.630 0.647 0.693 0.506 0.642 0.367 0.372 0.320 0.302 

276



 

  

 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.037 

SC 
l = 0.026 

SN 
l = 0.044 

NR 
l = 0.106 

NC 
l = 0.295 

SC 
l = 0.295 

SN 
l = 0.27 

NR 
l = 0.261 

Glycine max 0.04811 964 151 1277 865 108 24 51 64 24.917 3.925 32.998 22.360 2.814 0.646 1.343 1.678 0.120 0.127 0.114 0.148 0.537 0.466 0.439 0.434 

Gossypium raimondii 0.03441 698 112 855 732 162 35 59 95 25.235 4.079 30.903 26.462 5.885 1.300 2.166 3.466 0.117 0.118 0.125 0.111 0.317 0.234 0.295 0.225 

Hordeum vulgare 0.09878 696 84 1507 442 1539 259 548 712 8.765 1.069 18.963 5.571 19.366 3.270 6.904 8.966 0.469 0.597 0.227 0.615 0.044 0.036 0.044 0.043 

Malus domestica 0.15309 1481 183 2846 1014 1430 178 420 379 12.025 1.493 23.100 8.236 11.611 1.452 3.416 3.083 0.342 0.458 0.181 0.474 0.131 0.201 0.170 0.257 

Manihot esculenta 0.06078 411 84 558 483 237 42 81 93 8.420 1.737 11.424 9.891 4.864 0.879 1.676 1.921 0.485 0.395 0.365 0.406 0.376 0.363 0.372 0.395 

Marchantia polymorpha 0.14886 599 138 462 689 65 12 17 25 5.007 1.160 3.864 5.758 0.551 0.108 0.150 0.217 0.689 0.563 0.689 0.603 0.838 0.854 0.862 0.842 

Medicago truncatula 0.08460 720 117 1101 817 323 60 119 175 10.587 1.733 16.181 12.011 4.757 0.896 1.762 2.584 0.392 0.396 0.267 0.336 0.383 0.356 0.357 0.308 

Micromonas commoda 0.23061 342 81 287 484 0 0 0 0 1.848 0.442 1.551 2.612 0.005 0.005 0.005 0.005 0.931 0.877 0.879 0.827 0.981 0.978 0.977 0.979 

Musa acuminata 0.13163 878 129 1130 637 230 38 56 51 8.295 1.227 10.673 6.021 2.180 0.368 0.538 0.491 0.492 0.540 0.385 0.588 0.604 0.633 0.676 0.729 

Node100 0.01798 306 42 384 483 119 30 39 56 21.211 2.971 26.600 33.440 8.291 2.142 2.764 3.938 0.158 0.200 0.153 0.071 0.216 0.102 0.225 0.192 

Node101 0.01674 173 34 133 220 53 13 25 23 12.913 2.598 9.945 16.401 4.008 1.039 1.930 1.781 0.315 0.243 0.407 0.233 0.435 0.307 0.330 0.417 

Node102 0.02130 130 26 67 130 121 11 25 22 7.641 1.575 3.966 7.641 7.116 0.700 1.516 1.341 0.525 0.435 0.682 0.502 0.260 0.439 0.402 0.498 

Node53 0.08190 655 89 212 212 27 3 10 15 9.950 1.365 3.231 3.231 0.425 0.061 0.167 0.243 0.417 0.495 0.735 0.778 0.863 0.906 0.852 0.830 

Node54 0.08793 534 27 102 54 27 11 18 30 7.558 0.396 1.455 0.777 0.396 0.170 0.268 0.438 0.530 0.899 0.888 0.970 0.869 0.795 0.796 0.749 

Node55 0.02909 206 20 34 24 7 3 4 8 8.840 0.897 1.495 1.068 0.342 0.171 0.214 0.384 0.465 0.666 0.884 0.950 0.881 0.794 0.825 0.769 

Node56 0.22691 710 67 123 106 0 0 0 0 3.892 0.372 0.679 0.586 0.005 0.005 0.005 0.005 0.772 0.909 0.960 0.981 0.980 0.978 0.977 0.979 

Node57 0.12906 143 19 29 30 0 0 0 0 1.386 0.192 0.289 0.298 0.010 0.010 0.010 0.010 0.961 0.977 0.990 0.994 0.977 0.971 0.971 0.973 

Node58 0.50451 615 85 141 133 0 0 0 0 1.517 0.212 0.350 0.330 0.002 0.002 0.002 0.002 0.953 0.972 0.987 0.993 0.984 0.985 0.983 0.984 

Node60 0.02119 200 37 102 178 99 21 44 65 11.784 2.228 6.038 10.494 5.862 1.290 2.638 3.869 0.350 0.297 0.561 0.385 0.318 0.237 0.238 0.196 

Node61 0.01405 180 25 96 141 53 17 12 33 16.003 2.299 8.576 12.555 4.774 1.591 1.149 3.006 0.240 0.286 0.452 0.321 0.382 0.175 0.484 0.264 

Node62 0.02035 131 20 51 82 49 8 20 19 8.058 1.282 3.174 5.067 3.052 0.549 1.282 1.221 0.503 0.522 0.739 0.646 0.515 0.518 0.452 0.524 

Node63 0.02243 56 6 38 41 30 6 10 18 3.157 0.388 2.160 2.326 1.717 0.388 0.609 1.052 0.830 0.902 0.823 0.850 0.660 0.619 0.648 0.563 

Node64 0.02900 244 28 69 96 38 9 7 18 10.496 1.242 2.999 4.155 1.671 0.428 0.343 0.814 0.396 0.535 0.753 0.709 0.666 0.592 0.760 0.626 

Node65 0.09392 505 84 489 801 245 36 123 158 6.692 1.124 6.481 10.607 3.254 0.489 1.640 2.103 0.579 0.576 0.539 0.381 0.497 0.553 0.379 0.368 
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 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.037 

SC 
l = 0.026 

SN 
l = 0.044 

NR 
l = 0.106 

NC 
l = 0.295 

SC 
l = 0.295 

SN 
l = 0.27 

NR 
l = 0.261 

Node66 0.01998 44 7 22 57 139 21 55 75 2.797 0.497 1.430 3.606 8.703 1.368 3.481 4.725 0.859 0.851 0.890 0.749 0.203 0.219 0.166 0.149 

Node67 0.01040 35 5 15 33 31 4 15 14 4.301 0.717 1.911 4.062 3.823 0.597 1.911 1.792 0.741 0.746 0.845 0.715 0.449 0.491 0.332 0.415 

Node68 0.00912 61 17 30 72 37 8 18 13 8.446 2.452 4.223 9.945 5.177 1.226 2.588 1.907 0.484 0.263 0.665 0.404 0.357 0.253 0.244 0.397 

Node69 0.00813 48 12 19 32 30 5 9 17 7.488 1.987 3.056 5.043 4.737 0.917 1.528 2.751 0.533 0.341 0.748 0.648 0.384 0.348 0.400 0.290 

Node70 0.01482 132 31 98 140 17 8 6 16 11.149 2.682 8.299 11.820 1.509 0.754 0.587 1.425 0.372 0.232 0.463 0.342 0.687 0.414 0.657 0.481 

Node71 0.01493 100 19 58 72 13 1 9 12 8.405 1.664 4.910 6.075 1.165 0.166 0.832 1.082 0.486 0.412 0.622 0.585 0.736 0.798 0.573 0.556 

Node72 0.05433 185 36 96 109 12 3 5 10 4.252 0.846 2.218 2.515 0.297 0.091 0.137 0.251 0.745 0.688 0.818 0.835 0.890 0.872 0.870 0.826 

Node73 0.01699 115 20 67 109 34 7 10 12 8.483 1.536 4.973 8.044 2.559 0.585 0.804 0.951 0.482 0.446 0.618 0.483 0.563 0.498 0.581 0.589 

Node74 0.03014 182 27 140 152 36 5 15 24 7.543 1.154 5.812 6.306 1.525 0.247 0.659 1.030 0.530 0.565 0.572 0.571 0.685 0.726 0.630 0.568 

Node75 0.01000 72 12 36 53 31 10 14 16 9.069 1.615 4.597 6.709 3.976 1.367 1.864 2.112 0.455 0.425 0.641 0.549 0.438 0.219 0.340 0.367 

Node76 0.01214 38 8 22 25 9 6 3 4 3.989 0.921 2.353 2.659 1.023 0.716 0.409 0.511 0.765 0.656 0.806 0.823 0.758 0.432 0.729 0.722 

Node77 0.08536 246 39 165 261 188 31 93 113 3.594 0.582 2.416 3.813 2.750 0.466 1.368 1.659 0.796 0.810 0.801 0.734 0.544 0.568 0.433 0.438 

Node78 0.08946 319 48 245 254 87 17 28 34 4.443 0.680 3.416 3.541 1.222 0.250 0.403 0.486 0.730 0.763 0.721 0.754 0.727 0.724 0.732 0.731 

Node79 0.26466 185 36 334 867 28 6 2 3 0.873 0.174 1.572 4.074 0.136 0.033 0.014 0.019 0.986 0.982 0.877 0.714 0.930 0.939 0.965 0.963 

Node80 0.12727 35 7 21 37 0 0 0 0 0.351 0.078 0.215 0.371 0.010 0.010 0.010 0.010 0.999 0.998 0.994 0.992 0.977 0.971 0.971 0.973 

Node81 0.08041 117 24 120 166 14 7 6 3 1.823 0.386 1.869 2.580 0.232 0.124 0.108 0.062 0.933 0.903 0.849 0.829 0.906 0.839 0.889 0.929 

Node82 0.09485 245 42 282 342 260 37 99 88 3.222 0.563 3.706 4.492 3.418 0.498 1.310 1.166 0.825 0.819 0.700 0.685 0.482 0.548 0.446 0.536 

Node83 0.01238 21 4 13 13 83 21 44 54 2.207 0.502 1.404 1.404 8.427 2.207 4.514 5.518 0.905 0.849 0.892 0.925 0.212 0.096 0.109 0.116 

Node84 0.01549 18 5 8 24 29 8 11 16 1.524 0.481 0.722 2.005 2.406 0.722 0.962 1.363 0.953 0.858 0.957 0.876 0.579 0.429 0.534 0.493 

Node85 0.00857 49 10 22 44 10 2 2 7 7.249 1.595 3.335 6.524 1.595 0.435 0.435 1.160 0.547 0.430 0.727 0.559 0.676 0.587 0.718 0.538 

Node86 0.03514 50 8 35 56 56 14 33 55 1.803 0.318 1.273 2.015 2.015 0.530 1.202 1.980 0.934 0.933 0.905 0.875 0.623 0.529 0.471 0.386 

Node87 0.04433 316 75 299 463 78 8 25 34 8.882 2.129 8.406 13.001 2.214 0.252 0.729 0.981 0.463 0.314 0.459 0.309 0.600 0.722 0.606 0.581 

Node88 0.04035 201 25 152 261 47 9 21 32 6.219 0.801 4.711 8.067 1.478 0.308 0.677 1.016 0.608 0.708 0.634 0.482 0.691 0.678 0.624 0.572 

Node89 0.02399 422 46 401 228 76 16 25 40 21.904 2.434 20.817 11.858 3.987 0.880 1.346 2.123 0.149 0.266 0.205 0.341 0.437 0.362 0.438 0.365 
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 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.037 

SC 
l = 0.026 

SN 
l = 0.044 

NR 
l = 0.106 

NC 
l = 0.295 

SC 
l = 0.295 

SN 
l = 0.27 

NR 
l = 0.261 

Node90 0.01453 152 23 156 181 111 23 54 75 13.081 2.052 13.423 15.561 9.576 2.052 4.702 6.498 0.311 0.329 0.318 0.249 0.177 0.111 0.101 0.086 

Node91 0.02020 231 40 189 236 130 13 49 58 14.268 2.522 11.685 14.576 8.057 0.861 3.075 3.629 0.279 0.253 0.358 0.270 0.224 0.370 0.197 0.213 

Node92 0.02361 94 19 55 129 18 4 9 13 4.999 1.052 2.947 6.841 1.000 0.263 0.526 0.737 0.690 0.603 0.757 0.542 0.761 0.713 0.680 0.648 

Node93 0.08282 555 122 332 505 23 4 7 9 8.339 1.845 4.994 7.589 0.360 0.075 0.120 0.150 0.489 0.370 0.617 0.504 0.877 0.890 0.881 0.876 

Node94 0.12911 255 53 282 488 0 0 0 0 2.463 0.520 2.723 4.705 0.010 0.010 0.010 0.010 0.885 0.840 0.775 0.670 0.977 0.971 0.971 0.973 

Node95 0.02211 212 35 189 301 51 11 13 20 11.967 2.023 10.675 16.968 2.922 0.674 0.787 1.180 0.344 0.334 0.385 0.223 0.527 0.452 0.587 0.533 

Node96 0.03743 286 35 688 505 197 17 56 21 9.523 1.195 22.863 16.790 6.570 0.597 1.891 0.730 0.435 0.551 0.184 0.226 0.284 0.491 0.336 0.650 

Node97 0.12781 335 58 300 230 205 43 44 44 3.265 0.573 2.925 2.245 2.002 0.428 0.437 0.437 0.822 0.814 0.758 0.857 0.625 0.592 0.717 0.749 

Node98 0.01674 233 44 156 301 41 3 4 6 17.365 3.339 11.651 22.412 3.117 0.297 0.371 0.519 0.214 0.167 0.359 0.147 0.509 0.686 0.746 0.719 

Node99 0.01212 72 9 78 121 42 6 16 15 7.484 1.025 8.099 12.507 4.408 0.718 1.743 1.640 0.534 0.614 0.470 0.322 0.406 0.431 0.360 0.441 

Oryza brachyantha 0.01621 660 114 847 658 660 86 261 336 50.654 8.813 64.985 50.501 50.654 6.667 20.078 25.825 0.026 0.021 0.038 0.027 0.001 0.002 0.001 0.001 

Oryza sativa ssp. japonica 0.02049 846 105 1028 917 263 41 84 76 51.349 6.426 62.382 55.653 16.005 2.546 5.153 4.668 0.025 0.047 0.041 0.021 0.070 0.070 0.085 0.151 

Ostreococcus lucimarinus 0.32801 349 68 292 422 0 0 0 0 1.325 0.261 1.110 1.602 0.004 0.004 0.004 0.004 0.964 0.955 0.921 0.909 0.982 0.982 0.980 0.981 

Phalaenopsis equestris 0.12656 853 145 1512 925 604 69 203 156 8.382 1.433 14.850 9.089 5.938 0.687 2.002 1.541 0.487 0.475 0.290 0.438 0.314 0.445 0.319 0.459 

Phyllostachys edulis 0.17589 928 111 1304 548 859 120 322 355 6.561 0.791 9.216 3.877 6.073 0.855 2.281 2.514 0.587 0.712 0.430 0.729 0.308 0.372 0.280 0.316 

Physcomitrella patens 0.17592 1068 200 1092 1358 38 9 6 19 7.548 1.419 7.718 9.596 0.275 0.071 0.049 0.141 0.530 0.479 0.485 0.418 0.895 0.895 0.932 0.881 

Picea abies 0.08793 986 98 2944 1294 290 59 102 77 13.944 1.399 41.606 18.295 4.111 0.848 1.455 1.102 0.287 0.485 0.081 0.201 0.427 0.375 0.415 0.551 

Picea glauca 0.06567 918 213 1478 965 487 15 89 52 17.382 4.048 27.974 18.271 9.230 0.303 1.702 1.002 0.214 0.120 0.143 0.201 0.187 0.682 0.367 0.575 

Pinus taeda 0.15683 1336 117 3323 712 96 16 28 28 10.590 0.935 26.328 5.647 0.768 0.135 0.230 0.230 0.392 0.650 0.154 0.610 0.799 0.828 0.817 0.836 

Populus trichocarpa 0.07555 810 129 1096 804 197 37 74 85 13.334 2.137 18.036 13.235 3.255 0.625 1.233 1.414 0.304 0.313 0.239 0.302 0.497 0.477 0.464 0.483 

Prunus persica 0.02606 578 140 503 614 149 27 36 68 27.600 6.721 24.025 29.316 7.150 1.335 1.764 3.289 0.099 0.042 0.173 0.092 0.259 0.226 0.357 0.239 

Ricinus communis 0.04582 615 107 721 510 583 103 264 335 16.701 2.928 19.575 13.854 15.833 2.820 7.185 9.110 0.226 0.205 0.219 0.287 0.072 0.054 0.040 0.041 

Selaginella moellendorffii 0.25038 817 190 904 1016 53 10 11 11 4.058 0.948 4.490 5.045 0.268 0.055 0.060 0.060 0.760 0.645 0.648 0.648 0.897 0.913 0.924 0.930 

Setaria italica 0.01857 358 83 517 548 80 17 30 58 24.015 5.619 34.651 36.725 5.418 1.204 2.074 3.947 0.128 0.063 0.107 0.058 0.343 0.258 0.308 0.191 
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 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 0.037 

SC 
l = 0.026 

SN 
l = 0.044 

NR 
l = 0.106 

NC 
l = 0.295 

SC 
l = 0.295 

SN 
l = 0.27 

NR 
l = 0.261 

Solanum lycopersicum 0.01877 667 95 1036 505 215 31 78 94 44.208 6.353 68.628 33.487 14.295 2.118 5.228 6.287 0.036 0.048 0.034 0.071 0.089 0.105 0.082 0.092 

Solanum tuberosum 0.03555 643 83 1153 572 547 77 162 143 22.503 2.935 40.324 20.022 19.149 2.726 5.696 5.032 0.143 0.204 0.085 0.176 0.046 0.059 0.069 0.135 

Sorghum bicolor 0.01486 423 61 456 489 205 27 73 107 35.445 5.183 38.203 40.962 17.221 2.341 6.186 9.028 0.060 0.074 0.093 0.045 0.059 0.085 0.057 0.042 

Spirodela polyrhiza 0.10855 768 145 894 741 612 84 158 167 8.800 1.671 10.242 8.491 7.015 0.973 1.819 1.922 0.467 0.411 0.398 0.463 0.264 0.329 0.347 0.394 

Theobroma cacao 0.03461 506 63 555 450 287 58 119 172 18.198 2.297 19.956 16.188 10.337 2.118 4.307 6.209 0.200 0.286 0.214 0.237 0.158 0.105 0.118 0.094 

Triticum aestivum 0.01182 1620 244 2160 1511 69 8 17 31 170.354 25.747 227.103 158.899 7.356 0.946 1.892 3.363 4.65e-04 6.16e-03 2.05e-03 4.87e-04 0.250 0.338 0.336 0.233 

Vitis vinifera 0.11489 1046 148 1105 687 655 89 203 162 11.320 1.611 11.957 7.438 7.092 0.973 2.206 1.762 0.366 0.426 0.352 0.512 0.261 0.328 0.290 0.420 

Volvox carteri 0.11651 338 64 355 445 94 15 24 23 3.614 0.693 3.795 4.755 1.013 0.171 0.267 0.256 0.794 0.757 0.694 0.667 0.759 0.794 0.797 0.824 

Zea mays 0.02163 1004 106 1404 662 440 64 151 227 57.717 6.145 80.688 38.076 25.326 3.733 8.729 13.094 0.018 0.052 0.025 0.054 0.021 0.024 0.023 0.015 

Zostera marina 0.13537 777 170 878 671 433 45 111 118 7.139 1.569 8.066 6.167 3.983 0.422 1.028 1.092 0.553 0.437 0.471 0.579 0.437 0.596 0.516 0.553 

Zoysia japonica 0.27919 899 70 1456 730 1382 170 394 405 4.004 0.316 6.482 3.252 6.153 0.761 1.757 1.806 0.764 0.934 0.539 0.776 0.304 0.411 0.358 0.413 
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Table 3.3.15. Evolutionary rates across internal nodes of the Viridiplantae phylogeny 

 

For each RC at each node, the sum of gained (Tb) and lost (Td) synapomorphies are presented alongside their rates (fx) and the probability that a 

burst was observed (P(fx)). l values used for Box-Cox transformations and branch lengths (k) used to calculate rates are also provided. 

  

 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 2.0  

SC 
l = 1.9  

SN 
l = 0.12  

NR 
l = 0.08  

NC 
l = 0.34  

SC 
l = 0.4  

SN 
l = 0.32  

NR 
l = 0.35  

Node100 0.01798 306 42 384 483 119 30 39 56 21.211 2.971 26.600 33.440 8.291 2.142 2.764 3.938 0.020 0.053 0.013 0.008 0.066 0.029 0.102 0.078 

Node101 0.01674 173 34 133 220 53 13 25 23 12.913 2.598 9.945 16.401 4.008 1.039 1.930 1.781 0.140 0.086 0.147 0.096 0.264 0.186 0.195 0.301 

Node102 0.0213 130 26 67 130 121 11 25 22 7.641 1.575 3.966 7.641 7.116 0.700 1.516 1.341 0.401 0.298 0.469 0.360 0.097 0.325 0.270 0.398 

Node53 0.0819 655 89 212 212 27 3 10 15 9.950 1.365 3.231 3.231 0.425 0.061 0.167 0.243 0.259 0.374 0.548 0.688 0.827 0.886 0.818 0.807 

Node54 0.08793 534 27 102 54 27 11 18 30 7.558 0.396 1.455 0.777 0.396 0.170 0.268 0.438 0.407 0.861 0.800 0.934 0.835 0.754 0.749 0.710 

Node55 0.02909 206 20 34 24 7 3 4 8 8.840 0.897 1.495 1.068 0.342 0.171 0.214 0.384 0.322 0.592 0.794 0.906 0.849 0.752 0.785 0.735 

Node56 0.22691 710 67 123 106 0 0 0 0 3.892 0.372 0.679 0.586 0.005 0.005 0.005 0.005 0.722 0.872 0.928 0.952 0.969 0.969 0.967 0.968 

Node57 0.12906 143 19 29 30 0 0 0 0 1.386 0.192 0.289 0.298 0.010 0.010 0.010 0.010 0.934 0.949 0.981 0.977 0.966 0.961 0.960 0.963 

Node58 0.50451 615 85 141 133 0 0 0 0 1.517 0.212 0.350 0.330 0.002 0.002 0.002 0.002 0.925 0.942 0.974 0.974 0.973 0.976 0.974 0.974 

Node60 0.02119 200 37 102 178 99 21 44 65 11.784 2.228 6.038 10.494 5.862 1.290 2.638 3.869 0.178 0.137 0.306 0.234 0.145 0.122 0.112 0.082 

Node61 0.01405 180 25 96 141 53 17 12 33 16.003 2.299 8.576 12.555 4.774 1.591 1.149 3.006 0.070 0.126 0.189 0.171 0.206 0.074 0.362 0.139 

Node62 0.02035 131 20 51 82 49 8 20 19 8.058 1.282 3.174 5.067 3.052 0.549 1.282 1.221 0.372 0.408 0.555 0.529 0.360 0.416 0.325 0.430 

Node63 0.02243 56 6 38 41 30 6 10 18 3.157 0.388 2.160 2.326 1.717 0.388 0.609 1.052 0.790 0.865 0.690 0.777 0.550 0.538 0.562 0.478 

Node64 0.029 244 28 69 96 38 9 7 18 10.496 1.242 2.999 4.155 1.671 0.428 0.343 0.814 0.232 0.425 0.576 0.604 0.558 0.505 0.702 0.557 

Node65 0.09392 505 84 489 801 245 36 123 158 6.692 1.124 6.481 10.607 3.254 0.489 1.640 2.103 0.474 0.478 0.281 0.230 0.337 0.458 0.244 0.245 

Node66 0.01998 44 7 22 57 139 21 55 75 2.797 0.497 1.430 3.606 8.703 1.368 3.481 4.725 0.822 0.809 0.805 0.653 0.058 0.107 0.059 0.048 
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 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 2.0  

SC 
l = 1.9  

SN 
l = 0.12  

NR 
l = 0.08  

NC 
l = 0.34  

SC 
l = 0.4  

SN 
l = 0.32  

NR 
l = 0.35  

Node67 0.0104 35 5 15 33 31 4 15 14 4.301 0.717 1.911 4.062 3.823 0.597 1.911 1.792 0.684 0.689 0.728 0.612 0.281 0.384 0.197 0.299 

Node68 0.00912 61 17 30 72 37 8 18 13 8.446 2.452 4.223 9.945 5.177 1.226 2.588 1.907 0.346 0.104 0.444 0.254 0.181 0.136 0.117 0.278 

Node69 0.00813 48 12 19 32 30 5 9 17 7.488 1.987 3.056 5.043 4.737 0.917 1.528 2.751 0.412 0.184 0.569 0.531 0.209 0.227 0.267 0.163 

Node70 0.01482 132 31 98 140 17 8 6 16 11.149 2.682 8.299 11.820 1.509 0.754 0.587 1.425 0.203 0.077 0.199 0.191 0.588 0.297 0.573 0.377 

Node71 0.01493 100 19 58 72 13 1 9 12 8.405 1.664 4.910 6.075 1.165 0.166 0.832 1.082 0.349 0.269 0.385 0.456 0.655 0.757 0.468 0.469 

Node72 0.05433 185 36 96 109 12 3 5 10 4.252 0.846 2.218 2.515 0.297 0.091 0.137 0.251 0.689 0.619 0.681 0.758 0.862 0.847 0.840 0.802 

Node73 0.01699 115 20 67 109 34 7 10 12 8.483 1.536 4.973 8.044 2.559 0.585 0.804 0.951 0.344 0.311 0.380 0.339 0.421 0.392 0.479 0.511 

Node74 0.03014 182 27 140 152 36 5 15 24 7.543 1.154 5.812 6.306 1.525 0.247 0.659 1.030 0.408 0.465 0.321 0.440 0.585 0.670 0.539 0.485 

Node75 0.01 72 12 36 53 31 10 14 16 9.069 1.615 4.597 6.709 3.976 1.367 1.864 2.112 0.308 0.284 0.411 0.415 0.267 0.107 0.205 0.244 

Node76 0.01214 38 8 22 25 9 6 3 4 3.989 0.921 2.353 2.659 1.023 0.716 0.409 0.511 0.713 0.580 0.662 0.743 0.685 0.317 0.664 0.677 

Node77 0.08536 246 39 165 261 188 31 93 113 3.594 0.582 2.416 3.813 2.750 0.466 1.368 1.659 0.750 0.763 0.653 0.634 0.396 0.475 0.303 0.325 

Node78 0.08946 319 48 245 254 87 17 28 34 4.443 0.680 3.416 3.541 1.222 0.250 0.403 0.486 0.671 0.709 0.527 0.659 0.643 0.667 0.668 0.688 

Node79 0.26466 185 36 334 867 28 6 2 3 0.873 0.174 1.572 4.074 0.136 0.033 0.014 0.019 0.964 0.956 0.781 0.611 0.911 0.924 0.953 0.952 

Node80 0.12727 35 7 21 37 0 0 0 0 0.351 0.078 0.215 0.371 0.010 0.010 0.010 0.010 0.988 0.984 0.989 0.971 0.966 0.961 0.960 0.962 

Node81 0.08041 117 24 120 166 14 7 6 3 1.823 0.386 1.869 2.580 0.232 0.124 0.108 0.062 0.903 0.865 0.734 0.751 0.881 0.807 0.863 0.917 

Node82 0.09485 245 42 282 342 260 37 99 88 3.222 0.563 3.706 4.492 3.418 0.498 1.310 1.166 0.784 0.773 0.495 0.575 0.320 0.452 0.318 0.445 

Node83 0.01238 21 4 13 13 83 21 44 54 2.207 0.502 1.404 1.404 8.427 2.207 4.514 5.518 0.873 0.806 0.809 0.871 0.063 0.026 0.028 0.030 

Node84 0.01549 18 5 8 24 29 8 11 16 1.524 0.481 0.722 2.005 2.406 0.722 0.962 1.363 0.924 0.817 0.921 0.810 0.442 0.314 0.421 0.392 

Node85 0.00857 49 10 22 44 10 2 2 7 7.249 1.595 3.335 6.524 1.595 0.435 0.435 1.160 0.430 0.291 0.536 0.426 0.572 0.499 0.650 0.447 

Node86 0.03514 50 8 35 56 56 14 33 55 1.803 0.318 1.273 2.015 2.015 0.530 1.202 1.980 0.904 0.898 0.831 0.809 0.501 0.429 0.347 0.265 

Node87 0.04433 316 75 299 463 78 8 25 34 8.882 2.129 8.406 13.001 2.214 0.252 0.729 0.981 0.319 0.155 0.195 0.160 0.470 0.665 0.509 0.501 

Node88 0.04035 201 25 152 261 47 9 21 32 6.219 0.801 4.711 8.067 1.478 0.308 0.677 1.016 0.512 0.644 0.401 0.338 0.593 0.610 0.531 0.490 

Node89 0.02399 422 46 401 228 76 16 25 40 21.904 2.434 20.817 11.858 3.987 0.880 1.346 2.123 0.017 0.106 0.027 0.190 0.266 0.242 0.309 0.242 

Node90 0.01453 152 23 156 181 111 23 54 75 13.081 2.052 13.423 15.561 9.576 2.052 4.702 6.498 0.135 0.170 0.082 0.109 0.044 0.034 0.024 0.017 

Node91 0.0202 231 40 189 236 130 13 49 58 14.268 2.522 11.685 14.576 8.057 0.861 3.075 3.629 0.104 0.095 0.109 0.126 0.071 0.250 0.081 0.095 
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 k 

Tb Td fb fd P(fb) P(fd) 

NC SC SN NR NC SC SN NR NC SC SN NR NC SC SN NR NC 
l = 2.0  

SC 
l = 1.9  

SN 
l = 0.12  

NR 
l = 0.08  

NC 
l = 0.34  

SC 
l = 0.4  

SN 
l = 0.32  

NR 
l = 0.35  

Node92 0.02361 94 19 55 129 18 4 9 13 4.999 1.052 2.947 6.841 1.000 0.263 0.526 0.737 0.620 0.513 0.583 0.406 0.689 0.654 0.602 0.586 

Node93 0.08282 555 122 332 505 23 4 7 9 8.339 1.845 4.994 7.589 0.360 0.075 0.120 0.150 0.353 0.218 0.378 0.363 0.844 0.868 0.854 0.860 

Node94 0.12911 255 53 282 488 0 0 0 0 2.463 0.520 2.723 4.705 0.010 0.010 0.010 0.010 0.851 0.797 0.611 0.558 0.966 0.961 0.960 0.963 

Node95 0.02211 212 35 189 301 51 11 13 20 11.967 2.023 10.675 16.968 2.922 0.674 0.787 1.180 0.171 0.177 0.130 0.088 0.375 0.339 0.486 0.441 

Node96 0.03743 286 35 688 505 197 17 56 21 9.523 1.195 22.863 16.790 6.570 0.597 1.891 0.730 0.282 0.446 0.021 0.091 0.115 0.385 0.201 0.588 

Node97 0.12781 335 58 300 230 205 43 44 44 3.265 0.573 2.925 2.245 2.002 0.428 0.437 0.437 0.780 0.768 0.585 0.785 0.503 0.505 0.649 0.710 

Node98 0.01674 233 44 156 301 41 3 4 6 17.365 3.339 11.651 22.412 3.117 0.297 0.371 0.519 0.051 0.032 0.110 0.040 0.352 0.621 0.686 0.674 

Node99 0.01212 72 9 78 121 42 6 16 15 7.484 1.025 8.099 12.507 4.408 0.718 1.743 1.640 0.413 0.526 0.206 0.172 0.232 0.316 0.225 0.329 
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Table 3.3.16. Functional over- and underrepresentation in Viridiplantae remodelling categories 

 
For each RC, representations (Rep; overrepresentation (enrichment; e) and underrepresentation (purification; p)) are presented for each GO. The 

GO depth and ratios used to calculate P (and PB) are provided. Only significant (PB ≤ 0.05) representations are displayed. 

 
RC GO Rep. GO ID Name Sample  

ratio 
Population  

ratio Depth P PB 

NC BP e GO:0040007 growth                         498/480185 522/618016 1 4.30E-06 1.04E-03 

NC BP e GO:0043062 extracellular structure organization 498/480185 522/618016 3 4.30E-06 1.04E-03 

NC BP e GO:0030198 extracellular matrix organization 498/480185 522/618016 4 4.30E-06 1.04E-03 

NC BP e GO:0071554 cell wall organization or biogenesis 2810/480185 2873/618016 2 9.51E-06 2.30E-03 

NC BP e GO:0022610 biological adhesion            48/480185 48/618016 1 1.18E-05 2.86E-03 

NC BP e GO:0007155 cell adhesion                  48/480185 48/618016 2 1.18E-05 2.86E-03 

NC BP e GO:0065008 regulation of biological quality 5139/480185 5989/618016 2 1.34E-05 3.25E-03 

NC BP e GO:0042592 homeostatic process            5139/480185 5989/618016 3 1.34E-05 3.25E-03 

NC BP e GO:0050789 regulation of biological process 10200/480185 11532/618016 2 1.97E-05 4.76E-03 

NC BP e GO:0050794 regulation of cellular process 10200/480185 11532/618016 3 1.97E-05 4.76E-03 

NC BP e GO:0007165 signal transduction            10200/480185 11532/618016 4 1.97E-05 4.76E-03 

NC BP e GO:0065007 biological regulation          15252/480185 17434/618016 1 2.37E-05 5.73E-03 

NC BP e GO:0005975 carbohydrate metabolic process 19471/480185 24039/618016 3 2.81E-05 6.80E-03 

NC BP e GO:0055085 transmembrane transport        21434/480185 26703/618016 4 3.04E-05 7.35E-03 

NC BP e GO:0043412 macromolecule modification     60159/480185 64734/618016 4 4.67E-05 0.0113 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP e GO:0036211 protein modification process   60159/480185 64734/618016 5 4.67E-05 0.0113 

NC BP e GO:0006464 cellular protein modification process 60159/480185 64734/618016 6 4.67E-05 0.0113 

NC BP e GO:0044267 cellular protein metabolic process 64238/480185 75999/618016 5 4.97E-05 0.012 

NC BP e GO:0019538 protein metabolic process      64331/480185 76497/618016 4 5.01E-05 0.0121 

NC BP e GO:1901564 organonitrogen compound metabolic process 67765/480185 82805/618016 3 5.21E-05 0.0126 

NC BP e GO:0044260 cellular macromolecule metabolic process 67394/480185 81587/618016 4 5.25E-05 0.0127 

NC BP e GO:0043170 macromolecule metabolic process 71080/480185 87795/618016 3 5.35E-05 0.013 

NC BP e GO:0044238 primary metabolic process      101378/480185 129085/618016 2 6.35E-05 0.0154 

NC BP e GO:0071704 organic substance metabolic process 101378/480185 129085/618016 2 6.35E-05 0.0154 

NC BP p GO:0032196 transposition                  4/480185 29/618016 2 7.76E-07 1.88E-04 

NC BP p GO:0019748 secondary metabolic process    39/480185 84/618016 2 1.09E-06 2.63E-04 

NC BP p GO:0040011 locomotion                     0/480185 9/618016 1 1.36E-06 3.30E-04 

NC BP p GO:0006928 movement of cell or subcellular component 0/480185 9/618016 2 1.36E-06 3.30E-04 

NC BP p GO:0048870 cell motility                  0/480185 9/618016 3 1.36E-06 3.30E-04 

NC BP p GO:0000278 mitotic cell cycle             12/480185 144/618016 3 1.63E-06 3.95E-04 

NC BP p GO:0051301 cell division                  0/480185 151/618016 2 1.79E-06 4.32E-04 

NC BP p GO:0007059 chromosome segregation         0/480185 158/618016 2 1.92E-06 4.65E-04 

NC BP p GO:0007005 mitochondrion organization     37/480185 123/618016 4 2.04E-06 4.94E-04 

NC BP p GO:0032501 multicellular organismal process 0/480185 159/618016 1 2.16E-06 5.24E-04 

NC BP p GO:0007275 multicellular organism development 0/480185 159/618016 3 2.16E-06 5.24E-04 

NC BP p GO:0009790 embryo development             0/480185 159/618016 4 2.16E-06 5.24E-04 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP p GO:0061024 membrane organization          78/480185 209/618016 3 2.47E-06 5.99E-04 

NC BP p GO:0061919 process utilizing autophagic mechanism 146/480185 289/618016 2 2.58E-06 6.24E-04 

NC BP p GO:0006914 autophagy                      146/480185 289/618016 4 2.58E-06 6.24E-04 

NC BP p GO:0008283 cell population proliferation  0/480185 257/618016 1 2.83E-06 6.86E-04 

NC BP p GO:0071826 ribonucleoprotein complex subunit organization 154/480185 251/618016 4 3.04E-06 7.36E-04 

NC BP p GO:0034622 cellular protein-containing complex assembly 154/480185 251/618016 5 3.04E-06 7.36E-04 

NC BP p GO:0022618 ribonucleoprotein complex assembly 154/480185 251/618016 6 3.04E-06 7.36E-04 

NC BP p GO:0071941 nitrogen cycle metabolic process 97/480185 245/618016 3 3.30E-06 7.99E-04 

NC BP p GO:0007049 cell cycle                     73/480185 468/618016 2 3.59E-06 8.69E-04 

NC BP p GO:0044085 cellular component biogenesis  301/480185 654/618016 2 3.80E-06 9.19E-04 

NC BP p GO:0022613 ribonucleoprotein complex biogenesis 301/480185 654/618016 3 3.80E-06 9.19E-04 

NC BP p GO:0042254 ribosome biogenesis            301/480185 654/618016 4 3.80E-06 9.19E-04 

NC BP p GO:0007034 vacuolar transport             348/480185 661/618016 4 4.35E-06 1.05E-03 

NC BP p GO:0006886 intracellular protein transport 258/480185 663/618016 8 4.43E-06 1.07E-03 

NC BP p GO:0006605 protein targeting              258/480185 663/618016 9 4.43E-06 1.07E-03 

NC BP p GO:0051169 nuclear transport              247/480185 370/618016 5 4.48E-06 1.08E-03 

NC BP p GO:0006913 nucleocytoplasmic transport    247/480185 370/618016 6 4.48E-06 1.08E-03 

NC BP p GO:0007010 cytoskeleton organization      383/480185 869/618016 4 4.67E-06 1.13E-03 

NC BP p GO:0051604 protein maturation             93/480185 564/618016 5 4.81E-06 1.16E-03 

NC BP p GO:0051641 cellular localization          505/480185 1035/618016 2 4.90E-06 1.19E-03 

NC BP p GO:0051649 establishment of localization in cell 505/480185 1035/618016 3 4.90E-06 1.19E-03 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP p GO:0046907 intracellular transport        505/480185 1035/618016 4 4.90E-06 1.19E-03 

NC BP p GO:1901575 organic substance catabolic process 700/480185 1074/618016 3 6.14E-06 1.49E-03 

NC BP p GO:0019439 aromatic compound catabolic process 700/480185 1074/618016 4 6.14E-06 1.49E-03 

NC BP p GO:0044270 cellular nitrogen compound catabolic process 700/480185 1074/618016 4 6.14E-06 1.49E-03 

NC BP p GO:0046700 heterocycle catabolic process  700/480185 1074/618016 4 6.14E-06 1.49E-03 

NC BP p GO:1901361 organic cyclic compound catabolic process 700/480185 1074/618016 4 6.14E-06 1.49E-03 

NC BP p GO:0034655 nucleobase-containing compound catabolic process 700/480185 1074/618016 5 6.14E-06 1.49E-03 

NC BP p GO:0044248 cellular catabolic process     846/480185 1363/618016 3 6.73E-06 1.63E-03 

NC BP p GO:0006396 RNA processing                 1097/480185 1614/618016 7 6.90E-06 1.67E-03 

NC BP p GO:0016071 mRNA metabolic process         1097/480185 1614/618016 7 6.90E-06 1.67E-03 

NC BP p GO:0006397 mRNA processing                1097/480185 1614/618016 8 6.90E-06 1.67E-03 

NC BP p GO:0051276 chromosome organization        1288/480185 2021/618016 4 7.69E-06 1.86E-03 

NC BP p GO:0006790 sulfur compound metabolic process 899/480185 1865/618016 3 8.11E-06 1.96E-03 

NC BP p GO:0043933 protein-containing complex subunit organization 1110/480185 2267/618016 3 8.52E-06 2.06E-03 

NC BP p GO:0065003 protein-containing complex assembly 1110/480185 2267/618016 4 8.52E-06 2.06E-03 

NC BP p GO:0006996 organelle organization         1708/480185 3013/618016 3 9.24E-06 2.24E-03 

NC BP p GO:0006091 generation of precursor metabolites and energy 1849/480185 2901/618016 3 9.46E-06 2.29E-03 

NC BP p GO:0015979 photosynthesis                 281/480185 2478/618016 3 9.50E-06 2.30E-03 

NC BP p GO:0051186 cofactor metabolic process     1219/480185 3066/618016 3 1.00E-05 2.42E-03 

NC BP p GO:0022607 cellular component assembly    1404/480185 3012/618016 3 1.02E-05 2.47E-03 

NC BP p GO:0034660 ncRNA metabolic process        2618/480185 4249/618016 7 1.16E-05 2.81E-03 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP p GO:0006399 tRNA metabolic process         2618/480185 4249/618016 8 1.16E-05 2.81E-03 

NC BP p GO:0006457 protein folding                2490/480185 3697/618016 2 1.18E-05 2.85E-03 

NC BP p GO:0016192 vesicle-mediated transport     3267/480185 5271/618016 4 1.23E-05 2.99E-03 

NC BP p GO:0033036 macromolecule localization     3650/480185 6129/618016 2 1.36E-05 3.30E-03 

NC BP p GO:0008104 protein localization           3650/480185 6129/618016 3 1.36E-05 3.30E-03 

NC BP p GO:0045184 establishment of protein localization 3650/480185 6129/618016 4 1.36E-05 3.30E-03 

NC BP p GO:0071702 organic substance transport    3650/480185 6129/618016 4 1.36E-05 3.30E-03 

NC BP p GO:0071705 nitrogen compound transport    3650/480185 6129/618016 4 1.36E-05 3.30E-03 

NC BP p GO:0042886 amide transport                3650/480185 6129/618016 5 1.36E-05 3.30E-03 

NC BP p GO:0015833 peptide transport              3650/480185 6129/618016 6 1.36E-05 3.30E-03 

NC BP p GO:0015031 protein transport              3650/480185 6129/618016 7 1.36E-05 3.30E-03 

NC BP p GO:0006259 DNA metabolic process          3156/480185 5589/618016 6 1.40E-05 3.40E-03 

NC BP p GO:0016043 cellular component organization 3627/480185 6391/618016 2 1.45E-05 3.51E-03 

NC BP p GO:0016070 RNA metabolic process          3715/480185 5863/618016 6 1.45E-05 3.51E-03 

NC BP p GO:0006082 organic acid metabolic process 3437/480185 6311/618016 3 1.47E-05 3.56E-03 

NC BP p GO:0043436 oxoacid metabolic process      3437/480185 6311/618016 4 1.47E-05 3.56E-03 

NC BP p GO:0019752 carboxylic acid metabolic process 3437/480185 6311/618016 5 1.47E-05 3.56E-03 

NC BP p GO:0006520 cellular amino acid metabolic process 3437/480185 6311/618016 6 1.47E-05 3.56E-03 

NC BP p GO:0071840 cellular component organization or biogenesis 3928/480185 7045/618016 1 1.57E-05 3.79E-03 

NC BP p GO:0009056 catabolic process              6799/480185 9013/618016 2 1.84E-05 4.46E-03 

NC BP p GO:0090304 nucleic acid metabolic process 6870/480185 11451/618016 5 1.94E-05 4.69E-03 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP p GO:0044249 cellular biosynthetic process  4083/480185 11269/618016 3 1.94E-05 4.70E-03 

NC BP p GO:1901576 organic substance biosynthetic process 4083/480185 11269/618016 3 1.94E-05 4.70E-03 

NC BP p GO:0009059 macromolecule biosynthetic process 4083/480185 11269/618016 4 1.94E-05 4.70E-03 

NC BP p GO:0043603 cellular amide metabolic process 4083/480185 11269/618016 4 1.94E-05 4.70E-03 

NC BP p GO:0044271 cellular nitrogen compound biosynthetic process 4083/480185 11269/618016 4 1.94E-05 4.70E-03 

NC BP p GO:1901566 organonitrogen compound biosynthetic process 4083/480185 11269/618016 4 1.94E-05 4.70E-03 

NC BP p GO:0006518 peptide metabolic process      4083/480185 11269/618016 5 1.94E-05 4.70E-03 

NC BP p GO:0034645 cellular macromolecule biosynthetic process 4083/480185 11269/618016 5 1.94E-05 4.70E-03 

NC BP p GO:0043604 amide biosynthetic process     4083/480185 11269/618016 5 1.94E-05 4.70E-03 

NC BP p GO:0043043 peptide biosynthetic process   4083/480185 11269/618016 6 1.94E-05 4.70E-03 

NC BP p GO:0006412 translation                    4083/480185 11269/618016 7 1.94E-05 4.70E-03 

NC BP p GO:0006725 cellular aromatic compound metabolic process 7450/480185 12346/618016 3 2.05E-05 4.96E-03 

NC BP p GO:0046483 heterocycle metabolic process  7450/480185 12346/618016 3 2.05E-05 4.96E-03 

NC BP p GO:1901360 organic cyclic compound metabolic process 7450/480185 12346/618016 3 2.05E-05 4.96E-03 

NC BP p GO:0006139 nucleobase-containing compound metabolic process 7450/480185 12346/618016 4 2.05E-05 4.96E-03 

NC BP p GO:0006629 lipid metabolic process        8970/480185 13507/618016 3 2.20E-05 5.33E-03 

NC BP p GO:0044281 small molecule metabolic process 10669/480185 19428/618016 2 2.53E-05 6.12E-03 

NC BP p GO:0009058 biosynthetic process           21656/480185 40964/618016 2 3.77E-05 9.12E-03 

NC BP p GO:0034641 cellular nitrogen compound metabolic process 21714/480185 43601/618016 3 3.94E-05 9.53E-03 

NC BP p GO:0051179 localization                   37852/480185 50086/618016 1 4.16E-05 0.0101 

NC BP p GO:0051234 establishment of localization  37852/480185 50086/618016 2 4.16E-05 0.0101 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC BP p GO:0006810 transport                      37852/480185 50086/618016 3 4.16E-05 0.0101 

NC BP p GO:0032502 developmental process          811/480185 1118/618016 1 5.49E-05 0.0133 

NC BP p GO:0006807 nitrogen compound metabolic process 83482/480185 111424/618016 2 5.96E-05 0.0144 

NC BP p GO:0044237 cellular metabolic process     84842/480185 115940/618016 2 6.03E-05 0.0146 

NC BP p GO:0048856 anatomical structure development 807/480185 1112/618016 2 6.13E-05 0.0148 

NC BP p GO:0009987 cellular process               100289/480185 136120/618016 1 6.43E-05 0.0156 

NC BP p GO:0008152 metabolic process              119987/480185 162190/618016 1 6.90E-05 0.0167 

NC CC e GO:0042579 microbody                      255/480185 281/618016 5 3.72E-06 9.01E-04 

NC CC e GO:0005777 peroxisome                     255/480185 281/618016 6 3.72E-06 9.01E-04 

NC CC e GO:0030312 external encapsulating structure 4014/480185 4071/618016 2 1.16E-05 2.82E-03 

NC CC e GO:0005618 cell wall                      4014/480185 4071/618016 3 1.16E-05 2.82E-03 

NC CC p GO:0042995 cell projection                0/480185 9/618016 2 1.36E-06 3.30E-04 

NC CC p GO:0120025 plasma membrane bounded cell projection 0/480185 9/618016 3 1.36E-06 3.30E-04 

NC CC p GO:0005929 cilium                         0/480185 9/618016 4 1.36E-06 3.30E-04 

NC CC p GO:0016020 membrane                       14/480185 97/618016 1 1.85E-06 4.48E-04 

NC CC p GO:0005886 plasma membrane                14/480185 97/618016 2 1.85E-06 4.48E-04 

NC CC p GO:0009579 thylakoid                      22/480185 200/618016 3 2.36E-06 5.71E-04 

NC CC p GO:0005730 nucleolus                      101/480185 169/618016 5 2.72E-06 6.58E-04 

NC CC p GO:0009536 plastid                        72/480185 378/618016 5 3.08E-06 7.46E-04 

NC CC p GO:0044421 extracellular region part      118/480185 311/618016 1 3.12E-06 7.55E-04 

NC CC p GO:0031012 extracellular matrix           118/480185 311/618016 2 3.12E-06 7.55E-04 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC CC p GO:0005856 cytoskeleton                   2/480185 313/618016 5 3.25E-06 7.87E-04 

NC CC p GO:0005811 lipid droplet                  1/480185 269/618016 5 3.26E-06 7.89E-04 

NC CC p GO:0005739 mitochondrion                  9/480185 496/618016 5 4.11E-06 9.95E-04 

NC CC p GO:0005694 chromosome                     357/480185 718/618016 5 4.47E-06 1.08E-03 

NC CC p GO:0005783 endoplasmic reticulum          300/480185 854/618016 5 4.70E-06 1.14E-03 

NC CC p GO:0005737 cytoplasm                      1997/480185 4633/618016 3 1.20E-05 2.91E-03 

NC CC p GO:0005622 intracellular                  4344/480185 10036/618016 2 1.87E-05 4.52E-03 

NC CC p GO:1990904 ribonucleoprotein complex      3959/480185 11026/618016 2 1.94E-05 4.70E-03 

NC CC p GO:0005840 ribosome                       3959/480185 11026/618016 5 1.94E-05 4.70E-03 

NC CC p GO:0043228 non-membrane-bounded organelle 4420/480185 12495/618016 2 1.98E-05 4.79E-03 

NC CC p GO:0043232 intracellular non-membrane-bounded organelle 4420/480185 12495/618016 4 1.98E-05 4.79E-03 

NC CC p GO:0044444 cytoplasmic part               4594/480185 13030/618016 3 2.09E-05 5.07E-03 

NC CC p GO:0043227 membrane-bounded organelle     12508/480185 17301/618016 2 2.40E-05 5.81E-03 

NC CC p GO:0043231 intracellular membrane-bounded organelle 12508/480185 17301/618016 4 2.40E-05 5.81E-03 

NC CC p GO:0043226 organelle                      16976/480185 29938/618016 1 3.14E-05 7.59E-03 

NC CC p GO:0043229 intracellular organelle        16925/480185 29789/618016 3 3.20E-05 7.74E-03 

NC CC p GO:0044428 nuclear part                   243/480185 357/618016 4 3.24E-05 7.84E-03 

NC CC p GO:0032991 protein-containing complex     13150/480185 31947/618016 1 3.36E-05 8.13E-03 

NC CC p GO:0044424 intracellular part             18927/480185 34591/618016 2 3.46E-05 8.36E-03 

NC CC p GO:0044464 cell part                      25271/480185 42317/618016 1 3.79E-05 9.17E-03 

NC MF e GO:0003729 mRNA binding                   218/480185 238/618016 5 2.43E-06 5.88E-04 
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RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

NC MF e GO:0042393 histone binding                818/480185 877/618016 3 5.19E-06 1.26E-03 

NC MF e GO:0019899 enzyme binding                 1905/480185 2246/618016 3 7.71E-06 1.86E-03 

NC MF e GO:0004386 helicase activity              2343/480185 2693/618016 7 9.25E-06 2.24E-03 

NC MF e GO:0003924 GTPase activity                2292/480185 2773/618016 7 1.01E-05 2.44E-03 

NC MF e GO:0016887 ATPase activity                6668/480185 7330/618016 7 1.56E-05 3.78E-03 

NC MF e GO:0016817 hydrolase activity, acting on acid anhydrides 11023/480185 12352/618016 3 2.06E-05 4.99E-03 

NC MF e GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 11023/480185 12352/618016 4 2.06E-05 4.99E-03 

NC MF e GO:0016462 pyrophosphatase activity       11023/480185 12352/618016 5 2.06E-05 4.99E-03 

NC MF e GO:0017111 nucleoside-triphosphatase activity 11023/480185 12352/618016 6 2.06E-05 4.99E-03 

NC MF e GO:0016798 hydrolase activity, acting on glycosyl bonds 14624/480185 17114/618016 3 2.46E-05 5.95E-03 

NC MF e GO:0140110 transcription regulator activity 15248/480185 18464/618016 1 2.56E-05 6.19E-03 

NC MF e GO:0003700 DNA-binding transcription factor activity 15248/480185 18464/618016 2 2.56E-05 6.19E-03 

NC MF e GO:0016757 transferase activity, transferring glycosyl groups 16680/480185 19461/618016 3 2.67E-05 6.46E-03 

NC MF e GO:0005215 transporter activity           18422/480185 22509/618016 1 2.76E-05 6.68E-03 

NC MF e GO:0022857 transmembrane transporter activity 18422/480185 22509/618016 2 2.76E-05 6.68E-03 

NC MF e GO:0016787 hydrolase activity             43156/480185 53542/618016 2 4.31E-05 0.0104 

NC MF e GO:0016491 oxidoreductase activity        50514/480185 59827/618016 2 4.46E-05 0.0108 

NC MF e GO:0016301 kinase activity                55373/480185 58982/618016 4 4.46E-05 0.0108 

NC MF e GO:0016772 transferase activity, transferring phosphorus-containing groups 58527/480185 63814/618016 3 4.66E-05 0.0113 

NC MF e GO:0016740 transferase activity           90490/480185 105241/618016 2 5.82E-05 0.0141 

NC MF e GO:0043167 ion binding                    144810/480185 169425/618016 2 6.99E-05 0.0169 
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NC MF e GO:0005488 binding                        183234/480185 222950/618016 1 7.46E-05 0.018 

NC MF e GO:0003824 catalytic activity             194092/480185 234033/618016 1 7.61E-05 0.0184 

NC MF p GO:0032182 ubiquitin-like protein binding 27/480185 110/618016 3 1.69E-06 4.09E-04 

NC MF p GO:0019843 rRNA binding                   316/480185 858/618016 5 4.94E-06 1.20E-03 

NC MF p GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds 475/480185 1221/618016 3 6.31E-06 1.53E-03 

NC MF p GO:0051082 unfolded protein binding       840/480185 1302/618016 3 6.59E-06 1.60E-03 

NC MF p GO:0016765 transferase activity, transferring alkyl or aryl (other than methyl) groups 807/480185 1578/618016 3 7.22E-06 1.75E-03 

NC MF p GO:0042578 phosphoric ester hydrolase activity 1725/480185 2393/618016 4 8.32E-06 2.01E-03 

NC MF p GO:0016791 phosphatase activity           1725/480185 2393/618016 5 8.32E-06 2.01E-03 

NC MF p GO:0045182 translation regulator activity 972/480185 2397/618016 1 8.46E-06 2.05E-03 

NC MF p GO:0090079 translation regulator activity, nucleic acid binding 972/480185 2397/618016 4 8.46E-06 2.05E-03 

NC MF p GO:0008135 translation factor activity, RNA binding 972/480185 2397/618016 5 8.46E-06 2.05E-03 

NC MF p GO:0004518 nuclease activity              2332/480185 3725/618016 4 1.06E-05 2.57E-03 

NC MF p GO:0008092 cytoskeletal protein binding   3334/480185 4676/618016 3 1.22E-05 2.94E-03 

NC MF p GO:0016779 nucleotidyltransferase activity 3155/480185 4833/618016 4 1.23E-05 2.97E-03 

NC MF p GO:0016874 ligase activity                2850/480185 4776/618016 2 1.28E-05 3.09E-03 

NC MF p GO:0016853 isomerase activity             3751/480185 5524/618016 2 1.35E-05 3.26E-03 

NC MF p GO:0016788 hydrolase activity, acting on ester bonds 4057/480185 6118/618016 3 1.44E-05 3.48E-03 

NC MF p GO:0098772 molecular function regulator   4421/480185 7248/618016 1 1.49E-05 3.61E-03 

NC MF p GO:0030234 enzyme regulator activity      4421/480185 7248/618016 2 1.49E-05 3.61E-03 

NC MF p GO:0016829 lyase activity                 5377/480185 7558/618016 2 1.53E-05 3.70E-03 
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NC MF p GO:0005515 protein binding                7116/480185 9464/618016 2 1.76E-05 4.26E-03 

NC MF p GO:0016741 transferase activity, transferring one-carbon groups 6593/480185 9655/618016 3 1.80E-05 4.35E-03 

NC MF p GO:0008168 methyltransferase activity     6593/480185 9655/618016 4 1.80E-05 4.35E-03 

NC MF p GO:0016746 transferase activity, transferring acyl groups 7923/480185 10773/618016 3 1.82E-05 4.41E-03 

NC MF p GO:0003735 structural constituent of ribosome 4083/480185 11389/618016 2 1.94E-05 4.68E-03 

NC MF p GO:0005198 structural molecule activity   4407/480185 12200/618016 1 2.02E-05 4.90E-03 

NC MF p GO:0003723 RNA binding                    6887/480185 12346/618016 4 2.05E-05 4.96E-03 

NC MF p GO:0003677 DNA binding                    30109/480185 39471/618016 4 3.62E-05 8.76E-03 

NC MF p GO:0097159 organic cyclic compound binding 36995/480185 51816/618016 2 4.20E-05 0.0102 

NC MF p GO:1901363 heterocyclic compound binding  36995/480185 51816/618016 2 4.20E-05 0.0102 

NC MF p GO:0003676 nucleic acid binding           36995/480185 51816/618016 3 4.20E-05 0.0102 

NR BP e GO:0040011 locomotion                     9/40223 9/618016 1 1.58E-07 3.83E-05 

NR BP e GO:0006928 movement of cell or subcellular component 9/40223 9/618016 2 1.58E-07 3.83E-05 

NR BP e GO:0048870 cell motility                  9/40223 9/618016 3 1.58E-07 3.83E-05 

NR BP e GO:0032501 multicellular organismal process 159/40223 159/618016 1 4.51E-07 1.09E-04 

NR BP e GO:0007275 multicellular organism development 159/40223 159/618016 3 4.51E-07 1.09E-04 

NR BP e GO:0009790 embryo development             159/40223 159/618016 4 4.51E-07 1.09E-04 

NR BP e GO:0051301 cell division                  151/40223 151/618016 2 4.98E-07 1.20E-04 

NR BP e GO:0000278 mitotic cell cycle             40/40223 144/618016 3 6.27E-07 1.52E-04 

NR BP e GO:0071941 nitrogen cycle metabolic process 89/40223 245/618016 3 7.15E-07 1.73E-04 

NR BP e GO:0032196 transposition                  21/40223 29/618016 2 1.02E-06 2.46E-04 
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NR BP e GO:0007059 chromosome segregation         93/40223 158/618016 2 1.28E-06 3.10E-04 

NR BP e GO:0051169 nuclear transport              103/40223 370/618016 5 1.28E-06 3.10E-04 

NR BP e GO:0006913 nucleocytoplasmic transport    103/40223 370/618016 6 1.28E-06 3.10E-04 

NR BP e GO:0008283 cell population proliferation  196/40223 257/618016 1 1.40E-06 3.38E-04 

NR BP e GO:0061919 process utilizing autophagic mechanism 107/40223 289/618016 2 1.82E-06 4.40E-04 

NR BP e GO:0006914 autophagy                      107/40223 289/618016 4 1.82E-06 4.40E-04 

NR BP e GO:0007049 cell cycle                     119/40223 468/618016 2 1.94E-06 4.70E-04 

NR BP e GO:0044085 cellular component biogenesis  325/40223 654/618016 2 2.37E-06 5.73E-04 

NR BP e GO:0022613 ribonucleoprotein complex biogenesis 325/40223 654/618016 3 2.37E-06 5.73E-04 

NR BP e GO:0042254 ribosome biogenesis            325/40223 654/618016 4 2.37E-06 5.73E-04 

NR BP e GO:0007034 vacuolar transport             86/40223 661/618016 4 2.58E-06 6.24E-04 

NR BP e GO:0006886 intracellular protein transport 131/40223 663/618016 8 2.65E-06 6.42E-04 

NR BP e GO:0006605 protein targeting              131/40223 663/618016 9 2.65E-06 6.42E-04 

NR BP e GO:0051604 protein maturation             226/40223 564/618016 5 3.03E-06 7.34E-04 

NR BP e GO:0048856 anatomical structure development 166/40223 1112/618016 2 3.39E-06 8.21E-04 

NR BP e GO:0044248 cellular catabolic process     266/40223 1363/618016 3 3.50E-06 8.46E-04 

NR BP e GO:0032502 developmental process          168/40223 1118/618016 1 3.50E-06 8.47E-04 

NR BP e GO:0051641 cellular localization          236/40223 1035/618016 2 3.61E-06 8.73E-04 

NR BP e GO:0051649 establishment of localization in cell 236/40223 1035/618016 3 3.61E-06 8.73E-04 

NR BP e GO:0046907 intracellular transport        236/40223 1035/618016 4 3.61E-06 8.73E-04 

NR BP e GO:0006396 RNA processing                 160/40223 1614/618016 7 3.95E-06 9.57E-04 
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NR BP e GO:0016071 mRNA metabolic process         160/40223 1614/618016 7 3.95E-06 9.57E-04 

NR BP e GO:0006397 mRNA processing                160/40223 1614/618016 8 3.95E-06 9.57E-04 

NR BP e GO:1901575 organic substance catabolic process 159/40223 1074/618016 3 4.04E-06 9.79E-04 

NR BP e GO:0019439 aromatic compound catabolic process 159/40223 1074/618016 4 4.04E-06 9.79E-04 

NR BP e GO:0044270 cellular nitrogen compound catabolic process 159/40223 1074/618016 4 4.04E-06 9.79E-04 

NR BP e GO:0046700 heterocycle catabolic process  159/40223 1074/618016 4 4.04E-06 9.79E-04 

NR BP e GO:1901361 organic cyclic compound catabolic process 159/40223 1074/618016 4 4.04E-06 9.79E-04 

NR BP e GO:0034655 nucleobase-containing compound catabolic process 159/40223 1074/618016 5 4.04E-06 9.79E-04 

NR BP e GO:0006790 sulfur compound metabolic process 194/40223 1865/618016 3 4.75E-06 1.15E-03 

NR BP e GO:0043933 protein-containing complex subunit organization 630/40223 2267/618016 3 4.74E-06 1.15E-03 

NR BP e GO:0065003 protein-containing complex assembly 630/40223 2267/618016 4 4.74E-06 1.15E-03 

NR BP e GO:0015979 photosynthesis                 1370/40223 2478/618016 3 5.63E-06 1.36E-03 

NR BP e GO:0034660 ncRNA metabolic process        583/40223 4249/618016 7 5.87E-06 1.42E-03 

NR BP e GO:0006399 tRNA metabolic process         583/40223 4249/618016 8 5.87E-06 1.42E-03 

NR BP e GO:0022607 cellular component assembly    788/40223 3012/618016 3 6.00E-06 1.45E-03 

NR BP e GO:0051186 cofactor metabolic process     734/40223 3066/618016 3 6.10E-06 1.48E-03 

NR BP e GO:0016192 vesicle-mediated transport     476/40223 5271/618016 4 7.07E-06 1.71E-03 

NR BP e GO:0006259 DNA metabolic process          648/40223 5589/618016 6 7.79E-06 1.88E-03 

NR BP e GO:0006457 protein folding                315/40223 3697/618016 2 8.41E-06 2.04E-03 

NR BP e GO:0033036 macromolecule localization     671/40223 6129/618016 2 8.45E-06 2.05E-03 

NR BP e GO:0008104 protein localization           671/40223 6129/618016 3 8.45E-06 2.05E-03 
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NR BP e GO:0045184 establishment of protein localization 671/40223 6129/618016 4 8.45E-06 2.05E-03 

NR BP e GO:0071702 organic substance transport    671/40223 6129/618016 4 8.45E-06 2.05E-03 

NR BP e GO:0071705 nitrogen compound transport    671/40223 6129/618016 4 8.45E-06 2.05E-03 

NR BP e GO:0042886 amide transport                671/40223 6129/618016 5 8.45E-06 2.05E-03 

NR BP e GO:0015833 peptide transport              671/40223 6129/618016 6 8.45E-06 2.05E-03 

NR BP e GO:0015031 protein transport              671/40223 6129/618016 7 8.45E-06 2.05E-03 

NR BP e GO:0071840 cellular component organization or biogenesis 1192/40223 7045/618016 1 8.65E-06 2.09E-03 

NR BP e GO:0016070 RNA metabolic process          743/40223 5863/618016 6 8.73E-06 2.11E-03 

NR BP e GO:0006082 organic acid metabolic process 915/40223 6311/618016 3 8.95E-06 2.17E-03 

NR BP e GO:0043436 oxoacid metabolic process      915/40223 6311/618016 4 8.95E-06 2.17E-03 

NR BP e GO:0019752 carboxylic acid metabolic process 915/40223 6311/618016 5 8.95E-06 2.17E-03 

NR BP e GO:0006520 cellular amino acid metabolic process 915/40223 6311/618016 6 8.95E-06 2.17E-03 

NR BP e GO:0016043 cellular component organization 867/40223 6391/618016 2 9.05E-06 2.19E-03 

NR BP e GO:0090304 nucleic acid metabolic process 1391/40223 11451/618016 5 1.08E-05 2.62E-03 

NR BP e GO:0044249 cellular biosynthetic process  2905/40223 11269/618016 3 1.10E-05 2.67E-03 

NR BP e GO:1901576 organic substance biosynthetic process 2905/40223 11269/618016 3 1.10E-05 2.67E-03 

NR BP e GO:0009059 macromolecule biosynthetic process 2905/40223 11269/618016 4 1.10E-05 2.67E-03 

NR BP e GO:0043603 cellular amide metabolic process 2905/40223 11269/618016 4 1.10E-05 2.67E-03 

NR BP e GO:0044271 cellular nitrogen compound biosynthetic process 2905/40223 11269/618016 4 1.10E-05 2.67E-03 

NR BP e GO:1901566 organonitrogen compound biosynthetic process 2905/40223 11269/618016 4 1.10E-05 2.67E-03 

NR BP e GO:0006518 peptide metabolic process      2905/40223 11269/618016 5 1.10E-05 2.67E-03 
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NR BP e GO:0034645 cellular macromolecule biosynthetic process 2905/40223 11269/618016 5 1.10E-05 2.67E-03 

NR BP e GO:0043604 amide biosynthetic process     2905/40223 11269/618016 5 1.10E-05 2.67E-03 

NR BP e GO:0043043 peptide biosynthetic process   2905/40223 11269/618016 6 1.10E-05 2.67E-03 

NR BP e GO:0006412 translation                    2905/40223 11269/618016 7 1.10E-05 2.67E-03 

NR BP e GO:0006725 cellular aromatic compound metabolic process 1550/40223 12346/618016 3 1.15E-05 2.77E-03 

NR BP e GO:0046483 heterocycle metabolic process  1550/40223 12346/618016 3 1.15E-05 2.77E-03 

NR BP e GO:1901360 organic cyclic compound metabolic process 1550/40223 12346/618016 3 1.15E-05 2.77E-03 

NR BP e GO:0006139 nucleobase-containing compound metabolic process 1550/40223 12346/618016 4 1.15E-05 2.77E-03 

NR BP e GO:0006629 lipid metabolic process        1519/40223 13507/618016 3 1.21E-05 2.94E-03 

NR BP e GO:0044281 small molecule metabolic process 2860/40223 19428/618016 2 1.49E-05 3.60E-03 

NR BP e GO:0009058 biosynthetic process           7686/40223 40964/618016 2 2.24E-05 5.42E-03 

NR BP e GO:0034641 cellular nitrogen compound metabolic process 8514/40223 43601/618016 3 2.24E-05 5.42E-03 

NR BP e GO:0006807 nitrogen compound metabolic process 9969/40223 111424/618016 2 3.40E-05 8.22E-03 

NR BP e GO:0044237 cellular metabolic process     11833/40223 115940/618016 2 3.45E-05 8.36E-03 

NR BP e GO:0009987 cellular process               13189/40223 136120/618016 1 3.71E-05 8.97E-03 

NR BP e GO:0008152 metabolic process              15054/40223 162190/618016 1 3.98E-05 9.64E-03 

NR BP p GO:0040007 growth                         0/40223 522/618016 1 1.85E-06 4.47E-04 

NR BP p GO:0043062 extracellular structure organization 0/40223 522/618016 3 1.85E-06 4.47E-04 

NR BP p GO:0030198 extracellular matrix organization 0/40223 522/618016 4 1.85E-06 4.47E-04 

NR BP p GO:0071826 ribonucleoprotein complex subunit organization 0/40223 251/618016 4 2.04E-06 4.93E-04 

NR BP p GO:0034622 cellular protein-containing complex assembly 0/40223 251/618016 5 2.04E-06 4.93E-04 
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NR BP p GO:0022618 ribonucleoprotein complex assembly 0/40223 251/618016 6 2.04E-06 4.93E-04 

NR BP p GO:0007010 cytoskeleton organization      16/40223 869/618016 4 2.41E-06 5.83E-04 

NR BP p GO:0071554 cell wall organization or biogenesis 6/40223 2873/618016 2 5.15E-06 1.25E-03 

NR BP p GO:0065008 regulation of biological quality 24/40223 5989/618016 2 8.49E-06 2.06E-03 

NR BP p GO:0042592 homeostatic process            24/40223 5989/618016 3 8.49E-06 2.06E-03 

NR BP p GO:0050789 regulation of biological process 227/40223 11532/618016 2 1.16E-05 2.82E-03 

NR BP p GO:0050794 regulation of cellular process 227/40223 11532/618016 3 1.16E-05 2.82E-03 

NR BP p GO:0007165 signal transduction            227/40223 11532/618016 4 1.16E-05 2.82E-03 

NR BP p GO:0065007 biological regulation          251/40223 17434/618016 1 1.39E-05 3.35E-03 

NR BP p GO:0005975 carbohydrate metabolic process 1073/40223 24039/618016 3 1.65E-05 3.98E-03 

NR BP p GO:0055085 transmembrane transport        1094/40223 26703/618016 4 1.71E-05 4.14E-03 

NR BP p GO:0051179 localization                   2952/40223 50086/618016 1 2.40E-05 5.82E-03 

NR BP p GO:0051234 establishment of localization  2952/40223 50086/618016 2 2.40E-05 5.82E-03 

NR BP p GO:0006810 transport                      2952/40223 50086/618016 3 2.40E-05 5.82E-03 

NR BP p GO:0043412 macromolecule modification     840/40223 64734/618016 4 2.65E-05 6.41E-03 

NR BP p GO:0036211 protein modification process   840/40223 64734/618016 5 2.65E-05 6.41E-03 

NR BP p GO:0006464 cellular protein modification process 840/40223 64734/618016 6 2.65E-05 6.41E-03 

NR BP p GO:0044267 cellular protein metabolic process 3745/40223 75999/618016 5 2.85E-05 6.90E-03 

NR BP p GO:0019538 protein metabolic process      3910/40223 76497/618016 4 2.90E-05 7.02E-03 

NR BP p GO:0044260 cellular macromolecule metabolic process 4393/40223 81587/618016 4 2.99E-05 7.23E-03 

NR BP p GO:1901564 organonitrogen compound metabolic process 4825/40223 82805/618016 3 3.03E-05 7.34E-03 
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NR BP p GO:0043170 macromolecule metabolic process 5301/40223 87795/618016 3 3.10E-05 7.51E-03 

NR BP p GO:0050896 response to stimulus           896/40223 15747/618016 1 3.22E-05 7.79E-03 

NR BP p GO:0006950 response to stress             896/40223 15747/618016 2 3.22E-05 7.79E-03 

NR CC e GO:0042995 cell projection                9/40223 9/618016 2 1.58E-07 3.83E-05 

NR CC e GO:0120025 plasma membrane bounded cell projection 9/40223 9/618016 3 1.58E-07 3.83E-05 

NR CC e GO:0005929 cilium                         9/40223 9/618016 4 1.58E-07 3.83E-05 

NR CC e GO:0005730 nucleolus                      54/40223 169/618016 5 5.28E-07 1.28E-04 

NR CC e GO:0000228 nuclear chromosome             42/40223 188/618016 6 5.98E-07 1.45E-04 

NR CC e GO:0009579 thylakoid                      37/40223 200/618016 3 8.33E-07 2.02E-04 

NR CC e GO:0016020 membrane                       62/40223 97/618016 1 9.49E-07 2.30E-04 

NR CC e GO:0005886 plasma membrane                62/40223 97/618016 2 9.49E-07 2.30E-04 

NR CC e GO:0005811 lipid droplet                  190/40223 269/618016 5 1.28E-06 3.10E-04 

NR CC e GO:0044428 nuclear part                   96/40223 357/618016 4 1.45E-06 3.51E-04 

NR CC e GO:0005856 cytoskeleton                   120/40223 313/618016 5 1.62E-06 3.92E-04 

NR CC e GO:0009536 plastid                        191/40223 378/618016 5 1.91E-06 4.61E-04 

NR CC e GO:0005739 mitochondrion                  285/40223 496/618016 5 2.48E-06 5.99E-04 

NR CC e GO:0044422 organelle part                 101/40223 598/618016 1 2.66E-06 6.44E-04 

NR CC e GO:0044446 intracellular organelle part   101/40223 598/618016 3 2.66E-06 6.44E-04 

NR CC e GO:0005783 endoplasmic reticulum          125/40223 854/618016 5 2.84E-06 6.87E-04 

NR CC e GO:0005576 extracellular region           312/40223 2060/618016 1 4.73E-06 1.14E-03 

NR CC e GO:0005737 cytoplasm                      1024/40223 4633/618016 3 6.19E-06 1.50E-03 
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NR CC e GO:0005622 intracellular                  2729/40223 10036/618016 2 1.04E-05 2.51E-03 

NR CC e GO:1990904 ribonucleoprotein complex      2831/40223 11026/618016 2 1.16E-05 2.81E-03 

NR CC e GO:0005840 ribosome                       2831/40223 11026/618016 5 1.16E-05 2.81E-03 

NR CC e GO:0044444 cytoplasmic part               3431/40223 13030/618016 3 1.18E-05 2.86E-03 

NR CC e GO:0043228 non-membrane-bounded organelle 3247/40223 12495/618016 2 1.19E-05 2.88E-03 

NR CC e GO:0043232 intracellular non-membrane-bounded organelle 3247/40223 12495/618016 4 1.19E-05 2.88E-03 

NR CC e GO:0043227 membrane-bounded organelle     1434/40223 17301/618016 2 1.38E-05 3.35E-03 

NR CC e GO:0043231 intracellular membrane-bounded organelle 1434/40223 17301/618016 4 1.38E-05 3.35E-03 

NR CC e GO:0043229 intracellular organelle        4677/40223 29789/618016 3 1.82E-05 4.40E-03 

NR CC e GO:0043226 organelle                      4765/40223 29938/618016 1 1.90E-05 4.60E-03 

NR CC e GO:0032991 protein-containing complex     8647/40223 31947/618016 1 1.91E-05 4.63E-03 

NR CC e GO:0044424 intracellular part             5691/40223 34591/618016 2 2.02E-05 4.88E-03 

NR CC e GO:0044464 cell part                      6349/40223 42317/618016 1 2.26E-05 5.47E-03 

NR CC p GO:0030312 external encapsulating structure 0/40223 4071/618016 2 5.81E-06 1.41E-03 

NR CC p GO:0005618 cell wall                      0/40223 4071/618016 3 5.81E-06 1.41E-03 

NR CC p GO:0005634 nucleus                        830/40223 15292/618016 5 1.36E-05 3.29E-03 

NR CC p GO:0042579 microbody                      3/40223 281/618016 5 1.62E-05 3.93E-03 

NR CC p GO:0005777 peroxisome                     3/40223 281/618016 6 1.62E-05 3.93E-03 

NR MF e GO:0032182 ubiquitin-like protein binding 55/40223 110/618016 3 5.68E-07 1.37E-04 

NR MF e GO:0019843 rRNA binding                   203/40223 858/618016 5 3.03E-06 7.33E-04 

NR MF e GO:0051082 unfolded protein binding       149/40223 1302/618016 3 3.58E-06 8.66E-04 
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NR MF e GO:0016765 transferase activity, transferring alkyl or aryl (other than methyl) groups 457/40223 1578/618016 3 3.90E-06 9.43E-04 

NR MF e GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds 395/40223 1221/618016 3 4.00E-06 9.68E-04 

NR MF e GO:0042578 phosphoric ester hydrolase activity 402/40223 2393/618016 4 4.68E-06 1.13E-03 

NR MF e GO:0016791 phosphatase activity           402/40223 2393/618016 5 4.68E-06 1.13E-03 

NR MF e GO:0045182 translation regulator activity 637/40223 2397/618016 1 4.76E-06 1.15E-03 

NR MF e GO:0090079 translation regulator activity, nucleic acid binding 637/40223 2397/618016 4 4.76E-06 1.15E-03 

NR MF e GO:0008135 translation factor activity, RNA binding 637/40223 2397/618016 5 4.76E-06 1.15E-03 

NR MF e GO:0004518 nuclease activity              384/40223 3725/618016 4 6.65E-06 1.61E-03 

NR MF e GO:0016779 nucleotidyltransferase activity 817/40223 4833/618016 4 7.32E-06 1.77E-03 

NR MF e GO:0016853 isomerase activity             561/40223 5524/618016 2 7.81E-06 1.89E-03 

NR MF e GO:0016788 hydrolase activity, acting on ester bonds 786/40223 6118/618016 3 8.32E-06 2.01E-03 

NR MF e GO:0016829 lyase activity                 905/40223 7558/618016 2 9.12E-06 2.21E-03 

NR MF e GO:0098772 molecular function regulator   654/40223 7248/618016 1 9.24E-06 2.23E-03 

NR MF e GO:0030234 enzyme regulator activity      654/40223 7248/618016 2 9.24E-06 2.23E-03 

NR MF e GO:0016741 transferase activity, transferring one-carbon groups 1605/40223 9655/618016 3 1.03E-05 2.50E-03 

NR MF e GO:0008168 methyltransferase activity     1605/40223 9655/618016 4 1.03E-05 2.50E-03 

NR MF e GO:0016746 transferase activity, transferring acyl groups 990/40223 10773/618016 3 1.11E-05 2.68E-03 

NR MF e GO:0003723 RNA binding                    1970/40223 12346/618016 4 1.15E-05 2.77E-03 

NR MF e GO:0005198 structural molecule activity   3124/40223 12200/618016 1 1.21E-05 2.92E-03 

NR MF e GO:0003735 structural constituent of ribosome 3025/40223 11389/618016 2 1.22E-05 2.96E-03 

NR MF p GO:0003729 mRNA binding                   0/40223 238/618016 5 9.58E-07 2.32E-04 
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NR MF p GO:0042393 histone binding                0/40223 877/618016 3 2.75E-06 6.67E-04 

NR MF p GO:0019899 enzyme binding                 76/40223 2246/618016 3 5.27E-06 1.27E-03 

NR MF p GO:0004386 helicase activity              41/40223 2693/618016 7 5.36E-06 1.30E-03 

NR MF p GO:0008289 lipid binding                  125/40223 3286/618016 2 5.45E-06 1.32E-03 

NR MF p GO:0008092 cytoskeletal protein binding   217/40223 4676/618016 3 6.84E-06 1.66E-03 

NR MF p GO:0016887 ATPase activity                81/40223 7330/618016 7 9.27E-06 2.24E-03 

NR MF p GO:0005515 protein binding                502/40223 9464/618016 2 1.13E-05 2.73E-03 

NR MF p GO:0016817 hydrolase activity, acting on acid anhydrides 209/40223 12352/618016 3 1.15E-05 2.79E-03 

NR MF p GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 209/40223 12352/618016 4 1.15E-05 2.79E-03 

NR MF p GO:0016462 pyrophosphatase activity       209/40223 12352/618016 5 1.15E-05 2.79E-03 

NR MF p GO:0017111 nucleoside-triphosphatase activity 209/40223 12352/618016 6 1.15E-05 2.79E-03 

NR MF p GO:0016798 hydrolase activity, acting on glycosyl bonds 320/40223 17114/618016 3 1.34E-05 3.23E-03 

NR MF p GO:0140110 transcription regulator activity 72/40223 18464/618016 1 1.47E-05 3.57E-03 

NR MF p GO:0003700 DNA-binding transcription factor activity 72/40223 18464/618016 2 1.47E-05 3.57E-03 

NR MF p GO:0016757 transferase activity, transferring glycosyl groups 767/40223 19461/618016 3 1.51E-05 3.66E-03 

NR MF p GO:0005215 transporter activity           1196/40223 22509/618016 1 1.64E-05 3.97E-03 

NR MF p GO:0022857 transmembrane transporter activity 1196/40223 22509/618016 2 1.64E-05 3.97E-03 

NR MF p GO:0003677 DNA binding                    1054/40223 39471/618016 4 2.14E-05 5.17E-03 

NR MF p GO:0097159 organic cyclic compound binding 3024/40223 51816/618016 2 2.40E-05 5.81E-03 

NR MF p GO:1901363 heterocyclic compound binding  3024/40223 51816/618016 2 2.40E-05 5.81E-03 

NR MF p GO:0003676 nucleic acid binding           3024/40223 51816/618016 3 2.40E-05 5.81E-03 
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NR MF p GO:0016787 hydrolase activity             2715/40223 53542/618016 2 2.48E-05 6.00E-03 

NR MF p GO:0016301 kinase activity                563/40223 58982/618016 4 2.52E-05 6.11E-03 

NR MF p GO:0016491 oxidoreductase activity        2783/40223 59827/618016 2 2.63E-05 6.36E-03 

NR MF p GO:0016772 transferase activity, transferring phosphorus-containing groups 1380/40223 63814/618016 3 2.73E-05 6.61E-03 

NR MF p GO:0003924 GTPase activity                128/40223 2773/618016 7 2.98E-05 7.22E-03 

NR MF p GO:0016740 transferase activity           5199/40223 105241/618016 2 3.32E-05 8.04E-03 

NR MF p GO:0043167 ion binding                    4906/40223 169425/618016 2 3.96E-05 9.58E-03 

NR MF p GO:0003824 catalytic activity             12477/40223 234033/618016 1 4.35E-05 0.0105 

NR MF p GO:0005488 binding                        8365/40223 222950/618016 1 4.39E-05 0.0106 

SC BP e GO:0061024 membrane organization          105/20061 209/618016 3 4.23E-07 1.02E-04 

SC BP e GO:0019748 secondary metabolic process    33/20061 84/618016 2 5.36E-07 1.30E-04 

SC BP e GO:0007005 mitochondrion organization     76/20061 123/618016 4 5.50E-07 1.33E-04 

SC BP e GO:0071826 ribonucleoprotein complex subunit organization 76/20061 251/618016 4 8.98E-07 2.17E-04 

SC BP e GO:0034622 cellular protein-containing complex assembly 76/20061 251/618016 5 8.98E-07 2.17E-04 

SC BP e GO:0022618 ribonucleoprotein complex assembly 76/20061 251/618016 6 8.98E-07 2.17E-04 

SC BP e GO:0051604 protein maturation             149/20061 564/618016 5 1.03E-06 2.50E-04 

SC BP e GO:0007059 chromosome segregation         19/20061 158/618016 2 1.08E-06 2.62E-04 

SC BP e GO:0007049 cell cycle                     135/20061 468/618016 2 1.12E-06 2.72E-04 

SC BP e GO:0000278 mitotic cell cycle             80/20061 144/618016 3 1.17E-06 2.82E-04 

SC BP e GO:0008283 cell population proliferation  53/20061 257/618016 1 1.38E-06 3.35E-04 

SC BP e GO:1901575 organic substance catabolic process 90/20061 1074/618016 3 1.57E-06 3.80E-04 
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SC BP e GO:0019439 aromatic compound catabolic process 90/20061 1074/618016 4 1.57E-06 3.80E-04 

SC BP e GO:0044270 cellular nitrogen compound catabolic process 90/20061 1074/618016 4 1.57E-06 3.80E-04 

SC BP e GO:0046700 heterocycle catabolic process  90/20061 1074/618016 4 1.57E-06 3.80E-04 

SC BP e GO:1901361 organic cyclic compound catabolic process 90/20061 1074/618016 4 1.57E-06 3.80E-04 

SC BP e GO:0034655 nucleobase-containing compound catabolic process 90/20061 1074/618016 5 1.57E-06 3.80E-04 

SC BP e GO:0007010 cytoskeleton organization      127/20061 869/618016 4 1.95E-06 4.71E-04 

SC BP e GO:0007034 vacuolar transport             109/20061 661/618016 4 2.43E-06 5.88E-04 

SC BP e GO:0044248 cellular catabolic process     96/20061 1363/618016 3 2.49E-06 6.02E-04 

SC BP e GO:0051276 chromosome organization        218/20061 2021/618016 4 2.84E-06 6.88E-04 

SC BP e GO:0006396 RNA processing                 215/20061 1614/618016 7 2.90E-06 7.01E-04 

SC BP e GO:0016071 mRNA metabolic process         215/20061 1614/618016 7 2.90E-06 7.01E-04 

SC BP e GO:0006397 mRNA processing                215/20061 1614/618016 8 2.90E-06 7.01E-04 

SC BP e GO:0043933 protein-containing complex subunit organization 203/20061 2267/618016 3 3.21E-06 7.77E-04 

SC BP e GO:0065003 protein-containing complex assembly 203/20061 2267/618016 4 3.21E-06 7.77E-04 

SC BP e GO:0015979 photosynthesis                 143/20061 2478/618016 3 3.82E-06 9.24E-04 

SC BP e GO:0051186 cofactor metabolic process     528/20061 3066/618016 3 3.92E-06 9.48E-04 

SC BP e GO:0006790 sulfur compound metabolic process 423/20061 1865/618016 3 4.01E-06 9.69E-04 

SC BP e GO:0006996 organelle organization         421/20061 3013/618016 3 4.20E-06 1.02E-03 

SC BP e GO:0022607 cellular component assembly    383/20061 3012/618016 3 4.19E-06 1.02E-03 

SC BP e GO:0034660 ncRNA metabolic process        382/20061 4249/618016 7 4.83E-06 1.17E-03 

SC BP e GO:0006399 tRNA metabolic process         382/20061 4249/618016 8 4.83E-06 1.17E-03 
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SC BP e GO:0016070 RNA metabolic process          597/20061 5863/618016 6 5.04E-06 1.22E-03 

SC BP e GO:0071840 cellular component organization or biogenesis 713/20061 7045/618016 1 5.68E-06 1.38E-03 

SC BP e GO:0016192 vesicle-mediated transport     389/20061 5271/618016 4 5.72E-06 1.38E-03 

SC BP e GO:0033036 macromolecule localization     627/20061 6129/618016 2 5.77E-06 1.40E-03 

SC BP e GO:0008104 protein localization           627/20061 6129/618016 3 5.77E-06 1.40E-03 

SC BP e GO:0045184 establishment of protein localization 627/20061 6129/618016 4 5.77E-06 1.40E-03 

SC BP e GO:0071702 organic substance transport    627/20061 6129/618016 4 5.77E-06 1.40E-03 

SC BP e GO:0071705 nitrogen compound transport    627/20061 6129/618016 4 5.77E-06 1.40E-03 

SC BP e GO:0042886 amide transport                627/20061 6129/618016 5 5.77E-06 1.40E-03 

SC BP e GO:0015833 peptide transport              627/20061 6129/618016 6 5.77E-06 1.40E-03 

SC BP e GO:0015031 protein transport              627/20061 6129/618016 7 5.77E-06 1.40E-03 

SC BP e GO:0006259 DNA metabolic process          494/20061 5589/618016 6 6.15E-06 1.49E-03 

SC BP e GO:0016043 cellular component organization 713/20061 6391/618016 2 6.37E-06 1.54E-03 

SC BP e GO:0006082 organic acid metabolic process 681/20061 6311/618016 3 6.59E-06 1.60E-03 

SC BP e GO:0043436 oxoacid metabolic process      681/20061 6311/618016 4 6.59E-06 1.60E-03 

SC BP e GO:0019752 carboxylic acid metabolic process 681/20061 6311/618016 5 6.59E-06 1.60E-03 

SC BP e GO:0006520 cellular amino acid metabolic process 681/20061 6311/618016 6 6.59E-06 1.60E-03 

SC BP e GO:0090304 nucleic acid metabolic process 1091/20061 11451/618016 5 7.63E-06 1.85E-03 

SC BP e GO:0006725 cellular aromatic compound metabolic process 1130/20061 12346/618016 3 7.93E-06 1.92E-03 

SC BP e GO:0046483 heterocycle metabolic process  1130/20061 12346/618016 3 7.93E-06 1.92E-03 

SC BP e GO:1901360 organic cyclic compound metabolic process 1130/20061 12346/618016 3 7.93E-06 1.92E-03 
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SC BP e GO:0006139 nucleobase-containing compound metabolic process 1130/20061 12346/618016 4 7.93E-06 1.92E-03 

SC BP e GO:0044249 cellular biosynthetic process  1437/20061 11269/618016 3 8.30E-06 2.01E-03 

SC BP e GO:1901576 organic substance biosynthetic process 1437/20061 11269/618016 3 8.30E-06 2.01E-03 

SC BP e GO:0009059 macromolecule biosynthetic process 1437/20061 11269/618016 4 8.30E-06 2.01E-03 

SC BP e GO:0043603 cellular amide metabolic process 1437/20061 11269/618016 4 8.30E-06 2.01E-03 

SC BP e GO:0044271 cellular nitrogen compound biosynthetic process 1437/20061 11269/618016 4 8.30E-06 2.01E-03 

SC BP e GO:1901566 organonitrogen compound biosynthetic process 1437/20061 11269/618016 4 8.30E-06 2.01E-03 

SC BP e GO:0006518 peptide metabolic process      1437/20061 11269/618016 5 8.30E-06 2.01E-03 

SC BP e GO:0034645 cellular macromolecule biosynthetic process 1437/20061 11269/618016 5 8.30E-06 2.01E-03 

SC BP e GO:0043604 amide biosynthetic process     1437/20061 11269/618016 5 8.30E-06 2.01E-03 

SC BP e GO:0043043 peptide biosynthetic process   1437/20061 11269/618016 6 8.30E-06 2.01E-03 

SC BP e GO:0006412 translation                    1437/20061 11269/618016 7 8.30E-06 2.01E-03 

SC BP e GO:0006629 lipid metabolic process        808/20061 13507/618016 3 8.72E-06 2.11E-03 

SC BP e GO:0044281 small molecule metabolic process 1676/20061 19428/618016 2 9.66E-06 2.34E-03 

SC BP e GO:0009056 catabolic process              373/20061 9013/618016 2 1.05E-05 2.54E-03 

SC BP e GO:0055085 transmembrane transport        1269/20061 26703/618016 4 1.29E-05 3.12E-03 

SC BP e GO:0009058 biosynthetic process           3677/20061 40964/618016 2 1.50E-05 3.63E-03 

SC BP e GO:0034641 cellular nitrogen compound metabolic process 4535/20061 43601/618016 3 1.58E-05 3.81E-03 

SC BP e GO:0051179 localization                   2802/20061 50086/618016 1 1.70E-05 4.11E-03 

SC BP e GO:0051234 establishment of localization  2802/20061 50086/618016 2 1.70E-05 4.11E-03 

SC BP e GO:0006810 transport                      2802/20061 50086/618016 3 1.70E-05 4.11E-03 
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SC BP e GO:0043170 macromolecule metabolic process 3105/20061 87795/618016 3 2.28E-05 5.51E-03 

SC BP e GO:0006807 nitrogen compound metabolic process 5350/20061 111424/618016 2 2.44E-05 5.91E-03 

SC BP e GO:0044237 cellular metabolic process     5539/20061 115940/618016 2 2.44E-05 5.91E-03 

SC BP e GO:0044238 primary metabolic process      4900/20061 129085/618016 2 2.64E-05 6.38E-03 

SC BP e GO:0071704 organic substance metabolic process 4900/20061 129085/618016 2 2.64E-05 6.38E-03 

SC BP e GO:0009987 cellular process               6235/20061 136120/618016 1 2.66E-05 6.44E-03 

SC BP e GO:0008152 metabolic process              7145/20061 162190/618016 1 2.75E-05 6.66E-03 

SC BP e GO:0050896 response to stimulus           603/20061 15747/618016 1 5.49E-05 0.0133 

SC BP e GO:0006950 response to stress             603/20061 15747/618016 2 5.49E-05 0.0133 

SC BP p GO:0040007 growth                         0/20061 522/618016 1 1.37E-06 3.32E-04 

SC BP p GO:0043062 extracellular structure organization 0/20061 522/618016 3 1.37E-06 3.32E-04 

SC BP p GO:0030198 extracellular matrix organization 0/20061 522/618016 4 1.37E-06 3.32E-04 

SC BP p GO:0044085 cellular component biogenesis  0/20061 654/618016 2 2.15E-06 5.21E-04 

SC BP p GO:0022613 ribonucleoprotein complex biogenesis 0/20061 654/618016 3 2.15E-06 5.21E-04 

SC BP p GO:0042254 ribosome biogenesis            0/20061 654/618016 4 2.15E-06 5.21E-04 

SC BP p GO:0048856 anatomical structure development 0/20061 1112/618016 2 2.43E-06 5.88E-04 

SC BP p GO:0032502 developmental process          0/20061 1118/618016 1 2.67E-06 6.45E-04 

SC BP p GO:0071554 cell wall organization or biogenesis 0/20061 2873/618016 2 4.03E-06 9.74E-04 

SC BP p GO:0006091 generation of precursor metabolites and energy 27/20061 2901/618016 3 4.48E-06 1.08E-03 

SC BP p GO:0006457 protein folding                41/20061 3697/618016 2 4.77E-06 1.15E-03 

SC BP p GO:0050789 regulation of biological process 71/20061 11532/618016 2 8.22E-06 1.99E-03 
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SC BP p GO:0050794 regulation of cellular process 71/20061 11532/618016 3 8.22E-06 1.99E-03 

SC BP p GO:0007165 signal transduction            71/20061 11532/618016 4 8.22E-06 1.99E-03 

SC BP p GO:0065007 biological regulation          218/20061 17434/618016 1 9.66E-06 2.34E-03 

SC BP p GO:0005975 carbohydrate metabolic process 505/20061 24039/618016 3 1.17E-05 2.84E-03 

SC BP p GO:0043412 macromolecule modification     452/20061 64734/618016 4 1.88E-05 4.55E-03 

SC BP p GO:0036211 protein modification process   452/20061 64734/618016 5 1.88E-05 4.55E-03 

SC BP p GO:0006464 cellular protein modification process 452/20061 64734/618016 6 1.88E-05 4.55E-03 

SC BP p GO:0044267 cellular protein metabolic process 1889/20061 75999/618016 5 2.02E-05 4.89E-03 

SC BP p GO:0019538 protein metabolic process      2038/20061 76497/618016 4 2.03E-05 4.91E-03 

SC BP p GO:0044260 cellular macromolecule metabolic process 2383/20061 81587/618016 4 2.12E-05 5.13E-03 

SC CC e GO:0044421 extracellular region part      152/20061 311/618016 1 5.06E-07 1.22E-04 

SC CC e GO:0031012 extracellular matrix           152/20061 311/618016 2 5.06E-07 1.22E-04 

SC CC e GO:0005856 cytoskeleton                   37/20061 313/618016 5 5.77E-07 1.40E-04 

SC CC e GO:0009536 plastid                        58/20061 378/618016 5 1.14E-06 2.77E-04 

SC CC e GO:0005783 endoplasmic reticulum          275/20061 854/618016 5 1.47E-06 3.56E-04 

SC CC e GO:0005694 chromosome                     115/20061 718/618016 5 2.26E-06 5.47E-04 

SC CC e GO:0005737 cytoplasm                      703/20061 4633/618016 3 5.44E-06 1.32E-03 

SC CC e GO:0005622 intracellular                  956/20061 10036/618016 2 7.07E-06 1.71E-03 

SC CC e GO:0043228 non-membrane-bounded organelle 1591/20061 12495/618016 2 7.95E-06 1.92E-03 

SC CC e GO:0043232 intracellular non-membrane-bounded organelle 1591/20061 12495/618016 4 7.95E-06 1.92E-03 

SC CC e GO:1990904 ribonucleoprotein complex      1437/20061 11026/618016 2 8.54E-06 2.07E-03 

309



 

  

RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

SC CC e GO:0044444 cytoplasmic part               1791/20061 13030/618016 3 8.56E-06 2.07E-03 

SC CC e GO:0005840 ribosome                       1437/20061 11026/618016 5 8.54E-06 2.07E-03 

SC CC e GO:0005634 nucleus                        640/20061 15292/618016 5 9.06E-06 2.19E-03 

SC CC e GO:0043227 membrane-bounded organelle     994/20061 17301/618016 2 9.89E-06 2.39E-03 

SC CC e GO:0043231 intracellular membrane-bounded organelle 994/20061 17301/618016 4 9.89E-06 2.39E-03 

SC CC e GO:0043226 organelle                      2591/20061 29938/618016 1 1.27E-05 3.08E-03 

SC CC e GO:0044424 intracellular part             3299/20061 34591/618016 2 1.32E-05 3.18E-03 

SC CC e GO:0043229 intracellular organelle        2585/20061 29789/618016 3 1.31E-05 3.18E-03 

SC CC e GO:0032991 protein-containing complex     3549/20061 31947/618016 1 1.39E-05 3.36E-03 

SC CC e GO:0044464 cell part                      3421/20061 42317/618016 1 1.55E-05 3.76E-03 

SC CC p GO:0030312 external encapsulating structure 0/20061 4071/618016 2 4.57E-06 1.11E-03 

SC CC p GO:0005618 cell wall                      0/20061 4071/618016 3 4.57E-06 1.11E-03 

SC CC p GO:0044422 organelle part                 5/20061 598/618016 1 1.83E-04 0.0443 

SC CC p GO:0044446 intracellular organelle part   5/20061 598/618016 3 1.83E-04 0.0443 

SC MF e GO:0019843 rRNA binding                   214/20061 858/618016 5 1.56E-06 3.78E-04 

SC MF e GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds 202/20061 1221/618016 3 2.16E-06 5.23E-04 

SC MF e GO:0045182 translation regulator activity 168/20061 2397/618016 1 3.44E-06 8.33E-04 

SC MF e GO:0090079 translation regulator activity, nucleic acid binding 168/20061 2397/618016 4 3.44E-06 8.33E-04 

SC MF e GO:0008135 translation factor activity, RNA binding 168/20061 2397/618016 5 3.44E-06 8.33E-04 

SC MF e GO:0004518 nuclease activity              298/20061 3725/618016 4 4.14E-06 1.00E-03 

SC MF e GO:0016874 ligase activity                420/20061 4776/618016 2 5.11E-06 1.24E-03 
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SC MF e GO:0008289 lipid binding                  163/20061 3286/618016 2 5.19E-06 1.26E-03 

SC MF e GO:0016853 isomerase activity             382/20061 5524/618016 2 5.42E-06 1.31E-03 

SC MF e GO:0016788 hydrolase activity, acting on ester bonds 413/20061 6118/618016 3 5.64E-06 1.37E-03 

SC MF e GO:0016741 transferase activity, transferring one-carbon groups 413/20061 9655/618016 3 7.08E-06 1.71E-03 

SC MF e GO:0008168 methyltransferase activity     413/20061 9655/618016 4 7.08E-06 1.71E-03 

SC MF e GO:0016829 lyase activity                 574/20061 7558/618016 2 7.45E-06 1.80E-03 

SC MF e GO:0016746 transferase activity, transferring acyl groups 596/20061 10773/618016 3 7.66E-06 1.85E-03 

SC MF e GO:0003723 RNA binding                    895/20061 12346/618016 4 7.93E-06 1.92E-03 

SC MF e GO:0003735 structural constituent of ribosome 1437/20061 11389/618016 2 8.17E-06 1.98E-03 

SC MF e GO:0005198 structural molecule activity   1451/20061 12200/618016 1 8.92E-06 2.16E-03 

SC MF e GO:0005215 transporter activity           905/20061 22509/618016 1 1.14E-05 2.75E-03 

SC MF e GO:0022857 transmembrane transporter activity 905/20061 22509/618016 2 1.14E-05 2.75E-03 

SC MF e GO:0097159 organic cyclic compound binding 1981/20061 51816/618016 2 1.71E-05 4.14E-03 

SC MF e GO:1901363 heterocyclic compound binding  1981/20061 51816/618016 2 1.71E-05 4.14E-03 

SC MF e GO:0003676 nucleic acid binding           1981/20061 51816/618016 3 1.71E-05 4.14E-03 

SC MF e GO:0042578 phosphoric ester hydrolase activity 115/20061 2393/618016 4 4.90E-05 0.0119 

SC MF e GO:0016791 phosphatase activity           115/20061 2393/618016 5 4.90E-05 0.0119 

SC MF p GO:0051082 unfolded protein binding       3/20061 1302/618016 3 2.09E-06 5.07E-04 

SC MF p GO:0042393 histone binding                0/20061 877/618016 3 2.27E-06 5.49E-04 

SC MF p GO:0019899 enzyme binding                 3/20061 2246/618016 3 3.90E-06 9.45E-04 

SC MF p GO:0003924 GTPase activity                2/20061 2773/618016 7 4.56E-06 1.10E-03 
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SC MF p GO:0008092 cytoskeletal protein binding   9/20061 4676/618016 3 4.93E-06 1.19E-03 

SC MF p GO:0016887 ATPase activity                84/20061 7330/618016 7 6.30E-06 1.53E-03 

SC MF p GO:0098772 molecular function regulator   149/20061 7248/618016 1 6.55E-06 1.59E-03 

SC MF p GO:0030234 enzyme regulator activity      149/20061 7248/618016 2 6.55E-06 1.59E-03 

SC MF p GO:0005515 protein binding                16/20061 9464/618016 2 7.57E-06 1.83E-03 

SC MF p GO:0016817 hydrolase activity, acting on acid anhydrides 105/20061 12352/618016 3 7.96E-06 1.93E-03 

SC MF p GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 105/20061 12352/618016 4 7.96E-06 1.93E-03 

SC MF p GO:0016462 pyrophosphatase activity       105/20061 12352/618016 5 7.96E-06 1.93E-03 

SC MF p GO:0017111 nucleoside-triphosphatase activity 105/20061 12352/618016 6 7.96E-06 1.93E-03 

SC MF p GO:0016757 transferase activity, transferring glycosyl groups 382/20061 19461/618016 3 9.82E-06 2.38E-03 

SC MF p GO:0016798 hydrolase activity, acting on glycosyl bonds 365/20061 17114/618016 3 9.86E-06 2.39E-03 

SC MF p GO:0140110 transcription regulator activity 62/20061 18464/618016 1 1.04E-05 2.52E-03 

SC MF p GO:0003700 DNA-binding transcription factor activity 62/20061 18464/618016 2 1.04E-05 2.52E-03 

SC MF p GO:0140096 catalytic activity, acting on a protein 405/20061 17082/618016 2 1.07E-05 2.58E-03 

SC MF p GO:0008233 peptidase activity             405/20061 17082/618016 3 1.07E-05 2.58E-03 

SC MF p GO:0003677 DNA binding                    1086/20061 39471/618016 4 1.49E-05 3.59E-03 

SC MF p GO:0016787 hydrolase activity             1489/20061 53542/618016 2 1.70E-05 4.12E-03 

SC MF p GO:0016491 oxidoreductase activity        1708/20061 59827/618016 2 1.83E-05 4.42E-03 

SC MF p GO:0016772 transferase activity, transferring phosphorus-containing groups 380/20061 63814/618016 3 1.85E-05 4.48E-03 

SC MF p GO:0016301 kinase activity                200/20061 58982/618016 4 1.90E-05 4.61E-03 

SC MF p GO:0016740 transferase activity           1807/20061 105241/618016 2 2.34E-05 5.65E-03 
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ratio 
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ratio Depth P PB 

SC MF p GO:0043167 ion binding                    2320/20061 169425/618016 2 2.87E-05 6.93E-03 

SC MF p GO:0005488 binding                        4353/20061 222950/618016 1 3.04E-05 7.36E-03 

SC MF p GO:0003824 catalytic activity             6161/20061 234033/618016 1 3.10E-05 7.51E-03 

SC MF p GO:0004386 helicase activity              55/20061 2693/618016 7 2.04E-04 0.0495 

SN BP e GO:0007059 chromosome segregation         46/77545 158/618016 2 1.69E-06 4.09E-04 

SN BP e GO:0007049 cell cycle                     141/77545 468/618016 2 2.42E-06 5.86E-04 

SN BP e GO:0071941 nitrogen cycle metabolic process 59/77545 245/618016 3 2.65E-06 6.41E-04 

SN BP e GO:0007010 cytoskeleton organization      343/77545 869/618016 4 3.64E-06 8.82E-04 

SN BP e GO:0006886 intracellular protein transport 235/77545 663/618016 8 4.22E-06 1.02E-03 

SN BP e GO:0006605 protein targeting              235/77545 663/618016 9 4.22E-06 1.02E-03 

SN BP e GO:0051641 cellular localization          243/77545 1035/618016 2 4.86E-06 1.18E-03 

SN BP e GO:0051649 establishment of localization in cell 243/77545 1035/618016 3 4.86E-06 1.18E-03 

SN BP e GO:0046907 intracellular transport        243/77545 1035/618016 4 4.86E-06 1.18E-03 

SN BP e GO:0006790 sulfur compound metabolic process 349/77545 1865/618016 3 6.08E-06 1.47E-03 

SN BP e GO:0051276 chromosome organization        375/77545 2021/618016 4 6.37E-06 1.54E-03 

SN BP e GO:0015979 photosynthesis                 684/77545 2478/618016 3 7.73E-06 1.87E-03 

SN BP e GO:0006091 generation of precursor metabolites and energy 789/77545 2901/618016 3 7.76E-06 1.88E-03 

SN BP e GO:0006996 organelle organization         728/77545 3013/618016 3 7.82E-06 1.89E-03 

SN BP e GO:0006457 protein folding                851/77545 3697/618016 2 8.15E-06 1.97E-03 

SN BP e GO:0051186 cofactor metabolic process     585/77545 3066/618016 3 8.23E-06 1.99E-03 

SN BP e GO:0034660 ncRNA metabolic process        666/77545 4249/618016 7 8.94E-06 2.16E-03 
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SN BP e GO:0006399 tRNA metabolic process         666/77545 4249/618016 8 8.94E-06 2.16E-03 

SN BP e GO:0016192 vesicle-mediated transport     1139/77545 5271/618016 4 1.04E-05 2.53E-03 

SN BP e GO:0006259 DNA metabolic process          1291/77545 5589/618016 6 1.06E-05 2.58E-03 

SN BP e GO:0033036 macromolecule localization     1181/77545 6129/618016 2 1.08E-05 2.61E-03 

SN BP e GO:0008104 protein localization           1181/77545 6129/618016 3 1.08E-05 2.61E-03 

SN BP e GO:0045184 establishment of protein localization 1181/77545 6129/618016 4 1.08E-05 2.61E-03 

SN BP e GO:0071702 organic substance transport    1181/77545 6129/618016 4 1.08E-05 2.61E-03 

SN BP e GO:0071705 nitrogen compound transport    1181/77545 6129/618016 4 1.08E-05 2.61E-03 

SN BP e GO:0042886 amide transport                1181/77545 6129/618016 5 1.08E-05 2.61E-03 

SN BP e GO:0015833 peptide transport              1181/77545 6129/618016 6 1.08E-05 2.61E-03 

SN BP e GO:0015031 protein transport              1181/77545 6129/618016 7 1.08E-05 2.61E-03 

SN BP e GO:0006082 organic acid metabolic process 1278/77545 6311/618016 3 1.11E-05 2.69E-03 

SN BP e GO:0043436 oxoacid metabolic process      1278/77545 6311/618016 4 1.11E-05 2.69E-03 

SN BP e GO:0019752 carboxylic acid metabolic process 1278/77545 6311/618016 5 1.11E-05 2.69E-03 

SN BP e GO:0006520 cellular amino acid metabolic process 1278/77545 6311/618016 6 1.11E-05 2.69E-03 

SN BP e GO:0016043 cellular component organization 1184/77545 6391/618016 2 1.15E-05 2.79E-03 

SN BP e GO:0071840 cellular component organization or biogenesis 1212/77545 7045/618016 1 1.20E-05 2.89E-03 

SN BP e GO:0090304 nucleic acid metabolic process 2099/77545 11451/618016 5 1.49E-05 3.62E-03 

SN BP e GO:0006725 cellular aromatic compound metabolic process 2216/77545 12346/618016 3 1.53E-05 3.71E-03 

SN BP e GO:0046483 heterocycle metabolic process  2216/77545 12346/618016 3 1.53E-05 3.71E-03 

SN BP e GO:1901360 organic cyclic compound metabolic process 2216/77545 12346/618016 3 1.53E-05 3.71E-03 
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SN BP e GO:0006139 nucleobase-containing compound metabolic process 2216/77545 12346/618016 4 1.53E-05 3.71E-03 

SN BP e GO:0044249 cellular biosynthetic process  2844/77545 11269/618016 3 1.56E-05 3.77E-03 

SN BP e GO:1901576 organic substance biosynthetic process 2844/77545 11269/618016 3 1.56E-05 3.77E-03 

SN BP e GO:0009059 macromolecule biosynthetic process 2844/77545 11269/618016 4 1.56E-05 3.77E-03 

SN BP e GO:0043603 cellular amide metabolic process 2844/77545 11269/618016 4 1.56E-05 3.77E-03 

SN BP e GO:0044271 cellular nitrogen compound biosynthetic process 2844/77545 11269/618016 4 1.56E-05 3.77E-03 

SN BP e GO:1901566 organonitrogen compound biosynthetic process 2844/77545 11269/618016 4 1.56E-05 3.77E-03 

SN BP e GO:0006518 peptide metabolic process      2844/77545 11269/618016 5 1.56E-05 3.77E-03 

SN BP e GO:0034645 cellular macromolecule biosynthetic process 2844/77545 11269/618016 5 1.56E-05 3.77E-03 

SN BP e GO:0043604 amide biosynthetic process     2844/77545 11269/618016 5 1.56E-05 3.77E-03 

SN BP e GO:0043043 peptide biosynthetic process   2844/77545 11269/618016 6 1.56E-05 3.77E-03 

SN BP e GO:0006412 translation                    2844/77545 11269/618016 7 1.56E-05 3.77E-03 

SN BP e GO:0006629 lipid metabolic process        2210/77545 13507/618016 3 1.65E-05 3.98E-03 

SN BP e GO:0044281 small molecule metabolic process 4223/77545 19428/618016 2 1.95E-05 4.73E-03 

SN BP e GO:0009058 biosynthetic process           7945/77545 40964/618016 2 2.87E-05 6.95E-03 

SN BP e GO:0034641 cellular nitrogen compound metabolic process 8838/77545 43601/618016 3 3.06E-05 7.40E-03 

SN BP e GO:0007034 vacuolar transport             118/77545 661/618016 4 9.91E-05 0.024 

SN BP p GO:0032501 multicellular organismal process 0/77545 159/618016 1 8.49E-07 2.06E-04 

SN BP p GO:0007275 multicellular organism development 0/77545 159/618016 3 8.49E-07 2.06E-04 

SN BP p GO:0009790 embryo development             0/77545 159/618016 4 8.49E-07 2.06E-04 

SN BP p GO:0051301 cell division                  0/77545 151/618016 2 1.52E-06 3.68E-04 
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SN BP p GO:0008283 cell population proliferation  8/77545 257/618016 1 1.77E-06 4.28E-04 

SN BP p GO:0051169 nuclear transport              8/77545 370/618016 5 2.90E-06 7.01E-04 

SN BP p GO:0006913 nucleocytoplasmic transport    8/77545 370/618016 6 2.90E-06 7.01E-04 

SN BP p GO:0040007 growth                         24/77545 522/618016 1 3.24E-06 7.83E-04 

SN BP p GO:0043062 extracellular structure organization 24/77545 522/618016 3 3.24E-06 7.83E-04 

SN BP p GO:0030198 extracellular matrix organization 24/77545 522/618016 4 3.24E-06 7.83E-04 

SN BP p GO:0044085 cellular component biogenesis  28/77545 654/618016 2 3.62E-06 8.76E-04 

SN BP p GO:0022613 ribonucleoprotein complex biogenesis 28/77545 654/618016 3 3.62E-06 8.76E-04 

SN BP p GO:0042254 ribosome biogenesis            28/77545 654/618016 4 3.62E-06 8.76E-04 

SN BP p GO:0071554 cell wall organization or biogenesis 57/77545 2873/618016 2 8.01E-06 1.94E-03 

SN BP p GO:0006396 RNA processing                 142/77545 1614/618016 7 8.65E-06 2.09E-03 

SN BP p GO:0016071 mRNA metabolic process         142/77545 1614/618016 7 8.65E-06 2.09E-03 

SN BP p GO:0006397 mRNA processing                142/77545 1614/618016 8 8.65E-06 2.09E-03 

SN BP p GO:0050789 regulation of biological process 1034/77545 11532/618016 2 1.50E-05 3.63E-03 

SN BP p GO:0050794 regulation of cellular process 1034/77545 11532/618016 3 1.50E-05 3.63E-03 

SN BP p GO:0007165 signal transduction            1034/77545 11532/618016 4 1.50E-05 3.63E-03 

SN BP p GO:0065007 biological regulation          1713/77545 17434/618016 1 1.97E-05 4.77E-03 

SN BP p GO:0055085 transmembrane transport        2906/77545 26703/618016 4 2.43E-05 5.87E-03 

SN BP p GO:0043412 macromolecule modification     3283/77545 64734/618016 4 3.69E-05 8.94E-03 

SN BP p GO:0036211 protein modification process   3283/77545 64734/618016 5 3.69E-05 8.94E-03 

SN BP p GO:0006464 cellular protein modification process 3283/77545 64734/618016 6 3.69E-05 8.94E-03 
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SN BP p GO:0019538 protein metabolic process      6218/77545 76497/618016 4 3.95E-05 9.56E-03 

SN BP p GO:0044267 cellular protein metabolic process 6127/77545 75999/618016 5 3.95E-05 9.57E-03 

SN BP p GO:0044260 cellular macromolecule metabolic process 7417/77545 81587/618016 4 4.01E-05 9.71E-03 

SN BP p GO:0043170 macromolecule metabolic process 8309/77545 87795/618016 3 4.18E-05 0.0101 

SN BP p GO:1901564 organonitrogen compound metabolic process 7496/77545 82805/618016 3 4.17E-05 0.0101 

SN BP p GO:0006807 nitrogen compound metabolic process 12623/77545 111424/618016 2 4.69E-05 0.0113 

SN BP p GO:0044237 cellular metabolic process     13726/77545 115940/618016 2 4.65E-05 0.0113 

SN BP p GO:0044238 primary metabolic process      14319/77545 129085/618016 2 4.96E-05 0.012 

SN BP p GO:0071704 organic substance metabolic process 14319/77545 129085/618016 2 4.96E-05 0.012 

SN BP p GO:0009987 cellular process               16407/77545 136120/618016 1 5.14E-05 0.0124 

SN CC e GO:0009579 thylakoid                      132/77545 200/618016 3 1.62E-06 3.93E-04 

SN CC e GO:0005811 lipid droplet                  78/77545 269/618016 5 1.93E-06 4.67E-04 

SN CC e GO:0005856 cytoskeleton                   154/77545 313/618016 5 2.03E-06 4.91E-04 

SN CC e GO:0005694 chromosome                     194/77545 718/618016 5 3.39E-06 8.20E-04 

SN CC e GO:0005739 mitochondrion                  196/77545 496/618016 5 3.39E-06 8.20E-04 

SN CC e GO:0005783 endoplasmic reticulum          154/77545 854/618016 5 8.12E-06 1.97E-03 

SN CC e GO:0005737 cytoplasm                      909/77545 4633/618016 3 1.03E-05 2.50E-03 

SN CC e GO:0005622 intracellular                  2007/77545 10036/618016 2 1.49E-05 3.60E-03 

SN CC e GO:0005840 ribosome                       2799/77545 11026/618016 5 1.53E-05 3.71E-03 

SN CC e GO:0043228 non-membrane-bounded organelle 3237/77545 12495/618016 2 1.62E-05 3.92E-03 

SN CC e GO:0043232 intracellular non-membrane-bounded organelle 3237/77545 12495/618016 4 1.62E-05 3.92E-03 

317



 

  

RC GO Rep. GO ID Name Sample  
ratio 

Population  
ratio Depth P PB 

SN CC e GO:0044444 cytoplasmic part               3214/77545 13030/618016 3 1.67E-05 4.05E-03 

SN CC e GO:0043229 intracellular organelle        5602/77545 29789/618016 3 2.51E-05 6.08E-03 

SN CC e GO:0043226 organelle                      5606/77545 29938/618016 1 2.53E-05 6.11E-03 

SN CC e GO:0032991 protein-containing complex     6601/77545 31947/618016 1 2.60E-05 6.28E-03 

SN CC e GO:0044424 intracellular part             6674/77545 34591/618016 2 2.65E-05 6.41E-03 

SN CC e GO:0043227 membrane-bounded organelle     2365/77545 17301/618016 2 2.78E-05 6.72E-03 

SN CC e GO:0043231 intracellular membrane-bounded organelle 2365/77545 17301/618016 4 2.78E-05 6.72E-03 

SN CC e GO:0044464 cell part                      7276/77545 42317/618016 1 2.99E-05 7.24E-03 

SN CC p GO:0000228 nuclear chromosome             4/77545 188/618016 6 1.30E-06 3.15E-04 

SN CC p GO:0042579 microbody                      8/77545 281/618016 5 2.07E-06 5.01E-04 

SN CC p GO:0005777 peroxisome                     8/77545 281/618016 6 2.07E-06 5.01E-04 

SN CC p GO:0044428 nuclear part                   16/77545 357/618016 4 2.88E-06 6.96E-04 

SN CC p GO:0005576 extracellular region           94/77545 2060/618016 1 5.68E-06 1.37E-03 

SN CC p GO:0030312 external encapsulating structure 57/77545 4071/618016 2 8.91E-06 2.16E-03 

SN CC p GO:0005618 cell wall                      57/77545 4071/618016 3 8.91E-06 2.16E-03 

SN MF e GO:0016765 transferase activity, transferring alkyl or aryl (other than methyl) groups 278/77545 1578/618016 3 5.70E-06 1.38E-03 

SN MF e GO:0051082 unfolded protein binding       310/77545 1302/618016 3 5.76E-06 1.39E-03 

SN MF e GO:0045182 translation regulator activity 620/77545 2397/618016 1 7.28E-06 1.76E-03 

SN MF e GO:0090079 translation regulator activity, nucleic acid binding 620/77545 2397/618016 4 7.28E-06 1.76E-03 

SN MF e GO:0008135 translation factor activity, RNA binding 620/77545 2397/618016 5 7.28E-06 1.76E-03 

SN MF e GO:0004518 nuclease activity              711/77545 3725/618016 4 7.85E-06 1.90E-03 
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SN MF e GO:0016874 ligase activity                1166/77545 4776/618016 2 9.33E-06 2.26E-03 

SN MF e GO:0008092 cytoskeletal protein binding   1116/77545 4676/618016 3 1.02E-05 2.48E-03 

SN MF e GO:0016853 isomerase activity             830/77545 5524/618016 2 1.14E-05 2.76E-03 

SN MF e GO:0098772 molecular function regulator   2024/77545 7248/618016 1 1.24E-05 2.99E-03 

SN MF e GO:0030234 enzyme regulator activity      2024/77545 7248/618016 2 1.24E-05 2.99E-03 

SN MF e GO:0005515 protein binding                1830/77545 9464/618016 2 1.37E-05 3.32E-03 

SN MF e GO:0003735 structural constituent of ribosome 2844/77545 11389/618016 2 1.51E-05 3.66E-03 

SN MF e GO:0003723 RNA binding                    2594/77545 12346/618016 4 1.53E-05 3.71E-03 

SN MF e GO:0005198 structural molecule activity   3218/77545 12200/618016 1 1.65E-05 4.00E-03 

SN MF e GO:0140096 catalytic activity, acting on a protein 2381/77545 17082/618016 2 1.91E-05 4.61E-03 

SN MF e GO:0008233 peptidase activity             2381/77545 17082/618016 3 1.91E-05 4.61E-03 

SN MF e GO:0140110 transcription regulator activity 3082/77545 18464/618016 1 2.01E-05 4.86E-03 

SN MF e GO:0003700 DNA-binding transcription factor activity 3082/77545 18464/618016 2 2.01E-05 4.86E-03 

SN MF e GO:0003677 DNA binding                    7222/77545 39471/618016 4 2.84E-05 6.88E-03 

SN MF e GO:0097159 organic cyclic compound binding 9816/77545 51816/618016 2 3.33E-05 8.05E-03 

SN MF e GO:1901363 heterocyclic compound binding  9816/77545 51816/618016 2 3.33E-05 8.05E-03 

SN MF e GO:0003676 nucleic acid binding           9816/77545 51816/618016 3 3.33E-05 8.05E-03 

SN MF e GO:0008134 transcription factor binding   55/77545 253/618016 3 5.49E-05 0.0133 

SN MF p GO:0042393 histone binding                59/77545 877/618016 3 4.04E-06 9.79E-04 

SN MF p GO:0042578 phosphoric ester hydrolase activity 151/77545 2393/618016 4 6.18E-06 1.49E-03 

SN MF p GO:0016791 phosphatase activity           151/77545 2393/618016 5 6.18E-06 1.49E-03 
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SN MF p GO:0004386 helicase activity              254/77545 2693/618016 7 7.98E-06 1.93E-03 

SN MF p GO:0016829 lyase activity                 702/77545 7558/618016 2 1.25E-05 3.02E-03 

SN MF p GO:0016887 ATPase activity                497/77545 7330/618016 7 1.27E-05 3.08E-03 

SN MF p GO:0016741 transferase activity, transferring one-carbon groups 1044/77545 9655/618016 3 1.45E-05 3.50E-03 

SN MF p GO:0008168 methyltransferase activity     1044/77545 9655/618016 4 1.45E-05 3.50E-03 

SN MF p GO:0016817 hydrolase activity, acting on acid anhydrides 1015/77545 12352/618016 3 1.64E-05 3.97E-03 

SN MF p GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 1015/77545 12352/618016 4 1.64E-05 3.97E-03 

SN MF p GO:0016462 pyrophosphatase activity       1015/77545 12352/618016 5 1.64E-05 3.97E-03 

SN MF p GO:0017111 nucleoside-triphosphatase activity 1015/77545 12352/618016 6 1.64E-05 3.97E-03 

SN MF p GO:0016798 hydrolase activity, acting on glycosyl bonds 1805/77545 17114/618016 3 1.94E-05 4.69E-03 

SN MF p GO:0016757 transferase activity, transferring glycosyl groups 1632/77545 19461/618016 3 1.99E-05 4.81E-03 

SN MF p GO:0005215 transporter activity           1986/77545 22509/618016 1 2.10E-05 5.08E-03 

SN MF p GO:0022857 transmembrane transporter activity 1986/77545 22509/618016 2 2.10E-05 5.08E-03 

SN MF p GO:0016787 hydrolase activity             6182/77545 53542/618016 2 3.32E-05 8.04E-03 

SN MF p GO:0016301 kinase activity                2846/77545 58982/618016 4 3.52E-05 8.53E-03 

SN MF p GO:0016491 oxidoreductase activity        4822/77545 59827/618016 2 3.53E-05 8.54E-03 

SN MF p GO:0016772 transferase activity, transferring phosphorus-containing groups 3527/77545 63814/618016 3 3.68E-05 8.90E-03 

SN MF p GO:0016740 transferase activity           7745/77545 105241/618016 2 4.58E-05 0.0111 

SN MF p GO:0043167 ion binding                    17389/77545 169425/618016 2 5.50E-05 0.0133 

SN MF p GO:0005488 binding                        26998/77545 222950/618016 1 5.86E-05 0.0142 

SN MF p GO:0003824 catalytic activity             21303/77545 234033/618016 1 5.97E-05 0.0145 
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03), and extracellular matrix organisation (GO:0030198, GO:0043062; PB  ≤ 

1.04e-03; Table 3.3.15.). These ontologs coupled with NC exclusive CC 

overrepresentations for microbodies (GO:0005777, GO:0042579; PB ≤ 9.01e-04) 

and extracellular encapsulating structures (GO:0005777, GO:0042579; PB ≤ 

2.82e-03) are strongly attributed to plant defences against insect attack and 

fungal infection (Gols, 2014; Duan et al., 2016). 

 

(ii.): Overrepresentations exclusive to strict composites 

 

SC exclusive BP ontologs were observed to be significantly 

overrepresented for response to external stimuli (stress and stimulus response 

(GO:0006950, GO:0050896; PB ≤ 0.0133), secondary metabolism 

(GO:0009056, GO:0019748; P ≤ 2.54e-03), transport (GO:0006810, 

GO:0051179, GO:0051234; PB  ≤ 4.11e-03)). The appearance of secondary 

metabolism, stress response, and transport ontologs is highly complementary to 

the results observed for NC. Secondary metabolites are often produced in 

response to environmental stressors (eg. infection or animal attack) in plants 

(Wink, 2003, 2018; Hartmann, 2004) As secondary metabolites are often 

produced by large, multidomain and multifunctional genes (Pasek et al., 2006), 

an overrepresentation of secondary metabolism ontologs in SC is not surprising. 

These results are highly complementary to what was observed for NC, 

suggesting that the plant defence system evolved through rounds of gene 

remodelling. 

  

 

321



 

  

(iii.): Overrepresentations exclusive to strict components 

 

SN exclusive overrepresented BP ontologs were found to be 

significantly overrepresented (PB ≤ 0.05) for growth (GO:0040007; PB = 1.04e-

03), transcription, specifically DNA and transcription factor binding 

(GO:0003677, GO:0008134; PB ≤ 0.0133), and for protein modification 

(GO:0036211, GO:0006464; P ≤ 0.011) (Table 3.3.15). Protein modification is 

often mediated by small, non-specific, and often monomeric biocatalysts 

(Beltrao et al., 2013). As discussed in Section 3.1., gene co-option is relatively 

common in plants, and these findings will be further discussed in Section 3.4. 

Due to their broad functionality and their co-option into biochemical pathways 

(Prabakaran et al., 2012), it is not surprising to observe their overrepresentation 

as strict components. 

 

(iv.): Overrepresentation exclusive to non-remodelled genes 

 

NR exclusive BP ontologs were observed to be significantly 

overrepresented for embryonic developmental processes (GO:0007275, 

GO:0009790, GO:0032501, GO:0032502, GO:0048856; PB ≤ 8.47e-04), 

ribosomal biogenesis (GO:0042254; PB = 5.73e-04), and cell division 

(GO:0051301; P = 1.2e-04; Table 3.3.15.). These are all essential housekeeping 

functions in multicellular eukaryotes, and mutation in such processes often 

proves to be highly deleterious (Kasarskis et al., 1998; Sparkes et al., 2003) so 

the fact that they are overrepresented in non-remodelled families is not 

surprising 
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3.3.5. Ancient genes are more likely to be remodelled in Viridiplantae 

 

Families of archaeal, bacterial, and undefined prokaryote origin were observed to be 

significantly overrepresented (P ≤ aB ≤ 3.125e-03) for NC (P ≤ 8.97e-15) and SC (2.98e-08) 

categories (Table 3.3.16.). Eukaryote specific families were overrepresented for NR (1.20e-24). 

These results are similar to those observed in fungi where significant overrepresentations were 

observed for SN comparisons. Insignificant differences (P ≥ 0.32) were observed for SN 

families of bacterial, eukaryotic and UP origin and for NR families of archaeal origin.  

For NC, families of bacterial, archaeal, and UP origin were observed significantly more 

in Viridiplantae than fungi (P ≤ 1.69e-19; Table 3.3.17.), whereas a greater proportion of 

eukaryote originating families were observed in fungi (P = 7.65e-48). Again, Viridiplantae were 

observed to have greater proportions of SC families in every DO comparison (P ≤ 3.33e-05) 

except for eukaryote originating families which were greater in fungi (P = 3.33e-20). SN 

families of archaeal origin were observed in significantly greater proportions in Viridiplantae 

(P = 6.02e-04). Finally, NR families of bacterial and UP origin were observed in significantly 

greater proportions in Viridiplantae (P ≤ 1.26e-19), and again, eukaryote specific NR family 

proportions were observed to be significantly greater in fungi (P = 3.87e-62). 

 These results suggest that Viridiplantae possess greater proportions of more ancient 

gene families for RC than their fungal counterparts. While both datasets were observed to be 

highly plastic, Viridiplantae were observed to display more relative plasticity in their ancient 

families when compared to fungi which are more likely to subject “newer” families to 

molecular innovation.  

 

3.3.6. Gene remodelling is more prominent in genomes that undergo frequent WGD 
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Table 3.3.17. Domains-of-Origin for each remodelling category in Viridiplantae 

 

The count (n) of each RC per DO is presented on the left and P-values on the right. Significant 

observations (P ≤ aB ≤ 4.16e-03) are annotated in bold. No significant comparisons were 

observed in SN  

 

 

 
Counts (n) P 

NC SC SN NR NC SC SN NR 

Archaea 401 85 429 213 8.97e-15 5.06e-13 0.992 1 

Bacteria 2015 287 2500 1678 2.33e-25 2.98e-08 1 1 

Eukaryote 12391 1598 25135 20564 1 1 0.016 1.20e-64 
Prokaryote 5592 565 5631 2028 1.78e-286 6.12e-09 0.959 1 
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Table 3.3.18. Domain-of-Origin comparisons between fungi and Viridiplantae 

 

For each RC, each DO is annotated with its count (nRC), the count of the background (all 

families not annotated to the same RC; nB) and the percentage (of total families; %) for each 

taxonomic kingdom. Comparisons between kingdoms are denoted by P. Significant 

comparisons (P ≤ aB ≤ 0.0125) are emboldened. The greater % value denotes which kingdom 

was significantly more likely to have gene families of a specific RC originating in a specific 

DO. 

 
 

 Fungi Viridiplantae  

RC DO nRC nB % nRC nB % P 

NC 

Archaea 141 16661 0.84 401 19998 1.97 2.38e-20 
Bacteria 1319 15483 7.85 2015 18384 9.88 8.67e-12 

Eukaryote 11425 5377 68.00 12391 8008 60.74 7.65e-48 
Prokaryote 3917 12885 23.31 5592 14807 27.41 1.69e-19 

SC 

Archaea 27 2080 1.28 85 2450 3.35 3.02e-06 
Bacteria 162 1945 7.69 287 2248 11.32 3.33e-05 

Eukaryote 1592 515 75.56 1598 937 63.04 3.33e-20 
Prokaryote 326 1781 15.47 565 1970 22.29 3.92e-09 

SN 

Archaea 208 21519 0.96 429 33266 1.27 6.02e-04 
Bacteria 1660 20067 7.64 2500 31195 7.42 0.34 

Eukaryote 16158 5569 74.37 25135 8560 74.60 0.55 
Prokaryote 3701 18026 17.03 5631 28064 16.71 0.32 

NR 

Archaea 326 40484 0.80 213 24270 0.87 0.35 
Bacteria 1879 38931 4.60 1678 22805 6.85 1.11e-33 

Eukaryote 36000 4810 88.21 20564 3919 83.99 3.87e-52 
Prokaryote 2605 38205 6.38 2028 22455 8.28 1.26e-19 
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Relative “global remodelling” and “internal (retained) remodelling” proportions were 

calculated (Tables 3.3.18.-19; Figure 3.3.6.) and compared to genomic characteristics for each 

taxon. When relative “globally remodelled” RC genomic proportions were compared to 

genomic characteristics, significant positive correlations (P ≤ aB ≤ 0.01; 0.3 < r ≤ 0.7) were 

observed between genome size and the SN proportion (r = 0.5086; P = 0.002), between 

genome density and the NR proportion (r = 0.3878; P = 0.0054), and between genomic 

completeness and both NC (r = 0.5774; P < 0.0001) and SC (r = 0.5591; P < 0.0001) 

proportions respectively (Figure 3.3.7.). Significant negative correlations (-0.7 < r ≤ -0.3) were 

observed between genome size and the non-remodelled genomic proportion (r = -0.4650; P = 

0.0007, between genome density and the strict component genomic proportion (r = -0.5357; P 

< 0.0001), and between completeness and the excluded genomic proportion (r = 0.5591; P < 

0.0001). Positive correlations between completeness and genomic proportions are unsurprising 

as it can be reasonably expected that higher quality genomes would make better candidates for 

remodelled gene studies, negative correlations between completeness and excluded 

proportions are unsurprising for the same reason. Negative correlations between genome size 

and NR proportions are also unsurprising. As discussed in Section 3.1., Viridiplantae genomes 

evolve through cyclic polyploidisation which has the dual effect of increasing genome sizes 

and promoting remodelling events (Leonard and Richards, 2012; Madlung, 2013). The 

negative correlation between genome density and SN proportions was also unsurprising. 

Positive correlations have previously been established between angiosperm genome size and 

polyploidisation frequency (Adams and Wendel, 2005). While the reverse is observed for 

Gymnosperms, which have extremely sparse genomes but do not readily undergo 

polyploidisation (Wan et al., 2018), they only contribute 3 genomes (6%) to these analyses, 

whereas angiosperms contribute 38 genomes (76%). As angiosperms constitute the vast 

majority of our dataset, this correlation was not surprising.  
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Table 3.3.19. Relative GRCPs in Viridiplantae  

 

Each genome is annotated with the sum of genes (n) (and their proportion (%)) ascribed to each 

RC and those excluded from further analyses (E) for the “globally remodelled” dataset. 

 

 
n % 

NC SC SN NR E NC SC SN NR E 

Amborella trichopoda 10761 826 3109 2632 9518 40.08 3.08 11.58 9.8 35.45 

Ananas comosus 12179 879 2893 2626 8447 45.07 3.25 10.71 9.72 31.26 

Arabidopsis thaliana 16184 1105 3471 3748 3147 58.52 4.00 12.55 13.55 11.38 

Beta vulgaris 11991 896 2581 2795 8657 44.54 3.33 9.59 10.38 32.16 

Brachypodium distachyon 17775 1053 3829 3536 8117 51.81 3.07 11.16 10.31 23.66 

Brassica rapa 24347 1665 5904 5320 3256 60.13 4.11 14.58 13.14 8.04 

Capsicum annum 18816 975 4914 2781 8398 52.44 2.72 13.69 7.75 23.4 

Carica papaya 11370 683 3392 2357 9966 40.95 2.46 12.22 8.49 35.89 

Chlamydomonas reinhardtii 2604 380 1431 2666 10660 14.68 2.14 8.07 15.03 60.09 

Chlorella sp NC64A 2296 308 1014 1289 4854 23.52 3.16 10.39 13.21 49.73 

Citrullus lanatus 12497 960 3270 2931 3782 53.31 4.1 13.95 12.5 16.13 

Citrus clementina 15328 953 2982 2614 2656 62.48 3.88 12.16 10.66 10.83 

Coccomyxa sp. C169 2609 331 889 1224 4941 26.11 3.31 8.90 12.25 49.44 

Cucumis melo 12561 854 3615 3225 7172 45.8 3.11 13.18 11.76 26.15 

Eucalyptus grandis 22096 1041 3697 2965 6550 60.79 2.86 10.17 8.16 18.02 

Fragaria vesca 12667 757 2850 2311 13796 39.12 2.34 8.80 7.14 42.61 

Glycine max 32182 2035 7119 6107 8601 57.42 3.63 12.7 10.9 15.35 

Gossypium raimondii 22676 1428 4834 4306 4261 60.46 3.81 12.89 11.48 11.36 

Hordeum vulgare 13063 601 3927 2176 4515 53.8 2.48 16.17 8.96 18.59 

Malus domestica 12925 819 5442 3132 31604 23.97 1.52 10.09 5.81 58.61 

Manihot esculenta 19389 1231 3995 3818 4600 58.7 3.73 12.09 11.56 13.93 

Marchantia polymorpha 6408 680 1802 2319 8078 33.22 3.53 9.34 12.02 41.88 

Medicago truncatula 22468 1297 5193 5037 16899 44.15 2.55 10.2 9.9 33.2 

Micromonas commoda 2232 294 982 1382 5213 22.09 2.91 9.72 13.68 51.6 

Musa acuminata 18730 1176 4074 2844 9704 51.28 3.22 11.15 7.79 26.57 

Oryza brachyantha 13871 900 3082 2902 11282 43.3 2.81 9.62 9.06 35.22 

Oryza sativa ssp. japonica 19516 1039 4239 4166 13229 46.26 2.46 10.05 9.87 31.36 

Ostreococcus lucimarinus 2204 295 921 1377 3008 28.24 3.78 11.8 17.64 38.54 

Phalaenopsis equestris 12081 799 3840 2499 10212 41.05 2.71 13.05 8.49 34.7 

Phyllostachys edulis 15129 936 3714 2598 9610 47.3 2.93 11.61 8.12 30.04 

Physcomitrella patens 10566 1104 3762 4231 13263 32.09 3.35 11.43 12.85 40.28 

327



 

  

 
n % 

NC SC SN NR E NC SC SN NR E 

Picea abies 20586 873 8799 4906 31468 30.9 1.31 13.21 7.36 47.23 

Picea glauca 11898 990 4232 3110 8679 41.16 3.42 14.64 10.76 30.02 

Pinus taeda 30962 1086 10511 3276 38611 36.66 1.29 12.45 3.88 45.72 

Populus trichocarpa 22516 1369 4829 4397 9839 52.42 3.19 11.24 10.24 22.91 

Prunus persica 15645 974 2926 2798 4530 58.22 3.62 10.89 10.41 16.86 

Ricinus communis 12928 889 2798 2527 12079 41.41 2.85 8.96 8.09 38.69 

Selaginella moellendorffii 9602 724 2380 2592 6987 43.09 3.25 10.68 11.63 31.35 

Setaria italica 19435 1151 4158 4433 5407 56.2 3.33 12.02 12.82 15.63 

Solanum lycopersicum 17300 1093 4653 3424 8255 49.82 3.15 13.4 9.86 23.77 

Solanum tuberosum 19600 1027 4991 3580 9830 50.22 2.63 12.79 9.17 25.19 

Sorghum bicolor 18297 1094 3774 4239 6807 53.48 3.2 11.03 12.39 19.9 

Spirodela polyrhiza 9870 712 2375 2020 4646 50.3 3.63 12.1 10.29 23.68 

Theobroma cacao 14910 899 3063 2821 7539 51.01 3.08 10.48 9.65 25.79 

Triticum aestivum 63441 3294 13059 11950 11793 61.27 3.18 12.61 11.54 11.39 

Vitis vinifera 12962 833 2869 2256 7426 49.2 3.16 10.89 8.56 28.19 

Volvox carteri 2658 357 1556 2269 8704 17.1 2.3 10.01 14.6 56 

Zea mays 19577 1161 5647 4483 8630 49.56 2.94 14.3 11.35 21.85 

Zostera marina 10836 895 2791 2118 3810 52.99 4.38 13.65 10.36 18.63 

Zoysia japonica 12342 719 3905 2876 33783 23.02 1.34 7.28 5.36 63 
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Table 3.3.20. Relative IRCPs in Viridiplantae  

 

Each genome is annotated with the sum of genes (n) (and their proportion (%)) ascribed to each 

RC and those excluded from further analyses (E) for the “internally remodelled” dataset. 

 

 
n % 

NC SC SN NR E NC SC SN NR E 

Amborella trichopoda 1252 555 1519 5440 18080 4.66 2.07 5.66 20.26 67.35 

Ananas comosus 1342 260 1542 7391 16489 4.97 0.96 5.71 27.35 61.02 

Arabidopsis thaliana 2041 214 1810 12700 10890 7.38 0.77 6.54 45.92 39.38 

Beta vulgaris 1079 240 970 7686 16945 4.01 0.89 3.6 28.55 62.95 

Brachypodium distachyon 2792 318 2250 11174 17776 8.14 0.93 6.56 32.57 51.81 

Brassica rapa 3807 896 4279 22271 9239 9.4 2.21 10.57 55 22.82 

Capsicum annum 4731 623 3197 9877 17456 13.18 1.74 8.91 27.52 48.65 

Carica papaya 1445 346 998 5785 19194 5.2 1.25 3.59 20.83 69.12 

Chlamydomonas reinhardtii 247 76 370 2174 14874 1.39 0.43 2.09 12.25 83.84 

Chlorella sp NC64A 44 12 116 1278 8311 0.45 0.12 1.19 13.09 85.14 

Citrullus lanatus 1337 435 1434 7911 12323 5.7 1.86 6.12 33.75 52.57 

Citrus clementina 2752 391 1454 8566 11370 11.22 1.59 5.93 34.92 46.35 

Coccomyxa sp. C169 6 10 99 1510 8369 0.06 0.1 0.99 15.11 83.74 

Cucumis melo 1161 469 1598 8124 16075 4.23 1.71 5.83 29.62 58.61 

Eucalyptus grandis 6116 882 2215 11961 15175 16.83 2.43 6.09 32.91 41.75 

Fragaria vesca 1901 218 2069 6205 21988 5.87 0.67 6.39 19.16 67.9 

Glycine max 6902 1643 6610 27464 13425 12.32 2.93 11.79 49 23.95 

Gossypium raimondii 3609 990 3736 18153 11017 9.62 2.64 9.96 48.4 29.37 

Hordeum vulgare 1936 444 1425 6352 14125 7.97 1.83 5.87 26.16 58.17 

Malus domestica 775 389 1559 8336 42863 1.44 0.72 2.89 15.46 79.49 

Manihot esculenta 3133 383 2499 15592 11426 9.48 1.16 7.57 47.2 34.59 

Marchantia polymorpha 424 366 446 3985 14066 2.2 1.9 2.31 20.66 72.93 

Medicago truncatula 6272 743 4411 14736 24732 12.32 1.46 8.67 28.95 48.6 

Micromonas commoda 1 31 50 1201 8820 0.01 0.31 0.49 11.89 87.3 

Musa acuminata 2378 580 2853 13652 17065 6.51 1.59 7.81 37.37 46.72 

Oryza brachyantha 1863 251 1107 7845 20971 5.82 0.78 3.46 24.49 65.46 

Oryza sativa ssp. japonica 4321 598 2628 11215 23427 10.24 1.42 6.23 26.58 55.53 

Ostreococcus lucimarinus 3 17 75 1528 6182 0.04 0.22 0.96 19.58 79.21 

Phalaenopsis equestris 2093 588 1622 6856 18272 7.11 2 5.51 23.3 62.08 

Phyllostachys edulis 1926 359 1691 9917 18094 6.02 1.12 5.29 31 56.57 
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n % 

NC SC SN NR E NC SC SN NR E 

Physcomitrella patens 993 218 1867 12231 17617 3.02 0.66 5.67 37.15 53.5 

Picea abies 8405 1278 5251 9859 41839 12.61 1.92 7.88 14.8 62.79 

Picea glauca 1477 827 1550 7813 17242 5.11 2.86 5.36 27.03 59.64 

Pinus taeda 15051 1409 10016 9207 48763 17.82 1.67 11.86 10.9 57.74 

Populus trichocarpa 1956 420 1564 10290 28720 4.55 0.98 3.64 23.96 66.87 

Prunus persica 2271 519 1674 10027 12382 8.45 1.93 6.23 37.31 46.08 

Ricinus communis 1362 301 1069 7726 20763 4.36 0.96 3.42 24.75 66.5 

Selaginella moellendorffii 2371 290 1390 7249 10985 10.64 1.3 6.24 32.53 49.29 

Setaria italica 2615 580 2531 13697 15161 7.56 1.68 7.32 39.61 43.84 

Solanum lycopersicum 1875 647 2429 11494 18280 5.4 1.86 6.99 33.1 52.64 

Solanum tuberosum 5761 702 3381 10892 18292 14.76 1.8 8.66 27.91 46.87 

Sorghum bicolor 2315 398 1938 12798 16762 6.77 1.16 5.66 37.41 49 

Spirodela polyrhiza 1100 191 804 5243 12285 5.61 0.97 4.1 26.72 62.61 

Theobroma cacao 2171 265 1661 8839 16296 7.43 0.91 5.68 30.24 55.75 

Triticum aestivum 25082 2495 15040 43392 17528 24.23 2.41 14.53 41.91 16.93 

Vitis vinifera 1481 235 1543 7222 15865 5.62 0.89 5.86 27.41 60.22 

Volvox carteri 212 162 455 1835 12880 1.36 1.04 2.93 11.81 82.86 

Zea mays 3721 778 4351 12862 17786 9.42 1.97 11.02 32.56 45.03 

Zostera marina 1012 263 1085 6890 11200 4.95 1.29 5.31 33.69 54.77 

Zoysia japonica 1052 377 1805 8226 42165 1.96 0.7 3.37 15.34 78.63 
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Figure 3.3.6. Representative Viridiplantae phylogeny annotated with genomic 

characteristics 

 

The Viridiplantae phylogeny (Figure 2.2.3.) was annotated with three genomic datasets, each 

represented as pie charts. The internal pie chart represents BUSCO completeness, the middle 

chart represents IRCPs (Table 3.3.19.), and the outer charts represent GRCPs (Table 3.3.18.).  
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Figure 3.3.7. Correlation matrix between genomic characteristics and gene remodelling 

extent in Viridiplantae 

 

Illustration of effect sizes (Spearman’s r) and their significance (P) between genomic 

characteristics for (a) GRCPs (Table 3.3.19) on the left and (b) IRCPs (Table 3.3.20) on the 

right. 
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When relative “internally remodelled” (retained remodelled) RC genomic proportions 

were compared to genomic characteristics, significant positive correlations were observed 

between genome size and each remodelled (NC, SC, and SN) proportion (r ≥ 0.5104; P ≤ 

0.0002) and between completeness and the NR proportion (r = 0.6924; P < 0.0001). These 

results are unsurprising as larger Viridiplantae genomes have typically undergone rounds of 

polyploidisation which, as discussed previously, promotes remodelling events. It can 

reasonably be expected that greater genome completeness would positively correlate with the 

NR proportion due to a higher rate of paralog inclusion when CompositeSearch is constructing 

families. As a family was required to have a minimum of two members, inadvertent paralog 

exclusion due to genome incompleteness would result in a non-remodelled gene being 

classified as excluded. Significant negative correlations were observed between genome 

density and each remodelled category (r ≤ 0.4383; P ≤ 0.0015), between GC% and the SN 

proportions (r = -0.391; P = 0.005), and between each of genome size, and completeness and 

excluded proportions (r ≤ -0.3929; P ≤ 0.0048). Again these results are all unsurprising. As a 

retained remodelling event requires both component families and composite family to be 

observed within the same genome, genomes replete with polyploidisation events would 

reasonably be expected to have larger and less dense genomes and greater instances of 

duplicate genes and a greater frequency of remodelling events overall. In this dataset, much 

higher GC% were observed in Chlorophyta, which had more dense genomes and lesser 

remodelled proportions compared to Embryophyta (Table 3.3.1.). Due to these factors, a 

negative correlation was to be expected between GC% and strict components. Finally, negative 

correlations were expected between genome size and excluded proportions, and between 

completeness and excluded proportions. Larger genomes in this dataset were more likely to 

possess higher frequencies of paralogs (and ohnologs) due to frequent gene and genome 

duplication (Adams and Wendel, 2005), and as CompositeSearch required a minimum of two 
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members for each gene family, these results were to be expected; the negative correlation 

between completeness and excluded proportions were also expected for the same reason. 

 

3.4. Discussion 

 

3.4.1. Gene remodelling is rampant in Viridiplantae 

 

 Overall, approximately 60.95% of genes (1,019,409 of 1,672,377 genes) were observed 

to display a history of remodelling when sampled from the globally remodelled dataset (Tables 

3.3.3; 3.3.18). In total, NC, SC, and SN each accounted for an approximately 46.33% (774,886 

genes), 0.029% (48,440 genes), and 11.72% (196,083 genes) respectively.  

It must be noted that only 70.76% (1,183,398 genes) were sampled from the globally 

remodelled dataset meaning that approximately 85.69% were observed to have a history of 

remodelling (Table 3.3.3.). Of sampled genes, NC, SC, and SN accounted for 65.48%,  0.04%, 

and 16.57% respectively.  

Clear distinctions were observed for gene remodelling extent between fungi and plants. 

With regards to genes (when examined from across the dataset and from just the data sampled 

by CompositeSearch), plants were observed to have greater proportions of NC and SC than 

fungi (P ≤ 3.02e-45; Table 3.3.4.). Comparatively, fungi always presented greater proportions 

of SN and NR (P = 0) than plants. Plants were observed to have greater proportions of all 

remodelled category (NC, SC, and SN) families (P ≤ 8.44e-13) and fungi were observed to have 

a greater proportion of NR families (P = 0). This is likely due to the fact that the plant dataset 

contained considerably more genes than the fungal dataset and that plants were observed to 

form significantly larger gene families (P ≤ 2.37e-208; Table 3.3.7). These results suggest that 
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while both clades are highly plastic, plant genomes are considerably more dynamic and subject 

to remodelling than their fungal counterparts.  

 

3.4.2 Remodelling mediated evolution is clocklike in Viridiplantae 

 

We could not detect any internal branches with significant (P ≤ 0.0005 (all data); P ≤ 

0.001 (internal branch subset exclusive)) bursts of birth or decay using a Q-function after the 

application of a Bonferroni correction. One speciation events were observed to contain bursts 

(Table 3.3.13). Significant bursts of nested composite and non-remodelled gene birth (P ≤ 

0.0005) was observed during the speciation of Triticum aestivum. These sparse results are 

consistent to what was observed in fungi, suggesting that evolution via gene remodelling is 

relatively clocklike. 

With the exception of SC (P ≤ 9.54e-04), significant differences (P ≤ aB ≤ 0.0125) were 

not observed between evolutionary rates (births or decays) when sampled from across plant 

and fungal phylogenies, and a significant difference was only observed in SC fd  (P = 1.89e-03) 

when sampled from exclusively internal nodes (Table 3.3.13.). Significant differences were 

observed, however, when leaf node exclusive rates were compared. Significant differences 

were observed in SC and SN fb  and in SN and NR fd. These comparisons strengthen the 

argument that evolution via remodelling occurs at a relatively clocklike rate between both 

clades.  

 

3.4.3 Remodelled genes are highly homoplastic in Viridiplantae 

 

A total of 20,399 NC families, 2,535 SC families, 36,695 SN families, and 24,483 NR 

families were constructed by CompositeSearch. Any family observed to have appeared more 
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than once (annotated to have originated at separate branches) was considered to be homoplastic 

(Table 3.3.8.). A total of 10,444 nested composites (H.P. = 0.497), 1,545 strict composite 

families (H.P. = 0.609), 15,423 strict component families (H.P. = 0.458), and 8,559 non-

remodelled families (H.P. = 0.35) were observed to be homoplastic. A combined total of 84,112 

families were plotted, of which, a combined total of 35,971 families were homoplastic (H.P. = 

0.428). A Fisher’s exact test confirmed that remodelled categories were significantly different 

to each other (P ≤ 4.78e-14). These results highlight the dynamic homoplasticity of remodelled 

gene families compared to non-remodelled families, and between each other, and compared to 

the dataset background. The observation of homoplasticity in remodelled genes is not so 

surprising as it is possible that remodelled genes may have arose through epaktology or 

independent gene fusion events (Nagy and Patthy, 2011; Leonard and Richards, 2012; Avelar 

et al., 2014; Haggerty et al., 2014). Homoplasticity could also be attributed to a quirk of 

clustering by CompositeSearch, where large gene families may fall just outside cluster 

assignment criteria in some groups resulting in a false positive identification due to patchy 

annotation by the “-apo” function in TNT .  

Viridiplantae gene families were also observed to be more homoplastic than fungi in 

every instance (P ≤ 9.24e-05) except for NC (P = 0.044) when sampled from across the 

phylogeny and SC (P = 0.824) when sampled from the subset of internal nodes.  

 

3.4.4. The role of gene remodelling in the evolution of multicellularity in plants 

 

We observed an enrichment of transcription factor regulatory activity (GO:0140110; 

GO:0003700; PB ≤ 4.86e-03) within both SC and SN (Table 3.3.15.). In our dataset the evolution 

of multicellularity occurred at two separate occasions, (i) the speciation of the alga Volvox 

carteri and (ii) during the divergence of embryophytes from chlorophytes. We identified a 
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single family associated with with transcription factor regulation and multicellular 

development reported to have been gained at the branch representing embryophyte divergence 

(F54088), where the ortholog in Arabidopsis thaliana was reported to be At2g41980 (SINAT1) 

an E3 ubiquitin-protein ligase (E.C:2.3.2.27) (Qi et al., 2017).  

Regulatory protein ubiquitination is required for a wide variety of plant development 

and environmental response pathways (Wilkinson, 1999; Furlan et al., 2012; Duplan and Rivas, 

2014; Miricescu et al., 2018). Protein polyubiquitination is dependent on the activity of three 

enzymes for the activation (E1), conjugation (E2), and ligation (E3) of ubiquitin (Serrano et 

al., 2018). Polyubiquitinated proteins are degraded to constituent amino acids via the 26S 

proteasome for the synthesis of new peptides. E1 and E2 initiate and promote polyubiquitin 

chain progression, whereas E3 is responsible for target protein selectivity (Sadowski and 

Sarcevic, 2010). Several E3 families have previously been identified such as U-box proteins 

(Hatakeyama et al., 2001), Skp-Cullin-F box proteins (Cheng et al., 2011), and anaphase-

promoting complexes (Castro et al., 2005) throughout life and all share a RING finger motif 

or an E6-associated protein carboxyl terminus (HECT) domain which catalyses ubiquitin 

ligation to lysine residues (Huibregtse et al., 1995; Metzger et al., 2012).  

Seven in absentia (SINA) proteins, such as SINAT1, are E3 ligases that possess a RING 

finger motif at their N-termini, neighboured by a conserved SINA domain which functions to 

bind and dimerise their specific substrate (Hu and Fearon, 1999; Miao et al., 2016). SINA 

proteins have been observed and well characterised in metazoan (Pepper et al., 2017) and plant 

lineages (M. Wang et al., 2008). In A. thaliana, SINAT1 acts with SINAT2 and SINAT6 to 

regulate AG6 mediated autophagy (Qi et al., 2017). A large variety of hormone mediated plant 

developmental pathways, including those under the control of cytokinin, auxin, gibberellic 

acid, jasmontic acid, and DELLA, are at least partially dependant on proteasome degradation, 

resulting in hormonal defects in E3 knockout studies (Foltz et al., 2006; Ning et al., 2011; Qi 
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et al., 2017). In light of observations by previous studies, it is not surprising to observe 

proteasomal mediated regulators during the divergence of embryophytes, mirrored by previous 

reports of increases in hormonal complexity and transcription factor copy number and class 

types during this transition to reflect more complex body plans (Bennici, 2008; de Vries et al., 

2016; de Vries and Archibald, 2018; Morris et al., 2018). 

Of the 26 component families associated with the composition of F54088, two were 

observed to have occurred either during the emergence or prior to the emergence of 

Viridiplantae, F401 and F106717. F106717 had a single member in A. thaliana, At3g23580 

(RNR2A), a ribonucleoside-diphosphate reductase (E.C: 1.17.4.1). Ribonucleoside diphosphate 

reductases catalyses the 2’ reduction of ribonucleotides to deoxyribonucleotides, the precursors 

required for DNA synthesis (Cory, 1983; Guarino et al., 2014). There are two known RNR2A 

paralogs in A. thaliana (RNR2B and TSO2), however they did not meet the clustering 

requirements to be assigned to the same family by CompositeSearch. Previous studies have 

demonstrated functional redundancy between RNR2A, RNR2B, and TSO2 with no phenotypic 

differences observed in either RNR2A or RNR2B single mutants or RNR2A/RNR2B double 

mutants compared to wild type A. thaliana. In comparison, TSO2 mutants displayed reduced 

deoxyribonucleotide triphosphate (dNTP) accumulation and developmental defects, such as 

fasciated shoot meristems and callus floral organs (Wang and Liu, 2006). Both TSO2 single 

mutants and TSO2/RNR2A double mutants displayed increased DNA damage accumulation, 

massive apoptosis rates, and decay of transcriptional silencing. TSO2/RNR2A/RNR2B triple 

mutants were observed to be seedling lethal. Wang and Liu (2006) hypothesised that the 

functional redundancy between RNR2A and RNR2B to be a safeguard against mutagenic 

lethality should one paralog undergo mutation, and illustrates the essentiality of proper RNR 

function in plant development, and that the observations in TSO2/RNR2A double mutants 

illustrated a correlation between increased DNA damage and apoptosis. The finding of a 
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developmental regulator undergoing a remodelling event to form a new developmental 

regulator during a major phenotypic transition is interesting, yet unsurprising as previous 

remodelling studies (specifically gene fusion studies) allude to the likelihood of a fused gene 

retaining at least one of its components functions. 

 The other component family predating the divergence of Viridiplantae, F401, is a large 

family, with 75 members reported in A. thaliana. Each member of F401 was found to possess 

leucine rich repeats (PF00560). The majority of F401 members were observed to be ‘receptor 

like proteins’ (eg. AT1G58190, AT2G32660, AT5G27060, and AT1G47890) which are often 

involved in immune responses and developmental processes (Godiard et al., 2003; Kruijt et 

al., 2005; Wang et al., 2008). Indeed, some F401 member genes (AT5G06860 (PGIP1),  

AT5G06870 (PGIP2), and AT3G05360 (RLP30)) have been characterised to inhibit 

phytopathogenic fungal infection (Ferrari et al., 2003, 2006; Zhang et al., 2013). Conversely, 

four proteins (AT1G65380 (CLV2), AT1G17240 (RLP2), AT1G71400 (RLP12), and 

AT3G12145 (FLR1)) are known to be involved in organ developmental processes in addition 

to immunity (Wang et al., 2008; Torti et al., 2012). Three of these proteins (CLV2, RLP12, and 

RPL2)) are CLAVATA2 and CLAVATA2-like RLPs which act as receptors for CLV3 and CLV3-

like proteins (Rojo et al., 2002; Wang et al., 2008; Fletcher, 2018). CLV3 and CLV3-like 

proteins are extracellular hormone precursor signalling molecules that regulate meristem 

maintenance (Doerner, 2006). CLV2 and CLV2-like RLPs control the sizes of totipotent cell 

populations in meristematic tissues (Kayes and Clark, 1998; Pan et al., 2016). F401 describes 

a large cluster of signal receptors involved in diverse pathways. Again, it is interesting yet 

unsurprising to see developmental regulators being remodelled during emergence of 

phenotypic complexity. CLV genes and FLR both interact with another repurposed 

developmental regulator class, the MADS box genes, to fully orchestrate organogenesis in 

angiosperms (Kanno et al., 2007). 
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3.5. Conclusion 

 

 In conclusion, Viridiplantae are known to evolve via cyclical polyploidization events, 

where the size of their genetic arsenal doubles, resulting in considerable redundancy, followed 

by chromosomal rearrangements and decay of redundant, non-selected genes. This model of 

evolution not only allow for gene remodelling but promote it, as such, it is not surprising to 

observe such rampant levels of gene remodelling in this clade. Gene remodelling is also 

clocklike in this clade, with no significant bursts of evolution (composites or otherwise) 

observed along any internal branch. Considering the rampancy of remodelling, it could be due 

to the fact that, when successful, composite families comprise a significant proportion of all 

retained synapomorphic families. The co-option and subfunctionalization of transcription 

factors could be due to repeated rounds of homoplastic remodelling, thus promoting rapid 

evolution in the Viridiplantae lineage.  

 In summation, the models of evolution, propensity for hybridization, and chromosomal 

architectures provide a nurturing environment for remodelling to occur, so perhaps it is not so 

surprising to observe such high remodelling rates. 
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Chapter IV 

 

Development of a  

Robust Composite Gene Detection Tool 
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4.1. Introduction  

 

Gene remodelling is an important and rampant evolutionary process (Pathmanathan et 

al., 2018). As previously discussed in Chapters I-III, remodelled genes arise from a plethora of 

different mechanisms including the rapid accumulation of point mutations localised within in 

a structural or functional domain, shuffling of exons or domains within a gene, or through the 

fusion and fission of genes and domains (Snel et al., 2000; Braun and Grotewold, 2001; Vogel 

et al., 2005; Vibranovski et al., 2006; Nagy and Patthy, 2011; Leonard and Richards, 2012). 

Gene duplication is likely the driving force behind beneficial remodelling events through 

subfunctionalization and neofunctionalization of non-selected genes, allowing them to accrue 

mutations or to acquire or lose domains (Causier et al., 2005; He and Zhang, 2005; Des Marais 

and Rausher, 2008; Freeling, 2009). Due to these events, combined with convergent sequence 

evolution and epaktologous gene birth (emergence of a gene with the same architecture as 

another gene but lacking an orthologous or paralogous evolutionary history), it is common to 

observe partial homology between genes (Haggerty et al., 2014). 

Hybridised coding gene composites (and their components), specifically fusion and 

fission genes, are of considerable interest as they allow for the study and interpretation of 

evolutionary protein-protein interactions (Enright et al., 1999; Enright and Ouzounis, 2001) or 

for the rapid development of functional and phenotypic novelty (Avelar et al., 2014; Chen et 

al., 2014). A successful fusion event (a fusion event that becomes positively selected) is likely 

to become fixed in a population and have been used to polarise evolutionary relationships 

(Nakamura et al., 2007; Durrens et al., 2008).  

 Previous authors have identified subsets of composite genes in Drosophila spp, fungi, 

plants, and bacteria (Wang et al., 2000; Jones, 2005; Pasek et al., 2006; Nakamura et al., 2007; 

Leonard and Richards, 2012), and the role of composites in metabolic pathway evolution 
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(Richards et al., 2006; Hagel and Facchini, 2017). Despite these works, it was not possible to 

perform exhaustive composite gene detection analyses until the publication of 

CompositeSearch (Pathmanathan et al., 2018).  

 As discussed in Chapter I, CompositeSearch is a highly sensitive tool, able to detect 

even slightly shared homologous between a composite and component genes, and is therefore 

a useful tool for reconstructing the mosaic evolutionary history of a gene family. 

CompositeSearch, however, is quite unintuitive, and requires considerable postprocessing by 

the user to analyse any detected composite family in detail. CompositeSearch also makes use 

of multiple HSPs to detect composites (Pathmanathan et al., 2018). This allows for the 

detection of composites with a likely shared ancestor between both components (Figure 4.1.1). 

While these events are still remodelled they are not fusion or fission events. Comparatively, 

fdfBLAST (Leonard and Richards, 2012) is highly selective, requiring not just a high degree 

of polarised homology between a composite and a component, but shared conserved regions 

are also required. However, fdfBLAST it can be argued that such analyses are too conservative, 

requiring that a component is differential, where a fused gene is detected in one genome, and 

two components (but not the fusion) in another genome. In addition to these strict parameters, 

fdfBLAST does not cluster fusion genes into families (fusion events), is dependent on 

“BLASTall”, an outdated version of BLAST and does not use tabular BLAST output, resulting 

in excessive storage requirements for multi-genomic analyses. We also found fdfBLAST to be 

slow and cumbersome to use.  

 A need exists for a program which can sensitively and selectively detect fused genes 

that is also intuitive, has implemented quality control measures, requiring the optional 

conservation of domain architectures. To fill this need, we have developed compositeBLAST, 

a Python v.3.6 program high confidence composite gene detection and visualisation package.  
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Figure 4.1.1. Multiple HSP processing by CompositeSearch 

 

Representation of how CompositeSearch would report homologies between a composite and 

components with multiple HSPs. CompositeSearch selects the most significant HSP as the 

representative alignment and the lesser HSP is ignored. While this is indeed a case of gene 

remodelling, it is highly unlikely to be a fusion or a fission event. It is possible that this scenario 

illustrates a subfunctionalization event, however it would not meet the criteria to be classed as 

a fission in this state. 

 

 

 

 
 
 
 
 

 

Composite gene

Component gene A

Component gene B
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The following chapter describes its implementation and use on a number of preliminary test 

datasets. 

 

4.2. Methodology 

 

4.2.1. Gene fusion software development 

 

 To our knowledge, no high throughput software exists to parse large genomic datasets 

for the specific identification of definitive gene fused gene events using BLAST+ (Camacho 

et al., 2009) and which allows inference from conserved domain architecture. To counter this 

conundrum we developed “compositeBLAST”, a Python v3.6 script used to detect distinct 

fused genes based on sequence similarity, geographic coordinates between alignments, and 

PFAM domain architectures. The steps of compositeBLAST are described in the next sections. 

 

4.2.1.1. Homolog detection 

 

Homologs were detected using tabular (-outfmt 6) BLASTP (Camacho et al., 2009) 

with an e-value stringency cut-off of E≤1e-05. Tabular BLAST data was structured in the order 

required by CompositeSearch (qseqid, sseqid, evalue, pident, bitscore, qstart, qend, qlen, sstart, 

send, slen). While compositeBLAST can process a reciprocal BLAST file, we were interested 

in detecting composites where both components could be detected in at least one other species. 

For analyses such as this, two BLASTP analyses were required, one search between query 

genome A and subject genome B, and another between query genome B and subject genome 

A. We did not use SEG filters or limit the amount of target sequences. BLASTP output were 

loaded into compositeBLAST for further processing.  
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4.2.1.2. Processing of high scoring pairs 

 

 The BLASTP output file is loaded into compositeBLAST. Multiple high scoring pairs 

(HSPs) arise in cases where a query sequence aligns to more than one segment of a subject 

sequence. This may arise due to the presence of conserved sequence segments within both 

sequences. As these sequences could provide a basis for the erroneous report of a fused gene. 

This can be exemplified in cases where one HSP aligns to the N-terminus of a suspected fusion 

and another sequence to the C-terminus (Figure 4.1.1.). This would be problematic if no other 

distinct sequences aligned to the N-terminus thus allowing for a false positive report. To control 

these type I errors, we removed all alignments where multiple HSPs were detected. This was 

achieved by counting the amount of times a gene returned a hit for each other gene. Cases 

where the number of hits between a pair of genes exceeded one were removed. The specifics 

of this code snippet are explained in Figure 4.2.1. 

 

4.2.1.3. Processing of single HSPs 

 

 To further control type I errors in composite reporting we required that a hit between 

genes was reciprocally reported, sharing a reciprocal HSP. For example, a case where sequence 

A (seqA) returned a hit for seqB and seqB returned a hit for seqA were considered to share an 

appropriate level of homology for further processing. Conversely, a case where a hit was 

returned between seqA and seqC but not between seqC and seqA was not further processed. 

The specifics of this code segment are explained in Figure 4.2.2.  
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Figure 4.2.1. compositeBLAST multiple HSP removal algorithm 

 

The first step involves opening lists and dictionaries for data storage. BLAST data is then 

processed through and HSPs between two genes are counted. If a gene pair has just one detected 

HSP, their associated alignment is extracted from the BLAST file for futher processing. 

Multiple HSPs are removed from both BLAST files. Full code provided at 

www.github.io/robleigh/compositeBLAST 
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Figure 4.2.2. compositeBLAST reciprocal HSP retention algorithm 

 

The “sequences = tuple(item[0:2])” function extracts the qseqid and sseqids from Single_hsps 

(as a single item (“A,B”)).  The first step of this snippet is responsible for extracting all “A-B” 

HSPs from identified single HSPs (“Single_hsps”). The second step retrieves “B-A” HSPs. 

The final step iterates through both lists and returns hits where “A-B” and “B-A” are observed. 

Full code provided at www.github.io/robleigh/compositeBLAST 
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4.2.1.4. Processing of potential components 

 

Potential composites were identified using a “non-transitive triplet” method (Jachiet et 

al., 2012) where one component gene aligns to one region on the composite, and another gene 

aligns to a separate region. We aimed to detect composites only where both the N- and C- 

termini were detected amongst potential components. Cases where only the N- or the C- 

terminus could be detected amongst components may indicate that a fusion or fission event 

may have occurred, however it is also likely that an erroneous truncation event may also have 

occurred via a stop codon insertion or an error in sequencing or assembly (Des Marais and 

Rausher, 2008; Pathmanathan et al., 2018). A legitimate model where only an N- or C- terminal 

component exists in addition to the ‘fused’ gene could arise through a subfunctionalization 

event. In such an event (as discussed in Chapter I), a multifunctional gene is duplicated to 

increase the rate of one function in a particular pathway (Rastogi and Liberles, 2005; Semon 

and Wolfe, 2008). Regions of the duplicate not involved in its specialised function would no 

longer be under selective pressure and may be truncated or experience a high level of mutation, 

thus appearing as a component. The detection of such cases was not our focus as they may 

produce considerable type I errors due to high levels of sequence similarity.  

Erroneous composite reporting may arise due to the query and subject both possessing 

short homologous regions such as those required in some protein structural motifs. To control 

for these errors, the aligned region of a potential component (A(c) = (qstart – qend) + 1) was 

required to be greater than or equal to 30% of its sequence length. We used a 30% cut off as 

this is what was required for CompositeSearch. Potential components that did not meet this 

requirement were discarded from further processing.  
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4.2.1.5. Detection of potential composites by sequence similarity 

 

To detect potential fusions, we treated each alignment as overlapping line segments in 

a cartesian coordinate system where query sequences were treated as potential fusions and the 

subject as a potential component. As we aimed to detect composites with distinct component 

alignments along both their N- and C- termini we bisected a potential composite and each 

section was considered the N-terminal section or the C-terminal section. To bisect the gene we 

defined each section based on the length of a potential composite gene, the first 50% of the 

sequence was the N-terminal section and the final 50% was the C-terminal section. We allowed 

for some section overlap by extending each section by 10% of the fusion length into the 

opposing section (Figure 4.3.3.) Therefore, a component was assigned to the N-terminal if its 

alignment terminated within the first 60% of the composite length (“N-terminal region”), and 

a component was assigned to a C-terminal if it initiated within the final 60% of the fusion 

length (“C-terminal region”). The central region was the overlap between the N- and C-

terminal regions. As BLAST alignments can slightly overextend, an additional 20 amino acids 

was added to the N- and C-terminal limits to mirror the methodologies of other remodelling 

algorithms (Jachiet et al., 2012; Pathmanathan et al., 2018). To avoid ambiguous terminal 

assignment, an N-terminal component was also required to initiate outside of the central region 

and C-terminal component was required to terminate outside the central region. A potential 

component with an alignment that either (a) crossed the entire central region or (b) initiated 

and terminated within the central region were discarded. Once all N-terminal and C-terminal 

components have been established, all combinations per potential fusion are generated. The 

snippet of code pertaining to this section is explained in Figure 4.3.4. 
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Figure 4.2.3. compositeBLAST gene region assignments  

 

The dotted black line bisects the fusion gene through its midpoint. The blue and red arrows 

indicate the extent of the N-terminal and C-terminal regions, where red and blue arrows 

highlight the range of each region past the midpoint. The grey arrow indicates the central 

region. Thick black lines indicate unaligned regions on the component whereas boxes on genes 

indicate aligned regions. N-terminal alignments are annotated in blue and C-terminal 

alignments are aligned in red. The grey “homolog” genes are not identified as components 

because they either span the length of the central region or initiate and terminate within the 

central region. 

Nterminal region

Nterminal component alignment

Cterminal component alignment

Nterminal component alignment

Cterminal component alignment

Homolog

Homolog

Cterminal region

Fusion

Central region
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Figure 4.2.4. compositeBLAST fusion detection algorithm  

 

The first step arranges data into an  appropriate format, grouping the statistics from both 

BLAST alignments into one line based on the longest gene in the pair. The second section 

divides the longest (query) sequence into N-terminal, C-terminal, and central regions and 

ensures that the alignment covers ≥ 30% of the putative component (subject) sequence. If an 

alignment initiates and terminates within the C-terminus, it is assigned to the C-terminus. 

Conversely, if an alignment initiates and terminates within the N-terminus, it is assigned to the 

N-terminus. If an alignment initiates and terminates within the central region or spans the 

central region it is excluded. The third step iterates through each potential composite gene and 

if it possesses a C-terminal component and an N-terminal component, it is considered to be a 

“putative composite”. The combination of all putative bona fide C- and N- termini are 

computed for each putative composite. Full code provided at 

www.github.io/robleigh/compositeBLAST 
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4.2.1.6. Confirmation of potential composites by conserved protein architectures 

 

InterProScan v5 (Jones et al., 2014) was used to detect conserved protein architectures 

(PFAMs) for every composite and potential component. The combination of all possible N- 

and C-terminal components were arranged for each composite (triplet). The set of PFAM 

domains was compared for each gene in each triplet. A potential fusion was considered to be 

bona fide if (a) it shared at least one PFAM domain with each of its N-terminal component and 

C-terminal component and (b) the N-terminal components and C-terminal components did not  

share any PFAM domains. This ensured that a bona fide fusion inherited a conserved domain 

(and associated structural motif and function) from two separate lineages (Figure 4.2.5.).  

 

 4.2.1.7. Clustering composites into events 

 

 The sequences of all identified composites were searched against each other using 

BLASTP (E≤1e-05). Genes were determined to be in the same family if they possess a mutual 

alignment overlap ≥ 80% and a pident ≥ 30%. Families were clustered and converted to an 

edge list using the “Graph.add_edge()” function of NetworkX (nx) python package (Aric et al., 

2007). The NetworkX edge list was further converted to a matrix using the 

“nx.to_scipy_sparse_matrix()” function. Finally, matrices were clustered using the 

MarkovClustering (mc) python package using the “mc.run_mcl()” and “mc.get_clusters()” 

function (Allard et al., 2017). Each cluster was considered to be a remodelling event. 
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Fig 4.2.5. Comparison of alignments used to determine remodelling by compositeBLAST 

 

Yellow and orange boxes highlight conserved (PFAM) domains on each sequence. In this 

scenario the only combination of components that is possible the top N-terminal gene and the 

bottom C-terminal gene. The N- and C-terminal components in the middle are excluded 

because they share a PFAM domain which is not permitted by compositeBLAST in an effort 

to maximise divergence between component genes.  
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4.2.2. Visualisation of composite gene alignments 

 

 We designed compositeViewer, a Python v3.6 program to view alignments between 

composites and components when detected by compositeBLAST. The length of the composite 

gene is drawn as a black line (0,x) and all other coordinates are drawn using (0,x) as a reference 

point. Alignments are drawn in colourful blocks on the composite gene, and directly below, 

the alignment is mapped for the component sequence. Once the alignments have been drawn 

for all sequences, the rest of the component genes are extended (as a black line) from the 

alignment using their own coordinates with reference to the alignment to initiate and terminate 

the extension (Figure 4.2.6.) 

 

4.2.3. Benchmarking compositeBLAST on a fungal dataset 

 

We benchmarked the functionality of compositeBLAST using a 9 fungal genome 

dataset as used by Leonard and Richards (2012). We used a BLASTP search (E≤1e-10) to cross 

reference detected composite genes with the fusions identified by Leonard and Richards in 

2012 (Table 4.2.1.). Leonard and Richards were not able to obtain any informational fused 

genes from two Microsporidia. We replicated this using the same species (Encephalitozoon 

cuniculi and Antonospora locustae), however as we were unable to get the accessions for the 

assemblies Leonard and Richards used, we substituted Encephalitozoon cuniculi GB-M1 v1.0 

and Antonospora locustae HM-2013 v1.0 obtained from the Joint Genome Institute 

(https://genome.jgi.doe.gov). Again, we performed a pairwise search (BLASTP; E≤1e-10) and 

performed a compositeBLAST search on the dataset using default settings. We used E≤1e-10 to 

replicate the parameters used by fdfBLAST so results could be accurately compared. We also 

compared the speed of compositeBLAST and fdfBLAST. We used BLASTP (for 
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Figure 4.2.6. compositeViewer depiction of fusion gene arnA 

 

Example of an alignment using the known fusion gene arnA (Williams et al., 2005) illustrated 

using compositeViewer. The position of the alignments are perpendicular and the extensions 

of the rest of the component are extended based on the coordinates of their own alignments to 

the composite gene.  
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Table 4.2.1. Genomes initially used by Leonard and Richards (2012).  

 

We also replicated their original study by including two Microsporidia species, 

Encephalitozoon cuniculi and Antonospora locustae (in bold) 

 
 

Species ngenes Phylum 

Neurospora crassa OR74A 9908 Ascomycota (Pezizomycotina) 

Saccharomyces cerevisiae S288c  5885 Ascomycota (Saccharomycotina) 

Schizosaccharomyces pombe 972h  5010 Ascomycota (Taphrinomycotina) 

Ustilago maydis 521  6522 Basidiomycota (Ustillagomycotina) 

Coprinopsis cinereal FGSC 9003 13394 Basidomycota (Agaricomycotina) 

Allomyces macrogynus  17600 Blastoclaidiomycota 

Batrachochytrium dendrobatidis JEL423 8732 Chytridiomycota 

Antonospora locustae HM-2013 2608 Microsporidia 

Encephalitozoon cuniculi GB-M1 1996 Microsporidia 

Mucor circinelloides f. lusitanicus 10930 Mucoromucota 

Rhizopus oryzae RA 99880 17459 Mucoromycota 
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compositeBLAST) and BLASTall (for fdfBLAST) to detect homologies between a two yeast 

dataset (Saccharomyces cerevisiae and Schizosaccharomyces pombe). 

 
 

4.2.4. Determination of the evolutionary rate of composite gene formation 

 

 In order to decipher the rate of composite generation in fungal and plant lineages, it was 

important to establish how many remodelling events were ancestral. For fungi, we searched all 

reported composite genes against a dataset of three genomes ancestral to our dataset. This  

dataset consisted of two Cryptomycota Paramicrosporidium saccamoebae str. KSL3 

(GCA_002794465) and Rozella allomycis CSF55 (GCA_000442015), and a Holomycota, 

Fonticula alba (GCA_000388065), all of which were downloaded from Ensembl 

(www.ensembl.org).  

 We determined a remodelling event to be ancestral if any gene from a cluster returned 

a hit with pident ≥ 30% and mutual overlap of 80% using BLASTP (E≤1e-05). Ancestral events 

cannot be used to determine a rate as it is not known when they first emerged so these clusters 

were excluded further rate calculations.  

Dikarya were reported to have emerged between 392.1-1823 Ma (Betts et al., 2018). 

We calculated an approximate evolutionary rate (t) for fungi used in this thesis to be 636.21 

Ma when k = 1 (subsection 2.2.3.3.2.2.). The LP from the root of the fungal phylogeny was 

determined to be 0.88999 (Pichia membranifaciens). The divergence time for fungi was 

approximated to be 566.22 Ma by multiplying t by LP. The composite birth rate (fb) was 

calculated by dividing the sum of non-ancestral remodelling events by 566.22 (as per 

subsection 2.2.3.4.) 
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4.2.5. Detection of composite antimicrobial resistance genes using compositeBLAST 

 

 The complete set of antimicrobial resistance (AMR) genes were downloaded from the 

Comprehensive Antibiotic Resistance Database (CARD) (Jia et al., 2017) searched against a 

dataset of 193 reference prokaryote genomes (115 bacteria and 78 archaea) downloaded from 

UniProtKB (Bateman et al., 2017). A wide breadth of genomes were selected to increase 

phylogenomic diversity within the dataset (Table 4.2.2.) Model organisms were chosen for 

each phylum if available. All analyses were conducted using an e-value stringency cut off of 

(E≤1e-05) and processed through compositeBLAST using default settings (E≤1e-05; coverage = 

30%). We implemented a second quality control step for these analyses so component genes 

could not display significant homology at E≤1e-05 using BLASTP. We implemented this step 

to encourage the most robust composite events.  

 

4.2.6. Assessment of antimicrobial resistance composite distribution 

 

 The presence and enumeration of each full length bona fide composite homolog in a 

given genome was determined using the same criteria as the clustering step of 

compositeBLAST and in the family detection algorithm of CompositeSearch (Pathmanathan 

et al., 2018). A BLASTP (E≤1e-05) search was performed between a fusion query and each 

gene in each genome. If a query returned a hit with (a) ≥ 80% mutual sequence length overlap 

and (b) a percentage identity (pident) score ≥ 30% it was considered to be present in the 

genome. For each composite, a dataset was constructed for all identified N-terminal 

components, and another for all C-terminal components. The presence and numeration for each 

component type (N- or C-) was also determined using this method. The presence and absence 

of each fusion and its components in a given genome was compared to each other genome in  
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Table 4.2.2. Prokaryote genomes used for the detection of composite antimicrobial resistance genes.  

All genomes were downloaded from UniProtKB with all associated genomic and assembly statistics provided. 

Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000245584 Heimdallarchaeota archaeon 3521 HEIAB Archaea, Asgard group, Candidatus Heimdallarchaeota GCA_003144275.1 

UP000185649 Lokiarchaeota archaeon 4413 LOKAC Archaea, Asgard group, Candidatus Lokiarchaeota GCA_001940655.1 

UP000001686 Korarchaeum cryptofilum 1602 KORCO Archaea, Candidatus Korarchaeota, Candidatus Korarchaeum GCA_000019605.1 

UP000000346 Acidilobus saccharovorans 1499 ACIS3 Archaea, Crenarchaeota, Thermoprotei GCA_000144915.1 

UP000010469 Caldisphaera lagunensis 1477 CALLD Archaea, Crenarchaeota, Thermoprotei GCA_000317795.1 

UP000002518 Aeropyrum pernix 1700 AERPE Archaea, Crenarchaeota, Thermoprotei GCA_000011125.1 

UP000006903 Desulfurococcus amylolyticus 1470 DESA1 Archaea, Crenarchaeota, Thermoprotei GCA_000020905.1 

UP000000262 Ignicoccus hospitalis 1434 IGNH4 Archaea, Crenarchaeota, Thermoprotei GCA_000017945.1 

UP000001304 Ignisphaera aggregans 1929 IGNAA Archaea, Crenarchaeota, Thermoprotei GCA_000145985.1 

UP000000254 Staphylothermus marinus 1570 STAMF Archaea, Crenarchaeota, Thermoprotei GCA_000015945.1 

UP000005270 Thermogladius calderae 1414 THEC1 Archaea, Crenarchaeota, Thermoprotei GCA_000264495.1 

UP000002376 Thermosphaera aggregans 1387 THEAM Archaea, Crenarchaeota, Thermoprotei GCA_000092185.1 

UP000002593 Hyperthermus butylicus 1602 HYPBU Archaea, Crenarchaeota, Thermoprotei GCA_000015145.1 

UP000001037 Pyrolobus fumarii 1967 PYRF1 Archaea, Crenarchaeota, Thermoprotei GCA_000223395.1 

UP000007391 Fervidicoccus fontis 1384 FERFK Archaea, Crenarchaeota, Thermoprotei GCA_000258425.1 

UP000008458 Acidianus hospitalis 2329 ACIHW Archaea, Crenarchaeota, Thermoprotei GCA_000213215.1 

UP000000242 Metallosphaera sedula 2256 METS5 Archaea, Crenarchaeota, Thermoprotei GCA_000016605.1 

UP000001974 Saccharolobus solfataricus 2938 SACS2 Archaea, Crenarchaeota, Thermoprotei GCA_000007005.1 

UP000001018 Sulfolobus acidocaldarius 2221 SULAC Archaea, Crenarchaeota, Thermoprotei GCA_000012285.1 

UP000001015 Sulfurisphaera tokodaii 2805 SULTO Archaea, Crenarchaeota, Thermoprotei GCA_000011205.1 

UP000000641 Thermofilum pendens 1876 THEPD Archaea, Crenarchaeota, Thermoprotei GCA_000015225.1 

UP000001137 Caldivirga maquilingensis 1962 CALMQ Archaea, Crenarchaeota, Thermoprotei GCA_000018305.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000002439 Pyrobaculum aerophilum 2590 PYRAE Archaea, Crenarchaeota, Thermoprotei GCA_000007225.1 

UP000002654 Thermoproteus tenax 2047 THETK Archaea, Crenarchaeota, Thermoprotei GCA_000253055.1 

UP000006681 Vulcanisaeta distributa 2493 VULDI Archaea, Crenarchaeota, Thermoprotei GCA_000148385.1 

UP000002199 Archaeoglobus fulgidus 2399 ARCFU Archaea, Euryarchaeota, Archaeoglobi GCA_000008665.1 

UP000002613 Ferroglobus placidus 2463 FERPA Archaea, Euryarchaeota, Archaeoglobi GCA_000025505.1 

UP000001400 Aciduliprofundum boonei 1539 ACIB4 Archaea, Euryarchaeota, Diaforarchaea group GCA_000025665.1 

UP000012672 Methanomethylophilus alvus 1643 METAX Archaea, Euryarchaeota, Diaforarchaea group GCA_000300255.2 

UP000014070 Methanomassiliicoccus intestinalis 1826 METII Archaea, Euryarchaeota, Diaforarchaea group GCA_000404225.1 

UP000000438 Picrophilus torridus 1535 PICTO Archaea, Euryarchaeota, Diaforarchaea group GCA_000008265.1 

UP000001024 Thermoplasma acidophilum 1482 THEAC Archaea, Euryarchaeota, Diaforarchaea group GCA_000195915.1 

UP000007490 Methanobacterium lacus 2493 METLA Archaea, Euryarchaeota, Methanomada group GCA_000191585.1 

UP000008680 Methanobrevibacter ruminantium 2209 METRM Archaea, Euryarchaeota, Methanomada group GCA_000024185.1 

UP000001931 Methanosphaera stadtmanae 1533 METST Archaea, Euryarchaeota, Methanomada group GCA_000012545.1 

UP000005223 Methanothermobacter 
thermautotrophicus 

1868 METTH Archaea, Euryarchaeota, Methanomada group GCA_000008645.1 

UP000002315 Methanothermus fervidus 1283 METFV Archaea, Euryarchaeota, Methanomada group GCA_000166095.1 

UP000000805 Methanocaldococcus jannaschii 1787 METJA Archaea, Euryarchaeota, Methanomada group GCA_000091665.1 

UP000002061 Methanocaldococcus infernus 1439 METIM Archaea, Euryarchaeota, Methanomada group GCA_000092305.1 

UP000009227 Methanotorris igneus 1753 METIK Archaea, Euryarchaeota, Methanomada group GCA_000214415.1 

UP000001106 Methanococcus aeolicus 1490 META3 Archaea, Euryarchaeota, Methanomada group GCA_000017185.1 

UP000001826 Methanopyrus kandleri 1687 METKA Archaea, Euryarchaeota, Methanopyri GCA_000007185.1 

UP000001169 Haloarcula marismortui 4234 HALMA Archaea, Euryarchaeota, Stenosarchaea group GCA_000011085.1 

UP000001746 Halomicrobium mukohataei 3343 HALMD Archaea, Euryarchaeota, Stenosarchaea group GCA_000023965.1 

UP000011867 Natronomonas moolapensis 2723 NATM8 Archaea, Euryarchaeota, Stenosarchaea group GCA_000591055.1 

UP000002698 Natronomonas pharaonis 2764 NATPD Archaea, Euryarchaeota, Stenosarchaea group GCA_000026045.1 

UP000000390 Halalkalicoccus jeotgali 3779 HALJB Archaea, Euryarchaeota, Stenosarchaea group GCA_000196895.1 

UP000000554 Halobacterium salinarum 2426 HALSA Archaea, Euryarchaeota, Stenosarchaea group GCA_000006805.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000006469 Haloferax mediterranei 3826 HALMT Archaea, Euryarchaeota, Stenosarchaea group GCA_000306765.2 

UP000006663 Halogeometricum borinquense 3894 HALBP Archaea, Euryarchaeota, Stenosarchaea group GCA_000172995.2 

UP000001975 Haloquadratum walsbyi 2558 HALWD Archaea, Euryarchaeota, Stenosarchaea group GCA_000009185.1 

UP000006794 Halopiger xanaduensis 4221 HALXS Archaea, Euryarchaeota, Stenosarchaea group GCA_000217715.1 

UP000001903 Haloterrigena turkmenica 5113 HALTV Archaea, Euryarchaeota, Stenosarchaea group GCA_000025325.1 

UP000010846 Halovivax ruber 3099 HALRX Archaea, Euryarchaeota, Stenosarchaea group GCA_000328525.1 

UP000001879 Natrialba magadii 4203 NATMM Archaea, Euryarchaeota, Stenosarchaea group GCA_000025625.1 

UP000010843 Natrinema pellirubrum 4138 NATP1 Archaea, Euryarchaeota, Stenosarchaea group GCA_000230735.3 

UP000010468 Natronobacterium gregoryi 3624 NATGS Archaea, Euryarchaeota, Stenosarchaea group GCA_000230715.3 

UP000000663 Methanocella arvoryzae 3071 METAR Archaea, Euryarchaeota, Stenosarchaea group GCA_000063445.1 

UP000000365 Methanocorpusculum labreanum 1739 METLZ Archaea, Euryarchaeota, Stenosarchaea group GCA_000015765.1 

UP000009007 Methanoculleus bourgensis 2575 METBM Archaea, Euryarchaeota, Stenosarchaea group GCA_000304355.2 

UP000006565 Methanolacinia petrolearia 2779 METP4 Archaea, Euryarchaeota, Stenosarchaea group GCA_000147875.1 

UP000002408 Methanoregula boonei 2450 METB6 Archaea, Euryarchaeota, Stenosarchaea group GCA_000017625.1 

UP000002457 Methanosphaerula palustris 2655 METPE Archaea, Euryarchaeota, Stenosarchaea group GCA_000021965.1 

UP000001941 Methanospirillum hungatei 3087 METHJ Archaea, Euryarchaeota, Stenosarchaea group GCA_000013445.1 

UP000005877 Methanosaeta harundinacea 2358 METH6 Archaea, Euryarchaeota, Stenosarchaea group GCA_000235565.1 

UP000007807 Methanothrix soehngenii 2791 METSG Archaea, Euryarchaeota, Stenosarchaea group GCA_000204415.1 

UP000001979 Methanococcoides burtonii 2242 METBU Archaea, Euryarchaeota, Stenosarchaea group GCA_000013725.1 

UP000000391 Methanohalobium evestigatum 2250 METEZ Archaea, Euryarchaeota, Stenosarchaea group GCA_000196655.1 

UP000001059 Methanohalophilus mahii 1986 METMS Archaea, Euryarchaeota, Stenosarchaea group GCA_000025865.1 

UP000010866 Methanomethylovorans hollandica 2551 METHD Archaea, Euryarchaeota, Stenosarchaea group GCA_000328665.1 

UP000006622 Methanosalsum zhilinae 1972 METZD Archaea, Euryarchaeota, Stenosarchaea group GCA_000217995.1 

UP000002487 Methanosarcina acetivorans 4468 METAC Archaea, Euryarchaeota, Stenosarchaea group GCA_000007345.1 

UP000001013 Pyrococcus furiosus 2045 PYRFU Archaea, Euryarchaeota, Thermococci GCA_000007305.1 

UP000000536 Thermococcus kodakarensis 2301 THEKO Archaea, Euryarchaeota, Thermococci GCA_000009965.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000000578 Nanoarchaeum equitans 536 NANEQ Archaea, Nanoarchaeota, Nanoarchaeales GCA_000008085.1 

UP000000758 Cenarchaeum symbiosum 2022 CENSY Archaea, Thaumarchaeota, Cenarchaeales GCA_000200715.1 

UP000000792 Nitrosopumilus maritimus 1795 NITMS Archaea, Thaumarchaeota, Nitrosopumilales GCA_000018465.1 

UP000008037 Nitrososphaera gargensis 3523 NITGG Archaea, Thaumarchaeota, Nitrososphaeria GCA_000303155.1 

UP000002207 Acidobacterium capsulatum 3363 ACIC5 Bacteria, Acidobacteria, Acidobacteriales GCA_000022565.1 

UP000007113 Granulicella mallensis 4804 GRAMM Bacteria, Acidobacteria, Acidobacteriales GCA_000178955.2 

UP000000343 Granulicella tundricola 4514 GRATM Bacteria, Acidobacteria, Acidobacteriales GCA_000178975.2 

UP000006056 Terriglobus roseus 3936 TERRK Bacteria, Acidobacteria, Acidobacteriales GCA_000265425.1 

UP000006640 Thermobispora bispora 3545 THEBD Bacteria, Actinobacteria, Actinobacteria incertae sedis GCA_000092645.1 

UP000001584 Mycobacterium tuberculosis 3993 MYCTU Bacteria, Actinobacteria, Corynebacteriales GCA_000195955.2 

UP000000738 Micrococcus luteus 2207 MICLC Bacteria, Actinobacteria, Micrococcales GCA_000023205.1 

UP000001973 Streptomyces coelicolor 8038 STRCO Bacteria, Actinobacteria, Streptomycetales GCA_000203835.1 

UP000000798 Aquifex aeolicus 1553 AQUAE Bacteria, Aquificae, Aquificales GCA_000008625.1 

UP000002574 Hydrogenobacter thermophilus 1892 HYDTT Bacteria, Aquificae, Aquificales GCA_000010785.1 

UP000002043 Thermocrinis albus 1592 THEAH Bacteria, Aquificae, Aquificales GCA_000025605.1 

UP000007102 Desulfurobacterium thermolithotrophum 1496 DESTD Bacteria, Aquificae, Desulfurobacteriales GCA_000191045.1 

UP000014227 Chthonomonas calidirosea 2809 CHTCT Bacteria, Armatimonadetes, Chthonomonadetes GCA_000427095.1 

UP000008674 Salinibacter ruber 2812 SALRD Bacteria, Bacteroidetes, Bacteroidetes Order II. Incertae sedis GCA_000013045.1 

UP000001414 Bacteroides thetaiotaomicron 4782 BACTN Bacteria, Bacteroidetes, Bacteroidia GCA_000011065.1 

UP000000723 Azobacteroides pseudotrichonymphae 847 AZOPC Bacteria, Bacteroidetes, Bacteroidia GCA_000010645.1 

UP000006394 Flavobacterium psychrophilum 2421 FLAPJ Bacteria, Bacteroidetes, Flavobacteriia GCA_000064305.2 

UP000002019 Cloacimonas acidaminovorans 1813 CLOAI Bacteria, Candidatus Cloacimonetes, Candidatus Cloacimonas GCA_000146065.1 

UP000000431 Chlamydia trachomatis 895 CHLTR Bacteria, Chlamydiae, Chlamydiales GCA_000008725.1 

UP000000529 Protochlamydia amoebophila 1879 PARUW Bacteria, Chlamydiae, Parachlamydiales GCA_000011565.1 

UP000000495 Parachlamydia acanthamoebae 2784 PARAV Bacteria, Chlamydiae, Parachlamydiales GCA_000253035.1 

UP000001505 Waddlia chondrophila 1919 WADCW Bacteria, Chlamydiae, Parachlamydiales GCA_000092785.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000001007 Chlorobaculum tepidum 2250 CHLTE Bacteria, Chlorobi, Chlorobia GCA_000006985.1 

UP000007880 Caldilinea aerophila 4097 CALAS Bacteria, Chloroflexi, Caldilineae GCA_000281175.1 

UP000002008 Chloroflexus aurantiacus 3850 CHLAA Bacteria, Chloroflexi, Chloroflexia GCA_000018865.1 

UP000008289 Dehalococcoides mccartyi 1502 DEHM1 Bacteria, Chloroflexi, Dehalococcoidia GCA_000011905.1 

UP000002349 Dehalogenimonas lykanthroporepellens 1619 DEHLB Bacteria, Chloroflexi, Dehalococcoidia GCA_000143165.1 

UP000002027 Sphaerobacter thermophilus 3471 SPHTD Bacteria, Chloroflexi, Sphaerobacteridae GCA_000024985.1 

UP000002572 Desulfurispirillum indicum 2551 DESIS Bacteria, Chrysiogenetes, Chrysiogenales GCA_000177635.2 

UP000001732 Coprothermobacter proteolyticus 1481 COPPD Bacteria, Coprothermobacterota, Coprothermobacteria GCA_000020945.1 

UP000000557 Gloeobacter violaceus 4406 GLOVI Bacteria, Cyanobacteria, Gloeobacteria GCA_000011385.1 

UP000092382 Aphanizomenon flos-aquae 3783 APHFL Bacteria, Cyanobacteria, Nostocales GCA_001672165.1 

UP000010480 Cyanobacterium aponinum 3415 CYAAP Bacteria, Cyanobacteria, Oscillatoriophycideae GCA_000317675.1 

UP000001425 Synechocystis sp. 3507 SYNY3 Bacteria, Cyanobacteria, Synechococcales GCA_000009725.1 

UP000001420 Prochlorococcus marinus 1881 PROMA Bacteria, Cyanobacteria, Synechococcales GCA_000007925.1 

UP000000440 Thermosynechococcus elongatus 2451 THEEB Bacteria, Cyanobacteria, Synechococcales GCA_000011345.1 

UP000007039 Calditerrivibrio nitroreducens 2089 CALNY Bacteria, Deferribacteres, Deferribacterales GCA_000183405.1 

UP000001520 Deferribacter desulfuricans 2338 DEFDS Bacteria, Deferribacteres, Deferribacterales GCA_000010985.1 

UP000002012 Denitrovibrio acetiphilus 2901 DENA2 Bacteria, Deferribacteres, Deferribacterales GCA_000025725.1 

UP000002524 Deinococcus radiodurans 3085 DEIRA Bacteria, Deinococcus-Thermus, Deinococci GCA_000008565.1 

UP000007030 Marinithermus hydrothermalis 2194 MARHT Bacteria, Deinococcus-Thermus, Deinococci GCA_000195335.1 

UP000001916 Meiothermus silvanus 3383 MEISD Bacteria, Deinococcus-Thermus, Deinococci GCA_000092125.1 

UP000008722 Oceanithermus profundus 2372 OCEP5 Bacteria, Deinococcus-Thermus, Deinococci GCA_000183745.1 

UP000000532 Thermus thermophilus 2227 THET8 Bacteria, Deinococcus-Thermus, Deinococci GCA_000091545.1 

UP000007719 Dictyoglomus turgidum 1743 DICTD Bacteria, Dictyoglomi, Dictyoglomales GCA_000021645.1 

UP000001029 Elusimicrobium minutum 1528 ELUMP Bacteria, Elusimicrobia, Elusimicrobia GCA_000020145.1 

UP000000517 Fibrobacter succinogenes 2871 FIBSS Bacteria, Fibrobacteres, Fibrobacterales GCA_000146505.1 

UP000001570 Bacillus subtilis 4260 BACSU Bacteria, Firmicutes, Bacilli GCA_000009045.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000001172 Geobacillus kaustophilus 3516 GEOKA Bacteria, Firmicutes, Bacilli GCA_000009785.1 

UP000007397 Halobacillus halophilus 4100 HALH3 Bacteria, Firmicutes, Bacilli GCA_000284515.1 

UP000000817 Listeria monocytogenes 2844 LISMO Bacteria, Firmicutes, Bacilli GCA_000196035.1 

UP000008816 Staphylococcus aureus 2889 STAA8 Bacteria, Firmicutes, Bacilli GCA_000013425.1 

UP000001415 Enterococcus faecalis 3240 ENTFA Bacteria, Firmicutes, Bacilli GCA_000007785.1 

UP000000586 Streptococcus pneumoniae 2030 STRR6 Bacteria, Firmicutes, Bacilli GCA_000007045.1 

UP000001986 Clostridium botulinum 3590 CLOBH Bacteria, Firmicutes, Clostridia GCA_000063585.1 

UP000007053 Moorella thermoacetica 2451 MOOTA Bacteria, Firmicutes, Clostridia GCA_000013105.1 

UP000002521 Fusobacterium nucleatum 2046 FUSNN Bacteria, Fusobacteria, Fusobacteriales GCA_000007325.1 

UP000006875 Ilyobacter polytropus 2859 ILYPC Bacteria, Fusobacteria, Fusobacteriales GCA_000165505.1 

UP000001910 Leptotrichia buccalis 2218 LEPBD Bacteria, Fusobacteria, Fusobacteriales GCA_000023905.1 

UP000000845 Sebaldella termitidis 4124 SEBTE Bacteria, Fusobacteria, Fusobacteriales GCA_000024405.1 

UP000002072 Streptobacillus moniliformis 1431 STRM9 Bacteria, Fusobacteria, Fusobacteriales GCA_000024565.1 

UP000002209 Gemmatimonas aurantiaca 3932 GEMAT Bacteria, Gemmatimonadetes, Gemmatimonadales GCA_000010305.1 

UP000007382 Leptospirillum ferrooxidans 2413 LEPFC Bacteria, Nitrospirae, Nitrospirales GCA_000284315.1 

UP000069205 Nitrospira moscoviensis 4733 NITMO Bacteria, Nitrospirae, Nitrospirales GCA_001273775.1 

UP000000718 Thermodesulfovibrio yellowstonii 1982 THEYD Bacteria, Nitrospirae, Nitrospirales GCA_000020985.1 

UP000008631 Isosphaera pallida 3721 ISOPI Bacteria, Planctomycetes, Planctomycetia GCA_000186345.1 

UP000001887 Pirellula staleyi 4711 PIRSD Bacteria, Planctomycetes, Planctomycetia GCA_000025185.1 

UP000002220 Planctopirus limnophila 4258 PLAL2 Bacteria, Planctomycetes, Planctomycetia GCA_000092105.1 

UP000001025 Rhodopirellula baltica 7271 RHOBA Bacteria, Planctomycetes, Planctomycetia GCA_000196115.1 

UP000006860 Rubinisphaera brasiliensis 4710 RUBBR Bacteria, Planctomycetes, Planctomycetia GCA_000165715.3 

UP000001364 Caulobacter vibrioides 3859 CAUVN Bacteria, Proteobacteria, Alphaproteobacteria GCA_000022005.1 

UP000002526 Bradyrhizobium diazoefficiens 8253 BRADU Bacteria, Proteobacteria, Alphaproteobacteria GCA_000011365.1 

UP000008320 Ehrlichia chaffeensis 1100 EHRCR Bacteria, Proteobacteria, Alphaproteobacteria GCA_000013145.1 

UP000002480 Rickettsia prowazekii 834 RICPR Bacteria, Proteobacteria, Alphaproteobacteria GCA_000195735.1 
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UP000002676 Bordetella pertussis 3258 BORPE Bacteria, Proteobacteria, Betaproteobacteria GCA_000195715.1 

UP000008815 Burkholderia multivorans 6040 BURM1 Bacteria, Proteobacteria, Betaproteobacteria GCA_000010545.1 

UP000000425 Neisseria meningitidis 2001 NEIMB Bacteria, Proteobacteria, Betaproteobacteria GCA_000008805.1 

UP000008291 Thiobacillus denitrificans 2826 THIDA Bacteria, Proteobacteria, Betaproteobacteria GCA_000012745.1 

UP000002191 Pseudodesulfovibrio aespoeensis 3269 PSEA9 Bacteria, Proteobacteria, Deltaproteobacteria GCA_000176915.2 

UP000002430 Lawsonia intracellularis 1342 LAWIP Bacteria, Proteobacteria, Deltaproteobacteria GCA_000055945.1 

UP000000577 Geobacter sulfurreducens 3402 GEOSL Bacteria, Proteobacteria, Deltaproteobacteria GCA_000007985.2 

UP000001784 Syntrophobacter fumaroxidans 4012 SYNFM Bacteria, Proteobacteria, Deltaproteobacteria GCA_000014965.1 

UP000000799 Campylobacter jejuni 1623 CAMJE Bacteria, Proteobacteria, Epsilonproteobacteria GCA_000009085.1 

UP000000429 Helicobacter pylori 1553 HELPY Bacteria, Proteobacteria, Epsilonproteobacteria GCA_000008525.1 

UP000000422 Wolinella succinogenes 2028 WOLSU Bacteria, Proteobacteria, Epsilonproteobacteria GCA_000196135.1 

UP000000625 Escherichia coli 4446 ECOLI Bacteria, Proteobacteria, Gammaproteobacteria GCA_000005845.2 

UP000001014 Salmonella typhimurium 4533 SALTY Bacteria, Proteobacteria, Gammaproteobacteria GCA_000006945.2 

UP000002716 Shigella dysenteriae 3897 SHIDS Bacteria, Proteobacteria, Gammaproteobacteria GCA_000012005.1 

UP000000815 Yersinia pestis 3909 YERPE Bacteria, Proteobacteria, Gammaproteobacteria GCA_000009065.1 

UP000051497 Candidatus Berkiella 3170 CANBE Bacteria, Proteobacteria, Gammaproteobacteria GCA_001431295.1 

UP000002438 Pseudomonas aeruginosa 5564 PSEAE Bacteria, Proteobacteria, Gammaproteobacteria GCA_000006765.1 

UP000234191 Brachyspira hyodysenteriae 2617 BRAHO Bacteria, Spirochaetes, Brachyspirales GCA_002850235.1 

UP000001408 Leptospira interrogans 3676 LEPIN Bacteria, Spirochaetes, Leptospirales GCA_000092565.1 

UP000006048 Turneriella parva 4092 TURPD Bacteria, Spirochaetes, Leptospirales GCA_000266885.1 

UP000001807 Borrelia burgdorferi 1290 BORBU Bacteria, Spirochaetes, Spirochaetales GCA_000008685.2 

UP000002318 Sediminispirochaeta smaragdinae 4211 SEDSS Bacteria, Spirochaetes, Spirochaetales GCA_000143985.1 

UP000007254 Spirochaeta thermophila 2249 SPITZ Bacteria, Spirochaetes, Spirochaetales GCA_000184345.2 

UP000000811 Treponema pallidum 1027 TREPA Bacteria, Spirochaetes, Spirochaetales GCA_000008605.1 

UP000006061 Acetomicrobium mobile 2004 ACEMN Bacteria, Synergistetes, Synergistia GCA_000266925.1 

UP000002366 Aminobacterium colombiense 1872 AMICL Bacteria, Synergistetes, Synergistia GCA_000025885.1 
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Proteome ID Organism Gene count Taxon mnemonic Taxonomic lineage Genome assembly ID 

UP000002030 Thermanaerovibrio acidaminovorans 1737 THEAS Bacteria, Synergistetes, Synergistia GCA_000024905.1 

UP000005868 Thermovirga lienii 1853 THELD Bacteria, Synergistetes, Synergistia GCA_000233775.1 

UP000008558 Acholeplasma laidlawii 1380 ACHLI Bacteria, Tenericutes, Mollicutes GCA_000018785.1 

UP000002523 Onion yellows Phytoplasma 730 ONYPE Bacteria, Tenericutes, Mollicutes GCA_000009845.1 

UP000006647 Mesoplasma florum 683 MESFL Bacteria, Tenericutes, Mollicutes GCA_000008305.1 

UP000000807 Mycoplasma genitalium 483 MYCGE Bacteria, Tenericutes, Mollicutes GCA_000027325.1 

UP000006793 Thermodesulfatator indicus 2184 THEID Bacteria, Thermodesulfobacteria, Thermodesulfobacteriales GCA_000217795.1 

UP000006583 Thermodesulfobacterium geofontis 1594 THEGP Bacteria, Thermodesulfobacteria, Thermodesulfobacteriales GCA_000215975.1 

UP000002382 Kosmotoga olearia 2087 KOSOT Bacteria, Thermotogae, Kosmotogales GCA_000023325.1 

UP000007161 Marinitoga piezophila 2044 MARPK Bacteria, Thermotogae, Petrotogales GCA_000255135.1 

UP000002415 Fervidobacterium nodosum 1725 FERNB Bacteria, Thermotogae, Thermotogales GCA_000017545.1 

UP000002016 Pseudothermotoga lettingae 2040 PSELT Bacteria, Thermotogae, Thermotogales GCA_000017865.1 

UP000008183 Thermotoga maritima 1852 THEMA Bacteria, Thermotogae, Thermotogales GCA_000008545.1 

UP000009149 Methylacidiphilum infernorum 2470 METI4 Bacteria, Verrucomicrobia, Methylacidiphilae GCA_000019665.1 

UP000007013 Opitutus terrae 4588 OPITP Bacteria, Verrucomicrobia, Opitutae GCA_000019965.1 

UP000000925 Coraliomargarita akajimensis 3110 CORAD Bacteria, Verrucomicrobia, Opitutae GCA_000025905.1 

UP000001031 Akkermansia muciniphila 2137 AKKM8 Bacteria, Verrucomicrobia, Verrucomicrobiae GCA_000020225.1 
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the dataset to determine if a phyletic distribution bias could be observed. Detected fusions were 

discarded if a phylogenetic pattern could not be observed within N- or C-terminal full length 

homologs.  

 

4.3. Results 

 

4.3.1. Benchmarking compositeBLAST 

 

The 9 fungal genome dataset used during the debut analysis of fdfBLAST (Leonard and 

Richards, 2012) was used to detect the efficacy of compositeBLAST. We first established if 

we could determine we could detect the 63 fusions detected by fdfBLAST. Our first observation 

was that only 59 fusions were present in the output files provided by Leonard and Richards. Of 

these 59 fusion genes, we were not able to detect 12 (Table 4.3.1.). Of these 12 genes, 10 were 

recoverable by either removing the criteria where components could not span the terminal 

region or by reducing the minimum amount of coverage required for a component gene. The 

remaining two components were not recoverable as they had only an N-terminal component in 

both Leonard and Richards results and in our initial BLAST results. As compositeBLAST 

requires at least two distinct components, these genes were not recoverable by any means. 

Differential fusions are observed when a composite is observed in one genome and both 

components (but not the composite) are observed in a different genome.  

 

4.3.2. Extent of composite genes and fungi 

 

 In 9 fungi, a total of 573 composite genes within 300 families were detected using 

compositeBLAST, of which 219 were singleton genes. A total of 354 genes were dispersed  
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Table 4.3.1. Fusions identified by Leonard and Richards (2012) not observed during the 

benchmarking of compositeBLAST.  

 

 

Of the 12 non-identifiable fusions, 10 could be recovered by removing the requirement that a 

component does not span the central region of the fusion. The remaining two fusions 

(highlighted in red) did not have an appropriate C-terminal component in our analyses or in 

Leonard and Richards (2012) results. As compositeBLAST requires an N- and a C-terminal 

component these two fusions could not be recovered under any circumstance.  

 

Fusion ID Reason for non-detection 

fusion_10_XP_011394556 Component alignment coverage too low 

fusion_21_NP_594836 Alignment spans fusion central region 

Fusion_34_XP_001402280 No associated C-terminal component 

fusion_35_XP_964702 Alignment spans fusion central region 

fusion_42_XP_001934738 No associated C-terminal component 

fusion_43_XP_003303532 Alignment spans fusion central region 

fusion_47_XP_001932096 Alignment spans fusion central region 

fusion_48_XP_003296895 Component alignment coverage too low 

fusion_49_KDQ30737 Alignment spans fusion central region 

fusion_6_KNE57841 Alignment spans fusion central region 

fusion_7_KNE72089 Alignment spans fusion central region 

fusion_8_XP_011388676 Alignment spans fusion central region 
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amongst 81 multigene families, where an average of 12.6±33.5 genes per composite family 

was observed. These results are an order of magnitude greater than those reported by Leonard 

and Richards (2012). We observed compositeBLAST to be much faster than fdfBLAST, taking 

just 118 seconds to process the data in comparison to 8019 seconds. 

 

4.3.3. Rate of composite generation 

 

 Using the approximated fungal divergence time of 566.22 Ma, the rate of composite 

generation in fungi was calculated to be 0.14 events/Ma (excluding singleton families) to 0.53 

events/Ma (including singleton families)  

There has not been a comparison for fungal genomes, however this figure is far greater 

than plant composite gene evolutionary rate observed Nakamura et al. (2007) who estimated 

the rate to be 1.0e-11-2.0e-11 events/year (1.0e-05-2.0e-05 events/Ma).  

 

4.3.4. Detection of composite AMR genes 

 

We detected 13 fused AMR genes using compositeBLAST. Of the 13 detected genes, 

9 had been previously reported by other authors (Table 4.3.2.). We detected 4 fusion genes 

(mupA, mupB, rphA, and rphB) from the 2019 CARD gene dataset that, to our knowledge, have 

not been reported before. The four genes can be broken into two sets of duplicate genes, where 

mupA and mupB (mupAB) confer resistance to mupirocin (Troeman et al., 2019), and rphA and 

rphB (rphAB) confer resistance to rifamycin (Sensi, 1983; Baysarowich et al., 2008). The 

specifics of these resistance mechanisms and fusion genes are explained in the next sections. 
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Table 4.3.2. 11 AMR composite genes detected by CompositeBLAST  

 

Each composite AMR is represented by its accession ID and gene ID. Genes previously 

reported as composites are cited. Four detected genes have not been previously reported 

(emboldened). 

 

Accession ID Gene Reported by 

ARO:3000444 rphA This study 

ARO:3000501 rpoB Zakharova et al., 1999 

ARO:3000510 mupB This study 

ARO:3000521 mupA This study 

ARO:3000535 macB Coleman et al., 2015 

ARO:3002970 vanTC Meziane-Cherif et al., 2015 

ARO:3002971 vanTE Meziane-Cherif et al., 2015 

ARO:3002972 vanTG Meziane-Cherif et al., 2015 

ARO:3002975 vanTN Meziane-Cherif et al., 2015 

ARO:3002985 arnA Williams et al., 2005 

ARO:3003324 mprF(A) Maloney et al., 2009 

ARO:3003770 mprF(B) Maloney et al., 2009 

ARO:3003992 rphB This study 
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 4.3.4.1 Rifamycin resistance  

 

 Two rifamycin resistance genes, rphA (ARO:3000444) and rphB (ARO:3003992) were 

reported to be composites by compositeBLAST. Both rphA and rphB belong to the rifamycin 

phosphotransferase (E.C: 2.7.9.6) class of AMR resistance cassettes (Boehme et al., 2010). 

 Rifamycins are a class of ansamycin bacterial polyketides or artificially manufactured 

antibiotics used primarily to combat mycobacterial infections in clinical settings (Sensi, 1983). 

Rifamycins bind the b subunit of DNA-dependant RNA polymerase (rpoB) and physically 

block RNA elongation (Feklistov et al., 2008). As rifamycins act through steric occlusion, 

resistance may arise through point mutation in rpoB that reduce rifamycin binding affinity 

(Campbell et al., 2001). A 531 Ser®Leu point mutation (S531L) in rpoB is the most common 

rifamycin resistance conferring point mutation in Mycobacterium tuberculosis (Lemus et al., 

2004). In Norcardia farcinica, an rpoB duplicate (rpoB2) has undergone sufficient cumulative 

mutation to confer resistance, where 88% sequence similarity is observed between both 

sequences (Ishikawa et al., 2006). Ishikawa and company (2006) also observed differential 

rpoB and rpoB2 expression is observed depending on rifamycin presence.  

 Resistance may also arise through rifamycin inactivation through position 21 

phosphorylation, as has been observed in both rphA and rphB (Campbell et al., 2001; 

Goldstein, 2014). Phosphorylation mediated rifamycin resistance is observed throughout a 

range of environments as a competitive response between bacterial communities in addition to 

clinical settings (Baysarowich et al., 2008).  

 rphA and rphB are full length homologs (FLHs) of each other (rphAB), and display an 

overlapping set of bona fide N- and C-terminal components and phylogenetic distributions with 

the exception of an rphB FLH presenting in Halogeometricum borinquense (Euryarcheota) 

where an rphA FLO is not observed (Table 4.3.3.). rphAB FLOs observed in three  
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Table 4.3.3. Distribution of FLHs of each composite AMR gene.  

 

For each genome, presence and absence of a composite (F), N-terminal component (N), and C-

terminal component are highlighted in a coloured box. In each box a “1” represents presence 

and a “0” represents absence. The presence of a composite, N-terminal component and C-

terminal components are indicated by purple, red and blue colouration, respectively. 

  

  rphA  
 rphB  

 mupA  
 mupB  

Species Clade  F N C  F N C  F N C  F N C 

Heimdallarchaeota archaeon Archaea, Asgard group  0 1 0  0 1 0  1 0 1  1 0 1 

Lokiarchaeota archaeon Archaea, Asgard group  0 0 0  0 0 0  0 0 0  0 0 0 

Korarchaeum cryptofilum Archaea, Candidatus Korarchaeota  0 1 0  0 1 0  1 1 0  1 0 0 

Acidilobus saccharovorans Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  1 0 1 

Caldisphaera lagunensis Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 0  1 0 0 

Aeropyrum pernix Archaea, Crenarchaeota, Thermoprotei  0 1 1  0 1 1  1 1 0  1 0 0 

Desulfurococcus amylolyticus Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 0  1 0 1 

Ignicoccus hospitalis Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  1 0 1 

Ignisphaera aggregans Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  1 0 1 

Staphylothermus marinus Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 0  1 0 1 

Thermogladius calderae Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 1  1 0 1 

Thermosphaera aggregans Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 1  1 0 1 

Hyperthermus butylicus Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  1 0 1 

Pyrolobus fumarii Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 1  1 0 1 

Fervidicoccus fontis Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 0  1 0 0 

Acidianus hospitalis Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 1  1 0 1 

Metallosphaera sedula Archaea, Crenarchaeota, Thermoprotei  0 1 0  0 1 0  1 1 0  1 0 1 

Saccharolobus solfataricus Archaea, Crenarchaeota, Thermoprotei  0 1 0  0 1 0  1 0 1  1 0 1 

Sulfolobus acidocaldarius Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 1  1 0 1 

Sulfurisphaera tokodaii Archaea, Crenarchaeota, Thermoprotei  0 1 0  0 1 0  1 1 1  1 0 1 

Thermofilum pendens Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  1 0 0 

Caldivirga maquilingensis Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 0 0  1 0 0 

Pyrobaculum aerophilum Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 1  1 0 0 

Thermoproteus tenax Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  0 1 0  1 0 0 

Vulcanisaeta distributa Archaea, Crenarchaeota, Thermoprotei  0 0 0  0 0 0  1 1 0  0 0 0 

Archaeoglobus fulgidus Archaea, Euryarchaeota, Archaeoglobi  0 0 0  0 0 0  1 1 1  1 0 1 

Ferroglobus placidus Archaea, Euryarchaeota, Archaeoglobi  0 1 1  0 1 1  1 1 1  1 0 1 
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  rphA  
 rphB  

 mupA  
 mupB  

Species Clade  F N C  F N C  F N C  F N C 

Aciduliprofundum boonei Archaea, Euryarchaeota, Diaforarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanomethylophilus alvus Archaea, Euryarchaeota, Diaforarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanomassiliicoccus intestinalis Archaea, Euryarchaeota, Diaforarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Picrophilus torridus Archaea, Euryarchaeota, Diaforarchaea  0 0 0  0 0 0  1 0 0  1 0 0 

Thermoplasma acidophilum Archaea, Euryarchaeota, Diaforarchaea  0 0 0  0 0 0  1 0 0  1 0 0 

Methanobacterium lacus Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanobrevibacter ruminantium Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanosphaera stadtmanae Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanothermobacter 
thermautotrophicus 

Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 1 1  1 0 1 

Methanothermus fervidus Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 1 1  1 0 1 

Methanocaldococcus infernus Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 1 1  1 0 1 

Methanocaldococcus jannaschii Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanotorris igneus Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanococcus aeolicus Archaea, Euryarchaeota, Methanomada  0 0 0  0 0 0  1 0 1  1 0 1 

Methanopyrus kandleri Archaea, Euryarchaeota, Methanopyri  0 0 0  0 0 0  1 0 1  1 0 1 

Haloarcula marismortui Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  0 1 0  0 0 0 

Halomicrobium mukohataei Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  0 0 0 

Natronomonas moolapensis Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  0 0 0 

Natronomonas pharaonis Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Halalkalicoccus jeotgali Archaea, Euryarchaeota, Stenosarchaea  1 0 0  1 0 0  0 1 0  1 0 0 

Halobacterium salinarum Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  0 1 0  0 0 0 

Haloferax mediterranei Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  0 0 0  0 0 0 

Halogeometricum borinquense Archaea, Euryarchaeota, Stenosarchaea  0 0 0  1 0 0  1 1 0  0 0 1 

Haloquadratum walsbyi Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  0 0 0 

Halopiger xanaduensis Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Haloterrigena turkmenica Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Halovivax ruber Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  0 1 0  0 0 0 

Natrialba magadii Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Natrinema pellirubrum Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Natronobacterium gregoryi Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 0  1 0 0 

Methanocella arvoryzae Archaea, Euryarchaeota, Stenosarchaea  1 0 0  1 0 0  1 0 1  1 0 1 

Methanocorpusculum labreanum Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 1  1 0 1 

Methanoculleus bourgensis Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanolacinia petrolearia Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 1  1 0 1 

Methanoregula boonei Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 1  1 0 1 

Methanosphaerula palustris Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanospirillum hungatei Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 1 1  1 0 1 

Methanosaeta harundinacea Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanothrix soehngenii Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 
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  rphA  
 rphB  

 mupA  
 mupB  

Species Clade  F N C  F N C  F N C  F N C 

Methanococcoides burtonii Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanohalobium evestigatum Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanohalophilus mahii Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanomethylovorans hollandica Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanosalsum zhilinae Archaea, Euryarchaeota, Stenosarchaea  0 0 0  0 0 0  1 0 1  1 0 1 

Methanosarcina acetivorans Archaea, Euryarchaeota, Stenosarchaea  1 1 0  1 1 0  1 1 1  1 0 1 

Pyrococcus furiosus Archaea, Euryarchaeota, Thermococci  0 0 0  0 0 0  1 1 1  1 0 1 

Thermococcus kodakarensis Archaea, Euryarchaeota, Thermococci  0 0 0  0 0 0  1 1 0  1 0 1 

Nanoarchaeum equitans Archaea, Nanoarchaeota, Nanoarchaeales  0 0 0  0 0 0  0 0 0  0 0 0 

Cenarchaeum symbiosum Archaea, Thaumarchaeota, Cenarchaeales  0 0 0  0 0 0  1 1 0  1 1 0 

Nitrosopumilus maritimus Archaea, Thaumarchaeota, Nitrosopumilales  0 0 0  0 0 0  1 1 0  1 0 0 

Nitrososphaera gargensis Archaea, Thaumarchaeota, Nitrososphaeria  0 0 0  0 0 0  1 0 0  0 0 0 

Acidobacterium capsulatum Bacteria, Acidobacteria, Acidobacteriales  0 0 0  0 0 0  0 1 0  0 0 0 

Granulicella mallensis Bacteria, Acidobacteria, Acidobacteriales  0 0 0  0 0 0  0 1 1  0 0 1 

Granulicella tundricola Bacteria, Acidobacteria, Acidobacteriales  0 0 0  0 0 0  0 1 0  0 0 0 

Terriglobus roseus Bacteria, Acidobacteria, Acidobacteriales  0 0 0  0 0 0  0 1 1  0 0 1 

Thermobispora bispora Bacteria, Actinobacteria, Actinobacteria  0 0 0  0 0 0  1 1 1  1 0 1 

Mycobacterium tuberculosis Bacteria, Actinobacteria, Corynebacteriales  0 0 0  0 0 0  1 1 1  1 0 1 

Micrococcus luteus Bacteria, Actinobacteria, Micrococcales  0 0 0  0 0 0  1 1 1  1 0 1 

Streptomyces coelicolor Bacteria, Actinobacteria, Streptomycetales  0 0 0  0 0 0  1 1 1  1 0 1 

Aquifex aeolicus Bacteria, Aquificae, Aquificales  0 0 0  0 0 0  1 1 1  0 1 1 

Hydrogenobacter thermophilus Bacteria, Aquificae, Aquificales  0 0 0  0 0 0  1 1 0  1 1 1 

Thermocrinis albus Bacteria, Aquificae, Aquificales  0 0 0  0 0 0  1 1 1  0 1 1 

Desulfurobacterium 
thermolithotrophum 

Bacteria, Aquificae, Desulfurobacteriales  0 0 0  0 0 0  1 0 1  0 0 1 

Chthonomonas calidirosea Bacteria, Armatimonadetes, Chthonomonadetes  0 0 0  0 0 0  0 1 1  0 0 1 

Salinibacter ruber Bacteria, Bacteroidetes, Bacteroidetes  0 0 0  0 0 0  1 1 1  1 0 1 

Bacteroides thetaiotaomicron Bacteria, Bacteroidetes, Bacteroidia  0 0 0  0 0 0  1 0 1  1 0 1 

Azobacteroides 
pseudotrichonymphae 

Bacteria, Bacteroidetes, Bacteroidia  0 0 0  0 0 0  1 0 0  1 0 0 

Flavobacterium psychrophilum Bacteria, Bacteroidetes, Flavobacteriia  0 0 0  0 0 0  1 0 1  1 0 1 

Cloacimonas acidaminovorans Bacteria, Candidatus Cloacimonetes  0 0 0  0 0 0  1 1 1  1 0 1 

Chlamydia trachomatis Bacteria, Chlamydiae, Chlamydiales  0 0 0  0 0 0  1 1 0  1 0 0 

Protochlamydia amoebophila Bacteria, Chlamydiae, Parachlamydiales  0 0 0  0 0 0  1 1 1  1 0 1 

Parachlamydia acanthamoebae Bacteria, Chlamydiae, Parachlamydiales  0 0 0  0 0 0  1 1 1  1 0 1 

Waddlia chondrophila Bacteria, Chlamydiae, Parachlamydiales  0 0 0  0 0 0  1 1 1  1 0 1 

Chlorobaculum tepidum Bacteria, Chlorobi, Chlorobia  0 0 0  0 0 0  1 1 1  1 0 1 

Caldilinea aerophila Bacteria, Chloroflexi, Caldilineae  0 0 0  0 0 0  1 1 0  1 0 0 

Chloroflexus aurantiacus Bacteria, Chloroflexi, Chloroflexia  0 0 0  0 0 0  1 0 0  1 0 0 

Dehalococcoides mccartyi Bacteria, Chloroflexi, Dehalococcoidia  0 0 0  0 0 0  1 1 0  1 0 0 

Dehalogenimonas 
lykanthroporepellens 

Bacteria, Chloroflexi, Dehalococcoidia  0 0 0  0 0 0  1 1 0  1 0 1 

375



 

  

  rphA  
 rphB  

 mupA  
 mupB  
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Sphaerobacter thermophilus Bacteria, Chloroflexi, Sphaerobacteridae  0 1 1  0 1 1  1 1 1  1 0 1 

Desulfurispirillum indicum Bacteria, Chrysiogenetes, Chrysiogenales  0 0 0  0 0 0  1 1 1  0 0 1 

Coprothermobacter proteolyticus Bacteria, Coprothermobacterota  0 0 0  0 0 0  0 1 1  0 0 1 

Gloeobacter violaceus Bacteria, Cyanobacteria, Gloeobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Cyanobacterium aponinum Bacteria, Cyanobacteria, Oscillatoriophycideae  0 0 0  0 0 0  0 1 1  0 0 1 

Synechocystis sp. Bacteria, Cyanobacteria, Synechococcales  0 0 0  0 0 0  0 1 1  0 0 1 

Prochlorococcus marinus Bacteria, Cyanobacteria, Synechococcales  0 0 0  0 0 0  0 1 0  0 0 1 

Thermosynechococcus elongatus Bacteria, Cyanobacteria, Synechococcales  0 0 0  0 0 0  0 1 1  0 0 1 

Calditerrivibrio nitroreducens Bacteria, Deferribacteres, Deferribacterales  0 0 0  0 0 0  0 1 1  0 0 1 

Deferribacter desulfuricans Bacteria, Deferribacteres, Deferribacterales  0 0 0  0 0 0  0 1 1  0 0 1 

Denitrovibrio acetiphilus Bacteria, Deferribacteres, Deferribacterales  0 0 0  0 0 0  0 1 1  0 0 1 

Deinococcus radiodurans Bacteria, Deinococcus-Thermus, Deinococci  0 1 1  0 1 1  1 1 1  1 0 1 

Marinithermus hydrothermalis Bacteria, Deinococcus-Thermus, Deinococci  0 0 0  0 0 0  1 1 1  1 0 1 

Meiothermus silvanus Bacteria, Deinococcus-Thermus, Deinococci  0 0 0  0 0 0  1 1 1  1 0 1 

Oceanithermus profundus Bacteria, Deinococcus-Thermus, Deinococci  0 0 0  0 0 0  1 1 1  1 0 1 

Thermus thermophilus Bacteria, Deinococcus-Thermus, Deinococci  0 0 0  0 0 0  1 1 1  1 0 1 

Dictyoglomus turgidum Bacteria, Dictyoglomi, Dictyoglomales  0 0 0  0 0 0  1 1 1  1 0 1 

Elusimicrobium minutum Bacteria, Elusimicrobia, Elusimicrobia  0 0 0  0 0 0  0 1 1  0 0 1 

Fibrobacter succinogenes Bacteria, Fibrobacteres, Fibrobacterales  0 0 0  0 0 0  1 1 1  1 0 1 

Bacillus subtilis Bacteria, Firmicutes, Bacilli  1 0 0  1 0 0  0 1 1  0 0 1 

Geobacillus kaustophilus Bacteria, Firmicutes, Bacilli  0 0 0  0 0 0  0 1 1  0 0 1 

Halobacillus halophilus Bacteria, Firmicutes, Bacilli  0 0 0  0 0 0  1 1 1  1 0 1 

Listeria monocytogenes Bacteria, Firmicutes, Bacilli  0 1 0  0 1 0  0 1 1  0 0 1 

Staphylococcus aureus Bacteria, Firmicutes, Bacilli  0 0 0  0 0 0  1 1 1  1 0 1 

Enterococcus faecalis Bacteria, Firmicutes, Bacilli  0 0 0  0 0 0  0 1 1  0 0 1 

Streptococcus pneumoniae Bacteria, Firmicutes, Bacilli  0 0 0  0 0 0  0 1 1  0 0 1 

Clostridium botulinum Bacteria, Firmicutes, Clostridia  0 0 0  0 0 0  1 1 1  1 0 1 

Moorella thermoacetica Bacteria, Firmicutes, Clostridia  0 0 0  0 0 0  1 1 1  0 0 1 

Fusobacterium nucleatum Bacteria, Fusobacteria, Fusobacteriales  0 0 0  0 0 0  1 1 1  0 0 1 

Ilyobacter polytropus Bacteria, Fusobacteria, Fusobacteriales  0 0 0  0 0 0  0 1 1  0 0 1 

Leptotrichia buccalis Bacteria, Fusobacteria, Fusobacteriales  0 0 0  0 0 0  0 1 1  1 0 1 

Sebaldella termitidis Bacteria, Fusobacteria, Fusobacteriales  1 0 0  1 0 0  0 1 1  0 0 1 

Streptobacillus moniliformis Bacteria, Fusobacteria, Fusobacteriales  0 0 0  0 0 0  0 1 1  0 0 1 

Gemmatimonas aurantiaca Bacteria, Gemmatimonadetes, Gemmatimonadales  0 0 0  0 0 0  1 1 1  1 0 1 

Leptospirillum ferrooxidans Bacteria, Nitrospirae, Nitrospirales  0 0 0  0 0 0  0 1 1  0 0 1 

Nitrospira moscoviensis Bacteria, Nitrospirae, Nitrospirales  0 0 0  0 0 0  0 1 1  0 0 1 

Thermodesulfovibrio yellowstonii Bacteria, Nitrospirae, Nitrospirales  0 0 0  0 0 0  1 1 1  0 0 1 

Isosphaera pallida Bacteria, Planctomycetes, Planctomycetia  0 0 0  0 0 0  0 1 1  0 0 1 

Pirellula staleyi Bacteria, Planctomycetes, Planctomycetia  0 0 0  0 0 0  1 1 1  1 0 1 
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Planctopirus limnophila Bacteria, Planctomycetes, Planctomycetia  0 0 0  0 0 0  0 1 0  0 0 0 

Rhodopirellula baltica Bacteria, Planctomycetes, Planctomycetia  0 0 0  0 0 0  1 1 0  1 0 0 

Rubinisphaera brasiliensis Bacteria, Planctomycetes, Planctomycetia  0 0 0  0 0 0  0 0 0  0 0 0 

Caulobacter vibrioides Bacteria, Proteobacteria, Alphaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Bradyrhizobium diazoefficiens Bacteria, Proteobacteria, Alphaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Ehrlichia chaffeensis Bacteria, Proteobacteria, Alphaproteobacteria  0 0 0  0 0 0  1 1 0  1 0 1 

Rickettsia prowazekii Bacteria, Proteobacteria, Alphaproteobacteria  0 0 0  0 0 0  1 1 1  1 0 1 

Bordetella pertussis Bacteria, Proteobacteria, Betaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Burkholderia multivorans Bacteria, Proteobacteria, Betaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Neisseria meningitidis Bacteria, Proteobacteria, Betaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Thiobacillus denitrificans Bacteria, Proteobacteria, Betaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 1 

Pseudodesulfovibrio aespoeensis Bacteria, Proteobacteria, Deltaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Lawsonia intracellularis Bacteria, Proteobacteria, Deltaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Geobacter sulfurreducens Bacteria, Proteobacteria, Deltaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Syntrophobacter fumaroxidans Bacteria, Proteobacteria, Deltaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Campylobacter jejuni Bacteria, Proteobacteria, Epsilonproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Helicobacter pylori Bacteria, Proteobacteria, Epsilonproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Wolinella succinogenes Bacteria, Proteobacteria, Epsilonproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Escherichia coli Bacteria, Proteobacteria, Gammaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Salmonella typhimurium Bacteria, Proteobacteria, Gammaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Shigella dysenteriae Bacteria, Proteobacteria, Gammaproteobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Yersinia pestis Bacteria, Proteobacteria, Gammaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Pseudomonas aeruginosa Bacteria, Proteobacteria, Gammaproteobacteria  0 0 0  0 0 0  0 1 0  0 0 0 

Brachyspira hyodysenteriae Bacteria, Spirochaetes, Brachyspirales  0 0 0  0 0 0  1 1 1  1 0 1 

Leptospira interrogans Bacteria, Spirochaetes, Leptospirales  0 0 0  0 0 0  0 1 0  0 0 0 

Turneriella parva Bacteria, Spirochaetes, Leptospirales  0 0 0  0 0 0  0 1 1  0 0 1 

Borrelia burgdorferi Bacteria, Spirochaetes, Spirochaetales  0 0 0  0 0 0  1 1 0  1 0 0 

Sediminispirochaeta smaragdinae Bacteria, Spirochaetes, Spirochaetales  0 0 0  0 0 0  1 1 0  1 0 1 

Spirochaeta thermophila Bacteria, Spirochaetes, Spirochaetales  0 0 0  0 0 0  1 1 0  1 0 0 

Treponema pallidum Bacteria, Spirochaetes, Spirochaetales  0 0 0  0 0 0  1 1 0  1 0 0 

Acetomicrobium mobile Bacteria, Synergistetes, Synergistia  0 0 0  0 0 0  0 1 1  0 0 1 

Aminobacterium colombiense Bacteria, Synergistetes, Synergistia  0 0 0  0 0 0  0 1 1  0 0 1 

Thermanaerovibrio 
acidaminovorans 

Bacteria, Synergistetes, Synergistia  0 0 0  0 0 0  0 1 1  0 0 1 

Thermovirga lienii Bacteria, Synergistetes, Synergistia  0 0 0  0 0 0  0 1 1  0 0 1 

Acholeplasma laidlawii Bacteria, Tenericutes, Mollicutes  0 0 0  0 0 0  0 1 1  0 0 1 

Onion yellows Bacteria, Tenericutes, Mollicutes  0 0 0  0 0 0  0 1 1  0 0 1 

Mesoplasma florum Bacteria, Tenericutes, Mollicutes  0 0 0  0 0 0  0 1 1  0 0 1 

Mycoplasma genitalium Bacteria, Tenericutes, Mollicutes  0 0 0  0 0 0  0 1 1  0 0 1 
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Thermodesulfatator indicus Bacteria, Thermodesulfobacteria  0 0 0  0 0 0  1 1 1  0 0 1 

Thermodesulfobacterium geofontis Bacteria, Thermodesulfobacteria  0 0 0  0 0 0  0 1 1  0 0 1 

Kosmotoga olearia Bacteria, Thermotogae, Kosmotogales  0 0 0  0 0 0  1 1 1  0 0 1 

Marinitoga piezophila Bacteria, Thermotogae, Petrotogales  0 0 0  0 0 0  0 1 1  0 0 1 

Fervidobacterium nodosum Bacteria, Thermotogae, Thermotogales  0 0 0  0 0 0  1 1 1  1 0 1 

Pseudothermotoga lettingae Bacteria, Thermotogae, Thermotogales  0 0 0  0 0 0  1 1 1  1 0 1 

Thermotoga maritima Bacteria, Thermotogae, Thermotogales  0 0 0  0 0 0  1 1 1  0 0 1 

Methylacidiphilum infernorum Bacteria, Verrucomicrobia, Methylacidiphilae  0 0 0  0 0 0  0 1 0  0 0 1 

Opitutus terrae Bacteria, Verrucomicrobia, Opitutae  0 0 0  0 0 0  0 1 1  0 0 1 

Coraliomargarita akajimensis Bacteria, Verrucomicrobia, Opitutae  0 0 0  0 0 0  0 1 1  0 0 1 

Akkermansia muciniphila Bacteria, Verrucomicrobia, Verrucomicrobiae  0 0 0  0 0 0  0 1 0  0 0 1 
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Euryarchaeota (Halalkalicoccus jeotgali, Methanocella arvoryzae, and Methanosarcina 

acetivorans), in Bacillus subtilis (Firmicutes), and in Sebaldella termitidis (Fusobacteria).  

Both N-terminal and C-terminal component FLHs are observed in four distantly related 

species, Aeropyrum pernix (Crenarchaeota), Ferroglobus placidus (Euryarchaeota), 

Sphaerobacter thermophilus (Chloroflexi), and Deinococcus radiodurans (Deinococcus-

Thermus). N-terminal component FLOs were also observed in the Heimdallarchaeota archaeon 

(Asgard clade), in Korarchaeum cryptofilum (Korarcheaota), in three Crenarchaeota 

(Metallosphaera sedula, Saccharolobus solfataricus, and Sulfurisphaera tokodaii), in two 

Methanosarcina acetivorans (Euryarchaeota) and in Listeria monocytogenes (Firmicutes). C-

terminal FLOs were only observed in conjunction with N-terminal FLOs. 

 Representative C- and N-terminal bona fide components (D1C8T8_SPHTD and 

D1C8T7_SPHTD for rphA and rphB were selected from Sphaerobacter thermophilus (Figures 

4.3.1.-2.). D1C8T8_SPHTD was reported to be a phosphoenolpyruvate (PEP) utilizing protein 

mobile region in UniProt and as ENOG4106850 (phosphoenolpyruvate synthase) in EggNOG 

v5. Comparatively, D1C8T7_SPHTD was identified as a pyruvate phosphate dikinase 

PEP/pyruvate-binding protein in UniProt and as ENOG4107R95 (pyruvate kinase (by 

similarity) in EggNOG v5 (Huerta-Cepas et al., 2018). D1C8T8_SPHTD shared a PEP 

utilizing mobile domain (PF00391) with the N-termini or rphAB and a pyruvate phosphate 

dikinase, PEP/pyruvate binding domain (PF01326) with the rphAB C-termini. 

 

4.3.4.2. Mupirocin resistance 

 

 Two mupirocin resistance genes (ARO:3000510 (mupA) and ARO:3000521 (mupB)) 

were reported to be composites. Mupirocin is administered for topical Firmicute infections, 

especially MRSA infections (Troeman et al., 2019). Mupirocin inhibits protein synthesis  
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Figure 4.3.1. Representative composite-component alignments for rphA  

 

Both homologous domains are located towards the termini, with no observed homology within 

the centre. rphA shares a pyruvate phosphate dikinase domain (PF01326) with D1C8T8 along 

their N-termini. rphA and D1C8T7 share a PEP utilizing mobile domain (F00391) along their 

C-termini.  
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Figure 4.3.2. Representative alignments for an rphB composite gene.  

 

rphB is almost idistinguishable from rphA. Both homologous domains are located towards the 

termini, with no observed homology within the centre. rphB shares a pyruvate phosphate 

dikinase domain (PF01326) with D1C8T8 along their N-termini. rphB and D1C8T7 share a 

PEP utilizing mobile domain (F00391) along their C-termini.  
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through reversible t-RNA synthetase binding (Martin and Simpson, 1989). Both low-level and 

high-level mupirocin resistance types have been reported. Low-level resistance is hypothesised 

to arise through cumulative point mutations in wild type ileS, whereas level resistance is 

conferred by two distinct loci, mupA and mupB, which are reported to display considerable 

sequence differences to wild type ileS (Gilbart et al., 1993; Cookson, 1998) 

Both mupA and mupB share bona fide C-terminal FLOs (SYM_LISMO was selected 

as a representative), however no mutual bona fide N-terminal FLH was observed so 

SYL_HELPY was selected as a representative for mupB and D3DI52_HYDTT for mupA. An 

overlapping alignment was observed between both components in both cases (Figures 4.3.3.-

4.). 

 SYL_HELPY (leuS) was identified as Helicobacter pylori leucine--tRNA ligase (E.C: 

6.1.1.4) using UniProtKB (Bateman et al., 2017). D3DI52_HYDTT was also identified as 

leucine--tRNA ligase (leuS) from Hydrogenobacter thermophilus. Conversely, SYM_LISMO  

 (metG) was identified as Listeria monocytogenes methionine--tRNA ligase (E.C: 6.1.1.10). 

Both mupA and mupB (mupAB) share a tRNA synthetases class I (I, L, M and V) domain 

(PF00133) with leuS and a tRNA anticodon binding domain (PF08264) with metG. mupAB 

were reported to contain just these two PFAM domains. Interestingly, two PFAM domains 

were observed in leuS and in metG that are not present in the other component or in mupAB. 

leuS was reported to contain an additional tRNA synthetases class I (M) domain (PF09334) 

and a leucyl-tRNA synthetase, domain 2 (PF13603). Comparatively, metG was observed to 

also contain a tRNA binding domain (PF01588) and a tRNA synthetases class I (M) domain 

(PF09334).  

mupA FLHs were distributed across the dataset (Table 4.3.3.). Interestingly, no mupA 

FLOs were observed in the phyla Acidobacteria, Cyanobacteria, Deferribactres, Fusobacteria, 

Tenericutes, Proteobacteria, or Verrucomicrobia. mupA N-terminal component FLHs were  
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Figure 4.3.3. Representative composite-component alignments for mupA  

 

Both homologous domains are located towards the centre. The N-terminal component 

(D3D152) and mupA share a tRNA synthetases class I (I, L, M and V) domain (PF00133) and 

the C-terminal component (SYM) share a tRNA anticodon binding domain (PF0268). mupA 

displays a “fused alignment” where both the alignments of both components partially overlap 

against the composite, resulting in a long alignment, unlike the “polarised” alignments 

observed in rphAB.  
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Figure 4.3.4. Representative composite-component alignments for mupB  

 

Both homologous domains are located towards the centre. The N-terminal component 

(D3D152) and mupA share a tRNA synthetases class I (I, L, M and V) domain (PF00133) and 

the C-terminal component (SYM) share a tRNA anticodon binding domain (PF0268). mupB 

displays a “fused alignment” where both the alignments of both components partially overlap 

against the composite, resulting in a long alignment, unlike the “polarised” alignments 

observed in rphAB.  
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observed in a patchy distribution across the archaea but were almost ubiquitous across the 

bacteria. mupA C-terminal component FLHs were also relatively evenly distributed across the 

bacteria, however no FLHs were observed within the Spirocheates or Betaproteobacteria.  

 

4.4. Discussion 

 

 4.4.1. compositeBLAST is a useful tool for composite detection 

 

 In this chapter we have presented compositeBLAST to be a valuable tool for detecting 

and visualising high quality composite genes. We have demonstrated that compositeBLAST to 

be more sensitive than fdfBLAST (recovering an order of magnitude more genes than those 

found by Leonard and Richards (2012)).  

 The parameters for composite detection via homology statistics alone, while good for 

determining relationships between two sequences, may not be adequate for composite detection  

through the lens of “fusion” and “fission”. The restriction of multiple HSPs aids in the 

reduction of Type I errors that may be encountered when using tools such as CompositeSearch 

(Pathmanathan et. al., 2018). As compositeBLAST requires a degree of domain conservation 

between the composite and each component and for there to be no domain conservation 

between both components we believe this tool to be highly selective, depending on input data 

quality. Composite genes have the potential for resolving trifurcations in phylogenies and 

evolutionary histories (Leonard and Richards, 2012). As compositeBLAST provides a “middle 

ground” between CompositeSearch and fdfBLAST (in terms of sensitivity and selectivity), it 

may be used to detect previously unknown evolutionary traits throughout the tree of life. The 

sensitivity and selectivity of compositeBLAST is further exemplified by the rate of composite 
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emergence in plants between those detected by compositeBLAST and those detected by 

Nakamura and company (2007). 

 

4.4.2. Efficacy of detecting clinically relevant composite genes 

 

 Composite genes, specifically fusion genes, are aetiologies of many cancers due to the 

disruption of signalling cascades (Mitelman et al. , 2007; Liu et al., 2009; Stransky et al., 

2014). Differential gene fusion events between hosts and pathogens are also potential targets 

for increased success in the treatment of infectious diseases (Trimpalis et al., 2013). By 

detecting genes from metabolically important pathways that are fused in the host and unfused 

in the pathogen, or vice versa, it is possible to use these as pathway disruptive targets. We 

identified four AMR genes that confer resistance to mupirocin and ripamycin to be composites. 

 While composite genes have been implicated in secondary metabolite and AMR 

evolution (Coleman et al. 2014), the extent of such processes on the evolution of pathogenicity 

is yet to be elucidated. Therefore, compositeBLAST could be used to decipher such 

relationships and aid in the development of new treatment regimens for emerging and persistent 

infectious microorganisms.  

 

4.5. Conclusion 

 

We have demonstrated the efficacy of compositeBLAST in detecting bona fide 

composite genes and by using compositeBLAST we were able to identify two classes of AMR 

genes as composite genes which have not been previously reported. Considering the wealth of 

high quality genomes available, compositeBLAST provides a mechanism to detect previously 

unknown high-confidence gene remodelling events which may highlight previously unknown 

evolutionary relationships, and may be used to help resolve trifurcations in phylogenies. 
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Chapter V 

 

Concluding Remarks and Future Work 
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5.1 Concluding remarks 

 

It is evident that the evolution of genes and of genomes is not dependant on a vertical 

model of inheritance (Haggerty et al., 2014). It has been long established that prokaryote 

genomes frequently evolve through horizontal gene transfer (Kurland et al., 2003; Groussin et 

al., 2016), and more recently, evidence of horizontal gene transfer (HGT) between eukaryotes 

(Fukatsu, 2010) and interdomain HGT (McCarthy and Fitzpatrick, 2016). These genes can lead 

to incongruent phylogenies and, as such, are quite often cause misrepresentation and incorrect 

placement of taxa during the construction of prokaryote superalignments (Puigbò et al., 2009, 

2010). Comparatively gene evolution while once thought to be mostly under a model of vertical 

inheritance, displays striking evidence of horizontal evolution through the transfer and 

rearrangement of domains (Yanai et al., 2002; Leonard and Richards, 2012; Jachiet et al., 2013; 

Haggerty et al., 2014; McLysaght and Guerzoni, 2015; Pathmanathan et al., 2018). The extent 

of sequence rearrangement and the sharing and merging of gene domains was not fully 

appreciated until the development of CompositeSearch due to computational restrictions 

(Pathmanathan et al., 2018). Reconstructing evolutionary histories of genes through the lens of 

gene remodelling uncovers previously unseen or underappreciated trends, relying more on a 

network model as opposed to a simple tree model.  

In Chapter 2, the methodology and network based detection mechanism of 

CompositeSearch were introduced. We benchmarked the functionality of CompositeSearch on 

a dataset of fungal genomes previously used to detect remodelling events (Leonard and 

Richards, 2012) where it was deemed to be a highly sensitive detection tool. Alignments 

between composite and component genes usually display fragmented homologies 

(Pathmanathan et al., 2018), Type I errors in composite detection could easily arise due to poor 

gene calls or incorrect genome assemblages. As a precaution, we designed and statistically 
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modelled a quality control procedure to reduce the Type I error rate. It was observed that 

restricting a composite family to contain 2 or more bona fide composite genes and restricting 

component families to contain 2 or more members sufficed to remove additional Type I errors 

in 100 repeated controlled experiments. We performed a CompositeSearch analysis on 107 

fungal genomes (1,150,918 genes). We found that 9.71% (111,768) genes could not be 

analysed due to low complexity or being identified as a singleton gene. It was observed that 

49.94% of all genes (55.31% of all sampled genes) displayed a history of remodelling, of which 

376,968 (32.76% of all genes and 36.28% of sampled genes) were identified as composites. 

We did not anticipate so many genes to display a history of remodelling based on previous 

studies (Nakamura et al., 2007; Leonard and Richards, 2012). We plotted the presence and 

absence of remodelled gene families to an independently derived phylogeny and did not 

observe any bursts of evolution attributed to any branch for any remodelling category. These 

results suggest that successful remodelling events, remodelling events that persist post-

speciation events, are clocklike in fungi, evolving at a stable pace. The observation of an 

profound increase in remodelling within nodes representing speciation events when compared 

to internal nodes further lend evidence this hypothesis. We observed that between 43.9% and 

47.7% of families from remodelled categories (nested composites, strict composites, and strict 

component families) were homoplastic, which was in stark contrast to the 30.5% of 

homoplastic non-remodelled families. This rate of homoplasy suggests that convergent 

remodelling occurs at a relatively high rate, possibly as a rapid response to a stressor. Again, 

this was compounded when we observed composite genes to be functionally overrepresented 

for the production of secondary metabolites and small molecule transport. We also observed 

that remodelled gene families were enriched for a bacterial or undefined prokaryotic origin, 

whereas eukaryote specific genes families were more likely to be non-remodelled. 
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In chapter 3, we investigated the extent of gene remodelling in 50 Viridiplantae 

genomes (1,672,377 genes) using CompositeSearch. We observed a much higher rate of 

remodelling in plants when compared to fungi. In total, we observed nested composite, strict 

composite, strict component, and non-remodelled genes to account for 46.33%, 2.9%, 11.72% 

and 29.24% of the entire dataset, and 65.48%, 4.1%, 16.57%, and 13.86% of sampled genes. 

Like fungi, we observed plants to display a stable rate of remodelled gene acquisition and 

decay, where evolutionary bursts were only observed during speciation events where 

organisms have underwent significant chromosomal and genomic restructuring (for example, 

the speciation of the hexaploid Triticum aestivum). Again, with respect to the phylogeny, 

considerable differences were observed in the evolutionary rate of leaf nodes and internal 

branches, further compounding the hypothesis that remodelling events occur much more 

frequently during speciation events. We found the same categories of remodelled genes to be 

more homoplastic than in fungi. We observed remodelled categories to be 42-60.9% 

homoplastic (compared to 43.9-47.7%) and non-remodelled categories to be 35% homoplastic. 

We observed remodelled genes to be enriched for stress responses and metabolism as in fungi, 

but also for photosynthesis and multicellular development (via transcription factor 

remodelling). A considerable proportion of genes enriched for transcriptional regulation were 

found to be involved in multicellularity, and were found to emerge during major phenotypic 

transitions in plant evolutionary history. This highlights the evolutionary importance of gene 

remodelling in the evolutionary history of the green tree of life. We observed remodelled plant 

gene families to be enriched for a prokaryote origin, and eukaryote specific gene families to be 

non-remodelled, mirroring what we observed with fungi. 

In Chapter 4, we developed compositeBLAST, a sensitive and selective tool for the 

detection of gene remodelling events. We found compositeBLAST to be a fast and intuitive 

tool. From a functional perspective, we found compositeBLAST to be more sensitive than 
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fdfBLAST, and were able to recover 10 times more composite genes than those reported by 

Leonard and Richards (2012) when we replicated our  procedure on the dataset they used for 

composite detection in fungi. We report compositeBLAST to be more selective than 

CompositeSearch for the detection of polarised remodelling events, such as gene fusions and 

fissions due to the exclusion of multiple HSP derived homology and due to the requisite for 

the conservation of domains between composites and components which lend further 

robustness in our results. We detected two unreported classes of antimicrobial resistance genes 

as composites conferring resistance to mupirocin and rifamycin using CompositeBLAST. 

These results illustrate the importance of composite gene detection not just in 

macroevolutionary biology studies but also for observing trends in microevolution such as in 

the rapid emergence of AMR. 

 

5.2. Future work 

 

 Evolutionary analyses have become more nuanced and informative as the number of 

high quality genome assemblies continues to expand. In our analyses of 107 fungi and 50 plants 

we observed some highly interesting results, however we feel that we just scratched the surface 

of the extent of gene remodelling. With a greater sample size of genomes that cover a broader 

range of taxa, more interesting and previously unreported phylogenomic trends may come to 

light. It would be interesting to observe the rate of remodelling in fungal and plant species that 

were previously unavailable to us either due to the genomes not being available or due to low 

quality assemblages. In particular, it would be interesting to observe the rate of remodelling in 

non-Dikarya species. Dikarya accounted for 101 of 107 of our species, so undoubtedly, results 

were biased due to the lack of available, reliable non-Dikarya genomes during the time of 

analysis. Similarly, in plants 38 of 50 were angiosperms, due to the lack of reliable, non-
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angiosperm genomes. There are a wealth of genomes that we could have used for the plant 

analyses to help correct these biases, however, these were constructed from transcriptomes 

(Van Bel et al., 2018) so they would not have been useful for the detection of remodelling 

genes due to Type I errors arising from alternative transcripts appearing as composites and 

components of each other. It would be of considerable interest to observe the rate of 

remodelling in other clades such as the Metazoa or ‘protists’, and within the Prokaryotes. 

Ultimately, a large study encompassing all domains of life would likely uncover considerable 

previously unseen evolutionary trends. Further development of compositeBLAST to 

encompass DNA alignments (BLASTN), and transcription alignments (BLASTX and 

tBLASTn) in addition to protein alignments would provide a tool for the detection of polarised 

composites in transcriptomes, untranslated genomes, and in entities that do not have a protein 

complement, for example viroids. We aim to implement GFF2/GFF3 parsing to decipher the 

location of genes within a genome to flag adjacent component genes for manual curation in an 

attempt to further reduce Type I errors. We aim to perform compositeBLAST on larger, more 

diverse datasets in future studies to uncover trends in polarised composite evolution throughout 

the domains of life.  

 

5.3. Final remark 

 

 Gene remodelling is a relatively unexplored evolutionary concept. As the rate of 

genome sequencing and curation rises, the material to uncover remodelled gene evolutionary 

trends also grows. We must stop observing gene evolution through the lens of a vertically-

exclusive model if we are to begin to understand the vast complexities observed throughout 

the Network of Life. 
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