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Switching Stability of Automotive Roll Dynamics Subject to Interval Un-
certainty
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In this paper we apply some recent results on the stabilignaiched systems with interval uncertainty for analyzing toll

stability of automotive vehicles subject to bounded pataimencertainties and switching. The application is matiad by the
fact that the roll dynamics of an automotive vehicle is atéeldn a significant and a nonlinear fashion due to possilddes
switches in the vehicle’s center of gravity (CG) height, agdl\as the uncertainty in the suspension parameters. ldtlia

recent stability result, it is possible to model such partaimeariations as bounded interval uncertainties for fhisblem,
and obtain easily verifiable conditions for analyzing thebgity of the resulting switched/uncertain system.
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1 Introduction

The problem of determining whether or not a family of switdthencertain linear systems is stable has been the subject
of a considerable amount of research in the recent years. s@eteresult was proposed recently in [1, 2] for the case of
interval matrix families in companion form. Specificalljiig result is about checking the existence of a common qtiadra
Lyapunov function (CQLF) for two families of Hurwitz compiam matrices, each of which is independently subject tauatie
uncertainty. We first state this recent result and then gigeaatical application, which utilizes the result for chikthe
stability of automotive roll dynamics subject to uncertgiim the suspension parameters and switching in the CG heigh

We denotesZ and% as interval companion matrix families R"", each of which consist of companion matrices with
bounded uncertain elements as described below

o/ ={C(ag,...,an_1) ER™ " <a <7}, #={C(by,...,bh 1) eER”": <b <b} for 0<i<n-1 (1)

whereC(ay, ..., a,_1) denotes thel" order companion matrix. In analogy with the Kharitonov paynials [2], we construct
the following four Kharitonov matrices corresponding te thterval matrix family.c

A1:C(§O7§15325§37"')7 A2:C(§07317325§35§47"')7 A3:C(307§17§2533a§47"')7 A4:C(307§17§25§35"') (2)

The matrice®,,B,,B3,B4 can be defined in the same manner for the famélyThe following result is useful for checking the
stability of switched systems, where the constituent systatrices belong to certain subsetsf 4.

Theorem 1.1 [1, 2] Consider the interval matrix families/, % as described in (1), and assume that all the matrices
belonging tae’, % are Hurwitz. Then for every pair of LTI systems of the fors Ax, x = Bx with A€ o7, B € % to have a
CQLF, itis necessary and sufficient that none of the eightimptoducts

A1By , A1Bs, AoB1, AoBy, AgB1, AsBy, AuB:, A4Bs,
has a negative real eigenvalue.

2 Switching automotive roll dynamics subject to interval uncertainty

Here we demonstrate how the Theorem 1.1 can be utilized tckohibether the roll dynamics of an automotive vehicle is
stable under switching, when also subject to parametriettainties in the suspension parameters. The example igsatent
by the fact that the roll dynamics of a road vehicle can chasigeificantly as a result of sudden switches in its center of
gravity (CG) height. Also, the suspension parameters artforoll center can change depending on many factors (e.g.,
changes in vehicle speed, aerodynamic forces, suspens@ndiry, tire pressure, temperature etc.), which alsataftsl
dynamics stability. As these factors are difficult to modehicomprehensive model, one can instead use a simple firdari
roll plane model with a linear spring and damper, and furtissume that these linear parameters have bounded untertain
Assuming that the sprung mass of the vehicle rolls about @ fixaizontal roll axis along the centerline of the vehicle
body relative to the ground, and also that all angles arelsthalequations describing the roll plane motion of an auttive
vehicle can be expressed in the following state space fotmneference to Figure 1
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Tablel Second order linear roll plane model parameter definitiomsthaeir representative numerical values.

Parameter Numerical Value  unit definition
m 1200 (kg vehicle mass
Jxx 500 [kg-m?) roll moment of inertia of the vehicle about the CG
hy, hy 0.5, 0.8 [m] CG height measured over the ground (corresponding to caafign 1 & 2, respectively)
k, k 40000, 30000 [kg-m?/s?]  roll spring stiffness (upper & lower bounds, respectively)
[

T, § 8000, 4000 kg-n?/s roll damping coefficient (upper & lower bounds, respectiyel

whereay is the lateral acceleratiog,is the roll angle, andy,, = Jxx+ mi? denotes the equivalent roll moment of inertia.
Now consider a scenario where the CG height can randomlglswigtween the two valués= {h;,hy}. Further assume

that the uncertainties in the linear suspension stiffkessd the linear damping coefficieoican be expressed as bounded

interval uncertainties such thiat [k, k] andc € [c,T|. We are interested in stability of the roll dynamics subfet¢he switching

in the CG heighh, and uncertainties in the linear suspension param&tersunder these assumptions, the roll dynamics

evolve according to the following two matrix familidse <7 andB € % depending on the CG height configuration

0 1 0 1
A=| _kmgh _ ¢ |, B=| _kmh _ c |, 4)
‘]Xeql ‘]Xeql ‘]Xeqz ‘]Xeqz
wheredyg,; = Jx+ miy for i = {1,2}. Further we define the following auxiliary parameters
_ k—mgh —_c — k-mgh __c_
% ‘]Xeql ’ A ‘]Xeql ’ bo J"eqz ’ b2 J"eqz (5)

wherek € [k,k] andc € [c,T]. Then, we can cast the resulting family of system matrices {3) into the notation given in (1).
This results in the following two™' order interval matrix families in companion form

o/ ={C(ag,a1) : @ € [ap,30], a1 € [ay,81]} & ={C(bo,b1) : bo € [by,bo], b1 € [by,b1]}. (6)
Utilizing the numerical values given Table 1 and making ushe expressions (2), one can obtain the following 8 Khanto
matrices that belong to the Hurwitz matrix families, and.#

A; =C(30.14255), Ay =C(30.1425 10), Az =C(4264255), A4 =C(42.6425 10),
By = C(16.23223.1546, B, =C(16.23226.3091), B;=C(24.11863.1546), B4=C(24.11866.3091).

The eigenvalues of the eight matrix products of Theoremd shown in Figure 2. As none of the matrix products have
negative real eigenvalues, there exists a CQLF for any gaiatricesA € <7, B € 4. Thus, the described switching®
order automotive roll dynamics model subject to boundecetttamty in the suspension parameters is stable by Theorem 1
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_ Fig. 2 Eigenvalues of the 8 matrix products of Theorem 1.1
Fig. 1 2" order roll plane model. for the switched/uncertain automotive roll dynamics model
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