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Abstract

In this paper we investigate the distortion outage performance of distributed estimation schemes in wireless

sensor networks, where a distortion outage is defined as the event that the estimation error or distortion exceeds a

pre-determined threshold. The sensors transmit their observation signals using the analog amplify and forward

scheme through coherent multi-access channels to the fusion center, which reconstructs a minimum mean

squared error (MMSE) estimate of the physical quantity observed. We consider three power allocation schemes

- 1) equal power allocation (EPA), 2) short-term optimal power allocation (ST-OPA), where we minimize the

distortion subject to a power constraint at each time step, and 3) long-term optimal power allocation (LT-OPA),

where we minimize the distortion outage probability subject to a long-term average power constraint. We study

their diversity orders of distortion outage in terms of increasing numbers of sensors, and show that under

Rayleigh fading EPA and ST-OPA achieve the same diversity order of N logN , whereN is the number of

sensors. This suggests that in the case of a large number of sensors, the spatial diversity gain in EPA can

overcome fading equally well as in ST-OPA. On the other hand,in LT-OPA, we find that forN > 1 the outage

probability can be driven to zero with a finite amount of totalpower.

Index Terms

Diversity order, multiple access channel, outage probability, power control, sensor networks

I. I NTRODUCTION

Wireless sensor networks (WSNs) have recently attracted research interests and practical implementations

in many areas of human life due to the numerous applications WSNs can achieve such as in environmental

monitoring, tracking in defense technology, monitoring chemical levels in factories, and health monitoring, just

to name a few. WSNs normally consist of a large number of sensornodes dispersed over some area to take

measurements. The sensor nodes are battery operated devicesthat have sensing, computation and communication

capabilities [1]. The sensors may be configured into various ad-hoc network structures depending on the protocol
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and the application being considered [2]. Examples of these such as forming clusters and electing cluster heads

[3], cooperative transmission and cooperative diversity (relay nodes used to forward signals) [4]–[8] and multiple

sensor transmission to achieve distributed beam-forming as in MIMO systems [1] show the flexibility of the

WSNs and how various wireless communication technologies can be applied in WSNs.

One important issue in WSNs is the utilization of battery energy, since sensors rely on batteries to stay

alive, and replacing batteries is considered expensive. Many works in the literature have considered energy-

efficient protocols [9]–[13], power allocation schemes and cross-layer optimization [1], [4], [14] to optimize the

use of energy in WSNs under various different network assumptions and protocols. In distributed estimation

sensors independently collect data of some physical phenomenon and transmit their measurements to a central

processing unit (a.k.a. the fusion center) where it tries toreconstruct the physical quantity from the sensor

measurements. Recently [15] showed that in a Gaussian sensor network (a sensor network estimating a Gaussian

source) it is asymptotically optimal to transmit using uncoded analog forwarding of measurements by multiple

sensors as opposed to separate source channel coding. Later in [16] it was shown that in a Gaussian sensor

network it is exactly optimal to transmit using uncoded analog forwarding of measurements by multiple sensors.

Many works have since studied the power-allocation problems in multi-sensor estimation under the framework

of analog-forwarding transmission.

In [17] the authors obtained the optimal power allocation ofan inhomogeneous Gaussian wireless sensor

network using analog amplify-and-forward through coherent MAC (multiple access channel) subject to a

distortion constraint (a performance metric given by the variance of the reconstructed source). In the case of

amplify-and-forward through orthogonal MAC, [18] solved the problem of minimizing power under a distortion

constraint and minimizing distortion under a power constraint. The study of power allocation in distributed

estimation for a vector source is given in [19] for coherent MAC and [20] for orthogonal MAC, which also

studied power allocation with correlation in sensor data. Power allocation considering correlated sensor noise

is studied in [21]. When fading channels are considered, distortion becomes a random variable as a function of

the channel gains and it is not always possible to satisfy thedistortion constraint. In such cases anestimation

outage or distortion outage occurs [18]. This leads to the notion ofdistortion outage probability, which is

defined as the probability that the distortion exceeds a giventhresholdDmax. The authors in [22] obtained the

optimal power allocation that minimizes the distortion outage probability subject to a long-term average power

constraint in a clustered WSN using the amplify-and-forwardorthogonal multi-access protocol.

The estimation diversity achieved by wireless sensor networks was first studied in [18] for equal power

allocation in orthogonal multi-access channels with Rayleigh fading. They showed that a sensor network with

independent and identically distributed (i.i.d.) fading channels and i.i.d. sensor noise variances can achieve an

estimation diversity on the order of the number of sensors inthe network. In [23] it is shown that the diversity

gain is unchanged in the presence of channel estimation error when compared against the perfect channel case.
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The study of outage scaling laws and diversity for distributed estimation over orthogonal multi-access channels

is given in [24] for a large class of fading distributions. With a fixed power per sensor, deterministic and

equal sensor signal-to-noise ratios (SNR) and i.i.d. channel SNR, the authors in [24] showed that the outage

probability decays faster than exponentially in the numberof sensors and slower thanexp (−K logK), where

K is the number of sensors.

In this paper we will look at a WSN where multiple sensors take noisy measurements of a single i.i.d.

Gaussian source and transmit, using amplify-and-forward,their noisy measurements to the fusion center (FC)

through Rayleigh-faded channels with channel noise modeled by AWGN. We assume that the sensors transmit

coherently to the FC so that the signals add up in phase at the FC [15]. Under this setting we consider three

power allocation schemes - equal power allocation, short-term optimal power allocation (minimizing distortion)

and long-term optimal power allocation (minimizing distortion outage probability) - and give theoretical analysis

on the diversity order of distortion outage using these power allocation schemes. We show that the diversity

order achieved by the equal power allocation and the short-term power allocation isN logN , whereN is the

number of sensors. In the long-term optimal power allocation we show that we can drive the outage probability

to zero using finite total power forN > 1, which intuitively can be regarded as achieving a “diversity order of

infinity”. Using a lower bound on the total instantaneous power, we obtain an approximation for the minimum

number of sensors in which the outage probability is driven to zero in the long-term optimal power allocation,

for a given power constraint.

This paper is organized as follows. In Section II we give the network model. We define and state the three

different power allocations in Section III, based on which weperform theoretical analysis to find their diversity

orders of distortion outage in Section IV. Simulation resultsare given in Section V, followed by concluding

remarks in Section VI.

In this paper, symbols in bold indicate that they are column vectors, e.g.,x = [x1, . . . , xN ]T , where T

denotes vector transposition. The arithmetic mean of a vector x of lengthN is denoted by〈x〉 ,
∑N

i=1 xi/N .

Given a random variableX, its p.d.f. (probability density function) and c.d.f. (cumulative distribution function)

are denoted asfX(x) andFX(x) respectively, whileE[X] denotes its expectation.

II. N ETWORK MODEL

A schematic diagram of the wireless sensor network model is shown in Fig. 1. We assume that there are

N sensors in the network and the sensors observe a single pointGaussian source, denoted byθ[k], which has

zero mean and varianceσ2
θ , and is i.i.d. (independent and identically distributed) in time (k denotes the discrete

time index). The measurements of theith sensor at timek are given as

xi[k] = θ[k] + wi[k]
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Fig. 1. Schematic diagram of the wireless sensor network using coherent MAC scheme.

where the sensor measurement noisewi is i.i.d. Gaussian with zero mean and varianceσ2
i .1 The sensors amplify

and forward their signals to the fusion center (FC) via a coherent MAC channel [15] with a gain ofβi[k]. The

transmitted signal is given as

yi[k] = βi[k]xi[k].

We assume that the instantaneous channel gains, denoted as
√

hi[k], are time-varying random quantities that are

i.i.d. over time. The channel noise is i.i.d. AWGN denoted asnc[k], with zero mean and varianceσ2
c . We assume

that full CSI (channel state information including gain and phase) is available at both the transmitters and the

receiver. This implies that the FC is aware of all the values ofhi[k] and the corresponding phase information

while the i-th sensor has information of the gain and phase of its own channel to the FC,∀i, k. Note that CSI

at the receiver (CSIR) can be easily obtained by the use of pilot tone training from the transmitters, while

CSI at the transmitter (CSIT) requires the FC to adopt some feedback mechanism to send the CSI back to

the transmitters. We assume that this feedback mechanism iserror-free, delay-less and has infinite bandwidth.

Since the sensor transmitters are assumed to have their channel phase information, they can individually cancel

this phase at the transmitter and hence the signal received by the FC is given by2

z[k] =
N
∑

i=1

√

hi[k]βi[k]θ[k] +
N
∑

i=1

√

hi[k]βi[k]wi[k] + nc[k]. (1)

We define the transmission power of theith sensor asPi[k] , E
[

y2
i [k]
]

, and obtain

Pi[k] = Ciβ
2
i [k],

1In this paper we will mostly be assuming that theσ2

i are deterministic quantities (similar to [24]), due to deterministic placement
of the sensors by e.g. the network designer. This differs from the model of [18] that considers i.i.d. sensor noise variances. However
our diversity order analysis can also be used to treat a class of randomly distributedσ2

i , see Section IV-D.
2The coherent sum (1) requires distributed transmit beamforming [25]that may be difficult to achieve for large sensor networks. This

model however is commonly studied, e.g. in works such as [15], [16], [19]. Our goal in this paper is to derive the diversity order of
distortion outage probability under this idealistic assumption. An analysis involving the case where the signals add up noncoherently
at the FC will be interesting and is left for future work.
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whereCi = σ2
θ + σ2

i .

It is well known that the optimal estimator forθ is the linear MMSE (minimum mean square error) estimator

[26], given asθ̂ = E[θz]
E[z2]z. The mean squared error ordistortion Dk of this estimator, is given as

Dk =











1

σ2
θ

+

(

∑N
i=1

√

hi[k]Pi[k]
Ci

)2

∑N
i=1

hi[k]Pi[k]σ2
i

Ci
+ σ2

c











−1

. (2)

Note that (2) gives the expression of theinstantaneous distortion, i.e., it is a function of the channel

realizationshi[k], ∀i, k. Due to the randomness of the fading channels, the instantaneous distortion at the

FC changes randomly over time. Such estimation networks usually impose a distortion threshold at the FC to

guarantee acceptable estimation, and if the instantaneousdistortionDk exceeds the distortion thresholdDmax,

a distortion outage event occurs. We define thedistortion outage probability, or simply outage probability, as

the probability that the distortion exceeds the maximum distortion threshold, expressed asPoutage , Pr(Dk >

Dmax).

We would like to minimize the distortion outage probabilityby the use ofpower control or power allocation,

by adapting the transmission power of the sensorsPi[k]. Under full CSI,Pi[k](h[k]) will be assumed to be a

function of the channel gains. In the next section we will consider three different power allocation schemes.

Remark: Due to the i.i.d. (in time) nature of the network model, we will drop the time indexk from the rest

of the paper.

III. F ULL -CSI POWER CONTROL SCHEMES

In the following subsections we introduce three different power control schemes for our proposed wireless

sensor network model. We will give results on the diversity order of distortion outage achieved by these three

schemes in Section IV.

Remark: In this paper we assume that the power allocations are limited by a total powerPtot that is fixed as

the number of sensorsN varies, similar to the “total power constraint” of e.g. [27]. Analysis can also be carried

out for the case where the total powerPtot scales linearly with the number of sensorsN , but are omitted to

avoid repetition.

A. Equal power allocation

A very simple power allocation scheme is to have all the sensors transmit with the same power. Given a

fixed total power constraintPtot, the individual sensor power is then given asPi = Ptot/N , ∀i.

B. Short-term optimal power allocation

Since the transmitters have CSI, we can formulate a power control scheme that minimizes the distortion

while satisfying a total power constraint in every transmission. We will call this power allocation the short-term
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optimal power allocation (ST-OPA). ST-OPA can be obtained by solving the following optimization problem:

min D(P(h),h)

s.t.
∑N

i=1 Pi(h) ≤ Ptot, Pi(h) ≥ 0, ∀i.
(3)

Problem (3) is related to outage minimization in the following way. Similar to the information outage mini-

mization problem in communications theory [28], we can definea “short-term distortion outage minimization

problem” as:

min Pr (D (P(h),h) > Dmax)

s.t.
∑N

i=1 Pi(h) ≤ Ptot, Pi(h) ≥ 0, ∀i.
(4)

where the power constraint holds for each time instant (or channel realization). By similar methods to [28], it

can be shown that the solution to problem (3) is a solution to the short-term distortion outage minimization

problem (4), that in general has many possible solutions.

Problem (3) has been solved in [19]. The short-term optimal power allocation of theith sensor is given by

P ∗
i (h) = Ptotci(hi)





N
∑

j=1

cj(hj)





−1

, ∀i (5)

where ci(hi) = Cihi/
(

Ci + Ptothiσ
2
i /σ

2
c

)2
. From (5) we see that the optimal power of theith sensor is

computed by multiplyingPtot by a ratio that is bounded between zero and one, i.e., we divide upPtot amongst

the sensors by using this ratio. Also note that in coherent MAC the sensors will always transmit with non-zero

powers, unlike in the case of orthogonal channels where somesensors may turn off and do not transmit [18].

C. Long-term optimal power allocation

We now consider imposing a long-term total power constraintto the wireless sensor network, where the total

power usage is averaged over time (e.g. at some time instancek1 the power usage could be greater than the

average power, while at another timek2 the power usage could be less than the average power), see also [28]

for the information outage minimization problem in communications theory. We are interested in finding the

optimal power allocation that minimizes the outage probability subject to a long-term total power constraint.

We call this power allocation scheme the long-term optimal power allocation (LT-OPA). The problem is given

as
min Pr (D (P(h),h) > Dmax)

s.t. E
[

∑N
i=1 Pi(h)

]

≤ Ptot, Pi(h) ≥ 0, ∀i.
(6)

Problem (6) can be solved in a similar way to [28]. First consider the following minimization problem given

as
min 〈P (h)〉

s.t. D(P(h),h) ≤ Dmax, Pi(h) ≥ 0, ∀i.
(7)

We have the following lemma:
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Lemma 3.1: With the knowledge ofh, the solution of problem (7) is given as

P ∗
i (h) = Ptot(h)ci(hi)





N
∑

j=1

cj(hj)





−1

, i = 1, . . . , N, (8)

whereci(hi) = Cihi/
(

Ci + Ptot(h)hiσ
2
i /σ

2
c

)2
andPtot(h) is the solution of

γth =
N
∑

i=1

hi
(

σ2
cCi

Ptot(h) + σ2
i hi

) (9)

whereγth = 1/Dmax − 1/σ2
θ .

The proof of this lemma can be found in [19] and is hence omitted. One also has the following Lemma which

is necessary to find the optimal solution of problem (6):

Lemma 3.2: The long-term optimal powerP∗(h) = [P ∗
1 (h), . . . , P ∗

N (h)]T as given in (8), is a continuous

function of h. Furthermore,〈P∗(h)〉 is a non-increasing function ofhi for i = 1, . . . , N .

Proof: See Appendix.

Before we give the solution to problem (6), we will also need the following definitions and notations, similar

to those in [28]. We first define the regionsRT (t) =
{

h :
∑N

i=1 P
∗
i (h) < t

}

, RT (t) =
{

h :
∑N

i=1 P
∗
i (h) ≤ t

}

andBT (t) =
{

h :
∑N

i=1 P
∗
i (h) = t

}

. We then define two power sum quantities asPT (t) =
∫

RT (t)

∑N
i=1 P

∗
i (h)dF (h)

and P T (t) =
∫

R̄T (t)

∑N
i=1 P

∗
i (h)dF (h), whereF (h) denotes the joint c.d.f. ofh. Finally, the power sum

thresholdt∗ and the weightu∗ are given ast∗ = sup {t : PT (t) < Ptot} andu∗ = Ptot−PT (t∗)
P̄T (t∗)−PT (t∗)

.

With the above lemma and definitions we can now present the solution to problem (6).

Theorem 1: The solution of problem (6) is given as

P̂(h) =







P
∗(h), if h ∈ RT (t∗)

0, if h 6∈ RT (t∗),
(10)

while if h ∈ BT (t∗), P̂(h) = P
∗(h) with probability u∗ andP̂(h) = 0 with probability 1− u∗, whereP

∗(h)

is given in (8).

The proof follows using similar techniques as in [28] and is hence excluded.

The long-term optimal power allocation scheme that minimizes the outage probability subject to a long-term

total power constraint says that if the vector of channel gains falls inside the region defined byRT (t∗), where

t∗ is a quantity that is associated withPtot, then the sensors should transmit with powers given by (8) and

achieve a distortion of exactlyDmax. Otherwise, none should transmit to save power, and this is where outage

occurs.

We can also obtain another condition that determines whether the sensors transmit or not (hence the condition

for an outage event to occur). Note that in order to compute the optimal powersP ∗
i (h), we first need to compute

Ptot(h). FromPtot(h) and the definition oft∗, the outage event only occurs ifPtot(h) > t∗. Hence in every

transmission, the fusion center simply computes the quantity Ptot(h) and compares it againstt∗. If Ptot(h) > t∗,
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then all sensors should be turned off to save power. Otherwise, the sensors should transmit with power given

by (8). The value oft∗ would depend on the value ofPtot and it can be predetermined numerically in off-line

mode via Monte-Carlo simulation. A closed-form expressionis given in Section IV-C which allows one to

quickly compute a lower bound oft∗ givenPtot.

IV. D IVERSITY ORDERS OF DISTORTION OUTAGE

We are interested in seeing how the outage probability decays as the number of sensorsN increases. In this

section we will obtain for largeN asymptotic closed-form expressions oflogPoutage, for the different power

allocation schemes given in Section III. Such expressions characterize thediversity order of distortion outage

introduced in [18], who showed that the outage probability decays exponentially with the number of sensorsN

for i.i.d. orthogonal MAC. For analytical tractability, inthe following theoretical analysis, we will first consider

a homogeneous wireless sensor network where all the measurement noise and fading distributions are i.i.d. As

a consequence, we will denoteσ2
i = σ2 andCi = C = σ2

θ + σ2, ∀i. These results will then be used in Section

IV-D for more general cases of different sensor noise variances and/or fading channels.

Notation: For two functionsf(·) and g(·), we will use the standard asymptotic notation (see for example

[29], [30]) and say thatf ∼ g as t→ t0, if f(t)
g(t) → 1 as t→ t0.

Notation: A summary of some important notation can be found in Table I.

TABLE I

TABLE OF NOTATIONS

σ2
θ Variance of sourceθ

σ2
i Variance ofith sensor measurement noisewi

σ2 Variance of sensor measurement noise in
homogeneous case, i.e.σ2

i = σ2, ∀i
σ2

c Variance of channel noisenc

Ci σ2
θ + σ2

i

C σ2
θ + σ2

ci (hi) Cihi/
(

Ci + Ptothiσ
2
i /σ

2
c

)2

D Instantaneous distortion

Dmax Maximum allowable distortion threshold
which if exceeded results in an outage

A. Equal power allocation

SubstitutingPi = Ptot/N into (2), after some algebraic manipulation we obtain

D

σ2
θ

=

∑N
i=1 hi

N + σ2
cC

σ2Ptot

∑N
i=1 hi

N + σ2
cC

σ2Ptot
+

σ2
θN
σ2

(
∑N

i=1

√
hi

N

)2 . (11)

Inspecting the right hand side (RHS) of (11), we note that1
N

∑N
i=1 hi and 1

N

∑N
i=1

√
hi converge toE[h] and

E[
√
h] respectively by the law of large numbers asN gets large. However we find that var

(

1
N

∑N
i=1 hi

)

=
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1
N var[h] and var

(

σ2
θN
σ2

(
∑N

i=1

√
hi

N

)2
)

≈ 4σ4
θN

σ4 (E[
√
h])2var[

√
h] (obtained using the Delta method [31]). We

see that the variance of1N
∑N

i=1 hi decreases like1/N , whereas the approximate variance ofσ2
θN
σ2

(
∑N

i=1

√
hi

N

)2

increases withN . We therefore choose to replace1N
∑N

i=1 hi by its meanE[h], and retainσ2
θN
σ2

(

1
N

∑N
i=1

√
hi

)2

for largeN . Let us call

D̃ =
σ2

θη

η +
σ2

θN
σ2

(
∑N

i=1

√
hi

N

)2

whereη = E[h] + σ2
cC

σ2Ptot
. Now by the weak law of large numbers and stochastic order properties on pp.12-13

of [32], we can show the following convergence result:

D − D̃
p→ 0 (12)

where
p→ denotes convergence in probability.

The asymptotic distortion outage probability for largeN can then be found as

Poutage = Pr (D > Dmax) = Pr(D − D̃ > Dmax − D̃)

∼Pr(0 > Dmax − D̃) = Pr(D̃ > Dmax)

= Pr







σ2
θη

η +
σ2

θN
σ2

(
∑N

i=1

√
hi

N

)2 > Dmax







= Pr

(

1

N

N
∑

i=1

√

hi <

√

ησ2
(

σ2
θ −Dmax

)

Dmaxσ2
θN

)

= Pr

(

1

N

N
∑

i=1

√

hi <
a√
N

)

(13)

wherea =
√

ησ2(σ2
θ−Dmax)

Dmaxσ2
θ

.

To verify the accuracy in our use of the asymptotic approximation (12), in Fig. 2 we plot the expression

of D − D̃ on the left hand side of (12), wherehi is exponentially distributed with parameterλ, for a single

realization. We can readily see the convergence to zero asN increases. In Fig. 3 (see Section V) we also

compare between Monte Carlo simulations oflogPoutage and logPr
(

1
N

∑N
i=1

√
hi <

a√
N

)

. The results show

almost no difference between using the actual outage probability Poutage and the asymptotic approximation

(13).

By inspecting (13) we see that the asymptotic outage probability is expressed in terms of the empirical

mean of i.i.d. random variables
√
hi being less than a threshold that is a function ofN . This resembles a

more general form of the typical large deviation problem where the threshold is a constant. In Theorem 2

we will provide a generalized version of Cramer’s Theorem which can be applied to (13). Before we give

the theorem we need the following definitions. The moment-generating function of the random variableX

is defined asMX(t) , E
[

etX
]

. The cumulant-generating function of the random variableX is defined as
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Fig. 2. EPA with total power constraintPtot = 10mW. Plots ofD − D̃. Simulation parameters:λ = 250, 000, σ2

θ = 1, σ2 = 10−3,
σ2

c = 10−8.

ΛX(t) , logMX(t). The rate function of the random variableX is defined asIX(c) = sup
t

{ct− ΛX(t)}.

We also define the following notations relating to the rate function asI+
X(c) = sup

t>0
{ct− ΛX(t)} andI−X(c) =

sup
t<0

{ct− ΛX(t)}. Note here thatI+
X and I−X have the same value asIX ; these two notations are introduced

only to further restrict the domain of the supremum without affecting the result ofIX . Hence these notations

may be used interchangeably depending on whether we have extra knowledge of the domain over which the

supremum is achieved.

Theorem 2: Let X1, X2, . . . be i.i.d. random variables with meanµX > 0, and suppose that their moment

generating functionMX(t) = E
[

etX
]

is finite in some neighborhood of the origint = 0. Let Ỹn,i be the

exponential change of distribution ofYi = −Xi + µX defined as

dFỸn
(y) =

eτny

MY (τn)
dFY (y). (14)

Suppose thatPr
(

1
n

∑n
i=1 Ỹn,i > E

[

Ỹn,i

])

is bounded away from zero asn → ∞. Let an = a
np , p ≥ 0 and

Pr(X < an) > 0, ∀n. ThenIX(an) > 0 for sufficiently largen, and

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

∼ −nIX (an) asn→ ∞. (15)

Proof: See Appendix.

In order to apply Theorem 2 to (13), we need to verify the assumption that Pr
(

1
n

∑n
i=1 Ỹn,i > E

[

Ỹn,i

])

is bounded away from zero asn → ∞. The following lemma verifies this condition in the case of Rayleigh

fading.

Lemma 4.1: Let Yi = −
√
hi +E

[√
hi

]

, where
√
hi is Rayleigh distributed with parameterκ (i.e. f√h(x) =

x
κ2 e−x2/2κ2

). DenoteỸn,i as the exponential change of distribution ofYi as defined in (14). Then

Pr

(

1

n

n
∑

i=1

Ỹn,i > E
[

Ỹn,i

]

)

→ 0.5 asn→ ∞. (16)

Proof: See Appendix.
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Applying Theorem 2 to (13) we have

logPoutage ∼ −NI−√
h

(

a√
N

)

asN → ∞ (17)

where

I−√
h

(

a√
N

)

= sup
θ<0

(

a√
N
θ − logM√

h(θ)

)

. (18)

Since
√
h is Rayleigh distributed with parameterκ, its moment generating function is available in closed

form as

M√
h

(

−
√

2x

κ

)

= 1 −
√
πxex

2

erfc(x) (19)

where we have used a substitution of variablesθ = −
√

2x/κ.

We need to find the value ofθ that attains the supremum in the rate functionI−√
h
(a/

√
N). This value ofθ

can be found by using the stationary condition (first derivative) given as

dI−√
h

(

a/
√
N
)

dθ
= 0, θ < 0 (20)

⇒
√
N

a
= ψ(θ) (21)

where

ψ(θ) =
(

Λ′√
h
(θ)
)−1

= M√
h(θ)/M ′√

h
(θ). (22)

After substitutingθ = −
√

2x/κ in (21) and some algebraic manipulation, it is possible to obtain

√
N

2
= ψ

(

−
√

2x

κ

)

(23)

where

ψ

(

−
√

2x

κ

)

=

√
2

κ

xM√
h

(

−
√

2x
κ

)

1 −M√
h

(

−
√

2x
κ

)

− 2x2M√
h

(

−
√

2x
κ

) . (24)

Note thatψ
(

−
√

2x
κ

)

is a continuous non-decreasing function ofx since

dψ
(

−
√

2x
κ

)

dx
=

√
2

κ

Λ′′√
h

(

−
√

2x
κ

)

(

Λ′√
h

(

−
√

2x
κ

))2 ≥ 0, (25)

where the inequality is due to the cumulant generating function being a convex function and hence its second

derivative is non-negative. The continuity ofψ
(

−
√

2x
κ

)

can be seen from (22); sinceM√
h(θ) is a positive

continuous strictly-increasing convex function, this implies thatM ′√
h
(θ) > 0, and the change of variables from

θ to x preserves the continuity of the function.

Hence from (23), largeN corresponds to the case of largex. We now show thatψ
(

−
√

2x/κ
)

in fact

increases linearly inx for largex. We substitute the asymptotic expansion of the complementary error function
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(for largex) given as erfc(x) = e−x2

x
√

π

∑∞
n=0(−1)n (2n)!

n!(2x)2n into the moment generating function (19) and obtain

M√
h

(

−
√

2x

κ

)

=
1

2x2
− 3

4x4
+

15

8x6
+ · · · . (26)

We then substitute (26) into (23) to obtain the following

√
N

a
=

√
2

κ

x
(

1
2x2 − 3

4x4 + 15
8x6 + · · ·

)

1 −
(

1
2x2 − 3

4x4 + · · ·
)

− 2x2
(

1
2x2 − 3

4x4 + 15
8x6 + · · ·

)

=

√
2

κ

1
2x − 3

4x3 + 15
8x5 + · · ·

1
x2 − 3

x4 + · · ·
∼

√
2

κ

x

2
for largex.

Hence for largeN ,

θ ∼ −2
√
N

a
. (27)

Substituting this asymptotic expression forθ back into the rate function gives

I√h

(

a√
N

)

∼− a√
N

2
√
N

a
− logM√

h

(

− 2

aN

)

(28)

= − 2 − logM√
h

(

− 2

aN

)

(29)

∼− 2 − log

(

a2

2κ2N

)

(30)

= − 2 − log

(

a2

2κ2

)

+ logN. (31)

Hence from (17) the outage probability for largeN satisfies

logPoutage ∼−NI√h

(

a√
N

)

(32)

∼−N

(

−2 − log

(

a2

2κ2

)

+ logN

)

(33)

∼−N logN, (34)

which shows that the diversity order of distortion outage ini.i.d. coherent MAC with Rayleigh fading using

EPA isN logN for largeN .

In [18], the authors obtained a diversity order ofN for i.i.d. orthogonal MAC with Rayleigh fading using

EPA. We thus see that the coherent MAC achieves a higher diversity order over the orthogonal MAC case by a

factor of logN for i.i.d. Rayleigh-faded channels. Note that if the total power scales linearly with the number

of sensors, then a diversity order ofN logN for orthogonal MAC can also be achieved [24]. In contrast, here

we showed that for coherent MAC a diversity order ofN logN can still be achieved when the total power

is fixed. Similar improvements in performance of the coherent MAC over the orthogonal MAC has also been

previously observed (for different performance criteria)in e.g. [19], where for a fixed total power the distortion

decays to zero at the rate1/N asN increases for coherent MAC, but the distortion is bounded away from

zero for orthogonal MAC. This is due to the fact that in coherent combination, the received signal to noise
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ratio scales with the number of sensors due to the correlation among transmitted messages, even when the total

transmit power is finite [19]. However if the total power scales linearly with the number of sensors, then the

distortion will decay to zero for orthogonal MAC.

B. Short-term optimal power allocation

We first give the expression of distortion using ST-OPA. Substituting (5) into (2) gives

D =







1

σ2
θ

+

(

∑N
i=1

√

hiP ∗
i

)2

σ2
∑N

i=1 hiP ∗
i + σ2

cC







−1

=
σ2

θσ
2

σ2 + σ2
θ

∑N
i=1 Zi

(35)

where Zi = hi/ (hi + ρ) with ρ = Cσ2
c/Ptotσ

2, and the second equality follows after some algebraic

manipulation. The distortion outage probability can therefore be written as

Poutage = Pr (D > Dmax) = Pr

(

1

N

N
∑

i=1

Zi < gN

)

(36)

wheregN = g/N andg = σ2
(

1/Dmax − 1/σ2
θ

)

.

DenoteZ as the random variable distributed according to the common distribution of Zi. We now apply

Theorem 2 to (36). We have the following lemma needed for verifying one of the assumptions in Theorem 2

(similar to lemma 4.1).

Lemma 4.2: Let Yi = −Zi + E [Zi], whereZi = hi/ (hi + ρ), with hi being exponentially distributed.

DenoteỸn,i as the exponential change of distribution ofYi as defined in (14). Then

Pr

(

1

n

n
∑

i=1

Ỹn,i > E
[

Ỹn,i

]

)

→ 0.5 asn→ ∞. (37)

This lemma can be proved in a similar manner to Lemma 4.1 and is excluded to avoid repetition.

Applying Theorem 2 to (36) we have

logPoutage ∼ −NI−Z (gN ) asN → ∞ (38)

whereI−Z (gN ) = sup
θ<0

(gNθ − logMZ(θ)).

In order to obtainMZ(θ), we need the distribution ofZ. The common distribution of i.i.d. random variablesZi

can be easily obtained sinceZi =
(

1 + ρ
hi

)−1
, wherehi are i.i.d. exponentially distributed random variables

with parameterλ. Note that the domain ofZi is [0, 1). The c.d.f. and p.d.f. ofZ are given byFZ(z) =

1 − e
− λρ

1/z−1 andfZ(z) = λρ 1
(1−z)2

e−λρ z

1−z respectively. The mean ofZ is given asµZ = 1 − λρeλρE1(λρ),

whereE1(x) =
∫∞
x

e−t

t dt is the exponential integral. The moment generating functionof Z is given as

MZ(θ) = E
[

eθZ
]

= λρ
∫ 1
0

1
(1−z)2

eθz−λρ z

1−z dz.

We need to find the value ofθ that attains the supremum in the rate functionI−Z (gN ). This value ofθ can

be found by using the stationary conditiondI−
Z (gN )
dθ = 0, θ < 0. Taking the first derivative of the rate function
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gives

gN − M ′
Z(θ)

MZ(θ)
= 0 ⇒gN =

∫ 1
0

z
(1−z)2

eθz−λρ z

1−z dz
∫ 1
0

1
(1−z)2

eθz−λρ z

1−z dz
(39)

⇒gN =

∫ 1
0 zg(z, t)dz
∫ 1
0 g(z, t)dz

(40)

wheret = −θ andg(z, t) = 1
(1−z)2 e

−tz−λρ z

1−z .

Note that asN increases,gN decreases to zero. Also note thatg(z, t) > 0. Let ϕ(θ) = M ′
Z(θ)/MZ(θ).

Replacingθ by −t and taking the derivative ofϕ(−t) with respect tot yields dϕ(−t)
dt = −Λ′′

Z(−t) ≤ 0,

where the inequality arises due to the cumulant generating function being a convex function. Henceϕ(−t) is

a continuous non-increasing function oft (the continuity ofϕ(−t) is evident by inspecting the RHS of (40)).

Hence largeN corresponds to the case of larget in (40). Letx = 1/(1− z). It can be easily shown that (40)

can be written as

gN = 1 −
∫∞
1

1
xe

t

x
−cxdx

∫∞
1 e

t

x
−cxdx

(41)

wherec = λρ.

Lemma 4.3:

gN ∼ 1

t
as t→ ∞. (42)

Proof: See Appendix.

Hence for largeN , we have

θ ∼ − 1

gN
. (43)

Substituting this asymptotic expression forθ back intoMZ(θ) gives

MZ(θ) = λρe−t+c

∫ ∞

1
e−tp(x)q(x)dx

∼ λρe−t+c e
t−c

t
∼ λρgN .

Substitutingθ ∼ − 1
gN

andMZ(θ) ∼ λρgN back into the rate function gives

IZ(aN ) ∼ −gN
1

gN
− log

(

λρg

N

)

for largeN (44)

= −1 − log (λρg) + logN. (45)

Hence from (38) the outage probability for largeN is asymptotically

logPoutage ∼ −NIZ(gN ) (46)

∼ −N (−1 − log (λρg) + logN) (47)

∼ −N logN. (48)
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Hence the diversity order of distortion outage for i.i.d. coherent MAC with Rayleigh fading using ST-OPA is

N logN , which interestingly achieves the same diversity order of distortion outage as EPA.

C. Long-term optimal power allocation

In this section we first show that it is possible to use LT-OPA incoherent MAC to achieve zero distortion

outage with a finite amount of power, if the number of sensorsN > 1. We will later show that this result

implies that for a given power constraint it is possible to achieve zero distortion outage with finiteN , i.e., there

exists a finite number of sensors that will drive the distortion outage to zero. We will obtain an approximate

expression for finding suchN . Intuitively these results could be regarded as saying thatone can achieve a

“diversity order of infinity” if using the long-term optimal power allocation, as plots oflogPoutage vs N

will approach a vertical asymptote, see also [28] for similar situations in the context of information outage

minimization.

We first analyze the power required to achieve zero outage. ForN = 1, the sum power expression in (9) can

be re-arranged and expressed asPtot(h) = K1

h whereK1 = γthσ2
cC

(1−σ2γth) . The regionRT (t) can be easily found

directly from the definition asRT (t) = {h : Ptot(h) < t} =
{

h : h > K1

t

}

. The average power sum,PT (t),

becomes

PT (t) =

∫

RT (t)
Ptot(h)dF (h) (49)

=

∫ ∞

K1
t

K1

h
λe−λhdh = λK1

∫ ∞

λK1
t

e−u

u
du (50)

= λK1E1

(

λK1

t

)

(51)

whereu = λh and E1(x) =
∫∞
x

e−t

t dt is the exponential integral. To find the maximum total power that

achieves zero-outage, we simply lett → ∞. This is because the regionRT (t) defines the set of channel

realizations where the sensordoes transmit to meet the distortion constraint. Hence, the outage probability is

also given byPoutage = Pr(h 6∈ RT (t)). When we lett → ∞, we increaseRT (t) to be the whole channel

space, implying that the outage region is reduced to null, and hence outage probability is reduced to zero.

However, ast→ ∞, PT (t) → ∞, implying that we need an infinite amount of power to achieve zero outage

for N = 1.

ForN > 1 it is difficult to obtain closed form expressions of the maximum power required to achieve zero-

distortion. Instead, we show that it is possible to achieve zero-outage with finite power forN > 1. Suppose we

have a sub-optimal power allocation scheme as follows. For every transmission, we select the sensor with the

best channel gain and use only that sensor to transmit with just enough power to meet the distortion constraint.

Denote the power as̃P (hmax) wherehmax = max(h1, . . . , hN ). P̃ (h) can be obtained from the distortion

constraint and it is given as̃P (hmax) = γthσ2
cC

(1−σ2γth)hmax
. We can see that power is proportional to the inverse of

the channel gain. This power allocation scheme is simply a channel inversion scheme. The c.d.f. and p.d.f. of
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choosing the maximum channel gain out of a set of i.i.d. exponential-distributed random variables{h1, . . . , hN}

is given respectively asFhmax
(t) =

(

1 − λe−λt
)N

andfhmax
(t) = Nλ

(

1 − λe−λt
)N−1

e−λt. The transmission

power averaged over all possible values of the channel realization and over time is then given as

E
[

P̃ (hmax)
]

=

∫ ∞

0

γthσ
2
cC

(1 − σ2γth)h
·Nλ

(

1 − λe−λh
)N−1

e−λhdh.

The integral above is well-known to be finite forN > 1, see e.g. [33]. Since this suboptimal power allocation

scheme can achieve zero-outage with finite power, the optimalpower allocation scheme will also achieve

zero-outage with finite power.

We now proceed to find an approximation for the maximum number of sensorsNmax that still has non-zero

outage for a givenPtot for LT-OPA. ThenNmax + 1 can be regarded as the minimum number of sensors

that achieves zero outage. To do this, we first find a lower bound on the instantaneous powerPtot(h). We

begin with the equation we need to solve to obtainPtot(h), given asσ2γth =
∑N

i=1

(

σ2
cC

σ2Ptot(h)hi
+ 1
)−1

. Let

f(hi) =
(

σ2
cC

σ2Ptot(h)hi
+ 1
)−1

. It is straight forward to show thatf is concave inhi ∀i. Applying Jensen’s

inequality we have

σ2γth =

∑N
i=1 f(hi)

N
≤ f

(

∑N
i=1 hi

N

)

(52)

⇒σ2γth

N
≤ 1

σ2
cC

σ2Ptot(h) 1

N

∑N
i=1 hi

+ 1
(53)

⇒σ2γth

N

σ2
cC

σ2Ptot(h) 1
N

∑N
i=1 hi

≤ 1 − σ2γth

N
(54)

⇒Ptot(h) ≥ KN
∑N

i=1 hi

(55)

whereKN = γthσ
2
cC/

(

1 − σ2γth

N

)

.

Let P̆tot(h) = KN/
∑N

i=1 hi. Using the lower bound expression̆Ptot(h), we obtain the following modified

definitions and expressions to the ones given in Section IV-C. The definition ofRT (t̆) becomes

R̆T (t̆) =
{

h : P̆tot(h) < t̆
}

=

{

h :
N
∑

i=1

hi >
KN

t̆

}

. (56)

The definition ofPT (t̆) becomes

P̆T (t) =

∫

RT (t)
P̆tot(h)dF (h)

= KT

∫

∑N
i=1 hi>

KN
t̆

1
∑N

i=1 hi

e−λ
∑N

i=1 hidh1 · · · dhN .

Note thathi is exponentially distributed with mean1/λ. Let T =
∑N

i=1 hi. It is well known thatT is Gamma
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N̆max =









(1 + σ2γth)Ptot + γthσ
2
cCλ+

√

[(1 + σ2γth)Ptot + γthσ2
cCλ]2 − 4P2

totγthσ2

2Ptot







 (59)

distributed with parametersk = N , θ = 1
λ . HenceP̆T (t) becomes

P̆T (t) = KN

∫

∑N
i=1 hi>

KN
t̆

1
∑N

i=1 hi

e−λ
∑N

i=1 hidh1 · · · dhN

= KN
1

Γ(k)θk

∫ ∞

KN
t̆

T k−2e−
T

θ dT

=
KN

Γ(N)λ−n

∫ ∞

KN
t̆

TN−2e−λTdT

=
KNλ

N − 1
· Γ
(

N − 1, λKN/t̆
)

Γ(N − 1)
.

The definition oft̆∗ becomes̆t∗ = sup
{

t̆ : P̆T (t̆) < Ptot

}

. We can solve for̆t∗ by letting P̆T (t̆∗) = Ptot and

obtain
KNλ

N − 1
· Γ
(

N − 1, λKN/t̆
∗)

Γ(N − 1)
= Ptot. (57)

The outage event becomes̆Poutage =
{

h : P̆tot(h) > t̆∗
}

=
{

h : 1
N

∑N
i=1 hi <

KN

Nt̆∗

}

. If we let t̆∗ → ∞ in

(57) for a given finiteN thenKN/t̆
∗ → 0, Γ(N−1,λKN/t̆∗)

Γ(N−1) → 1 and

KNλ

N − 1
= Ptot. (58)

Equation (58) allows us to solve forN , and it gives an approximation̆Nmax to the maximum number of

sensors that has non-zero outage probability for a givenPtot. The solution of (58) can be found in closed-form

and is given as (59) wherebxc denotes the floor function ofx.

D. General Parameters

The previous subsections have analyzed the diversity ordersof distortion outage for “symmetric” sensor

networks. Here we show how these results can be extended to the case where the sensor noise variances are

not necessarily identical, and the case where the fading channels are not necessarily identically distributed.

The idea is to upper and lower bound the distortion and hence the distortion outage probability, and show that

asymptotically they have the same diversity orders of distortion outage. Similar techniques have been previously

used in [34] and [35]. To avoid repetition, we will only treatthe case of equal power allocation (EPA).

1) General sensor noise variances: We consider first the case where the sensor noise variancesσ2
i , i =

1, . . . ,M are not necessarily identical, with the fading channels still assumed to be i.i.d. Rayleigh across

sensors. We assume that the sensor noise variances can be bounded from both above and below, i.e.

0 < σ2
min ≤ σ2

i ≤ σ2
max <∞,∀i.
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Such an assumption can cover the situation where sensors are placed deterministically but with different

distances from the source, as well as the situation where thesensor noise variancesσ2
i are random (but are

upper and lower bounded, though not necessarily i.i.d.) dueto random placement of the sensor nodes.

Then, since the distortionD is an increasing function ofσ2
i for all i, a largerσ2

i will lead to a higher outage

probability. Hence an upper bound on the outage probabilityis the case when we takeσ2
i = σ2

max,∀i. From

our results in Section IV-A, we obtain (taking the leading term only)

logPoutage ≤ −N logN(1 + o(1))

asN → ∞.

Similarly, a lower bound on the outage probability is the casewhen we takeσ2
i = σ2

min,∀i. In this case, we

obtain logPoutage ≥ −N logN(1 + o(1)) asN → ∞.

Since the upper and lower bounds onlogPoutage both have the asymptotic behaviour−N logN asN → ∞,

the general situation will also do so. Hence the diversity order of N logN is also obtained in the case of

general sensor noise variances.

2) Non-identically distributed fading channels: Here we consider the case where the sensor noise variances

are identical, and the fading channels are independent but not necessarily identically distributed. In particular,

we analyze the situation satisfying the following assumption:

Assumption 4.1: The channel gainshi can be written as

hi = µih
′
i,∀i

whereµi > 0 are constants satisfying

0 < µmin ≤ µi ≤ µmax <∞,

and theh′i’s are identically distributed.

For instance, ifhi is exponentially distributed with mean1/λi, then we can takeµi = 1/λi, andh′i will

be exponentially distributed with mean1. Thus Rayleigh fading channels with different means will satisfy

Assumption 4.1.

We first derive an upper bound on the outage probability. From the distortion expression (11) we have

D

σ2
θ

=

∑N
i=1 µih′

i

N + σ2
cC

σ2Ptot

∑N
i=1 µih′

i

N + σ2
cC

σ2Ptot
+

σ2
θN
σ2

(

∑N
i=1

√
µih′

i

N

)2

≤

∑N
i=1 µmaxh′

i

N + σ2
cC

σ2Ptot

∑N
i=1 µminh′

i

N + σ2
cC

σ2Ptot
+

σ2
θN
σ2

(

∑N
i=1

√
µminh′

i

N

)2 .
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and the result
∑N

i=1 µmaxh′
i

N + σ2
cC

σ2Ptot

∑N
i=1 µminh′

i

N + σ2
cC

σ2Ptot
+

σ2
θN
σ2

(

∑N
i=1

√
µminh′

i

N

)2

− η1

η2 +
σ2

θNµmin

σ2

(

∑N
i=1

√
h′

i

N

)2

p→ 0,

whereη1 = µmaxE[h′] + σ2
cC

σ2Ptot
andη2 = µminE[h′] + σ2

cC
σ2Ptot

. Then

Poutage

≤ Pr











σ2
θη1

η2 +
σ2

θNµmin

σ2

(

∑N
i=1

√
h′

i

N

)2 > Dmax











(1 + o(1))

= Pr

(

1

N

N
∑

i=1

√

h′i <

√

σ2(σ2
θη1 −Dη2)

Dσ2
θNµmin

)

(1 + o(1)).

From our results in Section IV-A, for Rayleigh fading we obtain

logPoutage

≤ log Pr

(

1

N

N
∑

i=1

√

h′i <

√

σ2(σ2
θη1 −Dη2)

Dσ2
θNµmin

)

(1 + o(1))

∼ −N logN

asN → ∞.

Similarly, we can derive a lower bound on the outage probability and show that

logPoutage ≥ −N logN(1 + o(1)).

Since the upper and lower bounds have the same asymptotic behaviour, the general situation will also do so.

Hence the diversity order ofN logN is also obtained in the case of Rayleigh fading channels withdifferent

means.

3) General sensor noise variances and non-identically distributed fading channels: Combining the results

in the previous subsections, we can see that if we have both different sensor noise variances and Rayleigh

fading channels with different means, the diversity order of N logN is still achieved.

V. SIMULATION RESULTS

In this section, we show comparisons between Monte Carlo simulations and some of the asymptotic expres-

sions for the diversity order that have been derived in this paper. The Monte Carlo simulations are obtained

by averaging over 1,000,000 channel realizations.

We first present the diversity order of distortion outage for EPA. The parameters are chosen as follows.
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Fig. 3. EPA with total power constraintPtot = 10mW. Squares: Asymptotic expression (33). Triangles:−NI√h(a/
√

N). Plus

signs: log Poutage. Circles: log

(

Pr

(

1

N

N
∑

i=1

√
hi < a

√

N

))

. Simulation parameters:λ = 250, 000, a = 0.003, σ2

θ = 1, σ2 = 10−3,

σ2

c = 10−8, Dmax = 0.1.

For simplicity we consider the sourceθ to be distributed asN(0, 1). The sensor measurement noise variance

σ2 = 10−3 is chosen to represent the sensitivity of the measurement (small compared to the variance ofθ),

while the variance of the channel noiseσ2
c = 10−8 is chosen to be much smaller than the measurement noise.

The parameterλ = 250, 000 for the fading channel is used based on the loss (square law) at a distance of 500m

(average distance between sensors to the FC).Dmax is chosen to be10% of the maximum distortion, which

is equal to 1. The powersPtot were chosen to be in the range of milliwatts, a reasonable transmission power

in wireless sensor nodes. We simulated the case wherePtot = 10mW and plotted the results in Fig. 3. We

compare between 1) plots oflogPoutage obtained via Monte Carlo simulation, wherelog is the natural log, 2)

Monte Carlo simulations oflog

(

Pr

(

1
N

N
∑

i=1

√
hi <

a√
N

))

from our approximation (13), 3) the exact values

of −NI√h(a/
√
N) obtained by solving (18) numerically, and 4) plots of the asymptotic expression (33). As

mentioned before in Section IV-A,log

(

Pr

(

1
N

N
∑

i=1

√
hi <

a√
N

))

is a very good approximation tologPoutage.

Fig. 3 also shows that asN gets large, all four plots have similar gradients. Note thatthe asymptotic results

I√h(a/
√
N) and expression (33) only give us the slope of the outage probability when plotted on a log scale;

these two lines may not necessarily converge tologPoutage but their gradients should coincide for largeN , as

can be seen in Fig. 3. This is due to the use of asymptotic approximations to derive our expressions, e.g. the

approximations made in going from equation (32) to (33).3

We next present the diversity order results for ST-OPA. UsingPtot = 10mW, in Fig. 4 we compare between

1) Monte Carlo simulations oflogPoutage using ST-OPA, 2) numerical computation of−NIZ(gN ), and 3) the

asymptotic expression (47). We again see that asN increases, all three plots have very similar gradients.

We next present results for LT-OPA. An approximate relationship betweenNmax andPtot for LT-OPA has

3Note also that changing the values of parameters such as the distortion thresholdDmax or sensor measurement noise varianceσ2

will shift the curves up or down, however the diversity order is related tothe slopes of the curves, which from our analysis in Section
IV has leading term behaviourlog Poutage ∼ −N log N that does not depend on the value ofDmax or σ2. For brevity we will omit
these additional graphs in the paper.
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been obtained in (59). To see how good this approximation is,we plot the approximation (59) and compare

this with Nmax obtained via Monte Carlo simulation, where we compute the average total power usage for a

givenN by averaging over 1,000,000 channel realizations. The results are shown in Fig. 5.

Finally, in Fig. 6 we compare the outage performance as a function of N for the three different power

allocation schemes considered in this paper, usingPtot = 1, 600µW. Note that for LT-OPA, due to the existence

of Nmax, the outage probability forN > Nmax is zero and hence we cannot show results forN > Nmax on

the graph. From this figure we can see that the gradients of EPA andST-OPA are similar for largeN , while

the outage probability curve for LT-OPA approaches to a vertical asymptote located atNmax +1, where in this

exampleNmax = 15.

VI. CONCLUSIONS

In this paper we have derived theoretical results on the diversity order of distortion outage in wireless sensor

networks using different power allocation schemes. We presented three power allocation schemes - EPA, ST-
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OPA and LT-OPA. We then followed by presenting the theoretical results on the diversity order of distortion

outage achieved by each of the power allocation schemes under Rayleigh fading. The equal power allocation

asymptotically achieves a diversity order ofN logN , which is larger than the diversity order achieved by EPA

in orthogonal MAC [18] by a factor oflogN . We have also shown that ST-OPA (minimizing distortion subject

to a total power constraint) achieves the same diversity order of distortion outage as EPA. This suggests that

in the case of a large number of sensors, the spatial diversity gain in EPA can overcome fading equally well

as ST-OPA, which requires knowing CSIT. In the analysis of diversity order in LT-OPA, we found that the

outage probability can be driven to zero with a finite amount oftotal power. We also obtained a closed form

approximation to the minimum number of sensors that drives the outage probability to zero for a given total

power constraint. Simulation results show that this approximation gives very close results to the true value.

Future extension of this work may include deriving the diversity orders of distortion outage for different

fading distributions. One may also extend this work to dynamical systems where the source is a time-varying

Gauss Markov random process.

VII. A PPENDIX

Proof: Lemma 3.2: In the first statement it is immediate to see thatP
∗(h) is a continuous function of

h. In the second statement we need to show that〈P(h)〉 is a non-increasing function ofhi, i = 1, . . . , N . We

begin with the partial derivative of the short-term averagepower given as

∂ 〈P(h)〉
∂hi

=
∂

∂hi

Ptot(h)

N
=
σ2

c

N

∂ν

∂hi
(60)

whereν = Ptot

σ2
c

is the Lagrangian multiplier in one of the KKT conditions (see[19]). Also from the KKT

conditions [19] we have
N
∑

i=1

νhi

C + νhiσ2
= γth. (61)
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Taking the partial derivative with respect tohi on both sides of (61) gives

∂

∂hi

N
∑

j=1

νhj

C + νhjσ2
= 0

⇒ ∂

∂hi

νhi

C + νhiσ2
+

N
∑

j=1

∂

∂ν

νhj

C + νhjσ2

∂ν

∂hi
= 0

⇒ νC

(C + νhiσ2)2
+

N
∑

j=1

Chj

(C + νhjσ2)2
∂ν

∂hi
= 0

⇒ ∂ν

∂hi
= − νC

(C + νhiσ2)2





N
∑

j=1

Chj

(C + νhjσ2)2





−1

< 0

⇒∂ 〈P(h)〉
∂hi

=
σ2

c

N

∂ν

∂hi
< 0,

which completes the proof.

Proof: Theorem 2: We prove the theorem by obtaining upper and lower bounds oflog Pr
(

1
n

∑n
i=1Xi ≤ an

)

,

which asymptotically are equivalent for largen. The proof uses similar techniques to those provided in the

proof of Theorem 5.11.4 in [36].

Upper bound. Assume thatX1, X2, . . . are i.i.d. distributed random variables with a common c.d.f. and

p.d.f. denoted asFX(x) and fX(x) respectively. DenoteµX as the mean ofXi. Let Yi = −Xi + µX , hence

E [Yi] = µY = 0. The transformation allows us to obtain the following relationshipsMY (t) = eµXtMX(−t),

ΛY (t) = µXt+ ΛX(−t) and

IY (cn) = sup
−t

{(µX − cn) t− ΛX(t)} . (62)

Note thatcn = µX − an.

We prove first thatIY (cn) > 0 under the assumptions of the theorem. We note thatcnt−Λ(t) = log
(

ecnt

MY (t)

)

=

log
(

1+cnt+o(t)
1+ 1

2
σ2

Y t2+o(t2)

)

for small positivet, whereσ2
Y = var(Y ); we have used here the assumption thatMY (t) <

∞ near the origin. For sufficiently small positivet, 1 + cnt+ o(t) > 1 + 1
2σ

2
Y t

2 + o(t2), whenceIY (cn) > 0

by the definition of the rate function.

We make two notes for future use. First, sinceΛY (t) is convex with Λ′
Y (0) = E[Y ] = 0, and since

cn > µY = 0 for n ≥ N (the value ofN can be found by solving for the smallest integern such that

cn > 0), the supremum ofcnt− ΛY (t) over t ∈ R is unchanged by the restrictiont > 0, which is to say that

IY (cn) = sup
t>0

{cnt− ΛY (t)} , cn > 0 for n ≥ N . (63)

Secondly,ΛY (t) is strictly convex wherever the second derivativeΛ′′
Y (t) exists. To see this, note that var(Y ) > 0
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under the hypothesis of the theorem and

Λ′′
Y (t) =

MY (t)M ′′
Y (t) −M ′

Y (t)2

MY (t)2
(64)

=
E
[

etY
]

E
[

Y 2etY
]

− E
[

Y etY
]2

MY (t)2
> 0 (65)

where the inequality is due to the Cauchy-Schwartz inequality applied to the random variablesY e
1

2
tY and

e
1

2
tY .

We have the following

Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

= Pr

(

n
∑

i=1

Yi ≥ ncn

)

= Pr
(

et
∑n

i=1 Yi ≥ encnt
)

for t > 0

≤E [exp (t
∑n

i=1 Yi)]

encnt
= e−ncntMY (t)n = e−n(cnt−ΛY (t))

where the inequality is due to Markov’s inequality. Taking log on both sides gives

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≤ −n (cnt− ΛY (t)) , ∀t > 0 (66)

Since the upper bound in (66) is true for allt > 0 and we are looking for the tightest bound, we can further

bound the LHS by taking the infimum on the RHS

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≤ inf
t>0

{−n (cnt− ΛY (t))}

= − n sup
t>0

{cnt− ΛY (t)}

= − nI+
Y (cn) = −nI−X (an) from (62).

Lower bound. We first show that the problem falls under the regular case, i.e., that the supremum of the

rate functionIY (cn), n ≥ N is attained at some pointτ ∈ (0,∞). DenoteFY (y) and fY (y) the common

c.d.f. and p.d.f. ofY1, Y2, . . . respectively. SincePr (Yi > cn) > 0 for n ≥ N , there existsbn ∈ (cn,∞) such

that Pr(Yi > bn) > 0.
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It follows that for t > 0,

cnt− ΛY (t)

=cnt− logE
[

etY
]

= cnt− log

∫ ∞

−∞
etyfY (y)dy

=cnt− log

[∫ bn

−∞
etyfY (y)dy +

∫ ∞

bn

etyfY (y)dy

]

≤cnt− log

∫ ∞

bn

etyfY (y)dy ≤ cnt− log

{

etbn

∫ ∞

bn

fY (y)dy

}

=cnt− log
{

etbn Pr(Yi > bn)
}

= − (bn − cn) t− log Pr(Yi > bn) → −∞ as t→ ∞

sincebn − cn > 0 for finite and fixedn. We deduce that the supremum ofcnt − ΛY (t) over valuest > 0 is

attained at some pointτn ∈ (0,∞). The random sequenceY1, Y2, . . . is therefore a regular case of the large

deviation problem.

We now introduce an ancillary random variable (as a functionof n) Ỹn with distribution functionFỸn
(y),

sometimes called an ‘exponential change of distribution’ or a ‘tilted distribution’, by

dFỸn
(y) =

eτny

MY (τn)
dFY (y), (67)

which can also be interpreted asFỸn
(y) = 1

MY (τn)

∫ y
−∞ eτnudFY (u). Let Ỹn,1, Ỹn,2, . . . be i.i.d. distributed with

c.d.f. FỸn
. We note the following properties of̃Yn,i. The moment generating function of̃Yn,i is

MỸn
(t) =

∫ ∞

−∞
etudFỸn

(u) (68)

=

∫ ∞

−∞

e(t+τn)u

MY (τn)
dFY (u) =

MY (t+ τn)

MY (τn)
. (69)

The first two moments of̃Yn,i satisfy

E
[

Ỹn,i

]

=M ′
Ỹn

(0) =
M ′

Y (τn)

MY (τn)
= Λ′

Y (τn) = cn, (70)

var
(

Ỹn,i

)

=E

[

(

Ỹn,i

)2
]

−
(

E
[

Ỹn,i

])2
(71)

=M ′′
Ỹn

(0) −M ′
Ỹn

(0)2 (72)

=Λ′′
Y (τn) ∈ (0,∞). (73)

DenoteS̃n =
∑n

i=1 Ỹn,i. SinceS̃n is the sum ofn i.i.d. random variables, it has moment generating function

MS̃n
(t) =

(

MY (t+ τn)

MY (τn)

)n

=
E
[

e(t+τn)S̃n

]

MY (τn)n
(74)

=
1

MY (τn)n

∫ ∞

−∞
e(t+τn)udFSn

(u) (75)
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whereFSn
is the c.d.f. ofSn =

∑n
i=1 Yi. Therefore, the cumulative distribution function ofS̃n, denoted as

FS̃n
, satisfies

dFS̃n
(y) =

eτny

MY (τn)n
dFSn

(y). (76)

Let d > 0. We have

Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

= Pr

(

n
∑

i=1

Yi ≥ ncn

)

=

∫ ∞

ncn

dFSn
(u) =

∫ ∞

ncn

MY (τn)ne−τnudFS̃n
(u)

≥MY (τn)n

∫ n(cn+d)

ncn

e−τnudFS̃n
(u)

≥MY (τn)ne−n(cn+d))τn

∫ n(cn+d)

ncn

dFS̃n
(u)

=e−n(τn(cn+d)−ΛY (τn)) Pr
(

ncn < S̃n < n (cn + d)
)

=e−n(τn(cn+d)−ΛY (τn)) Pr

(

cn <
1

n
S̃n < cn + d

)

.

SinceE
[

Ỹn,i

]

= cn and var
(

Ỹn,i

)

> 0, we have from the assumption of the theorem thatPr
(

1
n S̃n > cn

)

is bounded away from zero asn → ∞. We also havePr
(

1
n S̃n < cn + d

)

→ 1 as n → ∞, which can be

shown using a strong law of large numbers for triangular arrays [37]. Therefore,

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≥− n (τn (cn + d) − ΛY (τn))

+ log Pr

(

cn <
1

n
S̃n < cn + d

)

∼− n (τn (cn + d) − ΛY (τn)) asn→ ∞

∼− n (τncn − ΛY (τn)) asd→ 0

= − nI+
Y (cn) = −nI−X (an) .

Proof: Lemma 4.1: Here we want to show that

Pr

(

1

n
S̃n > cn

)

→ 0.5 (77)

asn→ ∞. We note that the L.H.S. of (77) involves a sum of random variables
∑n

i=1 Ỹn,i that are i.i.d. acrossi

for a givenn. We will show that the central limit theorem (CLT) applies in this case by showing that Lindeberg’s

condition holds. Before we state Lindeberg’s condition, we first introduce a change of variable to simplify the

problem in the later stage. DenotẽYn the common distribution of̃Yn,i, ∀i. Let Z̃n = Ỹn − E
[

Ỹn

]

. Hence

E
[

Z̃n

]

= 0 and var
(

Z̃n

)

= var
(

Ỹn

)

. Note also thatE
[

Ỹn

]

= cn and var
(

Ỹn

)

= Λ′′
Y (τn). Lindeberg’s
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condition is hence given as

1

σ2
Z̃n

∫

{

|Z̃n|>ε
√

nσ2
Z̃n

} z̃2fZ̃n
(z̃)dz̃ → 0 asn→ ∞ (78)

for everyε > 0. Proving that this condition is true for any general distribution is hard because we do not have

the closed-form expression ofτn. Instead we will here verify Lindeberg’s condition for
√
hi, where

√
hi is

Rayleigh distributed.

We first give the asymptotic expression of var
(

Ỹn

)

asn → ∞ for the Rayleigh distribution. We have the

following results:
dΛY (θ)

dθ
= µX +

1

M√
h(−θ)

dM√
h(−θ)
dθ

d2ΛY (θ)

dθ2 =

d2M√
h(−θ)

dθ2 M√
h(−θ) −

(

dM√
h(−θ)
dθ

)2

M√
h(−θ)2 . (79)

Note that

dM√
h(−θ)
dθ

=

(

κ2θ2 + 1
)

M√
h(−θ) − 1

θ
(80)

d2M√
h(−θ)

dθ2 = κ2
[

(

κ2θ2 + 3
)

M√
h(−θ) − 1

]

. (81)

Substituting (80) and (81) into (79) gives

d2ΛY (θ)

dθ2 =

(

κ2θ2 − 1
)

M√
h(−θ)2 +

(

κ2θ2 + 2
)

M√
h(−θ) − 1

θ2M√
h(−θ) . (82)

Using the asymptotic expansion ofM√
h(−θ) (sinceθ → ∞ asn→ ∞)

M√
h(−θ) =

1

κ2θ2
− 3

(κ2θ2)2
+

15

(κ2θ2)3
− · · ·

we obtain d2ΛY (θ)
dθ2 ∼

2

κ4θ4

θ2 1

κ4θ4
= 2

θ2 and hence

var
(

Ỹn

)

= Λ′′
Y (τn) ∼ a2

2n
. (83)

The expression offZ̃n
(z̃) can be easily found and is given as

fZ̃n
(z̃) =

an − z̃

κ2MY (τn)
e−

(an−z̃)2

2κ2 +τn(z̃+cn). (84)

Note thatZ̃n ∈ (−∞, an].

We are now ready to look at Lindeberg’s condition (78) after obtaining the expressions (83) and (84). We
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have

1

σ2
Z̃n

∫

{

|Z̃n|>ε
√

nσ2
Z̃n

} z̃2fZ̃n
(z̃)dz̃

=
1

σ2
Z̃n





∫ −ε
√

nσ2
Z̃n

−∞
z̃2fZ̃n

(z̃)dz̃ +

∫ an

ε
√

nσ2
Z̃n

z̃2fZ̃n
(z̃)dz̃





(a)∼ 1

σ2
Z̃n

∫ −ε
√

nσ2
Z̃n

−∞
z̃2fZ̃n

(z̃)dz̃

=
1

κ2σ2
Z̃n

MY (τn)

×
∫ −ε

√

nσ2
Z̃n

−∞
(an − z̃) z̃2e−

(an−z̃)2

2κ2 +τn(z̃+cn)dz̃

=
e−µ√

hτn

κ2σ2
Z̃n

M√
h(−τn)

×
∫ ∞

ε
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2 +τn(cn−u)du

=
1

κ2σ2
Z̃n

M√
h(−τn)

×
∫ ∞

ε
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2 −τnu+τncn−τnµ√
hdu (85)

whereµ√h = E
[√

h
]

, u = −z̃ and step (a) is due to the second integral vanishing to zero as the integration

interval becomes null, sincean → 0 andε
√

nσ2
Z̃n

→ aε/
√

2 asn→ ∞. Also note that we have the following

asymptotic expressions (asn→ ∞)

an = a/
√
n→ 0 (86)

cn = µ√h − an → µ√h (87)

τn ∼ 2
√
n

a
(from (27) andτ = −θ) (88)

M√
h(−τn) ∼ a2

4κ2n
(89)

σ2
Z̃n

∼ a2

2n
. (90)

We now show that (85) goes to zero asn → ∞ by using an upper bound of (85) and show that the upper

bound goes to zero asn → ∞. We can obtain the following upper bounds by inspecting the exponential

terms in (85): 1)e−
(an+u)2

2κ2 ≤ e−
u2

2κ2 (sincean > 0), 2) eτncn−τnµ√
h = eτnµ√

h−τnan−τnµ√
h = e−τnan =

O(1) (from (86) and (88))⇒ eτncn−τnµ√
h ≤ C (for sufficiently largen), 3) e−τnu = e−

2
√

n

a
u(1+o(1)) ≤

e−
√

n

a
u (for sufficiently largen) , whereC is a constant.

Hence we substitute the upper bounds obtained above and the asymptotic expressions (86), (89) and (90)
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into (85) and obtain the following upper bound

1

κ2σ2
Z̃n

M√
h(−τn)

×
∫ ∞

ε
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2 −τnu+τncn−τnµ√
hdu

≤8Cn2

a4

∫ ∞

aε/
√

2
u3e−

u2

2κ2 e−
√

n

a
udu (1 + o(1)) . (91)

We may use Laplace’s method [30] to obtain an asymptotic approximation of

I(
√
n) =

∫ ∞

aε/
√

2
u3e−

u2

κ2 e−
√

n u

a du (92)

in (91). Leth(u) = u/a andϕ(u) = u3e−
u2

2κ2 . Hence the integral becomes

I(
√
n) =

∫ ∞

A
ϕ(u)e−

√
nh(u)du (93)

whereA = aε/
√

2. It is straight forward to see thath(u) andϕ(u) satisfy the four conditions necessary for

using Laplace’s method (Theorem 1 in Ch 2 of [30]). The Taylor series for h(u) and ϕ(u) as u → A are

given ash(u) ∼ h(A) +
∑∞

s=0 as(u − A)s+µ, ϕ(u) ∼∑∞
s=0 bs(u − A)s+α−1. We give the values of the first

few terms of the series:h(A) = ε/
√

2, a0 = 1/a, a1 = 0, µ = 1, α = 1, b0 =
(

aε√
2

)3
exp

(

− (aε)2

4κ2

)

. The

asymptotic approximation ofI is given as

I(
√
n) ∼ e−

√
nh(A)

∞
∑

s=0

Γ

(

s+ α

µ

)

cs
√
n

(s+α)/µ
(94)

∼ c0√
n
e−ε

√
2n (95)

where we have simply retained the first term in the sum. Note that c0 = a
(

aε√
2

)3
exp

(

− (aε)2

4κ2

)

. Hence

Lindeberg’s condition becomes
8c0n

√
n

a4
e−ε

√
2n → 0 asn→ ∞. (96)

This completes the proof for showing that the CLT holds for
√
hi.

Proof: Lemma 4.3: Let g(t) =
∫∞
1 e

t

x
−cxdx and h(t) =

∫∞
1

1
xe

t

x
−cxdx. We use Laplace’s method

[30] to obtain asymptotic approximations ofg(t) and h(t). We begin by writingg(t) and h(t) as g(t) =
∫∞
1 e−tp(x)q(x)dx andh(t) =

∫∞
1 e−tp(x)φ(x)dx wherep(x) = −1/x, q(x) = e−cx andφ(x) = e−cx

x . In order

to apply Laplace’s method, we must check four conditions (Theorem 1 in Ch 2 of [30]). The first condition is

that p(x) > p(1) for all x ∈ (1,∞), and for everyδ > 0 the infimum ofp(x)− p(1) in [1 + δ,∞) is positive.

This is true forp(x) = −1/x. The second condition is thatp′(x) and q(x) and φ(x) are continuous in a

neighborhood ofx = 1, except possibly atx = 1. This is again true for thep′(x), q(x) andφ(x) defined here.

The third condition says that the asymptotic Taylor series ofp(x), q(x) andφ(x) can be obtained asx → 1
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from the right. This can be easily verified and we will explicitly give these expressions in what follows. The last

condition is that the integral converges absolutely for allsufficiently larget. This can be shown easily forg(t)

andh(t). We will now directly apply Laplace’s method. The Taylor series for p(x), q(x) andφ(x) asx→ 1 are

given asp(x) ∼ p(1) +
∑∞

s=0 as(x− 1)s+µ, q(x) ∼∑∞
s=0 bs(x− 1)s+α−1 andφ(x) ∼∑∞

s=0 ks(x− 1)s+β−1.

We give the values of the first few terms of the series:p(1) = −1, a0 = 1, a1 = −1, µ = 1, b0 = e−c,

b1 = −ce−c, α = 1, k0 = e−c, k1 = −(c + 1)e−c andβ = 1. The asymptotic approximation ofg(t) is given

as g(t) ∼ e−tp(1)
∑∞

s=0 Γ
(

s+α
µ

)

cs

t(s+α)/µ ∼ et
(

e−c

t + (2−c)e−c

t2

)

where we have simply retained the first two

terms in the sum. Note thatc0 = b0

µa
α/µ
0

and c1 =
{

b1

µ − (α+1)a1b0

µ2a0

}

1
a
(α+1)/µ
0

[30]. In the same way we obtain

the asymptotic approximation ofh(t) given ash(t) ∼ et
(

e−c

t + (1−c)e−c

t2

)

.

Substituting the asymptotic approximations ofg(t) andh(t) back into (41) gives

gN = 1 − h(t)

g(t)
∼ 1 −

et
(

e−c

t + (1−c)e−c

t2

)

et
(

e−c

t + (2−c)e−c

t2

) =
1

t+ 2 − c

∼ 1

t
for large t

which completes the proof.
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