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IL-10 is a potent immunoregulatory and anti-inflammatory cytokine. However, ther-

apeutic trials in chronic inflammation have been largely disappointing. It is well estab-

lished that IL-10 can inhibit Th1 and Th2 cytokine production via indirect effects on APC.

Less data are available about the influence of IL-10 on IL-17 production, a cytokine which

has been recently linked to chronic inflammation. Furthermore, there are only few reports

about a direct effect of IL-10 on T cells. We demonstrate here that IL-10 can directly

interfere with TCR-induced IFN-c production in freshly isolated memory T cells in the

absence of APC. This effect was independent of the previously described effects of IL-10 on

T cells, namely inhibition of IL-2 production and inhibition of CD28 signaling. In contrast,

IL-10 did not affect anti-CD3/anti-CD28-induced IL-17 production from memory T cells

even in the presence of APC. This might have implications for the interpretation of ther-

apeutic trials in patients with chronic inflammation where Th17 cells contribute to

pathogenesis.
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Introduction

IL-10 was first described as a factor produced by Th2 cells, which

inhibits cytokine production by Th1 cells [1]. Since then it has

emerged that IL-10 is also produced by APC and that it can also

inhibit cytokine production by Th0 and Th2 cells. Nevertheless, it

is still unclear how exactly this inhibition is mediated on a

molecular level and whether all T-cell subpopulations are equally

affected by IL-10.

It has been demonstrated that a great amount of the inhibitory

activity of IL-10 on T cells is indirect and results from its effects

on APC. IL-10 down-regulates surface expression of MHC class II

and of several co-stimulatory molecules on APC, such as CD80/86

and ICAM-1, and thereby strongly impairs their antigen-

presenting capacity [2–4]. In addition, it influences the produc-

tion of several soluble mediators including IL-1, IL-6, IL-12, IL-18

and TNF-a [5–7], which support T-cell activation and differ-

entiation into Th1 cells. In line with this, we have previously

demonstrated that the inhibitory effect of IL-10 on cytokine-

induced IFN-g production by T cells is entirely dependent on the

presence of CD141 cells and that it can be overcome by the

addition of exogenous cytokines [8]. However, T cells express

IL-10 receptors and a few direct inhibitory effects of IL-10 on

naı̈ve T cells have been described, such as the inhibition of IL-2

production and more recently, the inhibition of CD28 signaling

[9–11]. A transient activation of SHP-1 by IL-10 was suggested to

mediate the inhibition of CD28 and also ICOS signaling [12].

Despite its broad anti-inflammatory profile, therapeutic trials

with IL-10 to dampen an ongoing chronic inflammation have

been largely disappointing (reviewed in [13]). The reasons for

this are rather unclear. Chronic inflammation is thought to be

driven by uncontrolled effector memory T-cell activation. It has

been suggested that IL-10 has no direct effects on antigen-primed

T cells because they would loose IL-10RI expression after
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activation [14]. In the past, many chronic inflammatory diseases

were linked with an excessive Th1 response, with IFN-g as the

detrimental effector cytokine. However, later reports demon-

strated that IFN-g is necessary for the activity of regulatory T cells

[15] and that it has also a role in limiting inflammation [16]. It

now emerges that excessive production of IL-17 from Th17 cells

might be an even more decisive factor in chronic inflammation

(reviewed in [17, 18]). Whereas several factors which negatively

regulate Th17 cell development have been described [19, 20], it

is unknown which factors can restrict an already established

memory IL-17 production.

Therefore, we analyzed the effect of IL-10 on various T-cell

subpopulations regarding their TCR-induced IFN-g and IL-17

production. In contrast to earlier reports [11, 12, 21], we found

that IL-10 can inhibit TCR-induced IFN-g production in freshly

isolated memory T cells in the absence of APC. However, we could

not detect any direct inhibitory effect on Th17 cells regarding their

anti-CD3-induced IL-17 production. Furthermore, in the presence

of APC, IL-10 had a lower capacity to inhibit antigen-induced IL-17

production compared with IFN-g production in T cells. These

results may help to understand why the success of IL-10 therapy in

an ongoing chronic inflammation has its limitations. IL-10 inhibits

IFN-g stronger then IL-17 after antigen presentation via APC.

Results

IL-10 inhibits IFN-c and to a lesser extent, IL-17 after
antigen presentation via APC

IL-10 is known to inhibit the production of a wide range of T-cell

cytokines by reducing antigen presentation and co-stimulation

mediated by APC. To test whether this also applies for IL-17

production, we compared the ability of IL-10 to inhibit antigen-

dependent production of IFN-g and IL-17, respectively. We

choose a fungal stimulus as antigen because they are known

inducers of IL-17. Therefore, we stimulated PBMC with Candida

albicans antigen in the absence or presence of IL-10 for 72 h

(Fig. 1A). Under these conditions, IL-10 can exert its inhibitory

effect on APC and T cells. Antigen-induced IFN-g and IL-17

production in the absence of IL-10 were comparable between IFN-g
and IL-17 with a median of around 350 pg/mL. As expected, IL-10

was able to inhibit both IFN-g and IL-17 production (each with

po0.05, Fig. 1A). However, the inhibitory effect on IFN-g
production was significantly stronger than on IL-17 production

(po0.05, Fig. 1A). This indicates that IL-10 might use different

mechanisms for inhibiting IFN-g and IL-17 production, respectively.

IL-10 interferes with TCR-induced IFN-c but not IL-17
in freshly-isolated PBMC

We next asked whether IL-10 would be able to inhibit IFN-g
and/or IL-17 production independently of its ability to down-

regulate antigen presentation and co-stimulatory molecules on

APC. Hence, we provided TCR- and co-stimulation through plate-

bound antibodies against CD3 and CD28. PBMC were stimulated

for 24 h in the presence or absence of IL-10 before IFN-g and

IL-17 production were measured in the supernatants by ELISA.

IL-10 significantly inhibited TCR-induced IFN-g production

(po0.05, Fig. 1B), but only had a weak and non-significant

inhibitory effect on IL-17 production (Fig. 1B). Similar effects

were seen on the mRNA level: IL-10 inhibited TCR-induced IFN-g
mRNA production by 80% (po0.05, Fig. 1C), but did not affect IL-

17 mRNA induction (Fig. 1C).

These data were confirmed by assessing intracellular cytokine

production in anti-CD3/anti-CD28-stimulated PBMC. For this, we

added Brefeldin A only during the last 6 h of TCR-stimulation in

order to avoid any interference of Brefeldin A with the inhibitory

activity of IL-10. IL-10 reduced the percentage of IFN-g-producing

CD41 as well as CD81 T cells, but did not affect IL-17-producing

T cells (Fig. 1D). IL-10 did not affect the activation of T cells in

general, as we saw no difference in the percentage of CD25-

expressing T cells in the presence or absence of IL-10 (data not

shown). Other T-cell activation markers such as HLA-DR, another

marker for acute activation and CD57, a marker for chronic

activation, were also largely unaffected by IL-10 (data not

shown).

Inhibitory effect of IL-10 on TCR-induced IFN-c is
independent of IL-2

IL-2 is an important cofactor for IFN-g production by enabling

mRNA transport and translation [22, 23]. Furthermore, it has

been reported that exogenous addition of IL-2 abrogates the

inhibitory effects of IL-10 on T-cell proliferation [10]. Indeed, we

could confirm that the presence of exogenous IL-2 abrogated the

anti-proliferative effect of IL-10 on T cells (Fig. 2A). In contrast, it

did-not influence the inhibitory effect of IL-10 on IFN-g
production (Fig. 2B). Furthermore, exogenous addition of IL-2

did neither influence IL-17 production in presence nor absence of

IL-10 (data not shown). These results pointed toward a so far

unknown direct effect of IL-10 on IFN-g production independent

of IL-2 repression. Furthermore, because the amount of IFN-g
induction was higher in the presence of IL-2, we decided to add

IL-2 throughout the following experiments.

IL-10 directly inhibits TCR-induced IFN-c production in
the absence of APC

The IL-10-induced inhibition on IFN-g production after direct

T-cell-stimulation with plate-bound anti-CD3/anti-CD28 mAb in

the presence and absence of exogenous IL-2 suggested an

(i) APC- and (ii) IL-2-independent mode of inhibition. However,

in our previous work, we demonstrated the necessity of CD141

monocytes for the inhibitory effect of IL-10 on cytokine-induced

IFN-g production by T cells [8]. We therefore wondered whether
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this is also the case for TCR-induced IFN-g production. Hence, we

depleted CD141 monocytes from freshly isolated PBMC and then

stimulated the remaining cells with anti-CD3/anti-CD28 mAb and

IL-2 in the presence or absence of IL-10 for 24 h. IL-10 strongly

inhibited TCR-induced IFN-g production also in the absence of

CD141 APC (po0.05, Fig. 3A). To exclude an effect of CD14�

APC such as B cells, we further purified the CD14-depleted PBMC

by an additional step of CD41 selection. This procedure yielded

highly purified CD41 T cells (on average 99%). IL-10 still

significantly inhibited TCR-induced IFN-g production, even

though the effect was now less pronounced than with depletion

of CD141 APC alone (po0.05, Fig. 3A). Similar results were

obtained after MACSTM purification of CD41 T cells either by

direct CD41 selection or by CD4-untouched separation (data not

shown). The observed inhibitory effect of IL-10 was not due to an

inhibition of cell proliferation during the 24 h of stimulation, as

was confirmed by 3H-dTTP-incorporation (data not shown).

In conclusion, IL-10 had a direct inhibitory effect on TCR-

induced IFN-g production by CD41 T cells in the absence of APC

and the presence of IL-2.
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Figure 1. IL-10 does inhibit TCR-induced IFN-g but not IL-17 production in freshly isolated PBMC. (A) Human PBMC from healthy blood donors
were activated with C. albicans antigen for 72 h in the presence (white bars) or absence (gray bars) of IL-10 (10 ng/mL). Supernatants were collected
for IFN-g and IL-17 analyses by ELISA. The amount of IFN-g or IL-17 in the absence of IL-10 was set to 100% for each individual donor, and IL-10
inhibition related to it. The absolute values ranged from 173 to 4453 pg/mL for IFN-g and from 235 to 513 pg/mL for IL-17 in the non-inhibited
samples. Results shown are averages from five independent experiments (7SD). (B) Human PBMC from healthy blood donors were activated with
immobilised anti-CD3/anti-CD28 mAb (1 mg/mL each) and IL-2 (100 U/mL) for 24 h in the presence (white bars) or absence (gray bars) of IL-10 (10 ng/
mL). Supernatants were collected thereafter and IFN-g and IL-17 levels analyzed by ELISA. The amount of IFN-g or IL-17 after anti-CD3/anti-CD28
treatment in the absence of IL-10 was set to 100% for each individual donor, and IL-10 inhibition related to it. The absolute values ranged from 9.4
to 427 ng/mL for IFN-g and from 0.9 to 1.5 ng/mL for IL-17 in the non-inhibited samples. Results shown are averages from five independent
experiments (7SD). (C) Following the same stimulation setup as described for (B), RNA was extracted from cells and IFN-g and IL-17 mRNA levels
were determined by Real-Time RT-PCR and normalized to the expression of the house keeping gene HPRT. The amount of IFN-g or IL-17 mRNA
following anti-CD3/anti-CD28 treatment without IL-10 incubation (gray bars) was set to 100% for each individual sample and IL-10 inhibition
(white bars) related to this. Results shown are averages from five independent experiments (7SD). Significant differences as calculated by
Wilcoxon test (po0.05) are indicated by an asterisk (�). (D) PBMC were TCR-stimulated for 24 h by anti-CD3/anti-CD28 mAb (1 mg/mL each) and
Brefeldin A added for the last 6 h. Cells were then stained with a mixture of CD3/CD4 and CD3/CD8 mAb, respectively, and intracellular IFN-g and
IL-17 production in CD41 and CD81 T cells was analyzed by flow cytometry. Data from one representative out of three experiments are shown.
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IL-10 inhibition of TCR-induced IFN-c is not overcome
by blocking SHP-1

In contrast to naı̈ve T cells, antigen-primed T cells do not need co-

stimulation for re-activation. Previous work suggested that IL-10

does not inhibit memory T cells, because T-cell proliferation

induced by anti-CD3 in the absence of co-stimulation was not

inhibited by IL-10 [11, 12, 21]. We therefore aimed to analyze

the effect of IL-10 on TCR-induced IFN-g and IL-17 production by

memory T-cell subpopulations.

First, we investigated the effect of IL-10 on freshly isolated

non-CD14-depleted and CD14-depleted PBMC that were TCR-

stimulated in the absence of co-stimulation. Under these

circumstances, only memory and effector T cells should produce

IFN-g. Surprisingly, IL-10 inhibited anti-CD3-induced IFN-g
production in non-CD14-depleted and CD14-depleted PBMC to a

similar extent as anti-CD3/anti-CD28-induced IFN-g production

(both with po0.05, Fig. 3B). The same results were obtained for

CD14-depleted and then CD41 re-purified T cells, which ruled

out an effect of contaminating APC (po0.05, Fig. 3B). On the

other hand, anti-CD3-induced IL-17 production was not inhibited

by IL-10 (data not shown). This suggested that IFN-g, but not

IL-17 production from memory T cells, was directly inhibited by

IL-10.

To confirm this, we repeated the experiments with CD41

memory (CD45RO1) and naı̈ve (CD45RA1) T-cell subpopula-

tions. Again, IL-10 inhibited IFN-g production in memory CD41

T cells to a similar extent as in highly re-purified CD41 cells

(po0.05, Fig. 3C) but had no effect on anti-CD3-induced IL-17

production (Fig. 3C). Presence or absence of exogenous IL-2 did
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Figure 2. Exogenous IL-2 abrogates IL-10 inhibition of T-cell prolifera-
tion but has no influence on IL-10-induced inhibition of IFN-g
production. (A) Human PBMC were labeled with CSFE and proliferation
was induced by TCR-stimulation with plate-bound anti-CD3/anti-CD28
mAb (1 mg/mL each) in the presence (bold lines) or absence (dotted
lines) of IL-10 (10 ng/mL) and IL-2 (100 U/mL) as indicated. The degree of
proliferation was assessed by analyzing the reduction of CSFE-label
after cell devision by flow cytometry. One representative out of three
experiments is shown. (B) Human PBMC were activated with immo-
bilised anti-CD3/anti-CD28 mAb (1 mg/mL each) in the presence (white
bars) or absence (gray bars) of IL-10 (10 ng/mL) and IL-2 (100 U/mL) as
indicated. Supernatants were collected thereafter and IFN-g produc-
tion analyzed by ELISA. The amount of IFN-g after anti-CD3/anti-CD28
treatment in the absence of IL-10 was set to 100% for each individual
donor, and IL-10 inhibition related to it. The absolute values ranged
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shown are averages from three independent experiments (7SD).
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Figure 3. IL-10 directly inhibits TCR-induced IFN-g production in the absence of APC and co-stimulation but has no influence on IL-17 production.
PBMC from healthy blood donors were either used directly or depleted with anti-CD14-coated magnetic beads (CD14�). CD41 T cells were further
purified from CD14-depleted PBMC by CD41 selection to a purity of at least 99% (CD14�CD41). For memory T-cell separation (C), CD41 cells were
purified from PBMC by CD4-untouched magnetic separation. Then CD45RO1 CD41 T cells were enriched by depleting CD45RA1 cells. These
different cell populations were activated with IL-2 (100 U/mL) and either (A) immobilised anti-CD3/anti-CD28 mAb (1mg/mL each), or (B, C)
immobilized anti-CD3 (1 mg/mL) for 24 h in the presence (white bars) or absence (gray bars) of IL-10 (10 ng/mL). Supernatants were collected
thereafter and (A, B) IFN-g production and (C) IFN-g and IL-17 production was analyzed by ELISA. The amount of cytokine after respective
stimulation without IL-10 was set to 100% for each individual donor and IL-10 inhibition related to this. In the absence of IL-10, the absolute values
for IFN-g (4–427 ng/mL for PBMC and 1.8–15.7 ng/mL for CD14-depleted and CD41 re-purified T cells) were comparable in the anti-CD3/anti-CD28-
stimulated and only anti-CD3-stimulated samples. In memory CD45RO1 CD41 T cells, in the absence of IL-10, the absolute values ranged from 4.6
to 15.5 ng/mL for IFN-g and from 0.05 to 1.4 ng/mL for IL-17. Results shown are averages from five independent experiments (7SD). Significant
differences as calculated by Wilcoxon test (po0.05) are indicated by an asterisk (�).
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not alter these results, and naı̈ve CD41 T cells did neither

produce significant amounts of IFN-g nor IL-17 (data not shown).

Naı̈ve and central memory T cells express CD28, but it

becomes down-regulated in effector memory or effector T cells

([24, 25], and data not shown). Recently, Joss et al. postulated

that the inhibitory effect of IL-10 on T cells is mediated via

inhibition of CD28 signaling, indicating that only CD281 T cells

would be inhibited by IL-10 [11]. To test this, we separated

CD28� and CD281 cells from CD14-depleted PBMC, and deter-

mined IFN-g concentrations in the supernatants of these cells

after TCR-stimulation by anti-CD3/anti-CD28 incubation.

Surprisingly, CD28� T cells produced a significant amount of

IFN-g after TCR-stimulation and were susceptible to inhibition

by IL-10 (Fig. 4A). This suggested that IL-10 also affects the

CD28� effector memory and effector T-cell subsets. To confirm

these data by another approach, we stained CD28 and intracel-

lular IFN-g in TCR-stimulated, CD14-depleted PBMC (Fig. 4B).

IL-10 reduced the number of IFN-g-producing T cells within the

CD28� T-cell population (3.1% of T cells compared with 8.3%) as

much as in the CD281 T-cell population (3.2% of T cells

compared with 7.0%) (Fig. 4B). However, IL-10 did not seem to

significantly alter the amount of IFN-g produced per cell (as

measured by MFI, data not shown). We also analyzed the effect

of IL-10 on IFN-g production by the T-cell subsets expressing the

activation markers CD25, HLA-DR and CD57, respectively.

Similar to the results for CD28, the inhibition of IFN-g production

by IL-10 was comparable in T-cell subsets either positive or

negative for these activation markers (data not shown).

In summary, in contrast to IL-17, TCR-induced IFN-g
production in CD41 memory T cells was inhibited by IL-10.

Furthermore, the ability of IL-10 to inhibit IFN-g production in

CD28� T cells suggests a molecular mechanism, which is inde-

pendent of CD28 co-stimulation.

IL-10 inhibition of TCR-induced IFN-c production is not
overcome by blocking SHP-1

A very recent study suggested that transient activation of the

tyrosine phosphatase SHP-1 mediates the inhibitory effect of

IL-10 on CD28- or ICOS-induced T-cell proliferation [12]. SHP-1

has also been described to interfere with TCR-induced ZAP-70

activation. Therefore, we wondered whether SHP-1 activation

also plays a role in mediating the inhibition of anti-CD3-induced

IFN-g production by IL-10. To address this question, we first

used the general phosphatase inhibitor pervanadate in our
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Figure 4. IL-10 inhibits TCR-induced IFN-g production independently from CD28 expression. (A) Antigen-primed CD28� T cells were isolated by a
two-step separation protocol. First, CD141 cells were depleted from PBMC and then CD281 cells were depleted from the remaining cells. The CD281

fraction was eluted for comparison. Then cytokine production was induced by immobilized anti-CD3/anti-CD28 (each 1 mg/mL) and IL-2 (100 U/mL)
in the presence (white bars) or absence (gray bars) of IL-10 (10 ng/mL). Results shown are averages from three independent experiments (7SD).
(B) CD14-depleted PBMC were stimulated for 30 h by immobilized anti-CD3 and anti-CD28 (each 1 mg/mL) and IL-2 (100 U/mL) in the presence or
absence of IL-10 (10 ng/mL). After addition of Brefeldin A 6 h prior to the end of culture, cells were stained for surface anti-CD3 and anti-CD28 and
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incubated with IL-10 only did not show IFN-g production (data not shown).
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experiments. Interestingly, non-stimulated T cells produced large

amounts of IFN-g in the presence of the inhibitor. In contrast,

TCR-induced IFN-g production was reduced to levels of IL-10

inhibition which both made it very difficult to interpretate these

results (data not shown).

We therefore next used the specific, irreversible SHP-1 inhi-

bitor sodium stibogluconate [26] to interfere only with SHP-1

activity. PBMC treated with this inhibitor did not produce IFN-g
spontaneously and responded normally toward TCR-stimulation.

Inhibition of SHP-1 did not overcome the effect of IL-10 on TCR-

induced IFN-g production (Fig. 5A). This was the case for TCR-

stimulation with anti-CD3 alone, as well as in the presence of

additional co-stimulation with anti-CD28 (Fig. 5A). Even higher

concentrations of sodium stibogluconate (50 mg/mL) did not

abrogate the IL-10 inhibitory effect (data not shown). The activity

of the inhibitor was shown by enhancement of IFN-a-induced

STAT-1 activation in T-cells (Fig. 5B). These data suggest that

IL-10 uses a SHP-1-independent mechanism for inhibiting

TCR-induced IFN-g production.

IL-10 inhibition of IFN-c is lost by in vitro culture
despite intact signalling

Next, we wondered whether recently activated T cells, which

occur in acute infection and to an even greater extent in chronic

inflammation, are susceptible to the inhibitory effect of IL-10 on

IFN-g production. It has been suggested that IL-10RI expression is

down-regulated after TCR activation [14], which should lead to a

loss of IL-10 responsiveness in recently activated T cells.

Therefore, we incubated PBMC for 24–48 h in the presence of

anti-CD3/anti-CD28 mAb and IL-2 to achieve pre-activation, and

then studied the influence of IL-10 on IFN-g production after

re-stimulation with anti-CD3 and anti-CD28 mAb. In agreement

with other reports, we did not observe an inhibitory effect of

IL-10 on IFN-g production by these freshly pre-activated T cells

(Fig. 6A). Surprisingly, T cells cultured in vitro without pre-

stimulation also lost their responsiveness toward IL-10. This led

us to the conclusion that the unresponsiveness to the inhibitory

effect of IL-10 on freshly pre-activated T cells is likely to be an

in vitro-culture artifact rather than a stimulation-induced effect.

Interestingly, despite the lack of an effect of IL-10 on IFN-g
production, the in vitro pre-activated T cells responded normally

to IL-10-induced SOCS-3 mRNA induction (Fig. 6B) and STAT3

activation (Fig. 6C).

Th17 cells have intact IL-10 signalling

As we could observe an inhibitory effect of IL-10 on IFN-g but not

on IL-17 production from freshly isolated antigen experienced

T cells, we next wondered whether Th17 cells might be

unresponsive to IL-10 because they would have, e.g. lost IL-10

receptor expression during differentiation. We tried to address

this question by measuring STAT3 activation in Th17 cells by

intracellular FACS-staining with phospho-specific antibodies after

20 min of IL-10 stimulation. Several surface markers have been

described to identify human Th17 cells with the IL-23 receptor

expressing CCR4/CCR6 double-positive T cells being highly

specific for IL-17 production [27–29]. We used therefore either

antibodies against surface IL-23 receptor on CD31 T cells or gated

for CCR4/CCR6 double-positive T cells to measure intracellular

STAT3 activation in Th17 cells by IL-10. Surprisingly, Th17 cells

mounted a normal STAT3 activation upon IL-10 stimulation

(Fig. 7A). In order to analyze IL-10 target gene expression in

Th17 cells, we enriched for Th17 cells by magnetic beads with
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blood donors were left untreated or incubated with the irreversible
SHP-1 inhibitor sodium stibogluconate (10 mg/mL) for 10 min. The cells
were then activated with immobilised anti-CD3/anti-CD28 mAb (1 mg/
mL each) or anti-CD3 (1 mg/mL) and IL-2 (100 U/mL) for 24 h in the
presence (white bars) or absence (gray bars) of IL-10 (10 ng/mL).
Supernatants were collected thereafter and IFN-g analyzed by ELISA.
Because of donor-specific differences for absolute cytokine levels, the
amount of IFN-g after anti-CD3/anti-CD28 or anti-CD3 treatment was
set to 100% for each individual donor and IL-10 inhibition related to
this. In the absence of IL-10, the absolute values for IFN-g following
anti-CD3 stimulation ranged from 3 to 31.5 ng/mL and similar values
were obtained with anti-CD3/anti-CD28 stimulation and in the
presence of stibogluconate, respectively. Results shown are averages
from four independent experiments (7SD). (B) Freshly isolated PBMC
were either left untreated (thin line) or pre-incubated with the SHP-1
inhibitor sodium stibogluconate (10 mg/mL; bold line) for 10 min and
then treated with IFN-a for 2 h. PBMC without IFN-a treatment served
as control (dotted line). Cells were then fixed and lysed and STAT1-
phosphorylation was assessed by flow cytometry after co-staining of
surface CD3 expression and intracellular staining of p-STAT1.
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anti-IL-23R after CD14 depletion. Intracellular FACS-staining

revealed that indeed these CD31 IL-23R1 T cells are producers of

IL-17 and that they produce little, if any, IFN-g (Fig. 7B). In line

with the observation that IL-10 is able to induce STAT3 activation

in Th17 cells, we also observed an induction of its target gene

SOCS-3 in these IL-23R-enriched T cells (Fig. 7C). These results

together suggest that Th17 cells are fully responsive toward IL-10

but this does not result in inhibition of IL-17 production.

Discussion

The anti-inflammatory properties of IL-10 have been well

described in the past. It targets the induction of various

pro-inflammatory mediators as well as antigen presentation

and thereby indirectly inhibits T-cell responses. In vivo, the

lack of IL-10 in IL-10-deficient mice leads to the development of

chronic inflammation in the form of colitis [30]. Because of its

potent anti-inflammatory properties, IL-10 was used with high

expectations in therapeutic trials for a number of chronic

inflammatory diseases, which were thought to be driven by an

excessive Th1 response (reviewed in [13]). However, despite

some beneficial effects – particularly in psoriasis [31]– IL-10

therapy did not compare favorably to other biologicals, such as

for example, anti-TNF-a therapy. This was rather surprising

because IL-10 targets a wide range of inflammatory mediators in

addition to TNF-a.

However, most in vitro studies have described inhibitory

effects of IL-10 on the induction of an inflammatory immune

response, but not on an ongoing or chronic inflammation. We

therefore wanted to analyze whether IL-10 is able to inhibit an

already established memory or effector T-cell response. In

contrast to naı̈ve T cells, memory and effector T cells respond to

TCR engagement in the absence of co-stimulation. Furthermore,

effector cytokine production occurs rapidly within 24 h after

stimulation, because necessary epigenetic changes have already

been established [32, 33]. To our surprise, IL-10 was able to

directly inhibit TCR-induced IFN-g production in memory T cells.

This was evident from several observations: (i) The time frame

for IFN-g production in our direct TCR-triggered model was 24 h.

Within this time frame, mainly memory and effector T cells

respond, because naı̈ve T cells have to proliferate first before they

can produce IFN-g. (ii) In contrast to previous reports on prolif-

eration [11, 12], IL-10 inhibited IFN-g production induced by

anti-CD3 cross-linking without co-stimulation – a condition

where only memory T cells should respond. (iii) In agreement

with this, under the same conditions, isolated memory T cells

(either CD41 CD45RO1 T cells or CD28� effector/effector

memory T cells) were inhibited by IL-10. (iv) Intracellular

staining for IFN-g production revealed that all of the investigated

T-cell subsets were susceptible to inhibition by IL-10, including

T cells with activation and memory markers. The latter is espe-

cially interesting with respect to CD28� T cells, as uncoupling of

CD28 signaling has been suggested to mediate the direct inhibi-

tory effect of IL-10 on T cells [11, 12]
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Figure 6. Loss of IFN-g inhibitory effect of IL-10 after in vitro culture.
(A) PBMC were either left untreated for 24 h (24 h medium) or pre-
activated with immobilised anti-CD3/anti-CD28 mAb (1mg/mL each) and
IL-2 (100 U/mL) for 24 h (24 h anti-CD3/anti-CD28) followed by overnight
starvation in 0.5% FCS-containing medium and washing. Production
of IFN-g was induced by immobilised 24 h anti-CD3/anti-CD28 mAb
(1mg/mL each) or anti-CD3 (1mg/mL) and IL-2 (100 U/mL) for 24 h in the
presence (white bars) or absence (gray bars) of IL-10 (10 ng/mL). As a
positive control, freshly isolated PBMC from the same donor were
stimulated directly. Supernatants were collected thereafter and IFN-g
measured by ELISA. The amount of IFN-g after 24 h anti-CD3/anti-CD28
or anti-CD3 treatment was set to 100% for each individual donor and
IL-10 inhibition was related to this. The absolute values for IFN-g ranged
from 9 to 115ng/mL in the absence of IL-10 and were similar between
freshly prepared and pre-treated cells. Results shown are averages from
three independent experiments (7SD). (B) CD14-depleted PBMC were
either used freshly prepared or pre-activated (24 h anti-CD3/anti-CD28)
as described in (A). The cells were then either left untreated (gray bars)
or incubated with IL-10 (10 ng/mL) for 1 h (white bars). Afterwards, CD31

cells were isolated and RNA was extracted from these cells. SOCS-3
levels were determined using Real-Time RT-PCR with HPRT as reference
panel. The SOCS-3 mRNA levels of cells in the absence of IL-10 were set
as 1 and the IL-10 induction of SOCS-3 related to this. Results shown are
averages from two independent experiments (7SD). (C) Freshly isolated
or 24 h anti-CD3/anti-CD28 pre-activated CD14-depleted PBMC as
described in (A) were either left untreated (dotted lines) or incubated
with IL-10 (10 ng/mL) in serum-free medium for 5 min (bold lines). Cells
were then fixed and lysed and STAT3-phosphorylation was assessed by
flow cytometry after co-staining of surface CD4 expression and
intracellular staining of p-STAT3.
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We furthermore showed that inhibition of anti-CD3-induced

IFN-g production by IL-10 (i) is independent from APC, which is

in contrast to IL-12/IL-18-induced IFN-g production [8], and

(ii) is independent from IL-2 inhibition which was suggested to

be another mechanism by which IL-10 directly inhibited T cells

[9, 10, 34]. Fitting to the missing effect of IL-10 on IL-17

production (see below), receptor-proximal signaling events by

IL-10 were not abrogated by the selective SHP-1 inhibitor stibo-

gluconate, and we hypothesize a specific direct inhibitory

mechanism of IL-10 on TCR-mediated IFN-g production inde-

pendent from (i) CD28 signaling, and (ii) inhibition of IL-2

production, which remains to be elucidated.

In contrast to IFN-g, TCR-induced IL-17 production was

unaffected by IL-10. Interestingly, Th17 cells did respond toward

IL-10 stimulation with the activation of STAT3 excluding

general unresponsiveness of Th17 cells toward IL-10. It has

remained elusive why IL-10 therapy in chronic inflammatory

diseases has been rather disappointing. In recent years,

evidence is emerging that IL-17 production by Th17 cells, rather

than IFN-g production by Th1 cells, greatly accounts for the

pathology in chronic inflammation (reviewed in [17, 18]). Our

data suggest that the ability of IL-10 to stop a chronic inflam-

mation caused by Th17 memory cells might be limited. However,

it is well established that IL-10 can repress the production

of major inducers of a Th17 response. IL-10 inhibits IL-6

expression [6] and the expression of the common p40 subunit [7]

shared by IL-12 and IL-23 [35]. Interestingly, colitis caused by

IL-10 deficiency can be prevented by depleting IL-23 [36]

demonstrating that IL-10 can control the induction of an

inflammatory IL-17 response. In contrast to IL-6 and IL-23, IL-10

does not inhibit TGF-b production but rather induces its activity

[37, 38] and TGF-b has been associated with the generation of

regulatory T cells (reviewed in [39]). Thus we speculate that

although IL-10 may only partly be able to interfere with an

already established inflammatory process, it may favor the

induction of regulatory T cells instead of Th17 cells in the

primary response to an inflammatory stimulus. Compatible with

this hypothesis are findings in psoriatic patients treated with

IL-10 for relapse prevention: a significant, decreased relapse rate

could be seen, indicating that IL-10 application may be successful
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in preventing rather than in reverting an already established

inflammatory immune response [40].

In conclusion, our results suggest that in contrast to inhibition

of Th1 responses, IL-10 has its limitation in inhibiting an already

established and ongoing Th17-driven chronic inflammation.

Taken together with data published by other groups, IL-10

however may be able to prevent the induction of a Th17

response. These results should have implications for the ther-

apeutic use of IL-10 in inflammatory diseases. Firstly, they

suggest that IL-10 therapy should be promising for inflammatory

diseases that are solely caused by an ongoing excessive Th1

response. Secondly, it might be still possible to use IL-10 in Th17-

driven diseases, but only in combination with conventional or

anti-TNF therapy stopping the ongoing inflammatory process. In

that case, IL-10 should be able to prevent a relapse.

Materials and methods

Cell culture and stimulation

Human PBMC were isolated from citrate anti-coagulated blood of

healthy volunteers by Ficoll-Paque density gradient centrifuga-

tion and cultured at a cell density of 1� 106 cells/mL in Roswell

Park Memorial Institute 1640 medium supplemented with FCS

(10% v/v), L-glutamine (2 mM) and penicillin/streptomycin

(each at 10 000 U/mL) (all Biochrom KG, Germany). All healthy

volunteers participated on a voluntary basis and gave written

informed consent.

Antigen-dependent stimulation of cytokine production was

performed by stimulating PBMC (2� 106/mL) with C. albicans

(dilution of 1/1000; Stallergenes GmbH, Germany) in the

presence or absence of IL-10 (10 ng/mL; R&D Biosystems,

Germany). After 72 h, supernatants were harvested and IFN-g
and IL-17 concentrations were determined using commercially

available ELISA (R&D Biosystems). For TCR-induced cytokine

production, PBMC or isolated T cells (1�106 cells/mL) were

stimulated with plate-bound anti-CD3 (OKT3, 1mg/mL; Jansen-

Cilag GmbH, Germany) alone or when indicated in combination

with plate-bound anti-CD28 (L293, 1 mg/mL; BD Bioscience,

Germany) and IL-2 (100 IU/mL; R&D Biosystems) in the presence

or absence of IL-10 (10 ng/mL). After 24 h, supernatants were

harvested and IFN-g and IL-17 concentrations were determined

using commercially available ELISA (R&D Biosystems).

If pre-activated PBMC were used, PBMC were pre-stimulated

for 24 h with immobilized anti-CD3/anti-CD28 mAb (1mg/mL

each) and IL-2 (100 IU/mL). They were then washed and starved

overnight in Roswell Park Memorial Institute medium containing

0.5% FCS v/v before being re-stimulated with anti-CD3/anti-

CD28 mAb in the presence or absence of IL-10 (10 ng/mL). As

control, instead of pre-stimulation, cells were left untreated for

24 h and then re-stimulated under the same conditions. Twenty-

four hours after re-stimulation, cells were harvested and super-

natants were analyzed for IFN-g or IL-17 production by ELISA.

Cell separation

Monocytes were depleted from PBMC by using anti-CD14-coated

magnetic MACSTM beads (Miltenyi Biotech GmbH, Germany)

following the manufacturer’s protocol. Cell purity was confirmed

by flow cytometry (CD141 cellso0.5%). For highly purified

CD41 T cells, CD14-depleted PBMC were re-purified with

anti-CD4-coated MACSTM beads (Miltenyi Biotech GmbH).

Purity of CD41 T cells was 499% in the life cell gate. For

isolation of CD41 memory T cells, first CD41 T cells were

separated from PBMC with CD4-untouched MACSTM beads and

then further separated either for CD45RO1 cells (memory CD41

T cells) via depletion of CD45RA1 cells or for CD45RA1 cells

(naı̈ve CD41 T cells) via depletion of CD45RO1 cells using the

MACSTM system (Miltenyi Biotech GmbH). Separation of CD28�

and CD281 cells was performed with anti-CD28-coated MACSTM

beads (Miltenyi Biotech GmbH) after CD14 depletion from

PBMC. Separation of IL-23R1 cells was performed with anti-

FITC-coated MACSTM beads (Miltenyi Biotech GmbH) after CD14

depletion from PBMC and labeling with anti-IL-23R-FITC anti-

body (R&D Biosystems).

Measurement of PBMC proliferation with CFSE

PBMC were re-suspended at 1�107 cells/mL in PBS containing

5mM CFSE (Molecular Probes/Invitrogen, USA). After 5 min

incubation at room temperature, cells were washed twice with

culture medium. Then cells were stimulated at a concentration of

1� 106 cells/mL with immobilized anti-CD3 Ab (1 mg/mL) and

anti-CD28 Ab (1 mg/mL), with or without IL-2 (100 U/mL), in the

presence or absence of IL-10 (10 ng/mL) for 5 days. Cells were

finally analyzed using a FACScalibur flow cytometer (Becton

Dickinson, Germany) and CellQuest software (Becton Dickinson).

Analysis of intracellular cytokine production by flow
cytometry

PBMC (2� 106) or respective isolated T-cell subsets were

stimulated with immobilized anti-CD3/anti-CD28 (each at

1mg/mL) and IL-2 (100 U/mL), in the presence or absence of

IL-10 (10 ng/mL) for 30 h. After 24 h, Brefeldin A (10 mg/mL;

Sigma, Germany) was added for the last 6 h. For analysis

of IL-23R1 T cells, PBMC were stimulated with PMA (10 ng/

mL; Sigma), ionomycin (0.5 mg/mL; Sigma) and Brefeldin

A for 15 h. Following stimulation, cells were harvested, washed

in PBS and incubated for 30 min at 41C in the dark with the

following monoclonal antibodies: anti-HLA-DR (L243; Becton

Dickinson), anti-CD3 (SK7; Becton Dickinson), anti-CD8

(SK1; Becton Dickinson), anti-CD25 (2A3; Becton Dickinson),

anti-CD57 (NC1; Beckman-Coulter), anti-CD28 (CD28.2;

Beckman-Coulter), anti-CD4 (SK3; Becton Dickinson), anti-

CD45RO (Leu-45RO; Becton Dickinson), anti-CD45RA (HI100;

Becton Dickinson), anti-IL-23R (R&D Biosystems). Fluorochrome
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combinations were chosen to allow for analysis of co-staining of

respective antigens. All antibodies were used in saturating

amounts. Cells were then washed once in PBS containing

2% v/v FCS and 0.1% w/v NaN2 prior to fixation and permeabi-

lization with 500mL Cytofix/Cytoperm solution (Becton Dick-

inson) for 10 min at room temperature in darkness. Cells were

washed once again and incubated with blocking buffer (100 mL

PBS/10% v/v human AB serum; both Sigma) for 20 min at 41C in

the dark to prevent unspecific binding of the anti-cytokine

monoclonal antibody. After another washing step, 10 mL of anti-

IFN-g-FITC (25723.11; Becton Dickinson) or anti-IL-17A-PE

(eBio64DEC17; eBioscience, Germany) were added and cells

were incubated for 30 min at 41C in darkness followed by a final

washing step prior to measurement. Measurement was done

using four-color flow cytometry on a FACS Calibur (Becton

Dickinson; at least 50 000 CD31 lymphocytes were collected).

Data were analyzed using CellQuest (Becton Dickinson). T-cell

gating was done using side scatter and CD3-staining properties.

Analysis of phospho-STAT3 and phospho-STAT1
induction by flow cytometry

Freshly isolated PBMC or pre-activated PBMC (of the same

donor) were incubated for 20 min with or without IL-10 (10 ng/

mL). Then cells were stained with anti-IL-23 R-FITC and fixed

with Cytofix Buffer (Becton Dickinson) for 10 min at 371C and

permeabilized with Phosflow Perm Buffer (Becton Dickinson) for

30 min on ice. For surface staining of CCR4 and CCR6, PBMC

were first stained with anti-CCR6-PE (11A9, Becton Dickinson)

and anti-CCR4-FITC (R&D Biosystems) and then incubated for

20 min with or without IL-10 (10 ng/mL), fixed with Cytofix

Buffer for 10 min at 371C and permeabilized with Phosflow Perm

Buffer for 30 min on ice.

For induction of STAT1 tyrosine phosphorylation, PBMC were

incubated with IFN-a2a (0.1 ng/mL; Miltenyi Biotech GmbH) for

2 h, then fixed with Cytofix Buffer for 10 min at 371C and

permeabilized with Phosflow Perm Buffer for 30 min on ice.

Cells were washed and anti-CD3-PerCP (SK7, Becton Dickinson)

and anti-Stat3 (pY705)-PE (4/P Stat3, Becton Dickinson)

or anti-Stat3 (pY705)-FITC (4/P Stat3, Becton Dickinson) or anti-

Stat1 (pY701)-FITC (Becton Dickinson) were added and incu-

bated for 30 min at room temperature in the dark. Cells were

analyzed using a FACS Calibur flow cytometer and CellQuest

software.

Analysis of cytokine and SOCS-3 mRNA induction

Total RNA was isolated for cytokine mRNA quantification with

Absolute mRNA Micro Kits (Stratagene, Germany) after 24 h

of TCR-stimulation by immobilized anti-CD3/anti-CD28 (each

1mg/mL) in the presence or absence of IL-10 (10 ng/mL). mRNA

was transcribed into cDNA with Moloney murine leukemia virus

Reverse Transcriptase (Gibco BRL, US) and oligodT Primers (GE

Healthcare, Germany). Quantitative Real-Time RT-PCR for IFN-g
and IL-17 was performed with specific primers and probes from

Applied Biosystems (Germany) using the ABI prism 7700

sequence detector (Applied Biosystems) and hypoxanthine

phosphoribosyltransferase (HPRT) as reference panel. For analy-

sis of SOCS-3 induction, PBMC were stimulated with anti-CD3/

anti-CD28 (1 mg/mL) and IL-2 (100 U/mL) for 24 h. They were

then washed and starved overnight before stimulation with anti-

CD28 and/or anti-CD3 mAb in the presence or absence of IL-10

(10 ng/mL). Cells were harvested after 1 h, CD31 cells were

isolated by magnetic MACSTM beads and total RNA was extracted

from these cells. For analysis of SOCS-3 induction in separated

IL-23R1 cells, the cells were stimulated with anti-CD3/anti-CD28

mAb in the presence or absence of IL-10 (10 ng/mL) for 1 h and

then total RNA was extracted. SOCS levels were determined after

reverse transcription by Real-Time RT-PCR with HPRT as

reference panel. SOCS-3 sense: ctttctgatccgcgacagct, SOCS-3

anti-sense: tcacactggatgcgcaggt, SOCS-3 probe: ccagcgccacttctt-

cacgctcag.

Statistical analysis

If not stated otherwise, data are presented as mean7SD values.

For ELISA data, cytokine production of TCR-stimulated cells was

set at 100% in each individual experiment. All other samples

from the same experiment were expressed as percentages relating

to this. This was done because of large inter-individual variations

in absolute cytokine levels. The average and standard deviation

was determined from 3–5 independent experiments. Statistical

analysis was done for experiments with at least five independent

donors by using the Wilcoxon matched-pairs signed-ranked test

and SPSS software (USA). p-values (two-tailed) below 0.05 were

considered as significant.
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