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Abstract

This paper studies the outage probability minimization problem for state estimation of linear dynamical systems

using multiple sensors, where an estimation outage is defined as an event when the state estimation error exceeds a

pre-determined threshold. The sensors amplify-and-forward their measurements (using uncoded analog transmission)

to a remote fusion center over wireless fading channels. Forstable systems, the resulting infinite horizon problem

can be formulated as a constrained average cost Markov decision process (MDP) control problem. A suboptimal

power allocation that is less computationally intensive isproposed, and numerical results demonstrate very close

performance to the power allocation obtained from the solution of the MDP based average cost optimality equation.

Motivated by practical considerations, assuming that sensors can transmit with only a finite number of power levels,

optimization of the values of these levels is also considered using a stochastic approximation technique. In the

case of unstable systems, a finite horizon formulation of theestimation outage minization problem is presented and

solved. An extension to the problem of minimization of the expected error covariance is also studied.

Index Terms

Fading channels, Markov decision process, outage probability, power control, sensor networks, state estimation

I. I NTRODUCTION

In real time applications, notions of outage are often used to quantify the time periods when the performance of

a system is below what is desired. For instance, in mobile telephony, outages could correspond to times where the

audio quality is very poor, and in tracking applications outages might correspond to instances where the location

of a target cannot be determined to a desired accuracy.
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In communications and information theory, the notion of delay-limited or zero-outage capacity was introduced

in [1]. The concepts of information outage probability and outage capacity, and the optimal power allocation to

minimize the information outage probability subject to an average power constraint, were subsequently studied

in [2]. Further extensions of the outage concept in communications theory include the delay-constrained outage

capacity problem in [3], and the notion of service outage in [4]. In the signal processing literature, the notions of

estimation outage and detection outage for the distributedestimation and detection of i.i.d. sources were introduced

recently in [5] and [6] respectively. Further results on estimation outage and estimation diversity order can be

found in [7], [8]. The optimal power allocation for estimation outage minimization problem, in the estimation of

an i.i.d. Gaussian source, has been solved in [9] with full channel information and in [10] with quantized channel

information at the sensor transmitters.

In much of this previous work, the systems that have been studied have been memoryless, so that the allocation

of resources at one time instant does not affect the evolution of the system at future times. The focus of this

paper is on extending the notions of estimation outage to, and solving the estimation outage minimization problem

for, dynamical systems. In particular, we consider state estimation of linear dynamical systems using multiple

sensors, where the sensors transmit their measurements to afusion center over wireless channels using the analog

amplify-and-forward technique of [11], which is a scheme that has been shown to be optimal in certain distributed

estimation scenarios [12]. An outage will be defined as the event that the estimation error covariance exceeds a

given threshold, and we are interested in how to optimally allocate the transmit powers of the sensors in order

to minimize the probability of outage, subject to an averagesum power constraint. We will use Markov decision

process (MDP) and dynamic programming techniques to numerically solve these problems. Dynamic programming

techniques have also been used in solving related problems such as the delay-constrained outage capacity problem

in [3], and estimation error minimization problems for hidden Markov model state estimation in [13], [14].

Another area related to this paper is the analysis of the performance of Kalman filtering with packet losses, under

various different notions of performance such as the expected error covariance [15], [16] and a probabilistic notion

of performance [17], [18]. For continuous fading channels,the behaviour of the expected error covariance has also

been studied in [19], [20]. However, the focus of these worksis more on determining conditions under which the

filter remains stable, and power control is not explicitly considered.

Summary of Contributions

This paper is concerned with solving the estimation outage minimization problem, in the state estimation of linear

dynamical systems. In particular, we make the following contributions:

• In the case of stable systems, we formulate the outage minimization problem over an infinite horizon. This

will turn out to be a constrained average cost Markov decision process (MDP) [21], which we can transform
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using a Lagrangian technique into an unconstrained MDP, thatcan then be solved numerically at the fusion

center with techniques such as the relative value iterationalgorithm. The optimal power allocations are then

fed back to the sensors.

• In the case of unstable systems, an infinite horizon average cost problem formulation is not appropriate since

increasingly large amounts of power will need to be transmitted. Instead we study a finite horizon formulation,

that can be solved numerically using dynamic programming techniques.

• We propose suboptimal policies that can be more efficiently solved, especially for large numbers of sensors

and/or high dimensional vector states. The suboptimal policies are motivated by the form of the optimal

solution to the information outage minimization problem incommunications theory [2]. For scalar systems,

the power allocations can be determined analytically, but for vector systems the numerical solution of non-

convex optimization problems is required at each time step.Numerical studies indicate very close performance

to the optimal solutions.

• Assuming that sensors can only transmit using a fixed number ofpower levels, we consider the problem of

optimizing the values of these powers using stochastic approximation techniques.

• We consider a related problem of minimization of the long-term average expected error covariance subject

to average sum power constraints, that can be solved using similar techniques. The performance is compared

with a greedy suboptimal solution studied in [22].

The organization of the paper is as follows. We will first focus on scalar linear systems in Sections II-IV, where

finding optimal solutions numerically is more computationally tractable than the general vector case. Furthermore,

suboptimal policies in the scalar case can be found analytically, but in the vector case will require the numerical

solution of non-convex optimization problems. Stable systems are considered in Section III, where we present the

outage minimization problem formulation in Section III-A. Section III-B derives some conditions on the distortion

threshold that affect the solvability of the problem. The outage minimization problem is solved in Section III-C, and

a sub-optimal policy is proposed in Section III-D. Optimization using a finite number of power levels is addressed

in Section III-E. Unstable systems are then considered in Section IV. We present first a finite horizon formulation

and suboptimal policy in Sections IV-A and IV-B respectively. Vector systems are considered in Section V, where

we present a possible formulation of the outage minimization problem. We also propose a suboptimal algorithm,

which however requires the numerical solution of non-convex optimization problems in general. Finally, using

similar techniques studied in this paper, an extension to the problem of minimizing expected error covariance is

studied in Section VI, and compared with a suboptimal greedy approach.
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II. SYSTEM MODEL

Sections II-IV will focus on scalar linear systems. Throughout this paper we will usek to denote the discrete

time index, andi to denote the sensor index. We consider a discrete time scalar linear system given by

xk+1 = axk + wk (1)

wherexk, wk, a ∈ R, with xk representing the state that we wish to estimate, andwk is i.i.d. Gaussian noise with

zero mean and varianceσ2
w. See Figure 1 for a diagram of the system model.

Fig. 1. System model

The system is observed byM different sensors with observations

yi,k = cixk + vi,k, i = 1, . . . , M

with yi,k, vi,k, ci ∈ R, andvi,k is i.i.d. Gaussian noise with zero mean and varianceσ2
i . The ci parameters can be

interpreted as a sensor’s measurement gain/attenuation due to factors such as e.g. distance from the source.

The sensors then send their measurements over wireless channels to a fusion centre. We assume that the sensors

use the analog amplify-and-forward technique of [11], where the sensor transmitter amplifiesyi,k by a factorαi,k

and sends it to the fusion centre over a fading channel. The different fading channels are taken to be orthogonal,

as in [5]. We remark that a non-orthogonal multi-access transmission scheme can also be considered (see [11]),

and the analysis will be similar, but for brevity we will restrict ourselves to the orthogonal scheme in this paper.

The received signals at the fusion centre can be written as

zi,k = αi,k
√

gi,kyi,k + ni,k = αi,k
√

gi,kcixk + αi,k
√

gi,kvk + ni,k, i = 1, . . . , M (2)

wheregi,k ≥ 0 are the random channel power gains,ni,k is i.i.d. Gaussian noise with zero mean and varianceσ2
n,

andαi,k are the amplification factors in the analog forwarding scheme. The channel gainsgi,k,∀i are assumed to be

known at the receiver, while an individual sensori has knowledge of its own channelgi,k. The channel undergoes

slow fading such that the phase of the complex channel can be estimated and compensated for at the fusion center,
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so that
√

gi,k represents the real-valued envelope of the complex channelgains. We use a block fading model,

with the channel gainsgi,k being independent and identically distributed (i.i.d.) over time, and with continuous

distributions. We assume that there are noiseless feedbacklinks from the fusion center back to the sensors, that

can be used to e.g. feedback optimal values ofαi,k that are computed at the fusion center (see Section III-C). The

noise and fading termsx0, wk, vi,k, gi,k and ni,k are taken to be mutually independent. In addition, it is assumed

that the fusion center has knowledge of the parametersa, ci, σ
2
w, σ2

i , σ
2
n,∀i.

Call zk = (z1,k, . . . , zM,k)
T , gk = (g1,k, . . . , gM,k)

T , C̄k = (α1,k
√

g1,kc1, . . . , αM,k
√

gM,kcM )T ,

v̄k = (α1,k
√

g1,kv1,k + n1,k, . . . , αM,k
√

gM,kvM,k + nM,k)
T , R̄k = diag(α2

1,kg1,kσ
2
1 + σ2

n, . . . , α2
M,kgM,kσ

2
M + σ2

n).

The equations in (2) can then be written as

zk = C̄kxk + v̄k (3)

wherev̄k has the time-varying covariance matrix̄Rk. The equations (1) and (3) form a linear time-varying system

whose statexk can be optimally estimated by a time-varying Kalman filter at the fusion centre. Define the state

estimate and error covariance as1

x̂k+1|k = E[xk+1|z0, . . . , zk, g0, . . . , gk]

Pk+1|k = E[(xk+1 − x̂k+1|k)
2|z0, . . . , zk, g0, . . . , gk].

In the following, we will also use the short hand notationPk+1 = Pk+1|k.

One then has from the time-varying Kalman filter equations [23] that

x̂k+1|k = ax̂k|k−1 + aPkC̄
T
k (C̄kPkC̄

T
k + R̄k)

−1(zk − C̄kx̂k|k−1) (4)

Pk+1 = a2Pk − a2P 2
k C̄T

k (C̄kPkC̄
T
k + R̄k)

−1C̄k + σ2
w.

By an application of the matrix inversion lemma the recursion for the error covariance can be further simplified to:

Pk+1 =
a2Pk

1 + PkC̄
T
k R̄−1

k C̄k

+ σ2
w =

a2Pk

1 + Pk
∑M

i=1
α2

i,kgi,kc2
i

α2
i,kgi,kσ2

i +σ2
n

+ σ2
w. (5)

The sensor transmit powerγi,k used by thei-th sensor in transmitting its measurement to the fusion centre at

time k is defined as

γi,k = α2
i,kE[y2

i,k] = α2
i,k(c

2
i E[x2

k] + σ2
i ). (6)

1Similarly, quantities such aŝxk|k and Pk|k can be defined and Kalman filtering equations for these quantities can be written, but are

omitted for brevity.
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III. STABLE SYSTEMS

A. Problem statement

In this section we will consider stable scalar linear systems, i.e.|a| < 1 (see Section IV for the case of unstable

systems). Then ask → ∞, {xk} becomes stationary and we haveE[x2
k] → σ2

w/(1 − a2), so that (6) simplifies to

γi,k = α2
i,k

(

c2
i

σ2
w

1 − a2
+ σ2

i

)

Let us call αk = (α1,k, . . . , αM,k)
T , γk = (γ1,k, . . . , γM,k)

T . The problem we consider in this section is to

choose theαk’s (and hence theγk’s) to minimize the estimation outage probability subject to a long run average

power constraintP on the sum of the transmitted powers. We will assume that the power allocations are causal,

i.e. γk is a function of(P0, . . . , Pk) and (g0, . . . , gk). By the Markov property,γk will in fact turn out to be a

function of Pk andgk.

In this paper we will declare an estimation outage event if the error covariancePk+1 exceeds some distortion

thresholdD. More formally, we want to solve over an infinite horizon the problem:

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

Pr(Pk+1 > D) = min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[1(Pk+1>D)]

s.t. lim sup
K→∞

1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P
(7)

where1A(·) is the indicator function, with1A(ω) = 1 if ω ∈ A, and1A(ω) = 0 if ω /∈ A.

As mentioned in the introduction, the motivation for using the outage probability as the performance criterion is

that we are interested in criteria that captures the short term estimation performance useful for real-time applications,

in contrast to other long-term (or ergodic) performance criteria such as the average error covariance.2 This is due

to the fact that state estimates constructed from a time-varying Kalman filter based on measurements received

from the sensors over randomly time-varying fading channels have prediction error covariances which are also

randomly time-varying. In applications where short-term estimation performance is more critical (such as target

tracking or automatic control of unstable plants), a large estimation/prediction error covariance is unacceptable and

therefore minimizing the probability of estimation outage(that the prediction error covariance exceeds a certain

threshold) is an appropriate performance measure in this case. This motivation is similar to the rationale behind

information outage minimization in communications theorywhere for real-time applications such as voice or video

transmissions, outage probability (that the channel capacity falls below a basic minimum rate) is adopted as an

appropriate performance criterion, as opposed to ergodic capacity which is more suited to delay-insensitive data

2Note that the cost function in (7) is written as a long term average due to the fact that {Pk} is not necessarily a stationary process.

However the per-stage costPr(Pk+1 > D), representing the outage probability at timek, can still be used to capture the short term estimation

performance.
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transmission scenarios. Note though that other performance criteria can be studied using similar techniques. Indeed,

Section VI briefly describes how we can solve the problem of minimizing the long-term average of expected (with

respect to fading channel realizations) error covariance subject to a long-term average power constraint.

B. Conditions onD

In this section we will derive some conditions on the threshold D that will affect the solvability of problem (7).

Recall that the recursion for the error covariance satisfies (5). First we state some simple properties on howPk and

α2
i,k affect Pk+1.

Lemma 1:ConsiderPk+1 as given by

Pk+1 =
a2Pk

1 + Pk
∑M

i=1
α2

i,kgi,kc2
i

α2
i,kgi,kσ2

i +σ2
n

+ σ2
w.

(i) Pk+1 is an increasing function ofPk.

(ii) Pk+1 is a decreasing function ofα2
i,k.

The proof of Lemma 1 is straightforward and omitted.

For an initial simple bound, note that for stable systems, ifthe initial error covarianceP0 satisfiesP0 ≤ σ2
w

1−a2 ,

then the following holds:

σ2
w < Pk ≤ σ2

w

1 − a2
,∀k.

To see the upper bound, suppose we setα2
i,k = 0,∀i, k. Then we have

Pk = a2Pk−1 + σ2
w = a2kP0 + (a2k−2 + · · · + a2 + 1)σ2

w

= a2kP0 +
(1 − a2k)σ2

w

1 − a2
=

σ2
w

1 − a2
+ a2k

(

P0 −
σ2

w

1 − a2

)

≤ σ2
w

1 − a2
if P0 ≤ σ2

w

1 − a2
.

By Lemma 1, this then implies thatPk ≤ σ2
w

1−a2 ,∀k. Hence ifD ≤ σ2
w, thenPk+1 will always exceedD (i.e. we

will always be in outage), and ifD > σ2
w/(1 − a2) then we will never have any outage events.

Next, note from (5) and Lemma 1(ii) that givenPk, the error covariance at the next time instantPk+1 satisfies

a2Pk

1 + Pk
∑M

i=1 c2
i /σ2

i

+ σ2
w < Pk+1 ≤ a2Pk + σ2

w, (8)

where the lower bound comes from takingα2
i,k → ∞,∀i, and the upper bound comes from takingα2

i,k = 0,∀i.

The term a2Pk

1+Pk

∑

M

i=1
c2

i /σ2
i

+σ2
w thus can be regarded as the smallest value ofPk+1 that can be achieved for a given

value ofPk (by using an infinite amount of transmit power).

Below we present some more precise conditions. In particular we will partition the range ofD such that given

Pk, the conditionPk+1 ≤ D can either: 1) always be achieved, 2) never be achieved, or 3)can be achieved only

for Pk sufficiently small.
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1) Suppose that at timek, Pk = σ2
w/(1 − a2), i.e. Pk is at its maximum value. Then

a2Pk

1 + Pk
∑M

i=1 c2
i /σ2

i

+ σ2
w =

a2σ2
w

1 − a2 + σ2
w

∑M
i=1 c2

i /σ2
i

+ σ2
w ≡ D1.

Recalling that a2Pk

1+Pk

∑

M

i=1
c2

i /σ2
i

+σ2
w is the smallest value ofPk+1 that can be achieved for a given value ofPk, and

using Lemma 1(i), we thus have the condition that ifD ≥ D1, thenPk+1 ≤ D can be achieved in one time step

for all Pk ≥ D.

2) Consider the values ofPk such that a2Pk

1+Pk

∑

M

i=1
c2

i /σ2
i

+ σ2
w > Pk, i.e. the values ofPk such thatPk+1 > Pk,

even if an infinite amount of transmit power is used. This can be easily shown to be equivalent to

Pk <
−B +

√

B2 + 4σ2
w

∑M
i=1 c2

i /σ2
i

2
∑M

i=1 c2
i /σ2

i

≡ D2, (9)

with B = (1 − a2 − σ2
w

∑M
i=1 c2

i /σ2
i ). Hence we now have the condition that ifD ≤ D2 and Pk ≥ D, then

Pk+1 ≤ D cannot be achieved in one time step sincePk+1 > Pk ≥ D by assumption, and therefore cannot be

achieved in all subsequent time steps by Lemma 1(i). This is a tight form of the conditionD ≤ σ2
w always resulting

in outage mentioned previously.

3) In the case whereD satisfiesD2 < D < D1, we have the situation where givenPk, the conditionPk+1 ≤ D

can only be achieved when

a2Pk

1 + Pk
∑M

i=1 c2
i /σ2

i

+ σ2
w < D or Pk <

D − σ2
w

a2 − (D − σ2
w)

∑M
i=1 c2

i /σ2
i

, (10)

i.e. only whenPk is sufficiently small. If (10) is not satisfied, then it will require more than one time step to bring

the error covariance below the distortion thresholdD. This has implications in that one cannot directly use the

analogue of a scheme considered in [2] as a suboptimal policy, which will be studied in Section III-D.

C. Solution of outage minimization problem

In this section we will solve the estimation outage minimization problem (7). In communications theory, infor-

mation outage minimization problems have been considered in e.g. [2], [4], and analytical solutions can be derived.

However, these works consider memoryless systems, whereasin problem (7) the quantityPk evolves dynamically

over time. Furthermore, as shown in Section III-B, power allocation may need to be carried out over multiple time

steps before one can move from being in outage to non-outage.Thus the techniques used in [2], [4] do not appear

to be extendable to our case. Instead we will use Markov decision process (MDP) techniques to numerically solve

problem (7).

Let us first make the following additional assumptions to problem (7).

Assumption 3.1:D satisfies the conditionD2 < D ≤ σ2
w/(1 − a2), whereD2 is defined by (9).

Assumption 3.2:The range ofγi,k is bounded, i.e.γi,k ∈ [0, γmax],∀i, k.
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Assumption 3.1 is needed for there to be non-trivial solutions to problem (7) by Section III-B. Assumption 3.2

obviously has practical purpose, and also allows us to applyexisting theoretical results, e.g. [24], [25], to show the

existence of solutions to associated optimality equations(see later).

The estimation outage minimization problem (7) can then be regarded as a constrained average cost MDP with

(Pk, gk) = (Pk, g1,k, . . . , gM,k) as the composite “state” andγk = (γ1,k, . . . , γM,k) as the “action”. More formally,

under Assumptions 3.1 and 3.2, the state spaceS = (D2,
σ2

w

1−a2 ]×R
M , the action spaceA = [0, γmax]M , the set of

feasible actions is[0, γmax]M for each state, the transition laws are determined by (5) forPk and the assumption

that gk is i.i.d., the per-stage cost isE[1(Pk+1>D)], and the constraint islim supK→∞
1
K

∑K−1
k=0 E[

∑M
i=1 γi,k] ≤ P.

We will solve (7) using a similar approach to [14], by converting the constrained MDP into an unconstrained

MDP. We first introduce the Lagrangian:

Lβ = lim sup
K→∞

1

K

{

K−1
∑

k=0

E[1(Pk+1>D)] + β

K−1
∑

k=0

E[

M
∑

i=1

γi,k]

}

whereβ ≥ 0 is a weighting parameter that takes on the role of a Lagrange multiplier, and specifies the trade-off

between the relative importance of total transmit power andoutage probability. Note that from (5),Pk+1 is a

function ofPk, gk, γk, while γk is assumed to be a function ofPk andgk. We then have the unconstrained problem

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[lβ(Pk, gk, γk)|P0, g0] (11)

wherelβ(Pk, gk, γk) ≡ 1(Pk+1>D) + β
∑M

i=1 γi,k.

An average cost optimality inequality (ACOI) [24], [25] canbe written as

λ + h(Pk, gk) ≥ min
γk






lβ(Pk, gk, γk) +

∫

gk+1,Pk+1

h(Pk+1, gk+1)q(d(Pk+1, gk+1)|Pk, gk, γk)






(12)

whereλ represents the optimal average cost per stage,h the differential cost vector, andq is the transition law.

Lemma 2:Under Assumptions 3.1 and 3.2, there exists a solution to theaverage cost optimality inequality (12).

Proof: See Appendix A.

Remark 1:To obtain equality in (12) extra conditions such as those in Sec 5.5 of [25] will need to be satisfied,

however they seem difficult to verify for our problem.

In order to obtain numerical solutions to (11) we will need todiscretize the range of the quantitiesPk, gk =

(g1,k, . . . , gM,k) and γk = (γ1,k, . . . , γM,k). Let P d
k , gd

k = (gd
1,k, . . . , g

d
M,k), and γd

k = (γd
1,k, . . . , γ

d
M,k) be the

discretized versions ofPk, gk, γk respectively. One then has the following problem (13), the solution of which will

approximate the solution to (11):

min
{γd

k}
lim sup
K→∞

1

K

K−1
∑

k=0

E[lβ(P d
k , gd

k, γd
k)|P d

0 , gd
0 ]. (13)
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The Bellman equation (average cost optimality equation (ACOE)) associated with problem (13) can then be written

as follows, withλ representing the optimal average cost per stage, andh the differential cost vector:

λ + h(P d
k , gd

k) = min
γd

k

[lβ(P d
k , gd

k, γd
k) +

∑

gd
k+1

,P d
k+1

q(P rnd
k+1, g

d
k+1|P d

k , gd
k, γd

k)h(P rnd
k+1, g

d
k+1)]

= min
γd

k

[lβ(P d
k , gd

k, γd
k) +

∑

gd
k+1

,P d
k+1

p(gd
k+1)q(P

rnd
k+1|P d

k , gd
k, γd

k)h(P rnd
k+1, g

d
k+1)]

= min
γd

k

[lβ(P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)h(P rnd

k+1, g
d
k+1)]

(14)

whereP rnd
k+1 is the value ofPk+1 (given P d

k , gd
k, γd

k) rounded to the nearest discretized value, such as in [13]. The

last line of (14) holds becauseP rnd
k+1 is a deterministic function ofP d

k , gd
k, γd

k , so thatp(P rnd
k+1|P d

k , gd
k, γd

k) is either

0 or 1.

Now given any two error covariancesΣ1 andΣ2 satisfyingD2 ≤ Σ1 ≤ σ2
w/(1−a2) andD2 ≤ Σ2 ≤ σ2

w/(1−a2),

by Assumption 3.1 one can easily construct policies that cantakeΣ1 to Σ2 in a finite number of time steps. We

may then use standard results for problems with finite state and action spaces, e.g. [26], to conclude the existence

of solutions to the Bellman equation (14). So for the discretized problem an average cost optimality equation will

actually be satisfied. In this paper we will obtain solutions to the Bellman equation (14) numerically by using the

relative value iteration algorithm, see e.g. [26, Vol I, p.391] and [27, p.373].

After running the relative value iteration algorithm at thefusion center, a “lookup table” will be constructed

which will give the optimal power allocationγk for different values of the pairs(Pk, gk). Note that this only has to

be done once. With this lookup table constructed, the fusioncenter can then use knowledge of the actual channel

realizations and computed error covariance to find the optimal power allocations for each sensor, which are then

fed back to the sensors.

Remark 2: It should be noted that in general a discretized approximation to the original continuous state/action

space MDP problem results in a sub-optimal solution. However, it is a widely accepted practice for solving

continuous-state MDP problems as well as solving the average cost optimality equalities for partially observed

MDP (POMDP) problems, which are converted to a fully observed problem via the information state method. One

would generally expect that as the number of discretizationlevels increases to infinity, the solution to the discretized

problem should approach the solution to the original continuous state/action space problem. However, this result

is generally not easy to prove. Asymptotic convergence results for various grid based approximations have been

proved in the literature both for discounted cost POMDP and average cost MDP/POMDP with various continuity

conditions on the MDP cost function [28] as well as the differential cost function in the associated Bellman equation

[29] (see also references therein). It remains an open problem however to prove similar asymptotic convergence

results in the particular case of the problem studied in our paper as the nature of our cost function does not satisfy

all the conditions required by these papers or others available in the literature.
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D. Suboptimal policies

The MDP approach of Section III-C is computationally demanding, particularly as the number of sensors increases

since the dimensions ofgk and γk will increase with each additional sensor. In this section we will consider a

simpler power allocation policy, that can be easily implemented even for large numbers of sensors, and whose

performance is very close to that obtained from solving the MDP.

The motivation for our suboptimal policy comes from the solution of the information outage minimization problem

from communications theory studied in [2]. There, an outage is defined as the event that

IM (gk, γk) ≡
1

M

M
∑

i=1

log(1 + gi,kγi,k) < R (15)

for some rateR, whereIM (gk, γk) is defined as the instantaneous mutual information. TheM in (15) refers to the

number of different blocks of anM -block fading channel, rather than different sensors, though the analogies with

our situation are apparent. The indexk in (15) is used to denote a frame ofM blocks.

The problem considered in [2] is then to allocate the power over theM blocks to minimize the outage probability

subject to an average power constraint, i.e.

minPr(IM (gk, γk) < R) s.t. E

[

1

M

M
∑

i=1

γi,k

]

≤ P.

For continuous fading channels, the solution to this problem involves first solving a sub-problem:

min
1

M

M
∑

i=1

γi,k s.t. IM (gk, γk) = R, (16)

that minimizes the power usage over theM blocks 1
M

∑M
i=1 γi,k, subject to the constraintIM (gk, γk) = R. If this

minimizing sum power is less than a power thresholds∗, then the optimal power allocation is as given by the

solution to the sub-problem (16). On the other hand, if the sum power required to solve the sub-problem exceeds

the thresholds∗, then the optimal allocation is for transmission to be turned off. The thresholds∗ is chosen to

be the one that will satisfy the average sum power constraint, and can be determined either analytically in simple

cases or via Monte Carlo simulations.

Motivated by this solution, the simple power allocation policy we propose for our problem (7) is the following:

Given Pk and gk, solve the sub-problem that minimizes the sum power subjectto the constraintPk+1 = D. If

the required sum power is less than a power thresholds∗, use this power allocation, otherwise don’t transmit. The

intuition behind this is that for those channel realizations where meeting the conditionPk+1 = D requires more

power thans∗, not transmitting at all will be a more efficient use of the available power since here we have an

average or long-term power constraint. Note however that there is a difference with the situation of [2], in that for

our problem the quantityPk is not memoryless. Thus the sub-problem is not always feasible, and it may not always
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be possible to satisfyPk+1 = D in a single time step for arbitraryPk, depending on which of the conditions of

Section III-B the distortion thresholdD satisfies.

For thoseD values satisfying the conditionD ≥ D1 of Section III-B, the sub-problem is always feasible and

the policy just outlined can be applied directly. For the condition D2 < D < D1 of Section III-B, if the value of

Pk is such thatPk+1 = D cannot be achieved in one time step (i.e. does not satisfy (10)), one should arguably still

transmit with some power (since not transmitting will actually cause the error covariance to increase even further)

to reducePk+1, so that in future time steps, i.e.Pk+j = D for j > 1 can then be achieved. The heuristic we

propose in this case is to transmit with sum power equal toηs∗, using the allocation that minimizesPk+1 subject

to the constraint
∑M

i=1 γi,k = ηs∗. Here s∗ is the power threshold andη, where0 ≤ η ≤ 1, is a constant to be

chosen by us. From numerical simulations, we have found that values ofη around the range1/20 − 1/5 result in

very good performance. The intuitive reason is that ifη is too large then we tend to use too much power to reduce

the error covariance, and ifη is too small then the error covariance will not be reduced sufficiently to allow the

constraintPk+j = D to be met at future time instances.

To summarize, the proposed suboptimal power allocation policy that covers both the situationsD ≥ D1 and

D2 < D < D1 is as follows:

• Sets∗ andη.

• For k = 0, 1, . . . , do the following:

• At time k, let x̂k|k−1, Pk, gk be given.

• If Pk+1 = D can be achieved for this value ofPk (i.e. satisfies (10)), solve the following problem:

min
α2

k

M
∑

i=1

α2
i,k

(

c2
i σ

2
w

1 − a2
+ σ2

i

)

s.t. Pk+1 = D. (17)

– If the minimizing sum power to problem (17) is less than the thresholds∗, then transmit using this power

allocation. Update the state estimate using (4) and update the error covariance asPk+1 = D.

– Otherwise setα2
i,k = 0,∀i. Update the state estimate asx̂k+1|k = ax̂k|k−1, and update the error covariance

asPk+1 = a2Pk + σ2
w.

• If Pk+1 = D cannot be achieved for this value ofPk, solve the following problem:

min
α2

k

Pk+1 s.t.
M
∑

i=1

α2
i,k

(

c2
i σ

2
w

1 − a2
+ σ2

i

)

= ηs∗. (18)

– Transmit using the power allocation provided by the solution to (18). Update the state estimate using (4)

and update the error covariance using (5).

The sub-problems (17) and (18) have previously been shown to be convex optimization problems (see [5] and

[22]), and furthermore can be solved analytically for any number of sensors. In Appendix B we write down the
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solutions to these sub-problems.

Remark 3:Determining the thresholds∗ analytically is difficult. In practice, given knowledge of the system

parameters, one first runs Monte Carlo simulations of the suboptimal policy for different values ofs∗ to obtain

corresponding average sum powersP. By forming a plot of these pairs(s∗,P) we can then graphically estimate

the value ofs∗ one should use in order to achieve a given average sum power usageP.

Remark 4: In the analytical solutions to the optimization problems (17) and (18), it turns out that even when

the sensors are transmitting, there could still be some sensors which are inactive [5], due to the transmission over

orthogonal channels. In the context of problems (17) and (18), the M1 sensors (see Appendix B) that are active

are the ones with the largest values of gi,k

σ2
w/(1−a2)+σ2

i /c2
i

, which clearly favours the sensors with better channels and

higher measurement quality, see also [22].

Remark 5:Unlike the optimal solution of Section III-C, the optimization problems (17) and (18) involved in the

suboptimal policy can be solved in a distributed manner. The fusion center can compute and broadcast the quantity

λk (the quantityλ in Appendix B) to all sensors, which can then determine theiroptimal αi,k’s usingλk and their

local information, see [5]. Note though that due to time-varying channel gains, the quantityλk will vary with the

time k, so the broadcasting will need to be done at every time step.

E. Outage minimization with a finite number of power levels

In this section we wish to study the outage minimization problem assuming a fixed number of power levels,

which has practical significance since in practice sensors can usually only transmit using a finite numberd of

different powers.3 Now for a given set of power levels, the outage minimization problem can be solved by solving

the MDP problem (13) of Section III-C. Here however we also wish to optimize the values of these power levels.

A similar problem of finding the optimal quantization thresholds for HMM state estimation was studied in [14].

Below we will outline the procedure for our problem.

Recall the LagrangianLβ, and letLβ∗(Γ) be the optimal value found by solving the MDP (13), withΓ ∈ R
d

representing the given finite set ofd possible power levels. The problem we wish to solve is

min
Γ∈Rd

Lβ∗(Γ) (19)

i.e. we want to find the optimal set of power levelsΓ.

Using the optimal power allocation given by the numerical solution to the MDP for a given set of power

levelsΓ, Monte Carlo simulations of1K

{

∑K−1
k=0 E[1(Pk+1>D)] + β

∑K−1
k=0 E[

∑M
i=1 γi,k]

}

can be regarded as a noisy

measurement of the functionLβ∗(Γ). Hence problem (19) can be viewed as a stochastic optimization problem.

3To keep the notations simple, we assume that all sensors use the same setof power levels.
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These problems can be solved using well-known gradient-freestochastic optimization algorithms such as the Kiefer-

Wolfowitz procedure [30], or more recent techniques such asthe simultaneous perturbation stochastic approximation

(SPSA) algorithm [31]. We will use the SPSA algorithm in our numerical studies in this paper.

F. Numerical studies

1) Single sensor:Consider first an example witha = 0.8, c1 = 1, σ2
1 = 1, σ2

w = σ2
n = 1. With these parameters

the quantitiesD1 andD2 from Section III-B have valuesD1 = 1.4706, D2 = 1.3700. Also, σ2
w/(1−a2) = 2.7778.

The fading channel is assumed to be Rayleigh, withgk being exponentially distributed with mean 1, denoted by

gk ∼ exp(1).

Figure 2 plots the outage probability and average power obtained from the MDP solution, for variousD values.

We use 100 discretization points for each of the quantitiesPk, gk, γk. We discretizePk over the rangeD2 to

σ2
w/(1 − a2), andgk over the range 0 to 15. The discretization range for the powerγk is from 0 toγmax, where

γmax varies for different average power/outage probability requirements. As a rule of thumb we tookγmax to be

around twice the maximum powers∗ used in the suboptimal policy, for a similar average power/outage probability

trade-off. The relative value iteration algorithm is run for20 iterations in solving (14) for each value of the weighting

parameterβ. We see from Figure 2 that smallerD values require more power to be transmitted for a given outage

probability.
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Fig. 2. Outage probability and average power for variousD values.

We next compare the performance of the suboptimal policy with the MDP solution. Figure 3 plots the outage

probability and average power obtained from the MDP solution and suboptimal policy, forD = 2.0 andD = 1.4.

For D = 2.0, since2.0 > 1.4706 = D1, this is the case wherePk+1 = D can always be achieved in one time step.

For D = 1.4 we haveD2 ≤ D ≤ D1, and we will useη = 1/5 for the suboptimal policy. In both plots it can be

seen that the suboptimal policy gives very close performance to the solution obtained by solving the MDP.
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Fig. 3. Outage probability and average power for MDP and suboptimal policy, using η = 1/5

To provide some insight into why the suboptimal policy performs so well, in Figure 4 we plot forD = 2.0 and

Pk = 2.28, the power allocation obtained from solving the MDP as a function of gk, together with the corresponding

value ofPk+1 when using this power allocation. For values ofgk less than around 5, the power allocation is such
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1

Fig. 4. Power allocations obtained from MDP solution, for a fixedPk

that Pk+1 = D = 2.0 is met provided the power required is less than some threshold, which corresponds to the

behaviour of the suboptimal policy. SincePr(gk > 5) = exp(−5) ≈ 6.74 × 10−3 is quite small, we see that

most of the time the MDP solution behaves like the suboptimalpolicy. For values ofgk greater than 5, the power

allocated is more than that required to satisfyPk+1 = D, until around values ofgk greater than 10, where the power

allocated makesPk+1 ≈ 1.5625. We notice thata2×1.5625+σ2
w = 2.0, so the value ofPk+1 = 1.5625 implies that

Pk+2 = D will be achieved even without the sensor transmitting anything at timek +1. This qualitative behaviour

in the power allocation functions obtained from the MDP solution has also been observed for other values ofPk.
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2) Multiple sensors:We now consider a two sensor example witha = 0.8, c1 = 1, c2 = 1, σ2
1 = 1, σ2

2 = 2,

σ2
w = σ2

n = 1, g1 ∼ exp(1), g2 ∼ exp(1). With these parameters the quantitiesD1 and D2 now have the values

D1 = 1.3441, D2 = 1.2806. Due to the increase in computational complexity, we now use20 discretization points

for each of the quantitiesPk, g1,k, g2,k, γ1,k, γ2,k here when solving the MDP. Figure 5 plots the outage probability

and average sum power obtained from the MDP solution and suboptimal policy usingη = 1/5, for a distortion

D = 1.3. Again the two graphs are very close to each other.
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Fig. 5. Two sensor case. Outage probability and average sum power for MDP and suboptimal policy usingη = 1/5, with D = 1.3.

We next consider the effect of increasing the number of sensors M . For simplicity we consider a “symmetric”

situation with a = 0.8, σ2
w = σ2

n = 1, ci = 1, i = 1, . . . , M, σ2
i = 1, gi ∼ exp(1), i = 1, . . . , M . We use the

distortion thresholdD = 1.5. As solving the MDP is prohibitively expensive computationally for M > 2, we

will only present the results for the sub-optimal policy, which can be easily generated. Figure 6 plots the outage

probability and average sum power for this situation, wherewe can readily see the outage performance improvements

from using multiple sensors.
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Fig. 6. Outage probability and average sum power for different numbers of sensors, using the sub-optimal policy

We will also look at how often sensors will transmit under thesuboptimal policy. We again consider the symmetric
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situation witha = 0.8, σ2
w = σ2

n = 1, ci = 1, i = 1, . . . , M, σ2
i = 1, gi ∼ exp(1), i = 1, . . . , M . Fixing D = 1.5 and

the outage probability to be around 0.1, in Figure 7 we plot thepercentage of sensors that are active for different

numbers of sensors (taking into account the periods where nosensors transmit in the suboptimal policy), where the

percentage is averaged over a time horizon of 500000. We see that the percentage of active sensors decreases asM

increases. This is due to the fact that with more sensors we aremore likely to find sensors with good channels so

that the conditionPk+1 = D can be met with a smaller percentage of sensors. Next we fixD = 1.1 andM = 100,
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Fig. 7. Percentage of active sensors for different numbers of sensors using the sub-optimal policy

and in Figure 8 we plot the percentage of sensors that are active as the average sum power varies. As the available

transmit power increases, the percentage of active sensorsincreases, similar to what has been observed in [5].
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Fig. 8. Percentage of active sensors for different average sum powers using the sub-optimal policy

3) Finite number of power levels:We consider the effect of using a finite number of power levels,for the single

sensor case. Figure 9 compares the performance using “continuous” power levels (though for numerical computation

the range is actually discretized into 100 power levels) anddifferent schemes using 4 power levels, which may

possibly include zero. The system parameters area = 0.8, c1 = 1, σ2
1 = 1, σ2

w = σ2
n = 1, g1 ∼ exp(1) and

D = 1.6. We show first the performance using powers that are exponentially spaced asexp(i∆) − 1, i = 0, . . . , 3,
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Fig. 9. Outage probability and average power using 4 power levels.

with ∆ = log(γmax + 1)/3, whereγmax is chosen to be around 10 times the average power in the continuous

power case. We also plot the performance using powers that are uniformly spaced from 0 toγmax. It can be seen

that the exponential spacing appears to give better performance. Using these exponentially spaced powers as initial

conditions, we then ran the simultaneous perturbation stochastic approximation (SPSA) algorithm [31] to further

optimize the choice of powers. We followed the guidelines for selecting the SPSA algorithm parameters in [32].

Specifically, we chose (using the same symbols as those in [32])αSA = 0.602, γSA = 0.101, cSA = 0.01, ASA = 10,

andaSA such thataSA/(ASA + 1)αSA × ĝSA
0 (θ̂SA

0 ) is approximately equal to 0.02. The SPSA algorithm was then

run for 1000 iterations. The performance using these optimized values is then simulated. It can be seen that there

is a slight gain to be had from further optimizing the choice of powers.

IV. U NSTABLE SYSTEMS

In this section we will consider the outage minimization problem for unstable systems. There are many applica-

tions where unstable systems are used to model the behaviourof systems over afinite time scale such as in target

tracking [33] and control theory [34]. In these cases, we will be interested in finite horizon results for unstable

systems where the system states and measurements can take onlarge values but are still bounded.

Since for unstable systems meeting the outage constraints requires increasingly large amounts of power as the

time increases, the infinite horizon problem stated by (7) is not appropriate. Instead we will present a different

formulation of the outage minimization problem, namely a finite horizon version of problem (7).4

Instead of Assumption 3.1, for unstable systems we will makethe following slightly different assumption:

Assumption 4.1:D satisfies the conditionD > D2, whereD2 is defined by (9).

4This finite horizon formulation can also be used in the case of stable systemsif desired.
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A. Finite horizon formulation

For the finite horizon formulation, instead of minimizing thelong run averages as in problem (7), we instead are

only interested in outage minimization over a finite time horizon. We can write this problem as

min
{γk}

1

K

K−1
∑

k=0

E[1(Pk+1>D)] s.t.
1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P (20)

whereK is the finite horizon over which we wish to solve the problem. Thesensor transmit powers are as defined

in (6), i.e. γi,k = α2
i,k(c

2
i E[x2

k] + σ2
i ), except that for unstable systemsE[x2

k] is now time-varying, and given by

E[x2
k] = a2kP0 + (a2k−2 + · · · + a2 + 1)σ2

w = a2kP0 +
(a2k − 1)σ2

w

a2 − 1
, k = 1, . . . , K − 1, (21)

with initial covarianceE[x2
0] = P0. Introducing the Lagrangian

Lβ,K =
1

K

{

K−1
∑

k=0

E[1(Pk+1>D)] + β
K−1
∑

k=0

E[
M
∑

i=1

γi,k]

}

,

we now wish to solve the unconstrained problem

min
{γk}

1

K

K−1
∑

k=0

E[lβk (Pk, gk, γk)|P0, g0] (22)

where lβk (Pk, gk, γk) ≡ 1(Pk+1>D) + β
∑M

i=1 γi,k. The discretized version of problem (22) may then be solved

numerically using the standard dynamic programming algorithm. We briefly state the algorithm below.

1) SetJK(P d
K , gd

K) = 0,∀(P d
K , gd

K).

2) For k = K − 1, . . . , 0, set

Jk(P
d
k , gd

k) = min
γd

k

[lβk (P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)Jk+1(P

rnd
k+1, g

d
k+1)]

γ∗
k(P d

k , gd
k) = argmin

γd
k

[lβk (P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)Jk+1(P

rnd
k+1, g

d
k+1)]

(23)

where (23) is derived in a similar manner to (14).

B. Suboptimal policy

The suboptimal policy of Section III-D can also be applied to the finite horizon problem (22), with slight

modifications due to the difference in expression forE[x2
k]. This is stated below.

• Sets∗ andη.

• For k = 0, 1, . . . , K − 1, do the following:

• At time k, let x̂k|k−1, Pk, gk be given.

• If Pk+1 = D can be achieved for this value ofPk (i.e. satisfies (10)), solve the following problem:

min
α2

k

M
∑

i=1

α2
i,k

(

c2
i

(

a2kP0 +
(a2k − 1)σ2

w

a2 − 1

)

+ σ2
i

)

s.t. Pk+1 = D. (24)
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– If the minimizing sum power to problem (24) is less than the thresholds∗, then transmit using this power

allocation. Update the state estimate using (4) and update the error covariance asPk+1 = D.

– Otherwise setαi,k = 0,∀i. Update the state estimate asx̂k+1|k = ax̂k|k−1 and update the error covariance

asPk+1 = a2Pk + σ2
w.

• If Pk+1 = D cannot be achieved for this value ofPk, solve the following problem:

min
α2

k

Pk+1 s.t.
M
∑

i=1

α2
i,k

(

c2
i

(

a2kP0 +
(a2k − 1)σ2

w

a2 − 1

)

+ σ2
i

)

= ηs∗. (25)

– Transmit using the power allocation provided by the solution to (25). Update the state estimate using (4)

and update the error covariance using (5).

The optimization problems (24) and (25) can also be solved analytically, similar to problems (17) and (18), see

Appendix B.

C. Outage minimization with a finite number of power levels

As in the stable system case, we can also consider the outage minimization problem using only a finite number

of power levels, while also optimizing over the values of these powers. The techniques are very similar to those

of Section III-E and are omitted for brevity.

D. Numerical studies

We first present numerical results for the single sensor situation. In Figure 10 we plot the outage probability

and average power for various differentD values, while keeping the horizonK = 4 fixed. We useda = 1.1,

σ2
w = σ2

n = σ2
1 = 1, c1 = 1, g1 ∼ exp(1). The initial covarianceP0 is set to the same value ofD being used.

Similar to Figure 2, smallerD values will require more power to be transmitted for a given outage probability.
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Fig. 10. Outage probability and average power for variousD values, withK = 4.
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In Figure 11 we plot the outage probability and average power for various different horizons, while keeping

D = 2.5 fixed. We again useda = 1.1, σ2
w = σ2

n = σ2
1 = 1, c1 = 1, g1 ∼ exp(1) with initial covarianceP0 = 2.5.

We can see that for a given outage probability, it will require more power (averaged over the entire horizon) to be

transmitted as the horizon is increased. This agrees with theintuition that it requires increasingly large amounts of

power to meet the outage requirements as time increases.
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Fig. 11. Outage probability and average power for different finite horizonsK, with D = 2.5.

In Figure 12 we compare the performance of the solution obtained by dynamic programming and the suboptimal

policy. We useda = 1.1, σ2
w = σ2

n = σ2
1 = 1, c1 = 1, g1 ∼ exp(1) and two different values forD. For the

suboptimal policy we used the valueη = 1/5. As in the case of stable systems, the performance of the suboptimal

policy is again very close to that of the optimal policy.
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Fig. 12. Outage probability and average power for dynamic programming solution and suboptimal policy, usingη = 1/5.

We next consider the effect of increasing the number of sensors M . We consider the symmetric situation with

a = 1.1, σ2
w = σ2

n = 1, ci = 1, i = 1, . . . , M, σ2
i = 1, gi ∼ exp(1), i = 1, . . . , M . The fading channels are all taken

to be Rayleigh, the finite horizon isK = 4, and we let the distortion thresholdD = 2.0. Figure 13 plots the outage

probability and average sum power for this situation, wherethe results are obtained using the sub-optimal policy,



22

with similar interpretations as in the case of stable systems.
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Fig. 13. Outage probability and average sum power for different numbers of sensors, using the sub-optimal policy

V. V ECTOR SYSTEMS

In this section we will describe a possible problem formulation of the outage minimization problem to vector

systems. For notational simplicity, we will restrict ourselves to vector state, scalar measurement (per sensor)

systems, though this can be extended to vector measurementswhere e.g. sensors transmit each component of

their measurement vector to the fusion center separately. The linear system is now given by

xk+1 = Axk + wk

with x ∈ R
n, A ∈ R

n×n, and wk ∈ R
n being i.i.d. Gaussian with zero-mean and covariance matrixΣw. The

measurements at the sensors are taken to be scalar, so that

yi,k = cixk + vi,k, i = 1, . . . , M

with yi,k ∈ R, ci ∈ R
1×n, andvi,k ∈ R being i.i.d. Gaussian with zero-mean and varianceσ2

i . As in (2), under the

orthogonal analog forwarding scheme the received signals at the fusion centre can be written as

zi,k = αi,k
√

gi,kcixk + αi,k
√

gi,kvk + ni,k, i = 1, . . . , M.

We definezk = (z1,k, . . . , zM,k)
T , gk = (g1,k, . . . , gM,k)

T , C̄k = [α1,k
√

g1,kc
T
1 | . . . |αM,k

√
gM,kc

T
M ]T ,

v̄k = (α1,k
√

g1,kv1,k + n1,k, . . . , αM,k
√

gM,kvM,k + nM,k)
T , R̄k = diag(α2

1,kg1,kσ
2
1 + σ2

n, . . . , α2
M,kgM,kσ

2
M + σ2

n).

Then the state estimate satisfies

x̂k+1|k = Ax̂k|k−1 + APk|k−1C̄
T
k (C̄kPkC̄

T
k + R̄k)

−1(zk − C̄kx̂k|k−1) (26)

and the error covariance matrix satisfies

Pk+1 = APkA
T − APkC̄

T
k (C̄kPkC̄

T
k + R̄k)

−1C̄kPkA
T + Σw. (27)
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The sensor transmit power is defined asγi,k = α2
i,kE[y2

i,k] = α2
i,k(ciE[xkx

T
k ]cT

i + σ2
i ), whereE[xkx

T
k ] satisfies the

Lyapnuov equationE[xkx
T
k ] − AE[xkx

T
k ]AT = Σw and can be determined numerically.

We now extend the estimation outage notion to vector systems, to be the event that Tr(Pk+1) > D, with Tr(.)

denoting the trace.

A. Stable systems

For stable systems, the outage minimization problem can then be expressed as

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[1(Tr(Pk+1)>D)] s.t. lim sup
K→∞

1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P. (28)

As in the scalar case, we can use the Lagrangian technique to turn (28) into an unconstrained problem

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[lβ(Pk, gk, γk)|P0, g0]

with lβ(Pk, gk, γk) ≡ 1(Tr(Pk+1)>D) + β
∑M

i=1 γi,k. The associated Bellman equation can be derived in a similar

manner to (14) to be

λ + h(P d
k , gd

k) = min
γd

k

[lβ(P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)h(P rnd

k+1, g
d
k+1)] (29)

whereP rnd
k+1 is the matrixPk+1 with each entry rounded to the nearest discretized value, while also ensuring that

the positive semidefinite nature is retained. Numerical solution of (29) in the vector case will be more demanding

computationally, since we now have to discretize individually the entries ofPk when it is a matrix. However since

Pk is symmetric, we only need to do this for e.g. the upper triangular entries of the matrix.

An extension of the suboptimal scheme of Section III-D is as follows:

• Sets∗ andη.

• For k = 0, 1, . . . , do the following:

• At time k, let x̂k|k−1, Pk, gk be given.

• If Tr(Pk+1) = D can be achieved for this value ofPk,5 solve the following problem:

min
α2

k

M
∑

i=1

α2
i,k(ciE[xkx

T
k ]cT

i + σ2
i ) s.t. Tr(Pk+1) = D. (30)

– If the minimizing sum power is less than the thresholds∗, then transmit using this power allocation.

Update the state estimate using (26) and update the error covariance matrix using (27).

– Otherwise setα2
i,k = 0,∀i. Update the state estimate asx̂k+1|k = Ax̂k|k−1 and update the error covariance

matrix asPk+1 = APkA
T + Σw.

5DefineC̃ = [cT

1 | . . . |c
T

M ], R̃ = diag(σ2
1 , . . . , σ2

M ). Then this condition in the vector case corresponds to Tr(APkAT −APkC̃T (C̃PkC̃T +

R̃)−1C̃PkAT + Σw) ≤ D.
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• If Tr(Pk+1) = D cannot be achieved for this value ofPk, solve the following problem:

min
α2

k

Tr(Pk+1) s.t.
M
∑

i=1

α2
i,k(ciE[xkx

T
k ]cT

i + σ2
i ) = ηs∗. (31)

– Transmit using the power allocation provided by the solution to (31). Update the state estimate using (26)

and update the error covariance matrix using (27).

Unlike the scalar case, problems (30) and (31) are in generalnon-convex [35]. In the numerical studies of Section

V-C we have solved problems (30) and (31) to obtain local minima using the MATLAB routinefmincon.

B. Unstable systems

For unstable systems, similar problem formulations which extend those of Section IV can be studied, but will

be omitted for brevity.

C. Numerical studies

We consider first a single sensor situation withA =





0.8 0.1

0.1 0.8



, c1 = [ 1 1 ], Σw =





1 0

0 0.5



, σ2
1 = 1,

σ2
n = 1, g1 ∼ exp(1), and we setD = 3.0. Figure 14 compares the solution obtained by solving the MDP with the

suboptimal policy usingη = 1/5. The performance of the suboptimal policy is very close to theMDP solution.
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Fig. 14. Outage probability and average power comparison between MDPsolution and suboptimal solution: Vector state, single sensor

Next we present in Figure 15 results for the multi-sensor situation using the suboptimal policy. The parameters

are A =





0.8 0.1

0.1 0.8



, ci = [ 1 1 ], Σw =





1 0

0 0.5



, σ2
i = 1, gi ∼ exp(1), i = 1, . . . , M , σ2

n = 1. We set

D = 3.0 and useη = 1/5 in the suboptimal policy.
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Fig. 15. Outage probabiility and average sum power for different numbers of sensors: Vector state

VI. M INIMIZATION OF EXPECTED ERROR COVARIANCE

The methods we have used in this paper can be adapted to minimize other cost functions. For instance, one

possibility is to minimize the expected error covariance subject to average power constraints. For simplicity, only

scalar systems are considered in this section.

A. Stable systems

For the case of stable systems and an infinite horizon formulation, this problem can be written as

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[Pk+1] s.t. lim sup
K→∞

1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P. (32)

Using the Lagrangian technique we obtain the unconstrained problem

min
{γk}

lim sup
K→∞

1

K

K−1
∑

k=0

E[l̆β(Pk, gk, γk)|P0, g0]

with l̆β(Pk, gk, γk) ≡ Pk+1 + β
∑M

i=1 γi,k. The average cost optimality equation (ACOE) can be written as

λ + h(Pk, gk) = min
γk






l̆β(Pk, gk, γk) +

∫

gk+1,Pk+1

h(Pk+1, gk+1)q(d(Pk+1, gk+1)|Pk, gk, γk)






(33)

which is very similar to (12) with the main difference being in the definition of̆lβ(Pk, gk, γk). We have the following:

Lemma 3:Under Assumption 3.2, there exists a solution to the averagecost optimality equation (33).

Proof: Existence of a solution to the average cost optimality inequality (with ≥ instead of equality in (33))

can be shown similar to Appendix A for the outage minimization problem. Furthermore, equality in (33) can also

be shown, by making use of: 1) the exponential forgetting property for the initial conditions in Kalman filtering,

2) the Lipschitz continuity of the cost function̆lβ(·, ·, ·), and 3) repeating the argument in the proof of Proposition

3.2 of [13]. The assumptions in Sections 5.4 and 5.5 of [25] can then be verified to conclude the existence of a

solution to the ACOE.
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As in the outage minimization problem, to obtain numerical solutions we will solve a discretized version of the

ACOE (33), i.e.

λ + h(P d
k , gd

k) = min
γd

k

[l̆β(P d
k , gd

k, γd
k) +

∑

gd
k+1

p(gd
k+1)h(P rnd

k+1, g
d
k+1)]

which is derived in a similar manner to (14).

For comparison, let us also consider a simpler sub-optimal scheme for problem (32), which could be considered

as a “greedy” approach that solves at each time stepk the following problem:

min
γk

Pk+1 s.t.
M
∑

i=1

γi,k = P. (34)

That is, at each time step we minimize the error covariancePk+1, while meeting the sum power constraint with

equality. This problem has been previously studied, see [22]for further details.

B. Unstable systems

In the case of unstable systems, the finite horizon formulation of the problem can be written as

min
{γk}

1

K

K−1
∑

k=0

E[Pk+1] s.t.
1

K

K−1
∑

k=0

E[
M
∑

i=1

γi,k] ≤ P. (35)

Using the Lagrangian technique, the unconstrained problem we obtain is

min
{γk}

1

K

K−1
∑

k=0

E[l̆βk (Pk, gk, γk)|P0, g0] (36)

with l̆β(Pk, gk, γk) ≡ Pk+1 + β
∑M

i=1 γi,k. Similar to the outage minimization problem, a discretized version of

(36) can be numerically solved with the dynamic programmingalgorithm.

We will also compare this solution with a greedy approach, where we now will solve (34) over the times

k = 0, . . . , K − 1.

C. Numerical studies

In Figure 16 we plot the average error covariance and average power comparison using these two approaches, for

stable systems. The parameters area = 0.8, σ2
w = σ2

n = σ2
1 = 1, c1 = 1, g1 ∼ exp(1). For higher average powers,

the performance of the greedy solution approaches very closely the performance of the optimal MDP solution.

In Figure 17 we plot the comparison for unstable systems. The parameters area = 1.2, σ2
w = σ2

n = σ2
1 = 1,

c1 = 1, g1 ∼ exp(1), K = 5, and initial covarianceP0 = 3. Similarly, the performance of the greedy approach is

very close to that of the optimal dynamic programming solution for higher average powers.
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Fig. 16. Average error covariance and average power comparisonbetween MDP solution and suboptimal greedy solution: Stable systems
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Fig. 17. Average error covariance and average power comparisonbetween MDP solution and suboptimal greedy solution: Unstable systems

VII. C ONCLUSIONS AND EXTENSIONS

We have considered the estimation outage minimization problem for state estimation of linear systems. For

stable systems we used an infinite horizon problem formulation and for unstable systems we used a finite horizon

formulation. Suboptimal policies were presented which gavevery close to optimal performance, and optimization

of powers assuming a finite number of power levels was also studied.

Extensions of the outage concept to control problems over fading channels will be a topic of future investigation,

as will be more detailed investigation into the vector case.In addition, typical information theoretic notions such

as the diversity order of the outage probability (how fast does the outage probability decay with the number of

sensors) will be investigated for the estimation outage scenario in future work.
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APPENDIX

A. Proof of Lemma 2

We will use the conditions (W) and (B) of [24] that will guarantee the existence of a solution to the ACOI

(similar conditions can also be found in [25]). Call the state spaceS and action spaceA, i.e. (Pk, gk) ∈ S, γk ∈ A.

We first give condition (W) of [24], which says that:

(0) The state spaceS is locally compact.

(1) Let U(.) be the mapping that assigns to each(Pk, gk) the nonempty set of available actions. ThenU(Pk, gk)

lies in a compact subset ofA andU(.) is upper semicontinuous.

(2) The transition probabilities are weakly continuous.

(3) lβ is lower semicontinuous.

By Assumption 3.2, (0) and (1) of (W) can be easily verified. For(2) note thatPk+1 is a continuous function

of (Pk, gk, γk), which then shows weak continuity by p.177 of [25]. For (3), it can be easily shown that1(Pk+1>D)

is lower semicontinuous, andβ
∑M

i=1 γi,k is clearly a continuous function, so thatlβ(Pk, gk, γk) = 1(Pk+1>D) +

β
∑M

i=1 γi,k is lower semicontinuous.

It then remains to verify condition (B), which in the notation of this paper says that

sup
δ<1

wδ(P0, g0) < ∞,∀(P0, g0)

wherewδ(P0, g0) = vδ(P0, g0)−mδ, vδ(P0, g0) = inf{γk} E[
∑∞

k=0 δklβ(Pk, gk, γk)|P0, g0], andmδ = inf(P0,g0) vδ(P0, g0).

Following Sec. 4 of [24], define the stopping timeτ = inf{k ≥ 0 : vδ(Pk, gk) ≤ mδ + ς} for someς ≥ 0.

Given ς > 0 and an arbitrary(P0, g0), consider a suboptimal power allocation policy where all sensors transmit

with powerγmax, until vδ(PN , gN ) ≤ mδ + ς is satisfied at some timeN . By Assumption 3.2, we haveN < ∞

with probability 1 andE[N ] < ∞. Sinceτ ≤ N , we haveE[τ ] < ∞. Then by Lemma 4.1 of [24],

wδ(P0, g0) ≤ ς + inf
{γk}

E

[

τ−1
∑

k=0

lβ(Pk, gk, γk)|P0, g0

]

≤ ς + E[τ ] × (1 + βMγmax) < ∞ (37)

where the second inequality uses Wald’s equation. Hence condition (B) of [24] is satisfied and a solution to the

ACOI exists.

B. Analytical solutions to sub-problems (17) and (18)

Here we will state the analytical solutions to the optimization problems (17) and (18). Derivations can be found

in [5] and [22].
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1) Solution to sub-problem (17):The constraintPk+1 = D can be shown using (5) to be equivalent to the

constraint
M
∑

i=1

α2
i,kgi,kc

2
i

α2
i,kgi,kσ

2
i + σ2

n

=
a2Pk + σ2

w − D

Pk(D − σ2
w)

.

We then have the following optimization problem, which is a slightly more general version of sub-problem (17),

that also covers sub-problem (24) in the unstable case.

min
α2

1,...,α
2
M

M
∑

i=1

α2
i κi s.t.

M
∑

i=1

α2
i ρ

2
i

α2
i τi + σ2

n

=
x

y
(38)

wherex > 0, y > 0, κi > 0, ρi ∈ R, τi > 0, i = 1, . . . , M are constants.

Assume that the sensors are ordered such thatρ2
1

κ1
≥ · · · ≥ ρ2

M

κM
. Then the optimal values ofα2

i can be expressed

as

α∗2
i =







1
τi

(
√

λρ2
i σ2

n

κi
− σ2

n) , i ≤ M1

0 , otherwise

where
√

λ =

∑M1

i=1
|ρi|
τi

√

κiσ2
n

∑M1

i=1
ρ2

i

τi
− x

y

and the number of sensors which are active,M1, satisfies

M1
∑

i=1

ρ2
i

τi
− x

y
≥ 0,

∑M1

i=1
|ρi|
τi

√

κiσ2
n

∑M1

i=1
ρ2

i

τi
− x

y

√

ρ2
M1

σ2
n

κM1

− σ2
n > 0 and

∑M1+1
i=1

|ρi|
τi

√

κiσ2
n

∑M1+1
i=1

ρ2
i

τi
− x

y

√

ρ2
M1+1σ

2
n

κM1+1
− σ2

n ≤ 0.

2) Solution to sub-problem (18):In [22] it is shown that minimizingPk+1 is equivalent to minimizing

−
M
∑

i=1

α2
i,kgi,kc

2
i

α2
i,kgi,kσ

2
i + σ2

n

.

We then have the following optimization problem, which is a slightly more general version of sub-problem (18),

that also covers sub-problem (25) in the unstable case.

min
α2

1,...,α
2
M

−
M
∑

i=1

α2
i ρ

2
i

α2
i τi + σ2

n

s.t.
M
∑

i=1

α2
i κi = γtotal (39)

wherex > 0, y > 0, κi > 0, ρi ∈ R, τi > 0, i = 1, . . . , M are constants. Assuming that the sensors are ordered so

that ρ2
1

κ1
≥ · · · ≥ ρ2

M

κM
, the optimal values ofα2

i to problem (39) can be expressed as

α∗2
i =







1
τi

(
√

ρ2
i σ2

n

λκi
− σ2

n) , i ≤ M1

0 , otherwise

where
1√
λ

=
γtotal +

∑M1

i=1
κi

τi
σ2

n
∑M1

i=1
|ρi|
τi

√

κiσ2
n

and the number of sensors which are active,M1, satisfies

γtotal +
∑M1

i=1
κi

τi
σ2

n
∑M1

i=1
|ρi|
τi

√

κiσ2
n

√

ρ2
M1

σ2
n

κM1

− σ2
n > 0 and

γtotal +
∑M1+1

i=1
κi

τi
σ2

n
∑M1+1

i=1
|ρi|
τi

√

κiσ2
n

√

ρ2
M1+1σ

2
n

κM1+1
− σ2

n ≤ 0.
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