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Probability of Error Analysis for Hidden Markov
Model Filtering With Random Packet Loss

Alex S. C. Leong, Member, IEEE, Subhrakanti Dey, Senior Member, IEEE, and Jamie S. Evans, Member, IEEE

Abstract—This paper studies the probability of error for max-
imum a posteriori (MAP) estimation of hidden Markov models,
where measurements can be either lost or received according to an-
other Markov process. Analytical expressions for the error prob-
abilities are derived for the noiseless and noisy cases. Some rela-
tionships between the error probability and the parameters of the
loss process are demonstated via both analysis and numerical re-
sults. In the high signal-to-noise ratio (SNR) regime, approximate
expressions which can be more easily computed than the exact an-
alytical form for the noisy case are presented.

Index Terms—Hidden Markov model, observation losses, prob-
ability of error, state estimation.

I. INTRODUCTION

WIRELESS sensor networks have received huge interest
in the research community recently, due to the many

technical challenges which have to be overcome in order to re-
alise their full benefits. Algorithms for signal processing and
their performance in unreliable environments is an important
aspect in the design of such networks. This paper considers
the error probabilities associated with the state estimation of
Markov chains when measurements can be lost, with the loss
process modelled by another Markov chain.

Estimation with lossy measurements was considered for
linear systems in [1], for the Kalman filtering problem with
losses modelled by an independent and identically distributed
(i.i.d.) Bernoulli process. They showed that for an unstable
system, there exists a threshold such that if the probability
of reception exceeds this threshold then the expected value
(with respect to the loss process) of the error covariance ma-
trix (which is a random quantity due to random losses) will
be bounded, but if the probability of reception is lower than
this threshold then the error covariance diverges. In a slightly
different context, [2] extends these results to Markovian loss
processes, which allows modelling of more “bursty” types
of errors. Estimation with Markovian packet losses was also
studied in [3], and suboptimal estimators were derived which
can be used to provide upper bounds on the estimation errors
of the optimal estimator.
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The purpose of this paper is to use some of the ideas relating
to lossy measurement processes, but to apply it to the different
problem of state estimation for Markov chains. Hidden Markov
models (HMMs) have found numerous applications [4], and in
fields such as radar tracking and biology, sensor networks could
potentially provide additional benefits. For HMM estimation
problems, the state space is often finite, thus, notions of esti-
mation stability as in [1] are not appropriate. Instead here we
will use the probability of estimation error as our measure of
performance, also see [5], [6] for mean square error (mse) cri-
terions. Obtaining analytical expressions for the error perfor-
mance associated with filtering for HMMs (even without any
loss process) is a difficult problem however, where few general
results are known. Some results for the continuous time case
may be found in [5]. In discrete time, asymptotic formulae for
“slow” Markov chains with finite state space were obtained in
[7] for the probability of error, and [6] for a mean square error
criterion. A general characterization of the error probability for
the two-state hidden Markov model in discrete time was derived
in [8], and a numerical method to calculate it was proposed.

The organization of the paper is as follows. We will first study
the simpler problem with observation losses but no noise in Sec-
tion III. Analytical expressions for the error probabilities will
be derived and some special cases presented in Sections III-A
and B, respectively. Some relationships between the error prob-
ability and the parameters of the Markovian loss process are
established in Section III-C and numerical studies presented
in Section III-D. Multi-state Markov chains are considered in
Section III-E. We will then shift our attention to the more gen-
eral HMM problem with noise in Section IV. In Sections IV-A
and B, we will characterize the error probabilities for the two-
state Markov chain, though using quite different methods. Sec-
tion IV-C will present some numerical studies for the noisy case.
It is more difficult here to prove properties similar to the ones
in the noiseless case, and some conjectures which will require
further investigation are stated. Section IV-D studies the situa-
tion when the signal is i.i.d. In Sections IV-E and F, high SNR
approximations for the two-state and multi-state Markov chains
respectively are derived and numerical comparisons made.

II. MODEL AND NOTATIONAL CONVENTIONS

The main model of interest is

1053-587X/$25.00 © 2007 IEEE
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Here, is the observation process, is the noise process
which will be i.i.d. and .1 and are homo-
geneous two-state Markov chains which are assumed to be in-
dependent of each other, with , , ,

. can be interpreted as the signal that we wish
to estimate, and as the correlated loss process, with the
correlation modeled by a Markov chain. We will assume that

is known to us at each time instant. In Sections III-E and
IV-F we will look at the situation where is a multi-state
Markov chain.

In this paper, we will use the convention
and for the transition

probability matrices and , (the columns
will then sum to one). Assuming that , , , ,
unique stationary probabilities will then exist and are given by

, ,
, .2

Denote the conditional probability vector for the HMM filter
by , with the th entry being

. The MAP estimate
of , which is well-known to minimize the probability of error,
is for the two-state case

otherwise.

III. NOISELESS CASE

We first study the simpler model which
does not have the noise term . The probability of estimation
error will be given in terms of an infinite series, which is a
more explicit form than that which will be derived for the noisy
case in Section IV-A. The noiseless case considered here is
quite suitable for the noisy situation at high SNR, since (roughly
speaking) at high SNR the errors due to the packet loss process
tend to dominate the errors due to the noise term, see, for ex-
ample, the discussion at the end of Section IV-E. Indeed, the
derivation in Section IV-E of an approximation for the error
probability at high SNR will be based on some of the techniques
of this section.

A. Derivation of Probability of Error

For this simple noiseless model, whenever there is no packet
loss, i.e., , the estimate (of ) will be the same as
the measurement. The probability vectors are, therefore,
updated as

.

1Other noise types such as noise with state-dependent variances are possible,
but some derivations will be more complicated.

2Strictly speaking, this is true if the initial state of the Markov chain has the
same distribution as the stationary distribution, otherwise this holds only in the
limit as k ! 1.

So whenever there is no packet loss, the probability vector will
“reset” to either or , a fact we will exploit in our
derivation of the probability of error. When a packet is received,
no errors will be made, so

This can be further split up as follows:

where
.

Expressions for each term can be derived. Define
and , with

representing the th element of . For brevity, also let
.

Then

(1)

where is the indicator function and is the th entry of
the matrix . For a more explicit expression for , note that

(2)

which may be verified using induction. Also define

(3)
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TABLE I
SIMULATION AND ANALYTICAL COMPARISON OF

NOISELESS ERROR PROBABILITIES

Then it is easily shown that (1) can also be written in the form
shown in (4).

.
(4)

Hence

where is given by (4), is the th entry of in
(2), and and are given by (3). Numerical computation of
such infinite series can be easily handled using computer algebra
software such as Mathematica.

In Table I, we compare the derived expression with simula-
tion results for a selection of different parameter values. We set
the distribution of the initial states of the Markov chains to be
equal to the stationary distributions (though by the exponential
forgetting property [9] the effect of the initial state should not
have a major effect for long runs), and then run Monte Carlo
simulations of the filtering updates to obtain the probability of
error. The simulations results were averaged over 10 runs, each
run of length 100 000. It may be seen that, not suprisingly, there
is very close agreement at all values considered.

B. Special Cases

In certain cases, the expression for the error probability can
be further simplified. We present two examples.

(i) If so that is symmetric, then
and always, so that

(ii) Suppose the signal is i.i.d., i.e., . If
, then , , , and

If , then , , , and

Fig. 5 of Section III-D contains some simulation results. The
linear dependence on the stationary probability
when the data is i.i.d. also holds in the noisy case, see Sec-
tion IV-D.

C. Theoretical Properties

We now demonstrate some relationships between the prob-
ability of error and the parameters of the packet loss process.
Proofs of Theorems 1–3 may be found in the Appendix.

Theorem 1: For fixed and , the probability of error is
monotonically increasing in .

Theorem 2: For fixed and , the probability of error is
monotonically decreasing in .

Theorem 1 states that the error probability increases as
increases, when all other parameters are fixed. Intuitively this
is reasonable, since is the probability that the next packet is
lost given that the current packet has been received, so we are
more likely to drop packets and do worse at estimation when this
parameter is increased. Theorem 2 is also quite intuitive, as
is the probability that the next packet will be received correctly
given that the current packet has been lost, so increasing this
parameter should improve our estimation performance.

For the third result, let be the stationary probability that
a measurement is not received, i.e.,

. Theorem 3 shows that in general alone does
not uniquely determine the error probabilities, but also depends
on the sizes of and , which can be interpreted as how
quickly/slowly the packet loss process is varying in time. For
example, when both and are small, transitions from one
state to the other are rare, so that we can regard the Markov chain
as being slow. Essentially, Theorem 3 says that for a given ,
slower dynamics are worse for state estimation in that we will
get a higher probability of error (except perhaps when the signal
is i.i.d. as noted in example (ii) of Section III-B).

Theorem 3:
(i) For fixed and , the probability of error is nonin-

creasing in (equivalently in ).
(ii) The probability of error converges, for fixed and

as , to , where
is the probability of error in the

complete absence of observations.
By Theorem 3 (ii), is therefore an upper bound on the

error probability. A lower bound can also be derived, by noting
that for , the largest possible values for and are

and , and for , the largest
possible values are and . Substituting
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Fig. 1. Noiseless probability of error for various g .

Fig. 2. Noiseless probability of error for various g .

these values into the formula for and using Theorem
3 (i), we then obtain the lower bound

where is defined as (17) in the Appendix. As a special case,
when we have the more explicit expression

.

For the i.i.d. signal case, it can also be shown that the upper
and lower bounds coincide.

D. Numerical Studies

For the simulations in the first three graphs, the length of each
run is one million. The solid lines represent the theoretical error

Fig. 3. Noiseless probability of error for various g , with p fixed.

Fig. 4. Noiseless probability of error and bounds for various p , symmetric A.

probability. In Fig. 1 we plot the simulated probability of error
for 50 values of , with , , and .
In Fig. 2 we plot the simulated probability of error for 50 values
of , with , , and . In Fig. 3 we
plot the simulated probability of error for 50 values of , with

(i.e., is fixed), and .
We can see that the results are in agreement with Theorems 1–3,
respectively.

For the next two graphs, we randomly generate both and
, and then form . The length of each

simulation run is 100 000. In Fig. 4 we plot the simulated prob-
ability of error for 500 values of , with , i.e.,

is symmetric. The solid lines are plots of the upper and lower
bounds on the error probability mentioned after the statement of
Theorem 3. The simulation results can be seen to lie within the
bounds. In Fig. 5 we plot the simulated probability of error for
500 values of , with and , i.e., signal is
i.i.d. The linear dependence on the probability of not receiving
a packet, agrees with example (ii) of Section III-B.
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Fig. 5. Noiseless probability of error for various p , signal i.i.d.

E. Multiple States

We now consider as a Markov chain having
states, with the assumption that it has a unique stationary distri-
bution. The packet loss process is still the same two-state
Markov chain.

The probability vectors are updated as

...
...

and MAP estimates of the states are obtained as
.

Define where the 1 is in the -th
position. Then in a straightforward extension of the two-state
case (1), we can derive

(5)

with the probability of error given by .
More explicit expressions (in terms of the Markov chain pa-
rameters) for the stationary probabilities and
the elements would be very complicated to write down
without additional structure in the transition matrix , since for

states, the matrix would have free parameters
in general. However, given a set of parameters these quantities
can be evaluated on a computer quite easily.

As an example, let , and

Computation of the error probability using (5) is 0.1527. Sim-
ulation results averaged over 10 runs, each of length 100 000,

gives an error probability of 0.1523, which is very close to the
analytical expression.

IV. NOISY CASE

A. Derivation of Probability of Error

In this section we derive expressions for the probability of
error in the noisy case. Unfortunately, the methods used for the
noiseless case don’t seem to extend to the situation here. We
will use a different method, whose analysis is based in part on
[8]. Recall the model from Section II, .
Given and , the observations are conditionally
distributed as

It is well known that the probability vectors can be updated re-
cursively as follows:

(6)

where

Using the definition (noting that
), the probability of filtering error can then be written as

(7)

where .
To find a recursive relation which will allow us to characterize

the densities , first consider
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where we have used the Markov property and the independence
of and , and defined

For , i.e., , we can derive in a similar
manner to [8] (which only contained expressions for symmetric

) the recursion shown in (8) at the bottom of the page, and so

with
.

For , i.e., , it is straightforward to
show that the recursion for is now

(9)

Thus

where is the indicator function and
.

Hence in the steady state we have the following relations for
the densities, which is a system of four Fredholm integral equa-
tions

(10)

B. Numerical Method

To compute the error probability we will need to numeri-
cally solve the system of integral equations (10). We will present
an existing method which is slightly different from that of [8],
where convergence analysis is perhaps more readily obtained.3

From p. 151 of [10], we can transform (10) into a single in-
tegral equation as follows. Define

3The method presented here and its analysis can also be applied with slight
modifications to the problem in [8]

...

.

(11)

Then it can be seen that (10) is equivalent to the homogeneous
Fredholm equation

(12)

with also satisfying the normalising condition
. For the numerical solution of (12), con-

sider the related eigenvalue problem [11]

(13)

which corresponds to (12) when . We will solve (13)
using the Nyström method [11], [12]. Replacing the integral by
a -point quadrature rule,4 and defining

...
. . .

...

we obtain

...
...

where represent the weights and the quadrature points of
the quadrature rule. In the results presented in this paper, the
midpoint rule is used, though other alternatives such as com-
posite Gauss-Legendre quadrature are possible [12, p.110.].

To obtain an approximation for , we then take the eigen-
vector that corresponds to the largest real eigenvalue of , and
normalise it so that is satisfied. Using a “weak”
version of the Perron-Frobenius theorem [13, p. 28] on shows
that this eigenvector will have nonnegative entries, which is re-
quired if it is to approximate a probability density. The proba-
bility of error can then be calculated from (7) and (11).

4We call it a 4N -point rather an N -point quadrature rule for convenience,
since �(q) is a combination of four densities

(8)
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We would like the largest eigenvalue to be close to one. As
, will tend to a stochastic matrix, in the sense that

the sum of each column will converge to one. For example, for
the first column

where convergence is achieved for any reasonable composite
quadrature scheme, such as the midpoint rule [14, p.116]. Sim-
ilarly this holds for the other columns of . Since a stochastic
matrix has largest eigenvalue one, and by the continuity of
eigenvalues [15], it then follows that the largest eigenvalue of

can be made arbitrarily close to one for sufficiently large.
We can also show that the eigenvector corresponding to the
largest eigenvalue is unique. Note that we can partition as

(14)
with each element representing an matrix. Referring to
(14) and the definition of , it may be easily shown that the
blocks and contain strictly positive en-
tries. The blocks and can each be further
divided into the form

where blocks 1 and 3 contain all zeros, while block 2 has at
least one positive entry in each row and column, with the sizes
of these blocks being the same for all and .
The matrix is thus reducible since it will have a number of
rows which consist entirely of zeros, and the Perron-Frobenius
theorem [13] is not directly applicable. We can however form
a submatrix by deleting the all-zero rows and the associated
columns, without changing the largest eigenvalue. Due to the
structure in the blocks and , it can be seen
that this submatrix is primitive. The Perron-Frobenius theorem
may then be applied to conclude that there is an eigenvalue with
magnitude greater than any other, with a unique eigenvector (up
to constant multiples). By the comments above, this will also
hold for the original matrix .

In Table II we compare the numerical method with simula-
tion results for a selection of different parameter values. Here
we use , and fix . Simulations results were
again averaged over 10 runs, each run of length 100 000. It may
be seen that there is very close agreement at the values con-
sidered here. However, for smaller values of , it has been ob-
served (see Table III, also [8]) that the accuracy of the numer-
ical method is not so good when using . By the pre-

TABLE II
SIMULATION AND ANALYTICAL COMPARISON OF NOISY

ERROR PROBABILITIES, WITH � = 1

TABLE III
COMPARISON OF ERROR PROBABILITIES FOR VARIOUS VALUES OF �

Fig. 6. Noisy probability of error for various g .

vious statements, the accuracy should increase with , but due
to memory limitations increasing substantially is currently
not feasible. In Section IV-E we will derive an approximation
for the error probability which is more computationally tractible
and provides close agreement with simulations for small .

C. Numerical Studies

We now show some plots which are analogues of Figs. 1–5,
with an additional noise term of variance . The simula-
tion runs are of length one million for the first three graphs. In
Fig. 6 we plot the simulated probability of error for 50 values
of , with , , and . In Fig. 7 we
plot the simulated probability of error for 50 values of , with

, , and . In Fig. 8 we plot the sim-
ulated probability of error for 50 values of , with ,

and . The solid lines represents the analyt-
ical calculation using . In Fig. 8 there is a slight but
noticeable discrepancy between the simulation and analytical
results at small values of . This is due to the use of
in the numerical calculuation, as it is found that increasing
to say 500 would give much closer agreement. For Figs. 9 and
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Fig. 7. Noisy probability of error for various g .

Fig. 8. Noisy probability of error for various g , with p fixed.

10 the simulations runs are of length 100 000. In Fig. 9 we plot
the simulated probability of error for 500 random values of ,
with , i.e., is symmetric. In Fig. 10 we plot
the simulated probability of error for 500 random values of ,
with and , i.e., signal i.i.d.

Comparing these graphs with Figs. 1–5, we can see that there
is a noise floor introduced which tends to shift the graphs up-
wards. The noiseless Figs. 1–5 also seem to cover a larger range
of values as the parameters vary, one reason could be that there
is a greater sensitivity to packet loss in the noiseless case, since
losing packets is the only way in which one can make an error
there.

Proving results similar to Theorems 1–3 in the noisy case
seems to be very difficult. We will state these as conjectures

Conjectures

1) For fixed , and , the probability of error is mono-
tonically increasing in .

Fig. 9. Noisy probability of error for various p , symmetric A.

Fig. 10. Noisy probability of error for various p , signal i.i.d.

2) For fixed , and , the probability of error is monoton-
ically decreasing in .

3) Let be the stationary probability that a measurement is
not received, i.e., .
Then for fixed , and , the probability of error is
nonincreasing with . Furthermore, this probability
of error converges, for fixed and as , to

, where is the probability of error
obtained when measurements are always received, and

is the prob-
ability of error in the complete absence of observations.

The intuition behind conjecture 3 can be explained as follows:
In [9], the exponential forgetting property of HMM filters is
demonstrated. For slowly varying dynamics in the loss process,
during the (usually) long periods where we always receive mea-
surements, the probability of error there would be close to the
error probability when we assume that measurements are always
received. Similarly, for the periods when we don’t obtain any
observations, the error probability would be close to the error in



LEONG et al.: HIDDEN MARKOV MODEL FILTERING WITH RANDOM PACKET LOSS 817

the complete absence of observations. The overall error proba-
bility should then be able to be averaged over these two situa-
tions, giving as the conjectured limit.

D. Signal Is i.i.d.

Signals which are i.i.d. (or close to i.i.d.) are commonly en-
countered in digital communications. In Fig. 10, we saw that
when the signal is i.i.d., there seems to be a linear rela-
tionship between and the probability of error even when the
loss process is Markovian. In this section, we will show that this
is indeed the case. If the signal is i.i.d., the matrix has the form

and the probability vector updates (6) become

which depends on the values and but which impor-
tantly does not depend on values at previous times. Using this
fact, an explicit expression for the error probability can then be
derived quite easily.

Given , the recursion (9) for is just .
If , then , and

If , then , and so

This can be written more compactly as
. Next, we have

where is . Similarly,
, and so

(15)

The probability of error in the case of i.i.d. data is therefore

where we use the expressions for and (15),
together with the stationary probabilities for the loss process

and
. Since , this probability of

error is linear in , for fixed and . The solid line
in Fig. 10 is a plot of this linear expression, which can be seen
to coincide with the simulation results.

E. High SNR Approximation

Here we will derive an approximate expression for the error
in the high SNR, or small regime. When is small, we can
see from (8) that for , , and for

, . So at high SNR, the probability updates can be
approximated by the simpler suboptimal scheme

.

where we have defined the sets and
. To derive the probability of error using such a scheme,

first note that
and , where

is . Using to denote the complement of ,

where we have again used the independence of and .
The derivation of the term is similar to

the noiseless error probability derived in Section III-A, we will
use the same notation and point out the main differences. We
can still write where
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, but now

As in the noiseless case, we can write this in a more explicit
form as shown in (16) at the bottom of the page. The probability
of error of this scheme is, therefore

In Table III we compare simulation results of the optimal filter
together with the “exact” analytical calculation of Section IV-B,
and the suboptimal approximation just derived. We use

, , , and various values of .
The computation using the method of Section IV-B was done
with . For a further comparison, in the final column
we also include simulation results when there is no packet loss.
The simulation runs are of length 10 million.

Firstly, we can see that for values of smaller than approxi-
mately 0.8, the numerical method of Section IV-B does not give
accurate results when using , in fact the accuracy
worsens the smaller is. Improving the accuracy would involve
increasing substantially, which in turn increases the com-
putation time and memory requirements dramatically. We can
also see that the suboptimal expression gives very good agree-
ment with simulations for small values of , moreover it can be
computed very easily with current computer algebra software.
Indeed, the noiseless probability of error can be computed to
be 0.1022, so that even for , the difference between
the noisy and noiseless error probabilities are almost negligible.
Since our approximation (16) converges to the noiseless expres-
sion (4) as , this is one reason why the approximation
performs so well at high SNR.

Comparing the noiseless error probability of 0.1022, the
error probabilities with no packet loss and the error proba-
bilities with both packet loss and noise, it appears that for
smaller than around 0.4–0.5, the packet loss starts to dominate
for this example. In general, the value where the packet
loss term starts to dominate will depend on other parameters
such as and , and is an issue that requires further study.
However through our numerical investigations, we have found
that around 0.4–0.5 seems to be a reasonable figure for most
(randomly generated) sets of parameter values.

F. Multiple States—High SNR

For the noisy case with multiple states (and no packet loss),
asymptotic results for the error performance of slow Markov
chains exist in the literature, e.g., [6], [7], but general expres-
sions for arbitrary Markov chains are not known. In this section,
we will treat arbitrary Markov chains with packet loss at high
SNR. We will choose the signal levels to be of -ary
Pulse-amplitude-modulation (PAM) type. Without loss of gen-
erality, we let these levels be situated at , i.e.

.

(16)
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TABLE IV
COMPARISON OF NOISY ERROR PROBABILITIES FOR VARIOUS VALUES OF �,

3-STATE EXAMPLE

Define the sets

The optimal way to update the probabilities is the obvious gen-
eralization of (6), but which appears to be very difficult to an-
alyze. Motivated by the high SNR approximation in the 2-state
case, consider the following suboptimal scheme:

...
...

.

Similar to the two-state case in Section IV-E, we can derive

and

with . As in the noiseless
multi-state case, more explicit expressions would be very com-
plicated to write down in general.

In Table IV we compare this approximation with simulation
results of the optimal filter, using the 3-state example of Sec-
tion III-E with an additional noise term. We can again see that
the suboptimal expression gives good agreement with simula-
tions for small values of .

V. CONCLUSION

In this paper, we have derived analytical expressions for the
error probability of HMM filters in the presence of Markovian
packet losses, with emphasis on two-state Markov chains. Per-
formance analysis of such systems are important when oper-
ating in unreliable environments such as wireless sensor net-
works. A number of relationships between the error probabili-
ties and the parameters of the loss process have been shown via
numerical studies, and theoretical justification has also been ob-
tained in some cases.

APPENDIX

For convenience in our proofs, let us define

(17)

so that .

A. Proof of Theorem 1

Proof:

Term-by-term differentiation of the infinite series can be justi-
fied by using the Weierstrass -test, see, e.g., [16]. It is easy to
see from (17) or (4) that the terms are all positive. As each
term in the sum is greater than zero, .

B. Proof of Theorem 2

While the statement of Theorem 2 looks similar to that of
Theorem 1, the proof is not as straightforward. Before we prove
this, we need the following technical result.

Lemma 1: The terms given by (17) form a nondecreasing
sequence.

Proof: We will only outline the method of proof. One can
assume throughout that , as the arguments when

are almost identical. We consider the situations
, and separately.

Each of the situations and is further
divided into the four cases: 1) and , 2)
and , 3) and , 4) and
(some of these cases may not be possible). It is then a tedious
but relatively straightforward verification that
holds in all the possible cases, using the definitions (3) and
(17). The remaining situation with is straight-
forward, only the case and can occur, and

.
Now we can prove Theorem 2.
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Proof: First

(18)

Showing that this quantity is negative is equivalent to showing
that

Unlike the proof of Theorem 1, not every term in the summation
here is negative. However, it is not difficult to show that for

, the first terms will be positive,
while the rest will be negative. We may then use Lemma 1 to
obtain the bound

To complete the proof, we note the following closed form ex-
pression, which can be verified using induction:

(Note that this expression also allows us to apply the Weierstrass
-test to justify the term-by-term differentiation (18).) Hence,

and,
therefore

C. Proof of Theorem 3

Proof: That actually is the error probability in the com-
plete absence of observations is not difficult to show. For ex-
ample, one can use the fact that converges to a rank 1 matrix
(with the stationary probabilities in the columns) as , so
that without observations, one would choose the state estimate
which on average is more likely to occur.

(i) The proof of this part is similar to that of Theorem 2. Since
, we have

It can be easily seen that for , the first
terms in the series will be positive, while the rest will be
negative. Using Lemma 1, we obtain the bound

We have the following closed form expression:

so , and therefore

(ii) We consider the cases and sepa-
rately. First assume that . From (3) it can be
seen that there exists an such that either

(when ), or
(when ). Hence, and

Applying Lemma 1, we can obtain the bounds

or
. Taking the limit as then gives

the result for .
Now assume that . We further divide into three

cases.
1) For , we have , and

irrespective of .
2) For , we have , so

which converges to as .
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3) For , we have , for odd, and
, for even, so

which also converges to as .
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