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Abstract
Proposed method makes a number of sim-
plifying assumptions which convert the
EEG/FMRI integration problem into opti-
mization of a convex function, of a form
amenable to efficient solution as a very
sparse linear programming (LP) problem.
The assumptions made in doing this are,
surprisingly, in general somewhat more
robust than those generally used to cast
EEG/FMRI integration as optimization of
a non-convex function not amenable to ef-
ficient global optimization. This is be-
cause the L1 norm used here corresponds
to a more robust statistical estimator than
the L2 normal generally used For this rea-
son, even though this technique results in
a tractable global optimization, it is more
robust to non-Gaussian noise and outliers
than approaches that make the Gaussian
noise assumption [1].
Current poster presents formulation of the
problem together with results obtained on
artificial data.

Introduction to Fusion
Fusion algorithms are employed in an at-
tempt to construct a spatio-temporal esti-
mate of neuronal activity using data gath-
ered from multiple functional brain imag-
ing modalities. Here, the estimate is built
by placing a dipole in each voxel of the
modality with highest spatial resolution,
and estimating the time course of each
dipole without constraining dipoles’ ori-
entation. The solution space thus consists
of a matrix S of dimensionality [3N ×T ],
which actually consists of 3 [N×T ] matri-
ces. Each such sub-matrix corresponds to
the projection of the dipole to the specific
axis [2]: S =

[

SxSySz

]T

Modality Matrix Size Estimate
EEG E [M×T ] Ê = AS

FMRI F [N ×U ] F̂ = S̃B

Forward EEG/FMRI equations, where S̃ is
a [N ×T ] matrix which holds the dipoles
strengths without orientation information
and s̃i j = ||(s(x)

i j ,s(y)
i j ,s(z)

i j )||2

General LP Formulation
Using defined abbreviations we formulate
an initial LP problem as follows

Ê+∆E = E Constraints(1)
F̂+∆F = F (2)

s̃i j ≥ 0 Region (3)
C = α‖∆E‖1 +β‖∆F‖1 Objective ,(4)

where α and β are used to check different
trade-offs between two modalities as well
as to normalize their influence in the opti-
mization criteria.

General LP transformations
Next we redefine each |x|, which are present in
computation of C (4) and s̃i j (6), in a form suit-
able for LP through usage of slack variables x+

and x−. This transformation leads to a side ef-
fect - minimization of the sum of absolute val-
ues of |si j|, so we need to add another term
γ‖S‖1 to the objective function (4) . This side
effect could be considered a desired result - the
minimization of L1 norm of the solution results
in its increased sparseness.

EEG Equation in LP form
We can represent (1) in a form suitable for LP
by using Kronecker product ⊗.

(A⊗ IT)S̄ = Ē, (5)

where IZ is the identity matrix of size [Z ×Z].

FMRI Equation in LP form
First we need to encode the definition of S̃ into
LP constraints matrix through presenting it as

S̃ = l(|Sx|, |Sy|, |Sz|), (6)

where l(. . .) is a linear formulation to approxi-
mate L2 norm.
In a similar to (5) way we present product S̃B in
the form suitable for LP

F̂ = (IN ⊗BT) ¯̃S (7)

L2 norm in LP
We need a way to approximate vector norm
e = ||m|| within an LP framework. Our solu-
tion is to note that the min(·, ·) and modulus | · |
functions can be used freely in a LP and then
reduced to canonical form using standard trans-
formations.
For our method, let {Ri} be a set of rotation ma-
trices. To approximate ||m|| we let

ei = ||Rim||1 e = min
i

ei (8)

where || · ||1 denotes the L1 norm. These can
simply be added to the linear programming
problem, enforcing the relation e ≈ ||m||. We
can increase the number of matrices in the set to
improve the accuracy of this approximation, at
the expense of computational efficiency.

Final LP form
Finally we group all the constraints and the
objective function together into an extended
canonical form for LPs,

(A⊗ IT)S̄+∆Ē = Ē (9)

(IT ⊗BT) ¯̃S+∆F̄ = F̄ (10)
S̃− l(|Sx|, |Sy|, |Sz|) = 0 (11)

¯̃S ≥ 0 (12)
C = α||∆E||1 +β||∆F||1 + γ||S||1 (13)

Simulation Data
To check the method artificial data was
created. Brain volume is simulated as
a half-sphere with 9 voxels in diameter,
which gives us 132 voxels total to be con-
sidered. Simple single sphere model was
used to generate gain matrix for EEG 11
sensors distributed across the half-sphere
surface. We’ve generated random activa-
tion map S consisting of 5 voxels firing
within 600ms interval after t0=2 sec from
the beginning of the timecourse ( 1 voxel
per each 0ms, 200ms, 400ms and 2 vox-
els at 600ms after t0) with the same am-
plitude but in different locations and with
arbitrary orientation. Using this map clean
EEG and FMRI were constructed through
the forward equations. EEG was sampled
at 10sps and FMRI at 1sps, so EEG time
resolution in the experiment was 10 times
higher than slow FMRI.
Additive noise was used to corrupt EEG
signal: Gaussian noise with SNR=-5dB,
which due to sparsity constituted equiva-
lently %RMS≈23%, where

%RMS =
σnoise

max(x)
×100% (14)

for clean signal x. SNR for EEG was fixed
across all experiments. An FMRI signal
was also corrupted by additive Gaussian
noise with variable SNR to do some noise
sensitivity analysis (for FMRI SNR 2dB
≈ 35% %RMS).

Data Conditioning
Before analysis, both data sets (EEG E
and FMRI F) and corresponding matri-
ces (A and B) were normalized by esti-
mated noise standard deviation in order to
properly scale error terms as well as to
remove difference between units of EEG
and FMRI. Then weights in error terms
were used to remove dimensionality effect
by assigning α = 1/MT and β = 1/NU .
As multiple tests with different SNR lev-
els have shown, best estimates of acti-
vations were achieved when γ = 1

3NT σS
,

where σS is standard deviation of simu-
lated activation map. It can’t be known for
real data but we’re speculating here by us-
ing artificial data. Robust method to esti-
mate γ is the next goal to achieve in future
research.

Results
Obtained solutions for FMRI SNR > 3 dB
returned all 5 original activations as 5
highest obtained activations for duration
of the experiment with ≈ 50% of energy
spread through the rest of the volume.
Lowering SNR down to 1dB lead to a sta-
ble detection of 3 out of 5 activations.

Future Work
Constrained Orientation: It is a com-
mon practice to use an anatomical MRI
to constrain the inverse EEG solution to
the dipoles with orientation normal to the
cortical surface [3]. In this case we don’t
need L2 approximation to present S̃ in a
form suitable for LP since the gain ma-
trix for EEG would be based on values of
dipole magnitude.
Experiments: Real data experiments
are desired and will be handled after ef-
ficient large-scale sparse LP solver with
’warm’ start possibility is found. Exper-
iments will be constructed in the way to
get good estimates of HRF for each sub-
ject due to high variability of HR among
different subjects [4].

Discussion
Presence of the weight factors α, β and
γ makes proposed method less attractive
while no efficient and robust method for
their estimation is suggested. Even if α
and β factors are relatively easy to esti-
mate with proper estimation of the noise
component present in both modalities, es-
timation of ’good’ γ might require robust
heuristic and can be computationally chal-
lenging. There is a method suggested
in [1] for weighting L1 factor in estimat-
ing sparse convolution kernel, but it is ad-
hoc and very computationally demanding
when dealing with big data arrays.
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