Distortion Outage Minimization and Diversity

Order Analysis for Coherent Multi-Access

Chih-Hong Wang Student Member, 1EEE, Alex S. Leong,Member, IEEE, and
Subhrakanti DeySenior Member, |IEEE

Abstract

In this paper we investigate the distortion outage perforraaof distributed estimation schemes in wireless
sensor networks, where a distortion outage is defined avéms #hat the estimation error or distortion exceeds a
pre-determined threshold. The sensors transmit theirredéen signals using the analog amplify and forward
scheme through coherent multi-access channels to thenfugater, which reconstructs a minimum mean
squared error (MMSE) estimate of the physical quantity olese We consider three power allocation schemes
- 1) equal power allocation (EPA), 2) short-term optimal powllocation (ST-OPA), where we minimize the
distortion subject to a power constraint at each time steg,3) long-term optimal power allocation (LT-OPA),
where we minimize the distortion outage probability subjeca long-term average power constraint. We study
their diversity orders of distortion outage in terms of ea&sing numbers of sensors, and show that under
Rayleigh fading EPA and ST-OPA achieve the same diversitieroof N log N, where N is the number of
sensors. This suggests that in the case of a large numbemsbrse the spatial diversity gain in EPA can
overcome fading equally well as in ST-OPA. On the other hamdT-OPA, we find that forNV > 1 the outage

probability can be driven to zero with a finite amount of tqtalver.

Index Terms

Diversity order, multiple access channel, outage proligbpower control, sensor networks

I. INTRODUCTION

Wireless sensor networks (WSNs) have recently attractezhrels interests and practical implementations
in many areas of human life due to the numerous applicatio@NgVcan achieve such as in environmental
monitoring, tracking in defense technology, monitoringictical levels in factories, and health monitoring, just
to name a few. WSNs normally consist of a large number of senmgdes dispersed over some area to take
measurements. The sensor nodes are battery operated dbuidesve sensing, computation and communication

capabilities [1]. The sensors may be configured into variodsadnetwork structures depending on the protocol
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and the application being considered [2]. Examples of theshk as forming clusters and electing cluster heads
[3], cooperative transmission and cooperative diversdiafy nodes used to forward signals) [4]-[8] and multiple
sensor transmission to achieve distributed beam-formam aMIMO systems [1] show the flexibility of the
WSNs and how various wireless communication technologiesbeaapplied in WSNSs.

One important issue in WSNs is the utilization of battery ggesince sensors rely on batteries to stay
alive, and replacing batteries is considered expensivenyMeorks in the literature have considered energy-
efficient protocols [9]-[13], power allocation schemes araks-layer optimization [1], [4], [14] to optimize the
use of energy in WSNs under various different network assiamgtand protocols. In distributed estimation
sensors independently collect data of some physical phenomand transmit their measurements to a central
processing unit (a.k.a. the fusion center) where it trieseonstruct the physical quantity from the sensor
measurements. Recently [15] showed that in a Gaussianrsegtserk (a sensor network estimating a Gaussian
source) it is asymptotically optimal to transmit using uted analog forwarding of measurements by multiple
sensors as opposed to separate source channel coding. @1 it was shown that in a Gaussian sensor
network it is exactly optimal to transmit using uncoded agdbrwarding of measurements by multiple sensors.
Many works have since studied the power-allocation problammulti-sensor estimation under the framework
of analog-forwarding transmission.

In [17] the authors obtained the optimal power allocationanfinhomogeneous Gaussian wireless sensor
network using analog amplify-and-forward through coherBAC (multiple access channel) subject to a
distortion constraint (a performance metric given by thaarece of the reconstructed source). In the case of
amplify-and-forward through orthogonal MAC, [18] solvdtetproblem of minimizing power under a distortion
constraint and minimizing distortion under a power coristralhe study of power allocation in distributed
estimation for a vector source is given in [19] for cohererA®/and [20] for orthogonal MAC, which also
studied power allocation with correlation in sensor datavétaallocation considering correlated sensor noise
is studied in [21]. When fading channels are consideredodisn becomes a random variable as a function of
the channel gains and it is not always possible to satisfydisgrtion constraint. In such cases esiimation
outage or distortion outage occurs [18]. This leads to the notion dfstortion outage probability, which is
defined as the probability that the distortion exceeds a divesholdD,, ... The authors in [22] obtained the
optimal power allocation that minimizes the distortionamg probability subject to a long-term average power
constraint in a clustered WSN using the amplify-and-forwarthogonal multi-access protocol.

The estimation diversity achieved by wireless sensor nétsvaras first studied in [18] for equal power
allocation in orthogonal multi-access channels with Rigyidading. They showed that a sensor network with
independent and identically distributed (i.i.d.) fadirftronels and i.i.d. sensor noise variances can achieve an
estimation diversity on the order of the number of sensotiénnetwork. In [23] it is shown that the diversity

gain is unchanged in the presence of channel estimation when compared against the perfect channel case.



The study of outage scaling laws and diversity for distridugstimation over orthogonal multi-access channels
is given in [24] for a large class of fading distributions. tiiVia fixed power per sensor, deterministic and
equal sensor signal-to-noise ratios (SNR) and i.i.d. cha8h&, the authors in [24] showed that the outage
probability decays faster than exponentially in the numifesensors and slower thasp (— K log K'), where

K is the number of sensors.

In this paper we will look at a WSN where multiple sensors takésy measurements of a single i.i.d.
Gaussian source and transmit, using amplify-and-forwrely noisy measurements to the fusion center (FC)
through Rayleigh-faded channels with channel noise mddayeAWGN. We assume that the sensors transmit
coherently to the FC so that the signals add up in phase at thad%CUnder this setting we consider three
power allocation schemes - equal power allocation, skesririoptimal power allocation (minimizing distortion)
and long-term optimal power allocation (minimizing digton outage probability) - and give theoretical analysis
on the diversity order of distortion outage using these poallocation schemes. We show that the diversity
order achieved by the equal power allocation and the skam-power allocation isVlog N, whereN is the
number of sensors. In the long-term optimal power allocati®@ show that we can drive the outage probability
to zero using finite total power fav > 1, which intuitively can be regarded as achieving a “divgrsitder of
infinity”. Using a lower bound on the total instantaneous powe obtain an approximation for the minimum
number of sensors in which the outage probability is driveerero in the long-term optimal power allocation,
for a given power constraint.

This paper is organized as follows. In Section Il we give thevoet model. We define and state the three
different power allocations in Section Ill, based on which pegform theoretical analysis to find their diversity
orders of distortion outage in Section IV. Simulation resalte given in Section V, followed by concluding
remarks in Section VI.

In this paper, symbols in bold indicate that they are coluresters, e.g.x = [z1,...,zn]?, where”
denotes vector transposition. The arithmetic mean of a vectf length N is denoted byx) 2 "% z;/N.
Given a random variabl&(, its p.d.f. (probability density function) and c.d.f. (cufative distribution function)

are denoted agx (z) and Fx (x) respectively, whileE[X] denotes its expectation.

II. NETWORK MODEL

A schematic diagram of the wireless sensor network modehasve in Fig. 1. We assume that there are
N sensors in the network and the sensors observe a single@augsian source, denoted #jy:], which has
zero mean and varianeg, and is i.i.d. (independent and identically distributed}ime ( denotes the discrete

time index). The measurements of thh sensor at timé are given as

xT; [k] = H[k] + w; [k/‘]
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Fig. 1. Schematic diagram of the wireless sensor network using cahdisd scheme.

where the sensor measurement naisés i.i.d. Gaussian with zero mean and variangée The sensors amplify
and forward their signals to the fusion center (FC) via a cehieMAC channel [15] with a gain of;[k]. The

transmitted signal is given as

yilk] = Bi[k|z;[k].

We assume that the instantaneous channel gains, deno{éﬁ, are time-varying random quantities that are
i.i.d. over time. The channel noise is i.i.d. AWGN denotedd#], with zero mean and variane€. We assume
that full CSI (channel state information including gain arthge) is available at both the transmitters and the
receiver. This implies that the FC is aware of all the value$,;0f] and the corresponding phase information
while thei-th sensor has information of the gain and phase of its ownrelao the FCyi, k. Note that CSI

at the receiver (CSIR) can be easily obtained by the use of flee training from the transmitters, while
CSI at the transmitter (CSIT) requires the FC to adopt some fekdimechanism to send the CSI back to
the transmitters. We assume that this feedback mechanisemoisfree, delay-less and has infinite bandwidth.
Since the sensor transmitters are assumed to have theirethgrase information, they can individually cancel

this phase at the transmitter and hence the signal receiyeebFC is given by
N N
z[k] = Z V hilk]Bi[k]0[k] + Z V hilkBikJwilk] 4 ne[k]. 1)
=1 i=1

We define the transmission power of tita sensor as’[k] = E [yZ[k]], and obtain

Py[k] = C;32[K],

In this paper we will mostly be assuming that thg are deterministic quantities (similar to [24]), due to deterministic placement
of the sensors by e.g. the network designer. This differs from theehwfd18] that considers i.i.d. sensor noise variances. However
our diversity order analysis can also be used to treat a class of ryndstributedo?, see Section IV-D.

2The coherent sum (1) requires distributed transmit beamformingtfi26Jmay be difficult to achieve for large sensor networks. This
model however is commonly studied, e.g. in works such as [15], [168]. Our goal in this paper is to derive the diversity order of
distortion outage probability under this idealistic assumption. An analysis imgpbhe case where the signals add up noncoherently
at the FC will be interesting and is left for future work.



whereC; = o} + o?2.
It is well known that the optimal estimator féris the linear MMSE (minimum mean square error) estimator

[26], given as = gif}z The mean squared error distortion D, of this estimator, is given as

2 -1
h; k) P;[k
(s, /552

1
— +
2 N hi[k]Pi[k]o?
o YN, [ ]Ci[ lo o2

Dy = (2)

Note that (2) gives the expression of tiwstantaneous distortion, i.e., it is a function of the channel
realizationsh;[k], Vi, k. Due to the randomness of the fading channels, the instotsndistortion at the
FC changes randomly over time. Such estimation networks lysogbose a distortion threshold at the FC to
guarantee acceptable estimation, and if the instantardistestion D, exceeds the distortion threshald,, .,

a distortion outage event occurs. We define thdéstortion outage probability, or simply outage probability, as
the probability that the distortion exceeds the maximuntodi®n threshold, expressed &5,tqgc = Pr(Dy >
Dinaz)-

We would like to minimize the distortion outage probabilidy the use opower control or power allocation,
by adapting the transmission power of the send®f&]. Under full CSI, P;[k](h[k]) will be assumed to be a
function of the channel gains. In the next section we will sidar three different power allocation schemes.

Remark: Due to the i.i.d. (in time) nature of the network model, wél @iop the time indext from the rest

of the paper.

IIl. FuLL-CSIPOWER CONTROL SCHEMES

In the following subsections we introduce three differeatvpr control schemes for our proposed wireless
sensor network model. We will give results on the diversitgen of distortion outage achieved by these three
schemes in Section IV.

Remark: In this paper we assume that the power allocations aredihily a total poweP,,; that is fixed as
the number of sensor¥ varies, similar to the “total power constraint” of e.g. [2Ahalysis can also be carried
out for the case where the total powgy,; scales linearly with the number of sensd¥s but are omitted to

avoid repetition.

A. Equal power allocation

A very simple power allocation scheme is to have all the sengansmit with the same power. Given a

fixed total power constrair®;,;, the individual sensor power is then given Bs= P;.:/N, Vi.

B. Short-term optimal power allocation

Since the transmitters have CSI, we can formulate a power a@ostheme that minimizes the distortion

while satisfying a total power constraint in every transsida. We will call this power allocation the short-term



optimal power allocation (ST-OPA). ST-OPA can be obtained dilyisg the following optimization problem:

min  D(P(h), h) @)
st. SN Pi(h) < P, Pi(h) >0, Vi

Problem (3) is related to outage minimization in the follogviway. Similar to the information outage mini-
mization problem in communications theory [28], we can deérfshort-term distortion outage minimization

problem” as:

min Pr(D (P(h),h) > D) @
st. SN Pi(h) < P, Pi(h) >0, Vi

where the power constraint holds for each time instant (anobl realization). By similar methods to [28], it
can be shown that the solution to problem (3) is a solutiorhto ghort-term distortion outage minimization
problem (4), that in general has many possible solutions.

Problem (3) has been solved in [19]. The short-term optimalgeaalocation of theith sensor is given by
-1

N
P(h) = Puci(hi) | D_es(hy) |, Vi ()
Jj=1

where ¢;(h;) = Cihi/ (Ci +7?tothiai2/a§)2. From (5) we see that the optimal power of tita sensor is
computed by multiplyingP;,; by a ratio that is bounded between zero and one, i.e., wealiyd,,; amongst
the sensors by using this ratio. Also note that in coherenCMl#e sensors will always transmit with non-zero

powers, unlike in the case of orthogonal channels where samsors may turn off and do not transmit [18].

C. Long-term optimal power allocation

We now consider imposing a long-term total power constriairihe wireless sensor network, where the total
power usage is averaged over time (e.g. at some time instante power usage could be greater than the
average power, while at another tirke the power usage could be less than the average power), sep8]s
for the information outage minimization problem in comnuations theory. We are interested in finding the
optimal power allocation that minimizes the outage prolitgdsubject to a long-term total power constraint.
We call this power allocation scheme the long-term optin@aligr allocation (LT-OPA). The problem is given

as

min Pr (D (P(h),h) > D,u4) ©)
st. E [zfvzl Pi(h)} < Pios, Pi(h) >0, Vi,

Problem (6) can be solved in a similar way to [28]. First consitie following minimization problem given

as

min (P (h)) @)
st. D(P(h),h) < Dy, Pi(h) >0, Vi.

We have the following lemma:



Lemma 3.1: With the knowledge oh, the solution of problem (7) is given as

—1

N

P (h) = P,y (h)e;(hy) (E:qﬂhﬂ> , i=1,...,N, (8)
j=1

wherec;(h;) = Cihi/ (Ci + Ptot(h)hio—f/o—z)2 and P,;(h) is the solution of

N

h;
Vth = Z ( 520, 9)

i=1 (Pomy —I—afhi)

whereqy, = 1/Dyyap — 1/0%.
The proof of this lemma can be found in [19] and is hence omitfatk also has the following Lemma which

is necessary to find the optimal solution of problem (6):

Lemma 3.2: The long-term optimal poweP*(h) = [P} (h),.. .,Pj{,(h)]T as given in (8), is a continuous
function of h. Furthermore{P*(h)) is a non-increasing function df; for i = 1,..., N.
Proof: See Appendix. ]

Before we give the solution to problem (6), we will also neled tollowing definitions and notations, similar
to those in [28]. We first define the regioRs; () = {h SN Pr(h) < t}, Rer(t) = {h SN Pr(h) < t}
andBr(t) = {h SN Pr(h) = t}. We then define two power sum quantitiesrast) = [, ) >, P (h)dF(h)
and Pr(t) = fﬁT(t) Zf\il P*(h)dF'(h), where F'(h) denotes the joint c.d.f. oh. Finally, the power sum
thresholdt* and the weight.* are given ag* = sup {t : Pr(t) < Pt} andu* = %.

With the above lemma and definitions we can now present thei@olto problem (6).

Theorem 1: The solution of problem (6) is given as

) {Pwm,WheRﬂﬁ) )

P(h) = _
0, if h ¢ Rp(t*),

while if h € Br(t*), P(h) = P*(h) with probability u* andP(h) = 0 with probability 1 — u*, whereP*(h)
is given in (8).
The proof follows using similar techniques as in [28] and isdeexcluded.

The long-term optimal power allocation scheme that minisittee outage probability subject to a long-term
total power constraint says that if the vector of channehgdalls inside the region defined ®,(¢*), where
t* is a quantity that is associated wifh;, then the sensors should transmit with powers given by (&) an
achieve a distortion of exactlp,,,.... Otherwise, none should transmit to save power, and thihersvoutage
occurs.

We can also obtain another condition that determines whétleesensors transmit or not (hence the condition
for an outage event to occur). Note that in order to compwefitimal powers’*(h), we first need to compute
Piot(h). From P, (h) and the definition of*, the outage event only occurs #,;(h) > t*. Hence in every

transmission, the fusion center simply computes the qtyaRti,.(h) and compares it against. If P, (h) > t*,



then all sensors should be turned off to save power. Otherwli® sensors should transmit with power given
by (8). The value of* would depend on the value @%,; and it can be predetermined numerically in off-line
mode via Monte-Carlo simulation. A closed-form expressi®rgiven in Section IV-C which allows one to

quickly compute a lower bound af given Py;.

IV. DIVERSITY ORDERS OF DISTORTION OUTAGE

We are interested in seeing how the outage probability deaaythe number of sensaks increases. In this
section we will obtain for largeV asymptotic closed-form expressionslo§ P,,q4, for the different power
allocation schemes given in Section Ill. Such expressionsacterize thaliversity order of distortion outage
introduced in [18], who showed that the outage probabilégals exponentially with the number of sensdrs
for i.i.d. orthogonal MAC. For analytical tractability, itne following theoretical analysis, we will first consider
a homogeneous wireless sensor network where all the measotéoise and fading distributions are i.i.d. As
a consequence, we will denaté = o2 andC; = C = o3 + o, Vi. These results will then be used in Section
IV-D for more general cases of different sensor noise vagarand/or fading channels.

Notation: For two functionsf(-) and g(-), we will use the standard asymptotic notation (see for examp
[29], [30]) and say thalf ~ g ast — to, if L0 — 1 ast — t,.

g(t)

Notation: A summary of some important notation can be found in Table I.

TABLE |
TABLE OF NOTATIONS

o3 Variance of sourcé

a? Variance ofit" sensor measurement noise

o2 Variance of sensor measurement noise| in
homogeneous case, i€ = o2, Vi

o2 Variance of channel noise,

Ci Ug + 012

C 02 + 02

ci (hi) | Cihi/ (Ci+ Prothio? /o2)?

D Instantaneous distortion

Dpax | Maximum allowable distortion threshold
which if exceeded results in an outage

A. Equal power allocation

SubstitutingP; = Py /N into (2), after some algebraic manipulation we obtain

S hi o:C
D _ Nt a1
0f L h 020 | N (YX VA
N 2P0t o2 N

Inspecting the right hand side (RHS) of (11), we note that , h; and & S | v/A; converge toE[h] and
E[V/h] respectively by the law of large numbers Asgets large. However we find that Vé?lv Zf\il hi) =



N

2 2 4
+varh] and var("gﬁv < ’L‘j{,‘/}T’) ) ~ 22N (E[Vh])?varv/h] (obtained using the Delta method [31]). We
( me
N

see that the variance df S N | hi decreases like /N, whereas the approximate variance{éﬁ
2 2

increases withiV. We therefore choose to replage>"" | h; by its mean£ 1], and retain?2> (% PR \/E)

for large N. Let us call

0'377

02N N Vh; 2
N

o2

D=

n+

wheren = E[h| + Uiéit. Now by the weak law of large numbers and stochastic ordguegsties on pp.12-13

of [32], we can show the following convergence result:
D-D2%o (12)

where > denotes convergence in probability.

The asymptotic distortion outage probability for larfyecan then be found as

Poutage =P1 (D > Dypas) = Pr(D — D > Dypay — D)

~Pr(0 > Doz — D) = Pr(D > Dyag)

=Pr

N
b (}Vzm<jv> (13)

no2(05—Dmaz)
2
Dm,a:c Oy

wherea =

To verify the accuracy in our use of the asymptotic approxioma(12), in Fig. 2 we plot the expression
of D — D on the left hand side of (12), wherg is exponentially distributed with paramet&r for a single
realization. We can readily see the convergence to zer® ascreases. In Fig. 3 (see Section V) we also
compare between Monte Carlo simulationd®f P,,;.4e andlog Pr (% vazl Vhi < ﬁ) The results show
almost no difference between using the actual outage pildgal¥,, ;.4 and the asymptotic approximation
(13).

By inspecting (13) we see that the asymptotic outage préibais expressed in terms of the empirical
mean of i.i.d. random variableg’h; being less than a threshold that is a functionNof This resembles a
more general form of the typical large deviation problem rghthe threshold is a constant. In Theorem 2
we will provide a generalized version of Cramer's Theoremalthtan be applied to (13). Before we give
the theorem we need the following definitions. The moment-gaimg function of the random variabl&

is defined asMx(t) = E [¢'*]. The cumulant-generating function of the random variakilds defined as
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Fig. 2. EPA with total power constraiff,,; = 10mW. Plots of D — D. Simulation parametersk = 250,000, 62 = 1, 02 = 1072,
2 —8
o, =107°.

Ax(t) £ log Mx(t). The rate function of the random variabk¢ is defined as/x(c) = sup {ct — Ax(t)}.
We also define the following notations relating to the ratecfiom as/3;(c) = sup {ct — AX(tt)} andly(c) =
sup {ct — Ax(t)}. Note here thaifjg and Iy have the same value dg; thestzotwo notations are introduced
é;(l)y to further restrict the domain of the supremum withoffiécting the result off x. Hence these notations
may be used interchangeably depending on whether we haxee lendwledge of the domain over which the
supremum is achieved.

Theorem 2: Let X, Xo,... be i.i.d. random variables with mearny > 0, and suppose that their moment

generating functionMy (t) = E [¢!X] is finite in some neighborhood of the origin= 0. Let ¥;,; be the

exponential change of distribution & = —X; 4+ ux defined as

67—’7‘L y

dFy, (y) = mdFY(y)- (14)

Suppose thaPr (% Yoy )7”,2- > F [?MD is bounded away from zero as— oo. Leta, = 7%, p > 0 and

Pr(X < ay) >0, Vn. ThenIx(ay,) > 0 for sufficiently largen, and
L

log Pr <n ;Xi < an> ~ —nlx (a,) asn — oc. (15)

Proof: See Appendix. ]

In order to apply Theorem 2 to (13), we need to verify the assiomghat Pr (% S ?m- > F [?’“D

is bounded away from zero as— oo. The following lemma verifies this condition in the case of Régth

fading.
Lemma 4.1: LetY; = —vh;+ E [V/h;], where\/h; is Rayleigh distributed with parameter(i.e. f (z) =

Ze~7"/2%%). DenoteY,,; as the exponential change of distributionigfas defined in (14). Then

1 ¢ >
Pr (n z;ym > E [YMD — 0.5 asn — oo. (16)
Proof: See Appendix. ]
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Applying Theorem 2 to (13) we have

_ a

log Poutage ~ _NI\/E (\/N) asN — oo a7
where

I <a> = su (“9 —log M (9)> (18)

Vi\yN) Tom v )

Sincev/h is Rayleigh distributed with parametet its moment generating function is available in closed
form as
\/51) 22
M s <_;4; =1— mxe” erfc(x) (19)

where we have used a substitution of varialfles —\/§x//<;.
We need to find the value ¢f that attains the supremum in the rate functioﬁ(a/\/ﬁ). This value off)

can be found by using the stationary condition (first denegtigiven as

dl . (a/VN
\/E<d6/> —0, 6<0 (20)
SSLL—— 1)
where
0(0) = (N 4(0)) " = Myp(6)/M L 0). (22)

After substitutingd = —/2x/x in (21) and some algebraic manipulation, it is possible ttaiob

VN _ (e 3
2 K
where
2x
g2 2 i (-4 (24)
K K 1- M (—ﬁ)—2:1:2M (_@)
vh K vh K
Note thaty (—\/3””) is a continuous non-decreasing functionzofince
() g A
(%) _V2 i () >0, (25)

R

where the inequality is due to the cumulant generating fandbeing a convex function and hence its second
derivative is non-negative. The continuity q&f(—@) can be seen from (22); sinc¥ (0) is a positive
continuous strictly-increasing convex function, this lrep thatMi/E(G) > 0, and the change of variables from
0 to = preserves the continuity of the function.

Hence from (23), largeNV corresponds to the case of large We now show thaty (—v/2z/x) in fact

increases linearly i for largez. We substitute the asymptotic expansion of the complemgetaor function
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(for largex) given as erf¢r) = % Zfzo(—l)"% into the moment generating function (19) and obtain

1(2x)2"
V22 1 3 15
M —— =+ —+--. 2
vh ( K 222 4zt + 8x6 * (26)
We then substitute (26) into (23) to obtain the following
VK V2 v - +)
@ TR () 2 (g g )
5Ll _ 3 15 . 5
=—=2r Ao _5 B T v2u for large z.
K st Kk 2

Hence for largeV,

g 2N (27)
a
Substituting this asymptotic expression fbback into the rate function gives
a a 2\/N 2
2
=-2—logM s <_(IN> (29)
a2
~—2—log <2n2N> (30)
a2
=—2—log <2> + log N. (32)
2K
Hence from (17) the outage probability for largeé satisfies
log P, NI (“) (32)
g Loutage vh \/N
2
~—N (-2 “log (ag> + log N) (33)
2K
~ — Nlog N, (34)

which shows that the diversity order of distortion outage.im. coherent MAC with Rayleigh fading using
EPA is Nlog N for large N.

In [18], the authors obtained a diversity order iffor i.i.d. orthogonal MAC with Rayleigh fading using
EPA. We thus see that the coherent MAC achieves a higher diversler over the orthogonal MAC case by a
factor oflog N for i.i.d. Rayleigh-faded channels. Note that if the totalvyer scales linearly with the number
of sensors, then a diversity order &flog N for orthogonal MAC can also be achieved [24]. In contrastehe
we showed that for coherent MAC a diversity order Mflog N can still be achieved when the total power
is fixed. Similar improvements in performance of the cohereAOWover the orthogonal MAC has also been
previously observed (for different performance criteiiag.g. [19], where for a fixed total power the distortion
decays to zero at the rate N as NV increases for coherent MAC, but the distortion is boundedyaftom

zero for orthogonal MAC. This is due to the fact that in cohemmbination, the received signal to noise
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ratio scales with the number of sensors due to the correlatimong transmitted messages, even when the total
transmit power is finite [19]. However if the total power s&lmearly with the number of sensors, then the

distortion will decay to zero for orthogonal MAC.

B. Short-term optimal power allocation

We first give the expression of distortion using ST-OPA. Sulntitigy (5) into (2) gives

2 -1
N / *
% 023 hiFf +02C o2+ o) Yily Zi

where Z; = h;/ (h; +p) with p = Co?/P;0?, and the second equality follows after some algebraic

manipulation. The distortion outage probability can therefbe written as
1 N
Poutage =Pr (D > Dmax) =Pr (N z; Z; < gN) (36)
1=

wheregy = g/N andg = 02 (1/Dpqe — 1/03).

Denote Z as the random variable distributed according to the commsimitzlition of Z;. We now apply
Theorem 2 to (36). We have the following lemma needed for yiegf one of the assumptions in Theorem 2
(similar to lemma 4.1).

Lemma 4.2: LetY; = —Z;, + FE[Z;], where Z; = h;/ (h; + p), with h; being exponentially distributed.

Denoteffm as the exponential change of distribution}fas defined in (14). Then

SRR -
Pr( =Y Vui>E Vo] | 205 asn—o. (37)
n i=1
This lemma can be proved in a similar manner to Lemma 4.1 andcisiged to avoid repetition.

Applying Theorem 2 to (36) we have
lOg Poutage ~ _NIE (gN) asN — oo (38)

wherel (gn) = zup (gn0 — log M 4(0)).
<0

In order to obtain\/z(6), we need the distribution df. The common distribution of i.i.d. random variablés

1
can be easily obtained sincg = (1 + hﬂ) , Whereh; are i.i.d. exponentially distributed random variables

with parameterA. Note that the domain of; is [0,1). The c.d.f. and p.d.f. o are given byFz(z) =

1— e 77 and fz(2) = )\pﬁe_)‘pfz respectively. The mean of is given asuy = 1 — Ape* E;1(\p),

where Ey(z) = f;" %"dt is the exponential integral. The moment generating funcbbrZ is given as

Mz(0) = E [e"] = Mp fol (l_lz)zeez_/\pl%zdz.

We need to find the value ¢f that attains the supremum in the rate functigh(gy). This value off can

be found by using the stationary conditigﬁi(g’—“ =0, # < 0. Taking the first derivative of the rate function
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gives

1 2 0z—Ap—=—
M7(9) Jo qie e
T M4 (0) " I (1jz)2692_kp1—zdz (39)
1
zg(z,t)dz
=gN = M (40)

B fol g(z,t)dz

z
11—z,

wheret = —0 andg(z, ) = ke

Note that asN increasesgy decreases to zero. Also note that,t) > 0. Let p(0) = M, (0)/Mz(0).
Replacingd by —t and taking the derivative op(—t) with respect tot yields W = —A)(—-t) <0,
where the inequality arises due to the cumulant generatingtion being a convex function. Hengg—t) is
a continuous non-increasing function #ofthe continuity ofp(—t) is evident by inspecting the RHS of (40)).
Hence largeN corresponds to the case of largé (40). Letx = 1/(1 — z). It can be easily shown that (40)

can be written as
oo 1 t_cx
B f1 zer dx

gy =1 o 41
N g (42)
wherec = \p.
Lemma 4.3:
1
gN ~ n ast — oo. (42)
Proof: See Appendix. ]
Hence for largeN, we have
1
0~ ——. (43)
gN
Substituting this asymptotic expression foback intoMz(6) gives
Mz(0) = Ape H'C/ e @ g(z)dx
1
et—c
~ ApeHC—— ~ Apgn
Substitutingd ~ —giN and Mz(0) ~ Apgn back into the rate function gives
1 A
Iz(an) ~ —gn— —log (pg) for large N (44)
gN N
= —1—log (Apg) + log N. (45)
Hence from (38) the outage probability for lar@eis asymptotically
lOg Poutage ~ _NIZ (QN) (46)
~ —N (=1 —log (Apg) + log N) 47

~ —Nlog N. (48)
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Hence the diversity order of distortion outage for i.i.dhecent MAC with Rayleigh fading using ST-OPA is

N log N, which interestingly achieves the same diversity orderisfottion outage as EPA.

C. Long-term optimal power allocation

In this section we first show that it is possible to use LT-OPAaherent MAC to achieve zero distortion
outage with a finite amount of power, if the number of sendirs> 1. We will later show that this result
implies that for a given power constraint it is possible thiage zero distortion outage with finif¥, i.e., there
exists a finite number of sensors that will drive the distortoutage to zero. We will obtain an approximate
expression for finding suclV. Intuitively these results could be regarded as saying ¢inat can achieve a
“diversity order of infinity” if using the long-term optimalqwer allocation, as plots oog P,ytage VS N
will approach a vertical asymptote, see also [28] for simdduations in the context of information outage
minimization.

We first analyze the power required to achieve zero outageNFer1, the sum power expression in (9) can
be re-arranged and expressedRas (h) = % where K, = (Wﬂ The regionR1(t) can be easily found

1*02’Yth)
directly from the definition aRy(t) = {h: P(h) <t} = {h:h > £}, The average power sunk(t),

becomes
Pr(t) = / Proy(h)dF () (49)
Rr(t)
_ / K1y o-Ngn = 2k, / ¢ du (50)
5 h 2K
— \K,E; (Aiﬁ) (51)

whereu = Ah and Ey(z) = fxoo %dt is the exponential integral. To find the maximum total poweatth
achieves zero-outage, we simply let— oo. This is because the regioRr(t) defines the set of channel
realizations where the sensdoes transmit to meet the distortion constraint. Hence, the grifarobability is
also given byP,,tq0e = Pr(h ¢ Rr(t)). When we lett — oo, we increaseRr(t) to be the whole channel
space, implying that the outage region is reduced to null, la@nce outage probability is reduced to zero.
However, as — oo, Pr(t) — oo, implying that we need an infinite amount of power to achieve zritage
for N =1.

For N > 1 it is difficult to obtain closed form expressions of the maximpower required to achieve zero-
distortion. Instead, we show that it is possible to achies®-outage with finite power faV > 1. Suppose we
have a sub-optimal power allocation scheme as follows. Feryetransmission, we select the sensor with the
best channel gain and use only that sensor to transmit wsthejuough power to meet the distortion constraint.

Denote the power a®(hqz) Where hyae = max(hy,...,hy). P(h) can be obtained from the distortion

2
'Ytho'cc

constraint and it is given aé(hmax) = Ty,

. We can see that power is proportional to the inverse of

the channel gain. This power allocation scheme is simply areflanversion scheme. The c.d.f. and p.d.f. of
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choosing the maximum channel gain out of a set of i.i.d. eeptial-distributed random variablgs,, ..., Ax}

is given respectively as, . (t) = (1 — )\e*”)N andf;, . () =NX(1— )\e*”)N_1 e~*. The transmission

max

power averaged over all possible values of the channekegln and over time is then given as

B |P(hunas)|

o0 20 N-1
- / (l%h%)h NA (1= 2™ e Map,
0 — 0™th

The integral above is well-known to be finite fdf > 1, see e.g. [33]. Since this suboptimal power allocation
scheme can achieve zero-outage with finite power, the optpoaler allocation scheme will also achieve
zero-outage with finite power.

We now proceed to find an approximation for the maximum numbsensorsV,,,.. that still has non-zero
outage for a giverP,,; for LT-OPA. Then N,,,. + 1 can be regarded as the minimum number of sensors

that achieves zero outage. To do this, we first find a lower bounthe instantaneous powé?,;(h). We
1

begin with the equation we need to solve to obt&p (h), given aso?y,;, = Zi\il (% + 1)7 . Let

P —1
flhy) = (% + 1) . It is straight forward to show thaf is concave inh; Vi. Applying Jensen’s

inequality we have

N N
. h,Z = hz
m:zz_ﬁvmgf@; ) 52)
2
1
:>U Yth < —c (53)
UQPtot(h)C% il b 1
2 2 2
N 02Pr(h) 5 Doiiy i N
Ky
=Pit(h) > —— >
(b Zf\il hi ()

where Ky = y,02C/ (1 - ”2%)
Let Ptot(h) = Ky/ ZiN:l h;. Using the lower bound expressidﬁot(h), we obtain the following modified

definitions and expressions to the ones given in Section IV-@. ddfinition ofRT(E) becomes
N Ky
Ror(f) = {h : Bioy(h) < t} = {h : z;h > E}' (56)
The definition of Pr(f) becomes

Pr(t) = /R , P m)
1
Zﬁvzl hi>KTN Zz]\il h‘7'

e A Lihighy - dhy.

Note thath; is exponentially distributed with meaiy\. Let T = SV h,. It is well known thatT" is Gamma
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. (14 02vin) Prot + Yeno2CA + \/[(1 + 0294 Prot + 1eno2CN* — APE eno?

Nz = 59
2Ptot ( )

distributed with parameters = N, 6 = % HencePT(t) becomes

1
N
Zﬁ\le hi>KTN Zi:l hl

1 oo r
= Ky—— TF2e=%54dT
NT(k)6F ﬂ«N °

K o0
=N / TN =22 Tqr

Pr(t) = Ky e AT hidhy - dhy

t

T(N)A—"

_ KnA (N —1,MKy/i)
S N-1 I'(N —1)

The definition oft* becomed* = sup {E: Pr(i) < Ptot}. We can solve for* by letting Pr(£*) = Py, and
obtain
Kn\ T (N—-1,AKy/t*) P
N-—1 (N —1) ot

(57)

Ky
t

The outage event becomés, . = {h : Por(h) > f*} = {h AN hy < X

}. If we let * — oo in

(57) for a given finiteN then K /i* — 0, W — 1 and

Ky
N -1

- Ptot . (58)

Equation (58) allows us to solve fa¥, and it gives an approximatioiV,,., to the maximum number of
sensors that has non-zero outage probability for a giRgn The solution of (58) can be found in closed-form

and is given as (59) where:| denotes the floor function af.

D. General Parameters

The previous subsections have analyzed the diversity omfedistortion outage for “symmetric” sensor
networks. Here we show how these results can be extendec toade where the sensor noise variances are
not necessarily identical, and the case where the fadingneia are not necessarily identically distributed.
The idea is to upper and lower bound the distortion and hereeigiortion outage probability, and show that
asymptotically they have the same diversity orders of disto outage. Similar techniques have been previously
used in [34] and [35]. To avoid repetition, we will only tretlie case of equal power allocation (EPA).

1) General sensor noise variances: We consider first the case where the sensor noise variarjcés=
1,..., M are not necessarily identical, with the fading channell aisumed to be i.i.d. Rayleigh across

sensors. We assume that the sensor noise variances canrmetdiom both above and below, i.e.

0< o2 §0i2§02 < 00, Vi.

min max
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Such an assumption can cover the situation where sensorslared pdeterministically but with different

distances from the source, as well as the situation whereghsor noise variances§ are random (but are

upper and lower bounded, though not necessarily i.i.d.)tduandom placement of the sensor nodes.
Then, since the distortio is an increasing function of? for all 4, a largers? will lead to a higher outage

probability. Hence an upper bound on the outage probabdityie case when we take = o2 ., Vi. From

max?

our results in Section IV-A, we obtain (taking the leadingrtesnly)
log Poutage < —Nlog N(1+ o(1))

as N — oo.

Similarly, a lower bound on the outage probability is the caken we taker? = o2, | Vi. In this case, we

min
obtainlog P,ytage > —Nlog N(1+0(1)) asN — oc.

Since the upper and lower boundslog P4 both have the asymptotic behaviouN log N asN — oo,
the general situation will also do so. Hence the diversitgeorof N log N is also obtained in the case of
general sensor noise variances.

2) Non-identically distributed fading channels. Here we consider the case where the sensor noise variances
are identical, and the fading channels are independentdiutetessarily identically distributed. In particular,

we analyze the situation satisfying the following assuonuti

Assumption 4.1: The channel gain&; can be written as
h; = p;hl, Vi
wherep; > 0 are constants satisfying
0 < pmin < i < pmaz < 00,

and theh)’s are identically distributed.

For instance, ifh; is exponentially distributed with meaty);, then we can take; = 1/)\;, and h; will
be exponentially distributed with mean Thus Rayleigh fading channels with different means willisfat
Assumption 4.1.

We first derive an upper bound on the outage probability. Fraendiktortion expression (11) we have

S ik a2C
2 o N + O'ZPtot
O'2 N N 2 N ’ 2
0 > '—1)“ h; + + a;N ie1 V/ pihg
Z'Pwt o? N
Ef\jzl Hmazh] a2C
< N + o Pt(,t

SN fminkl | 02C SN, \/um
+ U2Plof +

N O’Z
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and the result

20ty Hmashi o:C
N + 2P0t
SN tminl] PRI/ \/um
N + ZPtot + 02
Uit D

2
+ UgNumm évzl \/ h:
T2 o2 N

Wheren: = fimnas B[] + %< andns = pimin B[] + ;350 Then

Poutage
03771
< Pr - 5 > Dz | (1+0(1))
i + 7 ( L)
D
— Pr "9;71 1) (1 4 o(1)).
DUQN,umzn
From our results in Section IV-A, for Rayleigh fading we obtain
10g Poutage
ozm — Dnp)
< logPr 0 1+o(1
g ( \/ Do?N ) (1+0(1)
~ —Nlog N

as N — oo.

Similarly, we can derive a lower bound on the outage prolgkaind show that
1Og]Doutage > _NIOgN(l + 0(1>)

Since the upper and lower bounds have the same asymptoticibehdhe general situation will also do so.
Hence the diversity order aW log IV is also obtained in the case of Rayleigh fading channels different
means.

3) General sensor noise variances and non-identically distributed fading channels: Combining the results
in the previous subsections, we can see that if we have bdfégratit sensor noise variances and Rayleigh

fading channels with different means, the diversity ordeNdog N is still achieved.

V. SIMULATION RESULTS

In this section, we show comparisons between Monte Carlolatipns and some of the asymptotic expres-
sions for the diversity order that have been derived in tlaisep. The Monte Carlo simulations are obtained
by averaging over 1,000,000 channel realizations.

We first present the diversity order of distortion outage foAEPhe parameters are chosen as follows.
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——&— —NI asymptotic
—A— NI o
log Puulage
O log (eq (17))

Fig. 3. EPA with total power constrair®,,; = 10mW. Squares: Asymptotic expression (33). Triangleslwﬁ(a/\/ﬁ). Plus
N

signs:log Poytage. Circles:log (Pr (ﬁ S Vhi < ﬁ)) Simulation parametersk = 250,000, a = 0.003, o3 = 1, ¢ = 1073,
i=1

02 =10"%, Dpaw = 0.1.

For simplicity we consider the sourceto be distributed asv(0,1). The sensor measurement noise variance
0% = 1073 is chosen to represent the sensitivity of the measurememdl(€ompared to the variance 6},
while the variance of the channel noisg = 10~® is chosen to be much smaller than the measurement noise.
The parametek = 250, 000 for the fading channel is used based on the loss (square taawliatance of 500m
(average distance between sensors to the EXG),. is chosen to bd0% of the maximum distortion, which

is equal to 1. The powerB,,; were chosen to be in the range of milliwatts, a reasonabiesitngsion power

in wireless sensor nodes. We simulated the case wRgge= 10mW and plotted the results in Fig. 3. We
compare between 1) plots ofg P,,:.4. Obtained via Monte Carlo simulation, whekgg is the natural log, 2)
Monte Carlo simulations ofog <Pr (11, évj Vhi < ﬁ)) from our approximation (13), 3) the exact values
of —NI\/E(a/\/N) obtained by solvingzzi8) numerically, and 4) plots of theraptotic expression (33). As
mentioned before in Section 1V-Apg <Pr <}V ﬁ Vhi < jﬁ>> is a very good approximation tog P,,iage-

Fig. 3 also shows that a& gets large, all foa;lplots have similar gradients. Note that asymptotic results
I\/E(a/\/ﬁ) and expression (33) only give us the slope of the outage piltlgavhen plotted on a log scale;
these two lines may not necessarily convergétoPF,,,:4. but their gradients should coincide for largg as
can be seen in Fig. 3. This is due to the use of asymptotic appadixins to derive our expressions, e.g. the
approximations made in going from equation (32) to (33).

We next present the diversity order results for ST-OPA. Ugig = 10mW, in Fig. 4 we compare between
1) Monte Carlo simulations dbg P,,:qg. USing ST-OPA, 2) numerical computation VI (gy), and 3) the
asymptotic expression (47). We again see thalVasicreases, all three plots have very similar gradients.

We next present results for LT-OPA. An approximate relatfop betweenV,, .. and Py, for LT-OPA has

3Note also that changing the values of parameters such as the distortishaldr®, ... or sensor measurement noise varianée
will shift the curves up or down, however the diversity order is relatethéoslopes of the curves, which from our analysis in Section

IV has leading term behaviodbg Poyutage ~ —N log N that does not depend on the valuedf,... or o>. For brevity we will omit
these additional graphs in the paper.
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—+— —NI asymptotic
—=— -NI

—10}
o— log Puuiage

—12}

-14

Fig. 4. ST-OPA withP;,; = 10mW. Plus signs: Asymptotic expression (47). Squaresilz (g/N). Circles:log Poutage. Simulation
parametersi = 250,000, g = 0.09, 62 =1, 62 = 1072, 02 = 1075, Doz = 0.1.

40 T
from simulation

O from equation ||

351

30

25

Fig. 5. Nmaax VersusPy,.. Circles: Approximation (59). Solid lineN,,., from Monte Carlo simulation. Simulation parameters:
of=1,02=10"3,062=10"8, Dyar = 0.1 and X = 250, 000.

been obtained in (59). To see how good this approximatiomwésplot the approximation (59) and compare
this with N,,,, obtained via Monte Carlo simulation, where we compute theraye total power usage for a
given N by averaging over 1,000,000 channel realizations. The teeaué shown in Fig. 5.

Finally, in Fig. 6 we compare the outage performance as a fomaif N for the three different power
allocation schemes considered in this paper, using= 1,600:W. Note that for LT-OPA, due to the existence
of Nz, the outage probability folV > N,,.. iS zero and hence we cannot show resultsXor> N,,q: 0On
the graph. From this figure we can see that the gradients of EPAS&@PA are similar for largeV, while

the outage probability curve for LT-OPA approaches to ais@rasymptote located av,,... + 1, where in this

exampleN,,q = 15.

VI. CONCLUSIONS

In this paper we have derived theoretical results on thersityeorder of distortion outage in wireless sensor

networks using different power allocation schemes. Weeapres! three power allocation schemes - EPA, ST-
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Fig. 6. log Poytage VErsusN. Simulation parameterst; = 1, 02 = 1072, 02 = 1073, Dyez = 0.1, A = 250,000 and P,y =
1, 600uW.

OPA and LT-OPA. We then followed by presenting the theoattiesults on the diversity order of distortion
outage achieved by each of the power allocation schemes Rajdeigh fading. The equal power allocation
asymptotically achieves a diversity order dflog N, which is larger than the diversity order achieved by EPA
in orthogonal MAC [18] by a factor ofog N. We have also shown that ST-OPA (minimizing distortion sabje
to a total power constraint) achieves the same diversitgrood distortion outage as EPA. This suggests that
in the case of a large number of sensors, the spatial diyegain in EPA can overcome fading equally well
as ST-OPA, which requires knowing CSIT. In the analysis of g order in LT-OPA, we found that the
outage probability can be driven to zero with a finite amountotdl power. We also obtained a closed form
approximation to the minimum number of sensors that driresdutage probability to zero for a given total
power constraint. Simulation results show that this appnation gives very close results to the true value.
Future extension of this work may include deriving the diitgrerders of distortion outage for different
fading distributions. One may also extend this work to dyitamsystems where the source is a time-varying

Gauss Markov random process.

VIlI. APPENDIX

Proof: Lemma 3.2: In the first statement it is immediate to see tl4t(h) is a continuous function of
h. In the second statement we need to show {Fdh)) is a non-increasing function d@f;, : = 1,..., N. We
begin with the partial derivative of the short-term averaggver given as

O(P(h) _ 9 Pu(h) _ o2 0w
oh;  O0h; N N Ohy

(60)

wherev = 7?;;* is the Lagrangian multiplier in one of the KKT conditions (§é€]). Also from the KKT

conditions [19] we have

(61)
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Taking the partial derivative with respect i@ on both sides of (61) gives

=

—i-l/ha

N
0 vh; n Z 0 vh; ov

= Bh O 1 vhio? 504—1/11-0287111:0

N v
SN L SE— —0
(C+vh; 02 2 jz::l C+ l/h 02) dh;

-1
N
Oh; (C + vhio?) = (C +vhjo?)
o(P(h)) o2 0v
Oh; N Oh;

= <0,

which completes the proof. ]

Proof: Theorem 2: We prove the theorem by obtaining upper and lower boundissd?r (% Yo X < an),
which asymptotically are equivalent for large The proof uses similar techniques to those provided in the
proof of Theorem 5.11.4 in [36].

Upper bound. Assume thatX;, X, ... are i.i.d. distributed random variables with a common c.drfd
p.d.f. denoted ag'x (z) and fx(x) respectively. Denote x as the mean of;. LetY; = — X, + ux, hence
E[Y;] = uy = 0. The transformation allows us to obtain the following redashipsMy (t) = etx! My (—t),
Ay (t) = pxt+ Ax(—t) and

Iy (en) = sup {(ux — en) t = Ax ()} (62)

Note thatc, = ux — an.

log (M> for small positivet, whereo? = var(Y'); we have used here the assumption thit (¢

We prove first thafy (c,) > 0 under the assumptions of the theorem. We notedhat A(t) = log ( een! ) —
14303 t2+0(t2) )
>

oo near the origin. For sufficiently small positive 1 + c,t + o(t) > 1 + 02t + o(t?), whencely (c,)
by the definition of the rate function.

We make two notes for future use. First, sindg(¢) is convex withA} (0) = E[Y] = 0, and since
cn > py = 0 for n > 4 (the value of.4#" can be found by solving for the smallest integersuch that
cn > 0), the supremum oé,,t — Ay (t) overt € R is unchanged by the restrictigr> 0, which is to say that

Iy (cn) =sup{ept — Ay (t)}, ¢ >0forn> 4. (63)
t>0

SecondlyAy (t) is strictly convex wherever the second derivathMg(t) exists. To see this, note that va&r) > 0
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under the hypothesis of the theorem and

My () My (t) — My (1)

Ny (o) = SR (64
2
- ELE [Y]\zi?j)z_ BT (65)

where the inequality is due to the Cauchy-Schwartz inequaliplied to the random variablése:"Y and

1
eity.

We have the following

1 n n
Pr (ZXZ < an> =Pr (ZYQ > ncn>
n
i=1 i=1

=Pr (etZ?zl Yi > e”c”t> fort >0

<E [exp (t Z?zl YZ)] _ e—ncntMy(t)n — e—n(cnt—Ay(t))

— enen t

where the inequality is due to Markov’s inequality. Takimg lon both sides gives
1 n
logPr| — ) X;<a,| <-—n(c,t—Ay(t)), Vi>0 66
g(n; _a> n(ent = Ay(t), Vt> (66)

Since the upper bound in (66) is true for ali> 0 and we are looking for the tightest bound, we can further

bound the LHS by taking the infimum on the RHS

1 n
logPr | — X; <a,
ogrr (n ; S a )
<inf {— _
< inf {-n (cat — Ay (£))}

= — nsup {ent — Ay ()}
t>0

= —nl (¢,) = —nly (a,) from (62)

Lower bound. We first show that the problem falls under the regular case,that the supremum of the
rate functionly (c,), n > .4 is attained at some point € (0,00). Denote Fy (y) and fy(y) the common
c.d.f. and p.d.f. oft1, Ys, ... respectively. Sinc@®r (Y; > ¢,) > 0 for n > .4/, there existd,, € (¢,, o0) such

that Pr(Y; > b,) > 0.
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It follows that for¢ > 0,

Cnt—Ay(t)

—ent —log B[] = cut — log / e fy (y)dy
. e

et — log [ | ernway+ | etyfy(y)dy]
—00 b,

<cpt — log/ etyfy(y)dy < cpt — log {etb" / fy(y)dy}
b by,

n

=c,t — log {etb” Pr(Y; > bn)}

= — (bp — )t —logPr(Y; > b,) — —oc0 ast — oo

sinceb,, — ¢, > 0 for finite and fixedn. We deduce that the supremum ©ft — Ay (¢) over valuest > 0 is
attained at some point, € (0,00). The random sequendd, Ys, ... is therefore a regular case of the large
deviation problem.

We now introduce an ancillary random variable (as a functbm) Y, with distribution functionFy, (y),

sometimes called an ‘exponential change of distributianadtilted distribution’, by

eTny
Fo(y) = ——_4F 7
d Y, (y) MY(Tn)d Y(y)7 (6 )
which can also be interpreted & (y) = 3717 /. €™ "dFy (u). Let Y1, Yo, ... be iid. distributed with

c.d.f. Iy, . We note the following properties (ffm. The moment generating function é’fm is

My (1) :/_ et“de,n(u) (68)
_ [ _ My(t+m)
— . My(Tn) dFy u) = My(Tn) (69)

The first two moments of;, ; satisfy

B Vo] =M}, (0) = Aj\ggg — Ay () = Cny (70)
var (Vo) = | (7:)] - (B [7a])] 7)
=M (0) — M}, (0)? (72)

=AY (7,) € (0, 00). (73)

DenoteS,, = > ffm;. SinceS,, is the sum ofn i.i.d. random variables, it has moment generating function

{ 6(t+7'n)§n:|

o Myt )\ F
MSn(t)_< My (7n) > My (r)" (74)
R R
My ()" /_oo 2 () 7o)
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where Fg, is the c.d.f. ofS,, = > ,Y;. Therefore, the cumulative distribution function 8f, denoted as

F , satisfies

e™Yy

dFSn (y) = WdFS" (y)- (76)

Let d > 0. We have

1 n n
Pr <ZX1 < an> =Pr (ZY’ > ncn>
n
i=1 i=1

:/ dFs, (u) = My(Tn)"e_T”“ngn(u)
) n(cn+d) '
My() [ e aEg (u
’ n(cn+d)
=My () et [T R ()

ney,

=e UM (entd)=Av (7)) py (ncn < S, <n(en+ d))

_enru(entd)=Av (r) py ( <1g <ot d> |

S

SinceE [Ym] = ¢, and var(l?m) > 0, we have from the assumption of the theorem ﬂhﬁ(%ﬁn > cn>
is bounded away from zero as — oco. We also havePr (%Sn <cp+ d) — 1 asn — oo, which can be

shown using a strong law of large numbers for triangularyarf87]. Therefore,

L
log Pr (n ;X@' < an)
> —n(m (cn +d) — Ay (m))
+ log Pr (cn < %Sn <cnt d)
~ =1 (T (¢n +d) = Ay (7)) asn — oo
~ —n (e, — Ay (m)) asd —0

=—nly (cn) = —nly (an) .

Proof: Lemma 4.1; Here we want to show that
1 -
Pr <nSn > cn> — 0.5 (77)

asn — oo. We note that the L.H.S. of (77) involves a sum of random vaespl”_, Y;, ; that are i.i.d. across
for a givenn. We will show that the central limit theorem (CLT) applies lristcase by showing that Lindeberg’s
condition holds. Before we state Lindeberg’s condition, wst fintroduce a change of variable to simplify the
problem in the later stage. Deno¥§, the common distribution ot} ;, Vi. Let Z, = Y, — E [ffn} Hence

E [ZR} = 0 and var(Zn) = var ()7”) Note also thatF [}7”} = ¢, and var(ffn) = A} (7,). Lindeberg’s
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condition is hence given as

U;Zn /{lZ,L|>e\/na2Z"} EQon (2)dz — 0asn — oo (78)
for everye > 0. Proving that this condition is true for any general disttidw is hard because we do not have
the closed-form expression of,. Instead we will here verify Lindeberg’s condition fefh;, where /h; is
Rayleigh distributed.

We first give the asymptotic expression of (é?fn) asn — oo for the Rayleigh distribution. We have the

following results:

dAy (0) 1 dM\/g(—e)
do M /7(—0) de
d> M. /5(=6) dM 5 (=0) | ?
PAy(0)  —ar Myr(=0) - ( o ) 9)
a* M /5 (—6)? ‘
Note that
dM (—6 202 4+ 1) M _(—0) — 1
Vi(=0) _ (50° 1) M (=) 0)
de 0
d*M _-(—0)
Vvh
Substituting (80) and (81) into (79) gives
Ay (0) (K207 —1) M (=) + (k%6 +2) M 5(—0) — 1 (62)
o> 02M /;(—0) '
Using the asymptotic expansion of . (—6) (sincef — oo asn — oc)
1 3 15
M ~(—0) = — — ..
\/E< 9) K202 (H292)2 + (H292)3
d2Ay(6) a2
we obtain=—_z= ~ 4 = and hence
¥ " ‘12
var (Yn) = A (1) ~ 5 (83)
The expression of ;- (2) can be easily found and is given as
- ap — 2 _lan=2?% sy
fz,(3) = o 2z e, (84)

K2My (15,)

Note thatZ, € (—oc0, a,].

We are now ready to look at Lindeberg’s condition (78) aftetadiing the expressions (83) and (84). We
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have
1 = ~ ~
2 /~ - ngzn(z)dz
72, Nizefir)
1 —e\/no3, .
O-Zn — 00 6\/7L(72Zn
@ 1 [~/mh
N02 Z (2)dz
Z, Y@
- 1
_-K202 A4Y<Tn)
_e\/nozzn ~\ ~2 (,,,n_g)z _ _
X (an — Z) z e‘TJrTn(ercn)dz
—00
e_p’\/ﬁTn

> (antu)?
X / (an + u) uZe TEA T T T —Ta bt gy (85)
€

2
noy
Zn

wherep 5 = E [\/ﬂ u = —% and step ¢) is due to the second integral vanishing to zero as the iatiegr
interval becomes null, sincg, — 0 ande, /”022 — ae/\/§ asn — oo. Also note that we have the following

asymptotic expressions (as— oo)

Cn = Hyp — An — Hyp (87)
Tn ~ M (from (27) andr = —#6) (88)
a
a2
M p(=Tn) ~ 4K2n (89)
2
a
Z. " oy (90)

We now show that (85) goes to zero as— oo by using an upper bound of (85) and show that the upper

bound goes to zero as — oo. We can obtain the following upper bounds by inspecting thgoaential

(an+u)?

w2 .
terms in (85): 1l)e™ 22 < e 22 (sincea, > 0), 2) e TR = THVETTAn T Tl — T Tnln —

O(1) (from (86) and (88))= e™c~Tivi < C (for sufficiently largen), 3) e~ ™ = e~ Frullto(l) <

e Su (for sufficiently largen) , whereC' is a constant.

Hence we substitute the upper bounds obtained above andsyheptotic expressions (86), (89) and (90)
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into (85) and obtain the following upper bound

1

K20% M /p(=Ta)

o 2
X /\/ (an +u) U267%7T”’U+Tnc"77—nﬂ\/ﬁdu

€ ncrzZ

8Cn? [ 2

<o [ e e o). (o1)
@ Jac/v2

We may use Laplace’s method [30] to obtain an asymptotic aqpadion of

I(y/n) = / wPem e VE du (92)
ae/\/i

in (91). Leth(u) = u/a andp(u) = wbe~5 . Hence the integral becomes

T(i) = [ plue Oy (93)

A
where A = ae/+/2. It is straight forward to see that(u) and o(u) satisfy the four conditions necessary for
using Laplace’s method (Theorem 1 in Ch 2 of [30]). The Tayloiesefor h(u) and p(u) asu — A are

given ash(u) ~ h(A) + 322 as(u — A)*TH, p(u) ~ S22 bs(u — A)sTo~1. We give the values of the first

3 2
few terms of the seriesh(A) = ¢/v2, a9 = 1/a, a1 =0, p =1, a = 1, by = (%) exp (—(Z;)Q ) The

asymptotic approximation df is given as

oA N (St Cs
I(Vn) ~ e ZOF< . ) i (94)
~ L emevn (95)

NG

3 2
where we have simply retained the first term in the sum. Noté¢ ¢ha= a (%) exp (—(Z;)Q ) Hence

Lindeberg’s condition becomes

Me* 0 asn— oo. (96)
a
This completes the proof for showing that the CLT holds §d;. ]
Proof: Lemma 4.3: Let g(t) = [“e-""dz and h(t) = [ lex~®dz. We use Laplace’s method

[30] to obtain asymptotic approximations ¢ft) and h(t). We begin by writingg(t) and h(t) as g(t) =
I e @) g(z)dr andh(t) = I e~ (@) p(x)dx wherep(x) = —1/z, g(z) = e~ andé(z) =

e—cw

—. In order
to apply Laplace’s method, we must check four conditions (Témol in Ch 2 of [30]). The first condition is
thatp(z) > p(1) for all x € (1, 00), and for everys > 0 the infimum ofp(x) — p(1) in [1 + 6, c0) isS positive.
This is true forp(z) = —1/x. The second condition is that(z) and ¢(z) and ¢(x) are continuous in a
neighborhood ofr = 1, except possibly at = 1. This is again true for thg’(x), ¢(z) and¢(z) defined here.

The third condition says that the asymptotic Taylor seriep(af), ¢(x) and ¢(x) can be obtained as — 1
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from the right. This can be easily verified and we will expligitlive these expressions in what follows. The last
condition is that the integral converges absolutely forsafficiently larget. This can be shown easily fa(t)
andh(t). We will now directly apply Laplace’s method. The Taylor serfer p(z), ¢(x) and¢(x) asz — 1 are
given asp(x) ~ p(1) + 32 as(x — 1)¥7#, q(x) ~ S0 bs(x — 1)*F* L and d(z) ~ 322 ks(z — 1)5+F~L,
We give the values of the first few terms of the serip&l) = —1, ap = 1, a1 = =1, p = 1, by = e~ €,

by =—ce ¢ a=1,ky=¢e¢ k = —(c+1)e ¢ and g = 1. The asymptotic approximation @f(¢) is given

asg(t) ~ e PS> T (Sta> Ty~ el (e; + %) where we have simply retained the first two

terms in the sum. Note that, = Wbo andc¢; = {b—l _ (aflaiby

o P
0/# o Heag

} a“**l”/“ [30]. In the same way we obtain

the asymptotic approximation @f(¢) given ash(t) ~ e (% + %)

Substituting the asymptotic approximationsggt) and i(t) back into (41) gives

—c (17 ) —c
LR et (5 + 4=) 1
t —e | (2=c)ez t+2—
g( ot (eT i %) + c
1
~ 5 for larget
which completes the proof. ]
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