Power Allocation For Outage Minimization in State

Estimation Over Fading Channels

Alex S. Leong, Subhrakanti Dey, Girish N. Nair, and Priyariia®na

Abstract

This paper studies the outage probability minimizatiorbpgm for state estimation of linear dynamical systems
using multiple sensors, where an estimation outage is dkfisean event when the state estimation error exceeds a
pre-determined threshold. The sensors amplify-and-fahlzeir measurements (using uncoded analog transmission)
to a remote fusion center over wireless fading channels.skdle systems, the resulting infinite horizon problem
can be formulated as a constrained average cost Markovialegsocess (MDP) control problem. A suboptimal
power allocation that is less computationally intensiveptisposed, and numerical results demonstrate very close
performance to the power allocation obtained from the swiubdf the MDP based average cost optimality equation.
Motivated by practical considerations, assuming that@snsan transmit with only a finite number of power levels,
optimization of the values of these levels is also consiilerseing a stochastic approximation technique. In the
case of unstable systems, a finite horizon formulation ofeftemation outage minization problem is presented and

solved. An extension to the problem of minimization of thepented error covariance is also studied.

Index Terms

Fading channels, Markov decision process, outage pratyalpibwer control, sensor networks, state estimation

. INTRODUCTION

In real time applications, notions of outage are often useguantify the time periods when the performance of
a system is below what is desired. For instance, in mobikptainy, outages could correspond to times where the
audio quality is very poor, and in tracking applicationsamés might correspond to instances where the location

of a target cannot be determined to a desired accuracy.
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In communications and information theory, the notion ofagelimited or zero-outage capacity was introduced
in [1]. The concepts of information outage probability andage capacity, and the optimal power allocation to
minimize the information outage probability subject to arerage power constraint, were subsequently studied
in [2]. Further extensions of the outage concept in commuioica theory include the delay-constrained outage
capacity problem in [3], and the notion of service outagedh [n the signal processing literature, the notions of
estimation outage and detection outage for the distribagtidnation and detection of i.i.d. sources were introduced
recently in [5] and [6] respectively. Further results on restion outage and estimation diversity order can be
found in [7], [8]. The optimal power allocation for estimati@utage minimization problem, in the estimation of
an i.i.d. Gaussian source, has been solved in [9] with fulinctel information and in [10] with quantized channel

information at the sensor transmitters.

In much of this previous work, the systems that have beenetuthve been memoryless, so that the allocation
of resources at one time instant does not affect the evolutfothe system at future times. The focus of this
paper is on extending the notions of estimation outage t,saitving the estimation outage minimization problem
for, dynamical systemdn particular, we consider state estimation of linear dyital systems using multiple
sensors, where the sensors transmit their measurement&iston center over wireless channels using the analog
amplify-and-forward technique of [11], which is a schematthas been shown to be optimal in certain distributed
estimation scenarios [12]. An outage will be defined as thentetleat the estimation error covariance exceeds a
given threshold, and we are interested in how to optimallgcakte the transmit powers of the sensors in order
to minimize the probability of outage, subject to an averags power constraint. We will use Markov decision
process (MDP) and dynamic programming techniques to nuaibrisolve these problems. Dynamic programming
techniques have also been used in solving related probleoisas the delay-constrained outage capacity problem

in [3], and estimation error minimization problems for hesidMarkov model state estimation in [13], [14].

Another area related to this paper is the analysis of thepadnce of Kalman filtering with packet losses, under
various different notions of performance such as the exgeetror covariance [15], [16] and a probabilistic notion
of performance [17], [18]. For continuous fading chann#is, behaviour of the expected error covariance has also
been studied in [19], [20]. However, the focus of these wasksiore on determining conditions under which the

filter remains stable, and power control is not explicitly siolered.

Summary of Contributions
This paper is concerned with solving the estimation outagamization problem, in the state estimation of linear

dynamical systems. In particular, we make the followingtdbations:

« In the case of stable systems, we formulate the outage naatron problem over an infinite horizon. This

will turn out to be a constrained average cost Markov degigimocess (MDP) [21], which we can transform



using a Lagrangian technigue into an unconstrained MDP,ddiatthen be solved numerically at the fusion
center with techniques such as the relative value iteralgorithm. The optimal power allocations are then
fed back to the sensors.

« In the case of unstable systems, an infinite horizon averagjepcoblem formulation is not appropriate since
increasingly large amounts of power will need to be tranaitinstead we study a finite horizon formulation,
that can be solved numerically using dynamic programmicgnigues.

« We propose suboptimal policies that can be more efficientlyeslp especially for large numbers of sensors
and/or high dimensional vector states. The suboptimal iggliare motivated by the form of the optimal
solution to the information outage minimization problemdommunications theory [2]. For scalar systems,
the power allocations can be determined analytically, butvector systems the numerical solution of non-
convex optimization problems is required at each time dtiepnerical studies indicate very close performance
to the optimal solutions.

« Assuming that sensors can only transmit using a fixed numbeower levels, we consider the problem of
optimizing the values of these powers using stochasticeaupiation techniques.

« We consider a related problem of minimization of the longrteaverage expected error covariance subject
to average sum power constraints, that can be solved ugimifasitechniques. The performance is compared

with a greedy suboptimal solution studied in [22].

The organization of the paper is as follows. We will first focussgalar linear systems in Sections II-1V, where
finding optimal solutions numerically is more computatidyatactable than the general vector case. Furthermore,
suboptimal policies in the scalar case can be found analigtidut in the vector case will require the numerical
solution of non-convex optimization problems. Stable syste@re considered in Section Ill, where we present the
outage minimization problem formulation in Section IlI-A.@en IlI-B derives some conditions on the distortion
threshold that affect the solvability of the problem. Theam& minimization problem is solved in Section IlI-C, and
a sub-optimal policy is proposed in Section IlI-D. Optimipatusing a finite number of power levels is addressed
in Section IlI-E. Unstable systems are then considered in &et¥. We present first a finite horizon formulation
and suboptimal policy in Sections IV-A and IV-B respectivelector systems are considered in Section V, where
we present a possible formulation of the outage minimirmapooblem. We also propose a suboptimal algorithm,
which however requires the numerical solution of non-cangptimization problems in general. Finally, using
similar techniques studied in this paper, an extension ¢opitoblem of minimizing expected error covariance is

studied in Section VI, and compared with a suboptimal greqmbraach.



II. SYSTEM MODEL

Sections II-1V will focus on scalar linear systems. Throughthis paper we will usé: to denote the discrete

time index, and to denote the sensor index. We consider a discrete timerdoadar system given by
Tl = aTg + wy (1)

wherez;, wi, a € R, with z;. representing the state that we wish to estimate,@apds i.i.d. Gaussian noise with

zero mean and varianeg,. See Figure 1 for a diagram of the system model.

Fusion | X«
Center

Fig. 1. System model

The system is observed by different sensors with observations
Yik = CiT + Vi, i =1,..., M

with y; ., vi ., ¢; € R, andw, , is i.i.d. Gaussian noise with zero mean and variamgeThe ¢; parameters can be
interpreted as a sensor's measurement gain/attenuatmmnodiactors such as e.g. distance from the source.

The sensors then send their measurements over wirelessethamm fusion centre. We assume that the sensors
use the analog amplify-and-forward technique of [11], vehttre sensor transmitter amplifigs;, by a factora; 4
and sends it to the fusion centre over a fading channel. Therelift fading channels are taken to be orthogonal,
as in [5]. We remark that a non-orthogonal multi-accesssirassion scheme can also be considered (see [11]),
and the analysis will be similar, but for brevity we will rast ourselves to the orthogonal scheme in this paper.

The received signals at the fusion centre can be written as

Zik = QG /GikYik T Nik = O j/Gi kCiTk + O /i kVk + Mgy ©=1,..., M 2)

whereg; , > 0 are the random channel power gainsy, is i.i.d. Gaussian noise with zero mean and variange
ando; , are the amplification factors in the analog forwarding scherhe channel gaing; ;,, Vi are assumed to be
known at the receiver, while an individual sengdras knowledge of its own channgl;. The channel undergoes

slow fading such that the phase of the complex channel castbeated and compensated for at the fusion center,



so that,/g;x represents the real-valued envelope of the complex chayairs. We use a block fading model,
with the channel gaing;; being independent and identically distributed (i.i.d.eot¥ime, and with continuous
distributions. We assume that there are noiseless feedivdek from the fusion center back to the sensors, that
can be used to e.g. feedback optimal values.gf that are computed at the fusion center (see Section IlI-C). The
noise and fading terms, wy, v; k, gi,x, @ndn; are taken to be mutually independent. In addition, it is amsl
that the fusion center has knowledge of the parameters o2, 02, 02, Vi.

Call zj, = (z1, - 200k) T 9k = (G1ps - - 90 k) Ty Cr = (01 /TLkCLs - - s Mk /IaTRCM) T s
Dy, = (al,k\/gTngl,k + N1k, M EN/IMEVM K+ nM’k)T, Ry, = dz’ag(ozikglykaf ‘o2, ..., 0‘%\/1,169M,k‘7]2\4 +02).

The equations in (2) can then be written as

2 = Crg + U (3)

whered;, has the time-varying covariance matii,. The equations (1) and (3) form a linear time-varying system
whose stater;, can be optimally estimated by a time-varying Kalman filtertred fusion centre. Define the state

estimate and error covariance! as

i‘k+1|k’ = ]E[':Uk-i-l‘z(]’ <.y 2k> 905 - - - >gk]

Porije = El@rs1 — Zepe) 1205 - - - 2k 90, - - - Gk

In the following, we will also use the short hand notatiBp, ; = P,

One then has from the time-varying Kalman filter equationg {aat

Erirp = adpp_1 + aPeCL (CoPeCL + Ri) ™ (21 — Crgpp—1) 4)

Py = a2Pk — GQPISC'E(CYkPkékT + Rk)‘lC‘k + 03).

By an application of the matrix inversion lemma the recurdiar the error covariance can be further simplified to:

2 2
a Pk 2 a Pk 2
P = — — 4+ 0. = 3 = + oz, 5
T RCTRC, Y 4P Mol w ®)

P Ry R S
=1 of ) gi ko7 +0}

The sensor transmit powey, ;, used by thei-th sensor in transmitting its measurement to the fusionreest

time k is defined as
Vik = a?,kE[yiz,k] = azz,k(C?E[l’i] +07). (6)

1Similarly, quantities such asy, and Py, can be defined and Kalman filtering equations for these quantities canitbenwbut are

omitted for brevity.



IIl. STABLE SYSTEMS
A. Problem statement

In this section we will consider stable scalar linear systene.|a| < 1 (see Section IV for the case of unstable

systems). Then ak — oo, {z)} becomes stationary and we hagr?] — o2 /(1 — a?), so that (6) simplifies to

2 2 o 2
J— w
Vik = Qi (Ci - &2 + Ui)

Let us callay, = (alvk,...,aM,k)T, Ve = (’yl,k,...,yMk)T. The problem we consider in this section is to
choose they;’s (and hence they’s) to minimize the estimation outage probability subjextatlong run average
power constrainfP? on the sum of the transmitted powers. We will assume that tveep allocations are causal,
i.e. v is a function of (P,...,P;) and (go,...,gx). By the Markov property;y, will in fact turn out to be a
function of P, and gy.

In this paper we will declare an estimation outage eventef éhror covariance’,;; exceeds some distortion

thresholdD. More formally, we want to solve over an infinite horizon thelgem:

K-1 K-1
1 1
min lim sup — Pr(Pyy1 > D) = minlimsup — Ellp.,
minlimsup 7= kZ:O (Pit1 > D) minlim sup 7 kZ:O [1(Pesi>D)]
) Y
s.t. llgljllop [7d kzo E[; Yikl <P

wherel,(-) is the indicator function, with 4(w) =1 if w € A, and14(w) =0 if w ¢ A.
As mentioned in the introduction, the motivation for usihg butage probability as the performance criterion is
that we are interested in criteria that captures the shiort éstimation performance useful for real-time appligagio
in contrast to other long-term (or ergodic) performancéeda such as the average error covarigh@éis is due
to the fact that state estimates constructed from a timgingrKalman filter based on measurements received
from the sensors over randomly time-varying fading chasielve prediction error covariances which are also
randomly time-varying. In applications where short-terstiraation performance is more critical (such as target
tracking or automatic control of unstable plants), a largngation/prediction error covariance is unacceptabbk an
therefore minimizing the probability of estimation outa@kat the prediction error covariance exceeds a certain
threshold) is an appropriate performance measure in ttss. CBhis motivation is similar to the rationale behind
information outage minimization in communications theuwyere for real-time applications such as voice or video
transmissions, outage probability (that the channel dgpéalls below a basic minimum rate) is adopted as an
appropriate performance criterion, as opposed to ergaafi@aaity which is more suited to delay-insensitive data
Note that the cost function in (7) is written as a long term average due to ¢hehtat { P} is not necessarily a stationary process.

However the per-stage cd8t(Pr+1 > D), representing the outage probability at titnecan still be used to capture the short term estimation

performance.



transmission scenarios. Note though that other performariteria can be studied using similar techniques. Indeed,
Section VI briefly describes how we can solve the problem of miring the long-term average of expected (with

respect to fading channel realizations) error covariamigest to a long-term average power constraint.

B. Conditions onD

In this section we will derive some conditions on the thrédhid that will affect the solvability of problem (7).
Recall that the recursion for the error covariance satisigsHirst we state some simple properties on higwand
a?, affect P

Lemma 1:ConsiderP;,; as given by

a’Py

a2, gikC?
1 + Pk ZM lﬁ}»g k

i1 3 3
i=1 a7 . 9i,k0; +o2

()

+ o

Py =

(i) Pgx+1 is an increasing function af.
(i) P11 is a decreasing function ojfk

The proof of Lemma 1 is straightforward and omitted.

0.2

For an initial simple bound, note that for stable systemshéf initial error covariance, satisfiesP, < —x

1—a?’

then the following holds:
2

o2 < P, < %,wg.

To see the upper bound, suppose we@gt: 0,Vi, k. Then we have

P.=a*P_1 +02 =a*Py+ (a®* 2+ +a® +1)0?
1 — a?k)o2 o2 o2
— i+ 1—a3 et <P0_1—wa2>
2 2
g g
< Y _if Py < ¥,
~—1—a? 0=7_"¢42

By Lemma 1, this then implies thd®, < %,Vk. Hence if D < afv, then P, will always exceedD (i.e. we

will always be in outage), and iD > o2 /(1 — a?) then we will never have any outage events.
Next, note from (5) and Lemma 1(ii) that giver,, the error covariance at the next time inst#ht, ; satisfies
a’Py,

1+PkZM 02/01-2

=1 "1

+ 02 < Py < a®Py + 02, (8)

where the lower bound comes from taking, — oo, Vi, and the upper bound comes from taking, = 0, Y.

The term aB p + 02 thus can be regarded as the smallest valug,of; that can be achieved for a given

1+Py Zﬂi1 Ci/0o;

i

value of P, (by using an infinite amount of transmit power).
Below we present some more precise conditions. In partisuéawill partition the range ofD such that given
Py, the conditionP,; < D can either: 1) always be achieved, 2) never be achieved, oar8)e achieved only

for P, sufficiently small.



1) Suppose that at time, P, = 02 /(1 — a?), i.e. P, is at its maximum value. Then
CLQPk ) 2 2
O’IU
1+P211z/0 1_a2+awzzlz/g
Recalling thatw&% + 02 is the smallest value aF,, ; that can be achieved for a given value/f, and
using Lemma 1(i), we thus have the condition thaDif> D, then P,; < D can be achieved in one time step

EDl.

2
Gw

for all P, > D.

2) Consider the values aP, such thatwg% + 02 > P, i.e. the values ofP, such thatP,,, > P,

even if an infinite amount of transmit power is used. This candmlye shown to be equivalent to
_B+\/B2+4U2 Zz 1 Z/U

Hes 2, 202 =D ©

with B = (1 — a? — o2 Zl L¢2/c?). Hence we now have the condition thatfif < D, and P, > D, then

P11 < D cannot be achieved in one time step sidée; > P, > D by assumption, and therefore cannot be
achieved in all subsequent time steps by Lemma 1(i). This igh form of the conditionD < o2 always resulting
in outage mentioned previously.
3) In the case wher® satisfiesD, < D < D;, we have the situation where givéf, the conditionPy; < D
can only be achieved when
a’Py, D -2

+02 <DorP,< 5
1+PkZzlz/U a2_(D_0120)Zzlz/U

i.e. only whenP; is sufficiently small. If (10) is not satisfied, then it will reiggt more than one time step to bring

(10)

the error covariance below the distortion threshaéld This has implications in that one cannot directly use the

analogue of a scheme considered in [2] as a suboptimal peWcich will be studied in Section 111-D.

C. Solution of outage minimization problem

In this section we will solve the estimation outage minimia problem (7). In communications theory, infor-
mation outage minimization problems have been consideredg. [2], [4], and analytical solutions can be derived.
However, these works consider memoryless systems, whargasblem (7) the quantity?, evolves dynamically
over time. Furthermore, as shown in Section 1lI-B, power atmn may need to be carried out over multiple time
steps before one can move from being in outage to non-ouldes the techniques used in [2], [4] do not appear
to be extendable to our case. Instead we will use Markov mecigrocess (MDP) techniques to numerically solve
problem (7).

Let us first make the following additional assumptions to peabl(7).

Assumption 3.1:D satisfies the conditio®s < D < 02 /(1 — a?), where D, is defined by (9).

Assumption 3.2The range ofy; ; is bounded, i.ey; i € [0, Ymaazl, Vi, k.



Assumption 3.1 is needed for there to be non-trivial sohgito problem (7) by Section I1I-B. Assumption 3.2
obviously has practical purpose, and also allows us to agxikting theoretical results, e.g. [24], [25], to show the
existence of solutions to associated optimality equat{ges later).

The estimation outage minimization problem (7) can then lganded as a constrained average cost MDP with
(Pr,gr) = (Pr, 91k, - - - 9Mm,) S the composite “state” angh = (1%, ..., 7w k) @s the “action”. More formally,
under Assumptions 3.1 and 3.2, the state spaee (Do, %] x RM, the action spacel = [0, maz], the set of
feasible actions i$0,v,.q2]"! for each state, the transition laws are determined by (5)Pfoand the assumption
that g is i.i.d., the per-stage cost B[1(p, -], and the constraint Emsupg .o, + S r o B[N, vkl < P

We will solve (7) using a similar approach to [14], by conusgtthe constrained MDP into an unconstrained
MDP. We first introduce the Lagrangian:

K-1 K-1 M
Lf = lim Sup% { > Ellp,sp))+8 Y ED 'Yi,k]}
e k=0 k=0 i=1
whereg > 0 is a weighting parameter that takes on the role of a Lagrandepiier, and specifies the trade-off
between the relative importance of total transmit power aothge probability. Note that from (5F%.1 is a

function of Py, gk, v, while ;. is assumed to be a function &, andg;. We then have the unconstrained problem

K-1

1
minlimsup — >  E[%(Ps, gk, )| Po, 11
{W}K_)OOPKICZ:O[( ks k)| P05 o] (11)

wherel®(Py, ge, vk) = L(p,,,>0) + B i1 Vik-

An average cost optimality inequality (ACOI) [24], [25] cée written as

A+ h(Py, gr) > H%D 1°(Pr, iy 1) + / R Prt1s 9k1)9(A(Prt1s k1) Pres Gres Vi) (12)

Grt1, Pt

where )\ represents the optimal average cost per stagbge differential cost vector, angis the transition law.

Lemma 2:Under Assumptions 3.1 and 3.2, there exists a solution t@tkeeage cost optimality inequality (12).

Proof: See Appendix A. ]

Remark 1:To obtain equality in (12) extra conditions such as those in B of [25] will need to be satisfied,
however they seem difficult to verify for our problem.

In order to obtain numerical solutions to (11) we will needdiscretize the range of the quantitiés, g. =
(91ks - 9mk) aNd e = (Vg k). Let P gl = (gf - gfpp), and = (4], ... 94,,) be the
discretized versions aPy, g, 7 respectively. One then has the following problem (13), thlet®n of which will

approximate the solution to (11):

K—

[y

E[P (P, g, v P, 98] (13)
k=0

min lim sup
i} K—eo

==
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The Bellman equation (average cost optimality equation (Bf@ssociated with problem (13) can then be written

as follows, with\ representing the optimal average cost per stage hatie differential cost vector:

A+ h(PY, i) = H;gn[lﬁ(P;?,gffﬁ;?) + > a(P gt P gl (P, gl
k

d d
gk+1vpk+1

= minfl(F, g8 0%) + D plok)a(PESIPE, gk vOR(PLE, g4)] (14)

Gy Pl
= rr;%n[lﬂ (P, git i) + ;p(gz‘fﬂ)h(ﬂﬂ‘i )
G+
where P;{ is the value ofP;; (given PY, g, ) rounded to the nearest discretized value, such as in [13. Th
last line of (14) holds becaus&"{ is a deterministic function of¢, g¢, ¢, so thatp(P[{| P, gt vil) is either
Oorl.

Now given any two error covariancéy and¥, satisfyingD, < ¥1 < 02 /(1—a?) andDy < %5 < 02, /(1—a?),
by Assumption 3.1 one can easily construct policies thattaea X, to X5 in a finite number of time steps. We
may then use standard results for problems with finite stadeaation spaces, e.g. [26], to conclude the existence
of solutions to the Bellman equation (14). So for the disgestiproblem an average cost optimality equation will
actually be satisfied. In this paper we will obtain solutioogte Bellman equation (14) numerically by using the
relative value iteration algorithm, see e.g. [26, Vol |, lBand [27, p.373].

After running the relative value iteration algorithm at thesion center, a “lookup table” will be constructed
which will give the optimal power allocation for different values of the pair&P;, gx). Note that this only has to
be done once. With this lookup table constructed, the fusemter can then use knowledge of the actual channel
realizations and computed error covariance to find the optpoaer allocations for each sensor, which are then
fed back to the sensors.

Remark 2:1t should be noted that in general a discretized approxonatd the original continuous state/action
space MDP problem results in a sub-optimal solution. Howeiteis a widely accepted practice for solving
continuous-state MDP problems as well as solving the aeerapt optimality equalities for partially observed
MDP (POMDP) problems, which are converted to a fully observexblem via the information state method. One
would generally expect that as the number of discretizd#@wels increases to infinity, the solution to the discretized
problem should approach the solution to the original camtirs state/action space problem. However, this result
is generally not easy to prove. Asymptotic convergenceltes$or various grid based approximations have been
proved in the literature both for discounted cost POMDP aretaye cost MDP/POMDP with various continuity
conditions on the MDP cost function [28] as well as the défdial cost function in the associated Bellman equation
[29] (see also references therein). It remains an open @molllowever to prove similar asymptotic convergence

results in the particular case of the problem studied in @uep as the nature of our cost function does not satisfy

all the conditions required by these papers or others doltaila the literature.
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D. Suboptimal policies

The MDP approach of Section IlI-C is computationally demagdparticularly as the number of sensors increases
since the dimensions gfi, and~; will increase with each additional sensor. In this sectiom will consider a
simpler power allocation policy, that can be easily impleted even for large numbers of sensors, and whose
performance is very close to that obtained from solving tHeRvI

The motivation for our suboptimal policy comes from the soluof the information outage minimization problem

from communications theory studied in [2]. There, an outagdsfined as the event that

M
1
Ini (g, ) = Vi > log(1+ gikvik) < R (15)

=1
for some rateR, wherel,;(gx, ) is defined as the instantaneous mutual information. ¥he (15) refers to the
number of different blocks of an/-block fading channel, rather than different sensors, ghotlne analogies with
our situation are apparent. The indexn (15) is used to denote a frame of blocks.
The problem considered in [2] is then to allocate the power theM blocks to minimize the outage probability

subject to an average power constraint, i.e.

<P.

min Pr(Zy/(gx, ) < R) S.t.E

1 M
M Z Yi,k
i=1

For continuous fading channels, the solution to this probievolves first solving a sub-problem:

M

1
min o z; Yik St In(gr, k) = R, (16)

that minimizes the power usage over tMebIocksﬁ Zf‘il 7i,k, Subject to the constrairft (gx, vx) = R. If this
minimizing sum power is less than a power threshgid then the optimal power allocation is as given by the
solution to the sub-problem (16). On the other hand, if the @ower required to solve the sub-problem exceeds
the thresholds*, then the optimal allocation is for transmission to be tdriodf. The thresholds* is chosen to
be the one that will satisfy the average sum power consfraimt can be determined either analytically in simple
cases or via Monte Carlo simulations.

Motivated by this solution, the simple power allocationipplwe propose for our problem (7) is the following:
Given P; and g, solve the sub-problem that minimizes the sum power sultgethe constraintP,; = D. If
the required sum power is less than a power threskgldise this power allocation, otherwise don't transmit. The
intuition behind this is that for those channel realizasiamhere meeting the conditioR,; = D requires more
power thans*, not transmitting at all will be a more efficient use of the &lsle power since here we have an
average or long-term power constraint. Note however therietlis a difference with the situation of [2], in that for

our problem the quantity’, is not memoryless. Thus the sub-problem is not always fegsilnd it may not always
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be possible to satisfy’..1 = D in a single time step for arbitrary;,, depending on which of the conditions of
Section IlI-B the distortion threshol® satisfies.

For thoseD values satisfying the conditio® > D; of Section IlI-B, the sub-problem is always feasible and
the policy just outlined can be applied directly. For the @ition Dy < D < D, of Section IlI-B, if the value of
Py is such thatP,,, = D cannot be achieved in one time step (i.e. does not satisfy, (@0 should arguably still
transmit with some power (since not transmitting will adtpi@ause the error covariance to increase even further)
to reduceP,, so that in future time steps, i.€),; = D for j > 1 can then be achieved. The heuristic we
propose in this case is to transmit with sum power equajstg using the allocation that minimize, ., subject
to the constraintzf\i1 7k = ns*. Heres* is the power threshold ang, where0 < n < 1, is a constant to be
chosen by us. From numerical simulations, we have found thiats ofn around the rangé/20 — 1/5 result in
very good performance. The intuitive reason is thaj i§ too large then we tend to use too much power to reduce
the error covariance, and if is too small then the error covariance will not be reducedicgently to allow the
constraintP,,; = D to be met at future time instances.

To summarize, the proposed suboptimal power allocatioicydhat covers both the situationl® > D; and
Dy < D < D; is as follows:

o Sets* andn.

e« Fork=0,1,..., do the following:

o Attime k, let 2.1, P, gx be given.

« If P,y1 = D can be achieved for this value &%, (i.e. satisfies (10)), solve the following problem:

M 2 92
min » "oy ( 161_ UZQ + a?) s.t. P = D. (17)

Y =1
— If the minimizing sum power to problem (17) is less than theesholds*, then transmit using this power
allocation. Update the state estimate using (4) and uptiaterror covariance aBy; = D.
— Otherwise sety?k = 0, Vi. Update the state estimate s, ,;, = aiy,—;, and update the error covariance

as Py 1 = a’P, + o2,

o If P,,1 = D cannot be achieved for this value &%, solve the following problem:

M 2 9
c?
min Py S.t. Za?:k‘ (11% + 0’3) =ns". (18)
k i=1 -

— Transmit using the power allocation provided by the sohutio (18). Update the state estimate using (4)
and update the error covariance using (5).
The sub-problems (17) and (18) have previously been showr toobvex optimization problems (see [5] and

[22]), and furthermore can be solved analytically for anyniber of sensors. In Appendix B we write down the
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solutions to these sub-problems.

Remark 3:Determining the threshold* analytically is difficult. In practice, given knowledge ofetlsystem
parameters, one first runs Monte Carlo simulations of the @irbal policy for different values ok* to obtain
corresponding average sum powéts By forming a plot of these pairgs*, P) we can then graphically estimate
the value ofs* one should use in order to achieve a given average sum poage @s

Remark 4:1n the analytical solutions to the optimization problem&)(and (18), it turns out that even when
the sensors are transmitting, there could still be someosgnghich are inactive [5], due to the transmission over
orthogonal channels. In the context of problems (17) and, (tt#® A/, sensors (see Appendix B) that are active
are the ones with the largest valuesggf/(l_%w, which clearly favours the sensors with better channels and
higher measurement quality, see also [22].

Remark 5:Unlike the optimal solution of Section 1lI-C, the optimizati problems (17) and (18) involved in the
suboptimal policy can be solved in a distributed manner. Tiséoh center can compute and broadcast the quantity
Ak (the quantity\ in Appendix B) to all sensors, which can then determine tbpiimal o; ;;’s using A, and their
local information, see [5]. Note though that due to timeyuag channel gains, the quantity, will vary with the

time &, so the broadcasting will need to be done at every time step.

E. Outage minimization with a finite number of power levels

In this section we wish to study the outage minimization peobassuming a fixed number of power levels,
which has practical significance since in practice sensomsusalally only transmit using a finite humbeérof
different powers. Now for a given set of power levels, the outage minimizatioobtem can be solved by solving
the MDP problem (13) of Section 1lI-C. Here however we alsohntis optimize the values of these power levels.
A similar problem of finding the optimal quantization threkieofor HMM state estimation was studied in [14].
Below we will outline the procedure for our problem.

Recall the Lagrangiai”’, and let?*(I") be the optimal value found by solving the MDP (13), withe R¢
representing the given finite set @fpossible power levels. The problem we wish to solve is

in LP*( 19
min I7(D) (19)

i.e. we want to find the optimal set of power levéls
Using the optimal power allocation given by the numericaluson to the MDP for a given set of power
levelsT", Monte Carlo simulations of- {Zsz_Ol E[l(p,,>p) + B o E0, %-Jf]} can be regarded as a noisy

measurement of the functioh”(I"). Hence problem (19) can be viewed as a stochastic optimizatioblem.

3To keep the notations simple, we assume that all sensors use the sash@oeer levels.
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These problems can be solved using well-known gradientsii@ehastic optimization algorithms such as the Kiefer-
Wolfowitz procedure [30], or more recent techniques suctihasimultaneous perturbation stochastic approximation

(SPSA) algorithm [31]. We will use the SPSA algorithm in our numargtudies in this paper.

F. Numerical studies

1) Single sensorConsider first an example with= 0.8, ¢; = 1, 03 = 1, 02 = 02 = 1. With these parameters
the quantitiesD; and D from Section 1lI-B have value®; = 1.4706, Dy = 1.3700. Also, 02, /(1 —a?) = 2.7778.
The fading channel is assumed to be Rayleigh, wijthbeing exponentially distributed with mean 1, denoted by
g ~ exp(1).

Figure 2 plots the outage probability and average power iwdtairom the MDP solution, for varioud values.
We use 100 discretization points for each of the quantifesg., vx. We discretizeP,, over the rangeD, to
o2 /(1 —a?), and g over the range O to 15. The discretization range for the powes from 0 t0 4., Where
vYmaz Varies for different average power/outage probabilityuisgments. As a rule of thumb we took,,, to be
around twice the maximum powet used in the suboptimal policy, for a similar average powegge probability
trade-off. The relative value iteration algorithm is run &fYiterations in solving (14) for each value of the weighting
parameters. We see from Figure 2 that smallér values require more power to be transmitted for a given @utag

probability.

10

10 H ——D=1.40
——D=1.45
—e—D=1.50
—&—D=1.55
—~—D=1.60
D=1.75
——D=2.0

Outage Probability

107 — ‘u - ‘
10 10 10 10 10 10
Average Power

Fig. 2. Outage probability and average power for varidusalues.

We next compare the performance of the suboptimal policy wie MDP solution. Figure 3 plots the outage
probability and average power obtained from the MDP soafudad suboptimal policy, fob = 2.0 and D = 1.4.
For D = 2.0, since2.0 > 1.4706 = Dy, this is the case wherB;,; = D can always be achieved in one time step.
For D = 1.4 we haveD, < D < D;, and we will usen = 1/5 for the suboptimal policy. In both plots it can be

seen that the suboptimal policy gives very close performanche solution obtained by solving the MDP.
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Outage Probability

—+— Suboptimal policy, D=1.4
—6— MDP solution, D=1.4
—&A— Suboptimal policy, D=2.0
—=&— MDP solution, D=2.0

s

10°

10° 10" 10 10
Average Power

Fig. 3. Outage probability and average power for MDP and suboptimidypasingn = 1/5

To provide some insight into why the suboptimal policy perie so well, in Figure 4 we plot fob = 2.0 and
P, = 2.28, the power allocation obtained from solving the MDP as a fimmcof g, together with the corresponding

value of P, ; when using this power allocation. For valuesggfless than around 5, the power allocation is such

=<
0.5
o ‘
0 5 10 15
9
25
-
% 2
a
15 ‘
0 5 10 15
9

Fig. 4. Power allocations obtained from MDP solution, for a fixed

that P,.1 = D = 2.0 is met provided the power required is less than some thréskdiich corresponds to the
behaviour of the suboptimal policy. Sind&(g; > 5) = exp(—5) ~ 6.74 x 1073 is quite small, we see that
most of the time the MDP solution behaves like the suboptipedicy. For values ofy, greater than 5, the power
allocated is more than that required to satisfy.; = D, until around values o greater than 10, where the power
allocated make#,, | ~ 1.5625. We notice that? x 1.5625+ 02 = 2.0, so the value o, ; = 1.5625 implies that
P..o = D will be achieved even without the sensor transmitting aingtlat timek + 1. This qualitative behaviour

in the power allocation functions obtained from the MDP $iolu has also been observed for other valuedaf
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2) Multiple sensors:We now consider a two sensor example with= 0.8, ¢; = 1,¢0 = 1, a% = 1,0% = 2,
02 =02 =1, g1 ~exp(l), go ~ exp(1). With these parameters the quantitibs and D, now have the values
D1 = 1.3441, D, = 1.2806. Due to the increase in computational complexity, we now2&eliscretization points
for each of the quantitie®r, g1, g2, 71,k Y2, here when solving the MDP. Figure 5 plots the outage prolabili
and average sum power obtained from the MDP solution andpsimbal policy usingn = 1/5, for a distortion

D = 1.3. Again the two graphs are very close to each other.

10

10

Outage Probability

—+— Suboptimal policy
—o— MDP solution

1072 0 ! 1 ! 2
10 10 10 10
Average Sum Power

Fig. 5. Two sensor case. Outage probability and average sum powktD® and suboptimal policy using = 1/5, with D = 1.3.

We next consider the effect of increasing the number of genkb For simplicity we consider a “symmetric”
situation witha = 0.8, 02 =02 =1,¢; = 1,i = 1,...,M,0? = 1,g; ~ exp(1),i = 1,..., M. We use the
distortion thresholdD = 1.5. As solving the MDP is prohibitively expensive computattiy for M > 2, we
will only present the results for the sub-optimal policy,ielhcan be easily generated. Figure 6 plots the outage
probability and average sum power for this situation, wivegecan readily see the outage performance improvements

from using multiple sensors.
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Outage Probability

107 -2 -1 ! 0
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1 102

Fig. 6. Outage probability and average sum power for different nusnbesensors, using the sub-optimal policy

We will also look at how often sensors will transmit under siidoptimal policy. We again consider the symmetric
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situation witha = 0.8, 02 =02 =1,¢;,=1,i=1,...,M,0? =1,g; ~exp(1),i = 1,..., M. Fixing D = 1.5 and

the outage probability to be around 0.1, in Figure 7 we plotgleeentage of sensors that are active for different
numbers of sensors (taking into account the periods whesensors transmit in the suboptimal policy), where the
percentage is averaged over a time horizon of 500000. Wehaté¢he percentage of active sensors decreasés as
increases. This is due to the fact that with more sensors wenare likely to find sensors with good channels so

that the conditionP,.; = D can be met with a smaller percentage of sensors. Next wP fix1.1 and M = 100,

100
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301

Percentage of Active Sensors

20+

101

Fig. 7. Percentage of active sensors for different numbers afoserusing the sub-optimal policy

and in Figure 8 we plot the percentage of sensors that areeaadivthe average sum power varies. As the available

transmit power increases, the percentage of active seisweases, similar to what has been observed in [5].
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Fig. 8. Percentage of active sensors for different average swarpaising the sub-optimal policy

3) Finite number of power levelsiVe consider the effect of using a finite number of power levielsthe single
sensor case. Figure 9 compares the performance using “aoashpower levels (though for numerical computation
the range is actually discretized into 100 power levels) difidrent schemes using 4 power levels, which may
possibly include zero. The system parametersaare 0.8, ¢y = 1, 07 = 1, 02 = 02 = 1, g1 ~ exp(1) and

D = 1.6. We show first the performance using powers that are expatgngpaced asxp(iA) — 1,7 =0,...,3,
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Fig. 9. Outage probability and average power using 4 power levels.

with A = log(Vmaz + 1)/3, Where~,,q, is chosen to be around 10 times the average power in the comsn
power case. We also plot the performance using powers teatirdformly spaced from 0 t,,... It can be seen
that the exponential spacing appears to give better pedioce Using these exponentially spaced powers as initial
conditions, we then ran the simultaneous perturbationhsistecc approximation (SPSA) algorithm [31] to further
optimize the choice of powers. We followed the guidelines delecting the SPSA algorithm parameters in [32].
Specifically, we chose (using the same symbols as those in¢32])= 0.602,vs4 = 0.101,cg4 = 0.01, Ag4 = 10,
andag, such thataga/(Aga + 1) x g34(A54) is approximately equal to 0.02. The SPSA algorithm was then
run for 1000 iterations. The performance using these optichialues is then simulated. It can be seen that there

is a slight gain to be had from further optimizing the choié¢gowers.

IV. UNSTABLE SYSTEMS

In this section we will consider the outage minimization lgemn for unstable systems. There are many applica-
tions where unstable systems are used to model the behafisystems over &inite time scale such as in target
tracking [33] and control theory [34]. In these cases, wd bd interested in finite horizon results for unstable
systems where the system states and measurements can tikgeomalues but are still bounded.

Since for unstable systems meeting the outage constraipiree increasingly large amounts of power as the
time increases, the infinite horizon problem stated by (7)as appropriate. Instead we will present a different
formulation of the outage minimization problem, namely atéirtiorizon version of problem (7).

Instead of Assumption 3.1, for unstable systems we will mialeefollowing slightly different assumption:

Assumption 4.1:D satisfies the conditio® > Ds, where D is defined by (9).

This finite horizon formulation can also be used in the case of stable sy#telsired.
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A. Finite horizon formulation

For the finite horizon formulation, instead of minimizing tlimg run averages as in problem (7), we instead are

only interested in outage minimization over a finite time hon. We can write this problem as

| K1 1 K—1
min - > Eflp,,>p)] st D E Z% : (20)
{n} K k=0 k 0 i=1

where K is the finite horizon over which we wish to solve the problem. $hasor transmit powers are as defined
in (6), i.e.vx = a w(ZE[z7] + 07), except that for unstable systefi§r?] is now time-varying, and given by

(a* ~ 1)o

Ele}] = ¢ Py + (2 4+ @ + Do, = Py + =

Jk=1,...,K -1, (21)

with initial covarianceE[z3] = Fy. Introducing the Lagrangian

1 K—-1 K-1 M
L = — { D Elp o)+ 8 B ’W}} )
k=0 k=0 i=1

we now wish to solve the unconstrained problem

I{gln— ZE (Pr» gr, )| Pos go] (22)

where lf(Pk,gk,fyk) = 1(p.,>p) + ﬂzi:ﬂm- The discretized version of problem (22) may then be solved
numerically using the standard dynamic programming allgori We briefly state the algorithm below.

1) SetJg (P, g%) = 0,Y(PL, gd).

2) Fork=K —1,...,0, set

Ji(PE, gy = Iggn[lf(P;?, gt A+ plgih) T (PRI gty
* gg+1

(23)
V(P g ZaYQHVlidn[lg(P;?,g;‘im?H > p(gie1) T (PR i)
k d
Jk+1

where (23) is derived in a similar manner to (14).

B. Suboptimal policy

The suboptimal policy of Section IlI-D can also be applied te finite horizon problem (22), with slight
modifications due to the difference in expressionr2]. This is stated below.

o Sets* andn.

e Fork=0,1,..., K — 1, do the following:

o Attime k, let Zyx_1, Pk, gx be given.

« If P.,1 = D can be achieved for this value &}, (i.e. satisfies (10)), solve the following problem:

mmZazk ( < 2kpy + (__1;> + af) S.t.Py1 = D. (24)
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— If the minimizing sum power to problem (24) is less than theesholds*, then transmit using this power
allocation. Update the state estimate using (4) and uptiaterror covariance aBy; = D.
— Otherwise sety; ;, = 0,Vi. Update the state estimate &g, |, = aiy,—, and update the error covariance

as Py 1 = a’Py, + o2,

« If P,,1 = D cannot be achieved for this value &%, solve the following problem:
M 2k 2
. a“® —1)oz, .
Hol}?n Pk+1 S.t. Z Oé?}k (CZ2 <a2kP() + (CLQ—i> + 0'12) =ns. (25)
k i=1
— Transmit using the power allocation provided by the solutio (25). Update the state estimate using (4)

and update the error covariance using (5).

The optimization problems (24) and (25) can also be solvedytecelly, similar to problems (17) and (18), see
Appendix B.

C. Outage minimization with a finite number of power levels

As in the stable system case, we can also consider the outagmination problem using only a finite number
of power levels, while also optimizing over the values ofsitagoowers. The techniques are very similar to those

of Section IlI-E and are omitted for brevity.

D. Numerical studies

We first present numerical results for the single sensor tgitualn Figure 10 we plot the outage probability

and average power for various differeit values, while keeping the horizoR = 4 fixed. We useds = 1.1,

02 =02 =02=1,c1 =1, g1 ~exp(l). The initial covarianceP, is set to the same value dd being used.

n

Similar to Figure 2, smalleD values will require more power to be transmitted for a giveitage probability.
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Fig. 10. Outage probability and average power for varidusalues, withK = 4.
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In Figure 11 we plot the outage probability and average powervérious different horizons, while keeping
D = 2.5 fixed. We again used = 1.1, 02 = 02 =0} =1, ¢c; = 1, g1 ~ exp(1) with initial covarianceP, = 2.5.
We can see that for a given outage probability, it will requinore power (averaged over the entire horizon) to be
transmitted as the horizon is increased. This agrees witinth&ion that it requires increasingly large amounts of

power to meet the outage requirements as time increases.
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Fig. 11. Outage probability and average power for different finite loosZ<, with D = 2.5.

In Figure 12 we compare the performance of the solution obthby dynamic programming and the suboptimal
policy. We useda = 1.1, 02 = 02 =07 = 1, ¢; = 1, g1 ~ exp(1) and two different values foD. For the
suboptimal policy we used the valwe= 1/5. As in the case of stable systems, the performance of thepioia

policy is again very close to that of the optimal policy.

10
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Outage Probability

—+— Suboptimal policy, D=2.0

—&— Dynamic programming, D=2.0x
—4A— Suboptimal policy, D=3.0
—&— Dynamic programming, D=3.0
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Fig. 12. Outage probability and average power for dynamic programsoiution and suboptimal policy, using= 1/5.

We next consider the effect of increasing the number of genkb We consider the symmetric situation with
a=11,02=02=1,¢,=1,i=1,...,M,0? =1,g; ~exp(1l),i = 1,..., M. The fading channels are all taken
to be Rayleigh, the finite horizon & = 4, and we let the distortion threshold = 2.0. Figure 13 plots the outage

probability and average sum power for this situation, whbeeresults are obtained using the sub-optimal policy,
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with similar interpretations as in the case of stable system
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Fig. 13. Outage probability and average sum power for different eusnbf sensors, using the sub-optimal policy

V. VECTOR SYSTEMS

In this section we will describe a possible problem formolatof the outage minimization problem to vector
systems. For notational simplicity, we will restrict oukss to vector state, scalar measurement (per sensor)
systems, though this can be extended to vector measuremdete e.g. sensors transmit each component of

their measurement vector to the fusion center separatedylifbar system is now given by
Tpy1 = Az + wy

with z € R", A € R™™", andw; € R" being i.i.d. Gaussian with zero-mean and covariance maifx The

measurements at the sensors are taken to be scalar, so that
Yik = CiTp + Vi, i =1,..., M

with y; . € R, ¢; € Rx7, andv; ;, € R being i.i.d. Gaussian with zero-mean and variaa;éeAs in (2), under the

orthogonal analog forwarding scheme the received sigriaiseafusion centre can be written as
Zik = Qi k\/Gi kCiTh + O k\/Gi kVk + Nyt = 1,..., M.

We definezy = (215, - -y 20k) s 9k = (91 ks -« 9nk) Ty Cr = [0 e /Greet | - - - lani/Garren ]t
Uk = (01 kA /OUEVLE + Nk - - - s OM ey /IM VM, + nM,k)T, Ry, = diag(aikgl,kU% +02,..., Ol?\/[,kgM,kUJQ\/[ +07).

Then the state estimate satisfies
Bepape = Adgpo1 + APy Cf (CoPhCL + Ri) ™ (2k — Crdigi—1) (26)
and the error covariance matrix satisfies

P = APAT — AP.CT(CLP.CF + R,)"1CLPAT + 2. (27)
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The sensor transmit power is definedas = o? E[y?,] = o (c;E[ziz] ]! + o), whereE[z,z]] satisfies the
Lyapnuov equatiorE[z,zl] — AE[zxz}]AT = %, and can be determined numerically.
We now extend the estimation outage notion to vector systémise the event that TP;1) > D, with Tr(.)

denoting the trace.

A. Stable systems

For stable systems, the outage minimization problem cam ltiaaeexpressed as

K-1 K-1
1 1
min lim sup — Z E[1 Tr(pk+1)>D)} S.t. limsup — Z Z Yi k) (28)
{m} K—oo k 0 K—o00

As in the scalar case, we can use the Lagrangian techniquenthZﬁ) into an unconstrained problem

K-1
1
min lim sup — Z E lﬂ (Pr, 9is vk )| Pos 90
{7} K—oo k: 0

with 1°(Py, gk, k) = L(T(Pesa)>D) T ﬁzij‘ilfyi,k. The associated Bellman equation can be derived in a similar

manner to (14) to be

A+ h(PE gl = rggn[lﬁ(P;?, g0 + Y p(gi )P, gil)] (29)
" 9g+1

where P{{ is the matrix P, with each entry rounded to the nearest discretized valuéewatso ensuring that
the positive semidefinite nature is retained. Numericaltgwmiuof (29) in the vector case will be more demanding
computationally, since we now have to discretize indiviutihe entries of P, when it is a matrix. However since
Py, is symmetric, we only need to do this for e.g. the upper tngaugentries of the matrix.
An extension of the suboptimal scheme of Section I1I-D is dovs:
o Sets* andn.
e Fork=0,1,..., do the following:
o Attime k, let 2,1, Pk, gx be given.
e If Tr(Py,1) = D can be achieved for this value &},,°> solve the following problem:
M
mlznz a?’k(ciE[xka]cf +0?) sit. T{P,11) = D. (30)
k=1

— If the minimizing sum power is less than the threshefd then transmit using this power allocation.
Update the state estimate using (26) and update the errariange matrix using (27).
— Otherwise set?, = 0, Vi. Update the state estimate Bs, 1, = Ay, and update the error covariance

matrix asPy, = AP, AT 4+ %,

*DefineC = [¢T|...|ck], R = diag(o?,...,03%;). Then this condition in the vector case corresponds tal P, A” — AP, CT (CP,CT +
R)"'CP.AT +32,) < D.
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o If Tr(Py11) = D cannot be achieved for this value &%, solve the following problem:

M
min Tr(Py41) S.t. Z aik(ciE[:ckx;‘g]cg’ +0?) = ns*. (31)
G i=1

— Transmit using the power allocation provided by the sohlutio (31). Update the state estimate using (26)

and update the error covariance matrix using (27).

Unlike the scalar case, problems (30) and (31) are in gemeralconvex [35]. In the numerical studies of Section

V-C we have solved problems (30) and (31) to obtain local mausing the MATLAB routind m ncon.

B. Unstable systems

For unstable systems, similar problem formulations whigtered those of Section IV can be studied, but will

be omitted for brevity.

C. Numerical studies

0.8 0.1 1 0
We consider first a single sensor situation with= ,aa=[1 1] 2= , 0% =1,

0.1 0.8 0 0.5
02 =1, g1 ~exp(1), and we setD = 3.0. Figure 14 compares the solution obtained by solving the MIXR the

suboptimal policy using) = 1/5. The performance of the suboptimal policy is very close toNti2P solution.
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Fig. 14. Outage probability and average power comparison between $dDEon and suboptimal solution: Vector state, single sensor

Next we present in Figure 15 results for the multi-sensorasitn using the suboptimal policy. The parameters

0.8 0.1 1 0
are A = y G =11 1] 2= , 02 =1,gi ~exp(l),i = 1,..., M, o2 = 1. We set
0.1 0.8 0 0.5

D = 3.0 and usen = 1/5 in the suboptimal policy.
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Fig. 15. Outage probabiility and average sum power for different rumbf sensors: Vector state

V1. MINIMIZATION OF EXPECTED ERROR COVARIANCE

The methods we have used in this paper can be adapted to nenother cost functions. For instance, one
possibility is to minimize the expected error covariancbjsct to average power constraints. For simplicity, only

scalar systems are considered in this section.

A. Stable systems

For the case of stable systems and an infinite horizon forroualathis problem can be written as
K-1 K-1

1
min lim sup — E[P; s.t. hm sup = (32)
pim s e 3 L % zm

Using the Lagrangian technique we obtain the unconstrameblepn

K-1
1 y
min lim sup — Z E(I°( P, g )| Pos 90]
{m} K—oo k=0

with Zﬁ(Pk,gk,yk) =Py + ﬂZfZl 7i k- The average cost optimality equation (ACOE) can be written as

A+ h(Py, gi) = H%in 1P (P, gk, ) + / h(Prt1, Gk+1)0(d(Prt1s 9r+1) | Prs Gk, Vi) (33)

Gkt 1Pkt
which is very similar to (12) with the main difference beimgthe definition oﬁﬂ(Pk, 9k, Vk)- We have the following:
Lemma 3:Under Assumption 3.2, there exists a solution to the avecage optimality equation (33).

Proof: Existence of a solution to the average cost optimality inbyuéwith > instead of equality in (33))
can be shown similar to Appendix A for the outage minimizat@roblem. Furthermore, equality in (33) can also
be shown, by making use of: 1) the exponential forgettingoprty for the initial conditions in Kalman filtering,
2) the Lipschitz continuity of the cost functiduﬁ(., -,+), and 3) repeating the argument in the proof of Proposition
3.2 of [13]. The assumptions in Sections 5.4 and 5.5 of [25] &&m tbe verified to conclude the existence of a

solution to the ACOE. [ |
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As in the outage minimization problem, to obtain numericdlgons we will solve a discretized version of the

ACOE (33), i.e.

A+ (P, gf}) = mm[l (P, gt i) + ZP g ) (P 9]

v
9k+1

which is derived in a similar manner to (14).
For comparison, let us also consider a simpler sub-optictame for problem (32), which could be considered

as a “greedy” approach that solves at each time stépe following problem:

mln P41 st Z Yik = P. (34)
=1

That is, at each time step we minimize the error covariafge;, while meeting the sum power constraint with

equality. This problem has been previously studied, see fifz2further details.

B. Unstable systems

In the case of unstable systems, the finite horizon formulatiothe problem can be written as

1 1
in — E[P — E[ i 35
min 2 h1] St Z Zv k (35)
Using the Lagrangian technique, the unconstrained problenoltain is

K-1
1

%ln ZE (P> gk, k)| Pos go] (36)

k) k=0

with Tﬂ(Pk,gk,yk) = P+ ﬁzf‘ilw,k. Similar to the outage minimization problem, a discretizedsion of
(36) can be numerically solved with the dynamic programmafgprithm.
We will also compare this solution with a greedy approacherghwe now will solve (34) over the times

k=0,... K1

C. Numerical studies

In Figure 16 we plot the average error covariance and averagergcomparison using these two approaches, for
stable systems. The parameters @re 0.8, 02, = 02 = 0? =1, ¢; = 1, g1 ~ exp(1). For higher average powers,
the performance of the greedy solution approaches verglgidse performance of the optimal MDP solution.

In Figure 17 we plot the comparison for unstable systems. Thenpeters are: = 1.2, 02 = 02 = 03 = 1,
c1 =1, 1 ~exp(l), K =5, and initial covariance’, = 3. Similarly, the performance of the greedy approach is

very close to that of the optimal dynamic programming solutior higher average powers.
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Fig. 16. Average error covariance and average power compabsiveen MDP solution and suboptimal greedy solution: Stable systems
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Fig. 17. Average error covariance and average power comparestmreen MDP solution and suboptimal greedy solution: Unstable systems

VIlI. CONCLUSIONS AND EXTENSIONS

We have considered the estimation outage minimization lpnolfor state estimation of linear systems. For
stable systems we used an infinite horizon problem formuladind for unstable systems we used a finite horizon
formulation. Suboptimal policies were presented which gagy close to optimal performance, and optimization

of powers assuming a finite number of power levels was alsdestud

Extensions of the outage concept to control problems ovendachannels will be a topic of future investigation,
as will be more detailed investigation into the vector cdseaddition, typical information theoretic notions such
as the diversity order of the outage probability (how fasésithe outage probability decay with the number of

sensors) will be investigated for the estimation outageade in future work.
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APPENDIX

A. Proof of Lemma 2

We will use the conditions (W) and (B) of [24] that will guatae the existence of a solution to the ACOI
(similar conditions can also be found in [25]). Call the stapaceS and action spacel, i.e. (P, gx) € S, € A.
We first give condition (W) of [24], which says that:

(0) The state spac§ is locally compact.

(1) Let U(.) be the mapping that assigns to edch, gr) the nonempty set of available actions. THE(Py, gx.)
lies in a compact subset of and U (.) is upper semicontinuous.

(2) The transition probabilities are weakly continuous.

(3) 1”7 is lower semicontinuous.

By Assumption 3.2, (0) and (1) of (W) can be easily verified. B note thatP,; is a continuous function
of (P, gk, v&), Which then shows weak continuity by p.177 of [25]. For (8)can be easily shown thatp,, ,~ p)
is lower semicontinuous, and Zf‘il i, is clearly a continuous function, so thet(Py, gi, %) = Lp,,>p) +
ﬂzi]‘il vk IS lower semicontinuous.

It then remains to verify condition (B), which in the notatiof this paper says that

sup ws(Po, go) < 00, (P, 90)
<

wherews (P, go) = vs(Po. go)—ms, vs(Po, go) = inf o,y B[ 02 6F1°(Pe, g, 1) Po, 9ol andmys = inf (g, g,y v5(Po, go)-

Following Sec. 4 of [24], define the stopping time= inf{k > 0 : vs5(Px, gx) < ms + ¢} for someg¢ > 0.
Given¢ > 0 and an arbitrary( Py, go), consider a suboptimal power allocation policy where aflisges transmit
with power 4,42, until vs( Py, gn) < mg + < is satisfied at some tim&. By Assumption 3.2, we hav&/ < oo

with probability 1 andE[N] < co. Sincer < N, we haveE[r| < co. Then by Lemma 4.1 of [24],

T—1
ws(Po, go) < <+ inf}E > 1P (Pe, gk i) [ Pos go | < < +E[r] x (14 BMAmaz) < 00 (37)
Yk k=0

where the second inequality uses Wald’s equation. Hencditomm (B) of [24] is satisfied and a solution to the

ACOI exists.

B. Analytical solutions to sub-problems (17) and (18)

Here we will state the analytical solutions to the optimmatproblems (17) and (18). Derivations can be found

in [5] and [22].



29

1) Solution to sub-problem (17)The constraintP,.; = D can be shown using (5) to be equivalent to the

constraint
M
Z a?,kgi,kczz - a’Py+02 - D
a?,.9i ko7 + 02 P(D —0o2)

w

=1
We then have the following optimization problem, which islightly more general version of sub-problem (17),
that also covers sub-problem (24) in the unstable case.
a? p T
s.t. L= — 38
alr’m’gM z; Qifii Z agri+o2 oy (38)
wherex > 0,y > 0,k; > 0,p; € R, >0,i=1,..., M are constants.

Assume that the sensors are ordered suchfﬁnaﬁ cee > %. Then the optimal values Qif can be expressed

1. [Apio2 2 ;
a2 = ?7( Ki O-”) , 1My

0 , otherwise
M1 \pl‘
\/ KiO,
where v\ = 2is1
Sl
=1 7; Y
and the number of sensors which are actiVf, satisfies

M1 ol / 2 ]V11+1 ‘Pz‘ / 2
Z o E Zeiml VI le A 2>0 and = Kion [ Phrer 7
: P = J\/[1 72 M1+1 Pl _ KM, +1
=1 z 17

Ti

as

2) Solution to sub-problem (18)|n [22] it is shown that minimizingP 1 IS equwalent to minimizing
_ Z oy kgz k’c
— a7, 9ik07 + 0%
We then have the following optimization problem, which islightly more general version of sub-problem (18),

that also covers sub-problem (25) in the unstable case.

M
. Oé pl
min — s.t. QK 39
a?,...,a3, 12; a T + 02 Z i = Vtotal ( )
wherez > 0,y > 0,x; > 0,p; € R, 73 > 0,4 =1,..., M are constants. Assuming that the sensors are ordered so

thatf_,j—? > > % the optimal values ofi? to problem (39) can be expressed as

1, [pio2 2 .
at? = 7'7( i U”) , 1= My

0 , otherwise

My ki 2
1 Ytotal + Z —1 0,
where — = =l n

\/X M1 ‘97‘\/?

and the number of sensors which are activh, satisfies

K 2 2 M,+1 m 2 2
Ytotal + Z 1 o U Y Ytotal + Z U P o)
=T M0 52 () and Ml 52 <.

M1|p| /o2 M1+1|ﬂz|/.2 K "
Z 17, VKO, Yo oV Kioq Mi+1
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