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A Power Control Game Based on Outage
Probabilities for Multicell Wireless Data Networks

Tansu Alpcan, Student Member, IEEE, Tamer Başar, Fellow, IEEE, and Subhrakanti Dey, Member, IEEE

Abstract— We present a game-theoretic treatment of distrib-
uted power control in CDMA wireless systems using outage
probabilities. We first prove that the noncooperative power
control game considered admits a unique Nash equilibrium (NE)
for uniformly strictly convex pricing functions and under some
technical assumptions on the SIR threshold levels. We then
analyze global convergence of continuous-time as well as discrete-
time synchronous and asynchronous iterative power update
algorithms to the unique NE of the game. Furthermore, we
show that a stochastic version of the discrete-time update scheme,
which models the uncertainty due to quantization and estimation
errors, converges almost surely to the unique NE point. We finally
investigate and demonstrate the convergence and robustness
properties of these update schemes through simulation studies.

Index Terms— Power control, communication systems, game
theory, code division multiaccess, resource management, stochas-
tic systems.

I. INTRODUCTION

THE PRIMARY objective of uplink power control in code
division multiple access (CDMA) wireless networks is

to achieve and maintain a satisfactory level of service, which
may be described in terms of signal-to-interference ratio (SIR).
Since in CDMA systems signals of other users can be mod-
eled as interfering noise signals, there is a tradeoff between
the individual objectives of mobiles and the overall system
performance. If mobiles have different preferences for the
level of service or varying SIR requirements, then the power
control problem can be posed as one of resource allocation.
Furthermore, under a distributed power control regime the
mobiles cannot have detailed information on each other’s
preferences and actions due to communication constraints
inherent to the system. It is, hence, appropriate to address
CDMA uplink power control within a noncooperative game
theoretic framework, where Nash equilibrium (NE) provides
a relevant solution concept. The power control game can also
be extended by making use of pricing. A pricing scheme not
only enhances the overall system performance by limiting the
interference [1], but also results in battery energy preservation.
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Several studies exist in the literature that use game theoretic
schemes to address the power control problem [1]–[6]. In [1]
a framework for power control based on noncooperative game
theory and pricing has been presented. This analysis has then
been extended in a later study [3] to multiple cells. The
study [4] has shown the existence of unique NE for a certain
type of pricing function and under binary input Gaussian
output and binary symmetric channel assumptions. Another
study [2] has proposed linear and exponential utility functions
based on carrier (signal)-to interference ratio, and has shown
the existence of a NE under some assumptions on the utility
functions. Alpcan et al. [5] has studied a power control game
with specific cost structure in a single cell. This analysis has
later been extended in [6] to a more general class of cost
functions and a multicell framework. In both studies, existence
of a unique NE has been proven.

In wireless communication systems, mobiles frequently
update their power levels due to varying channel conditions
in order to maintain their SIR (service) level. The power
control game leads to distributed power control algorithms
as a mean to achieve this goal. An important aspect of a
distributed power control scheme is the convergence properties
of algorithms, which plays a significant role in performance
of the system. The study [7] has presented a standard power
control algorithm, and has established its synchronous and
asynchronous convergence under some conditions on the inter-
ference function. In [8], stochastic power control schemes have
been investigated, and the converge of stochastic algorithms
in terms of mean-squared error has been proven. Another
study [9] has shown the convergence of a coupled power
control scheme based on minimum outage probability and
multiuser detection by making use of standard interference
functions of [7]. In [5], two update algorithms, namely, parallel
update and random update have been shown to be globally
stable under specific conditions. Finally, in [6] the global
convergence of the dynamics of the power control game to
a superset of Nash equilibria has been established for any
handoff scheme satisfying a mild condition on average dwell
time.

In this paper, we consider a power control game similar
to the one in [6], which incorporates a pricing mechanism
limiting the overall interference and preserving battery energy
of mobiles. We capture the preferences of mobiles using a
utility function, which is defined as the logarithm of the
probability that the frame success rate of the data user is
greater than a predefined individual threshold level. This utility
function can also be described in terms of frame outage prob-
abilities [10]. Under the assumption that the fading channel

1536-1276/06$20.00 c© 2006 IEEE
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gain (and hence the SIR) is static over a data frame, this
frame outage probability can also be related to the standard
outage probability notion used for voice communications [9],
which is given by the probability that the SIR falls below a
predetermined threshold. The notion of an outage probability
is useful for rapidly varying fading channels where trying to
maintain an SIR threshold may become infeasible or can lead
to power warfares. Rapid tracking of the randomly varying
channel can also significantly increase the communication
overhead between the base station and the mobile transmitter
as well. Motivated by these issues, we consider a two-time
scale channel gain model, consisting of a slowly varying
component which we assume to be constant over the time scale
(and hence known) of the application of our algorithm, and a
fast fading component which is not known at the transmitter
or receiver but we assume that the statistics of this fast fading
component are known (or can be accurately estimated. In this
paper, we assume that this fast fading component is Rayleigh
distributed. For detailed discussions on justifications for using
this model, see [9], [11]. In the context of such a generalized
fading channel model, we therefore consider a noncooperative
power control game which uses an outage probability based
(instead of an SIR based) utility function and also incorporates
a pricing mechanism.

The noncooperative power control game thus obtained
admits a unique Nash equilibrium under uniformly strictly
convex pricing functions and some technical assumptions on
the SIR threshold levels. Furthermore, we investigate global
convergence of continuous-time as well as discrete-time syn-
chronous and asynchronous iterative power update algorithms
to the unique NE of the game. A stochastic version of the
discrete-time update scheme, which models the uncertainty
due to quantization and estimation errors, is shown to con-
verge to the NE almost surely under specific conditions. The
convergence and robustness properties of these schemes are
demonstrated through simulation studies in MATLAB.

The next section describes the model adopted and the
cost function. In section III, we prove the existence and
uniqueness of the Nash equilibrium. We present in section IV
system dynamics and stability analysis of a continuous-time
update scheme. In section V, convergence properties of both
deterministic and stochastic discrete-time update algorithms
are investigated. Section VI contains results on simulation
studies. The paper concludes with a recap of the results and
elucidation of directions for future research in section VII.

II. THE MODEL

We consider a multicell CDMA wireless network model
similar to the ones described in [3], [9]. The system consists
of a set L := {1, . . . , L̄} of cells, with the set of users in cell
l being Ml := {1, . . . ,Ml}, l ∈ L, and the set of all users
is defined as M :=

⋃
lMl. The number of users in each cell

is limited through an admission control scheme. We associate
a single base station (BS) with each cell in the system, and
define hilfilpi as the instantaneous received power level from
user i at the lth BS. To simplify the analysis, we let a mobile
connect to one BS only at any given time. The quantities
hil (0 < hil < 1) and fil (fil > 0) represent the slow-
varying channel gain (excluding any fading) and fast time-

scale Rayleigh fading between the ith mobile and the lth BS,
respectively [12]. We assume that the factors affecting hil do
not change significantly over the time scale of this analysis,
and the terms fil (static over individual data frames but
varying from one frame to another) are unit mean independent
exponentially distributed random variables (Rayleigh fading).

Let Ml,eff denote the set of users in the neighborhood of
cell l who have a nonnegligible effect on each other’s SIR
levels through in-cell and intra-cell interference. It immedi-
ately follows that Ml ⊂ Ml,eff ⊂ M. Without loss of any
generality, we define the set Ml,eff in this paper as

Ml,eff := Ml ∪
(∪k∈Neighbor(l)Mk

)
,

where Neighbor(l) is defined as the set of first-tier neighbors
of cell l. Furthermore, the contribution of mobiles in other
cells to the interference level of cell l is modeled as a fixed
background noise, of variance σ2

l .
The ith mobile transmits with a nonnegative uplink power

level of pi ≤ pi,max, where pi,max is an upper-bound imposed
by physical limitations of the mobile. Thus, in accordance with
the interference model considered, the SIR obtained by mobile
i at the base station l is given by (static over one data frame)

γil :=
Lhilfilpi∑

j∈Ml,eff , j �=i hjlfjlpj + σ2
l

. (1)

Here, L := W/R > 1 is the spreading gain of the CDMA
system, where W is the chip rate and R is the data rate of the
user. The outage probability of user i, denoted Oil, is defined
as the proportion of time that some SIR threshold, γ̄il, is not
met for sufficient reception at the lth BS receiver [9]. By a
careful choice of γ̄il, a quality of service level can be estab-
lished for each user (see [10] for details on how a minimum
frame success rate can be converted to an appropriate SIR
threshold for a specific modulation and coding scheme). The
outage probability, Oil = Pr(γi ≤ γ̄il), of the ith mobile at
the lth BS is defined as

Oil = Pr

(
hilfilpi ≤ γ̄il

[ ∑
j∈Ml,eff , j �=i

hjlfjlpj+σ2
l

])
, (2)

where Pr(γi ≤ γ̄il) denotes the probability of the event
corresponding to γi ≤ γ̄il.

For analysis purposes, the mean power level of mobile
i received at the lth BS can be defined without any loss
of generality, as xil := hilpi, since the mean value of
the Rayleigh fading channel can be incorporated into the
value hil. Let the received power level vector of cell l be
xl := [(xjl)], j ∈ Ml,eff . Then, the systemwide vector
x := [x1, . . . ,xL̄] has the cardinality Mx :=

∑
l∈LMl,eff ,

where Ml,eff is the number of elements of the set Ml,eff .
In order to simplify the notation, we will drop the index
identifying the BS (e.g. xi := xil) in cases where it is obvious
from the context that mobile i is connected to the lth BS.
As a further simplification, we let the threshold SIR for the
ith mobile be defined as γ̄i := γ̄il = γ̄ik ∀l, k ∈ L. We
note that the outage probability in (2) can be expressed in
analytical form which we reproduce here without derivation.
Its derivation can be found in [13], and in [11] for a simplified
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version of the expression. The outage probability of the ith

mobile connected to the lth BS is thus given by

Oil(x, γ̄i) = 1−exp
(−σ2γ̄i

xil

) ∏
j∈Ml,eff , j �=i

1

1 +
γ̄ixjl
xil

, (3)

Henceforth we drop the index “l” from xil and Oil, and adopt
the convention that j �= i stands for j ∈ Ml,eff , j �= i, where
l is the BS to which mobile i is connected.

The ith user’s cost function is defined as the difference
between the utility function of the user and its pricing function,
Ji = Pi − Ui, similar to the one in [5]. The utility function,
Ui(Pri(γi ≥ γ̄i), is a logarithmic function of the probability
that the SIR of the ith user is larger than the predefined
threshold, γ̄i, and quantifies approximately the demand or
willingness to pay of the user for a certain level of service.
Notice that, Pri(γi ≥ γ̄i) is equal to 1−Oi, where Oi is the
outage probability in (3). Hence, the utility function for user
i is defined by

Ui(x) := ui log(Pri(γi(x) ≥ γ̄i) = ui log(1 −Oi(x, γ̄i)),
(4)

where ui is a user-specific utility parameter.
The pricing function, Pi(pi), on the other hand, is imposed

by the system to limit the interference created by the mobile,
and hence to improve the system performance [3]. At the same
time, it can also be interpreted as a cost on the battery usage of
the user. As a result, the cost function of the ith user connected
to a specific BS is given by

Ji(x) = Pi(xi) − ui log(Pri(γi(x) ≥ γ̄i)) , (5)

where we have used xi, instead of pi, as the argument of Pi,
by a possible redefinition of the latter.

III. EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM

It follows from (4) immediately that the utility function
Ui(x) is continuously differentiable in its arguments. In order
to calculate the derivatives of the utility function with respect
to x, we first evaluate ∂Pri(γi(x) ≥ γ̄i)/∂xi using (2)
and (3):

∂Pri(γi(x) ≥ γ̄i)
∂xi

= Pri(γi(x) ≥ γ̄i)

·
⎛
⎝σ2

l γ̄i
x2
i

+
∑

j �=i
1

xi + x2
i

γ̄ixjl

⎞
⎠ .

(6)
Thus, the first and second order derivatives of mobile i’s utility
function, Ui(x), with respect to xi are given by

∂Ui(x)
∂xi

=
uiσ

2
l γ̄i
x2
i

+
∑
j �=i

ui

xi + x2
i

γ̄ixjl

> 0,

and

∂2Ui(x)
∂x2

i

=
−2uiσ2

l γ̄i
x3
i

− ui
∑
j �=i

1 + 2xi

γ̄ixjl(
xi + x2

i

γ̄ixjl

)2 < 0,

respectively. Furthermore, for j �= i,

∂2Ui(x)
∂xi ∂xjl

=
uiγ̄i

(xi + γ̄ixjl)2
> 0.

Let us define xmin and xmax as lower and upper bounds on
xil ∀i, l, i.e. xmin < xil < xmax ∀i, l. If the mean received
power level of a mobile at the BS is less than xmin, then its
effect is negligible and it is modeled as part of the background
noise. The upper-bound xmax is further bounded above by
pmax with a possible equality in the case of no channel
attenuation. We also define γ̄min (umin) and γ̄max (umax) in
such a way that γ̄min < γ̄i < γ̄max (umin < ui < umax) ∀i.
We now make the following three assumptions on the price
function Pi, for all mobiles i.

A1. The pricing function Pi(xi) is twice continuously
differentiable, non-decreasing and uniformly strictly convex
in xi, i.e.

dPi(xi)/dxi ≥ 0, d2Pi(xi)/dx2
i ≥ v > 0, ∀xi,

for some v > 0.
A2. Given the set of parameters {Ml,eff , γ̄min, γ̄max, xmin,

xmax}, v in A1 above satisfies the following inequality:

v(γ̄min + 1)
x2
min

umax
+ (Ml,eff − 1)γ̄min

umin
umax

x3
min

x3
max

> 1

A3. The pricing function Pi and the parameter of the utility
function are further picked in such a way that the ith user’s
cost function, Ji, has the following properties at xi = xmin
(xi = xmax) : ∂Ji(x : xi = xmin)/∂xi < 0 ∀x (∂Ji(x :
xi = xmax)/∂xi > 0 ∀x), respectively.

The Nash equilibrium (NE) in a cell is defined as a set of
power levels, p∗ (and corresponding set of costs J∗), with the
property that no user in the cell can benefit by modifying
its power level while the other players keep theirs fixed.
Mathematically speaking, x∗ is in NE when x∗i of any ith user
is the solution to the following optimization problem given the
equilibrium power levels of other mobiles (in the set Ml,eff ),
x∗
−i:

min
xmin≤xi≤xmax

Ji(xi,x∗
−i). (7)

Note that given the channel gains, the NE point x∗ is equiv-
alent to p∗.

Thanks to assumption A1, the cost function Ji is strictly
convex and belongs to a fairly large subclass of convex
functions. Hence, there exists a unique solution to the ith

user’s minimization problem, which is that of minimization
of Ji, given the system parameters and the power levels of all
other users. We will next make use of the technical assumption
A2 in the proof of existence of a unique NE. Notice that, xmin
is bounded below by definition. Hence, A2 is easily satisfied
for a large number of users M or high SIR thresholds γ̄min
even if v is small. Assumption A3, on the other hand, ensures
that any equilibrium solution is an inner one, i.e., boundary
solutions x∗i = xmin (x∗i = xmax) ∀i cannot be equilibrium
points.

Theorem III.1. Under A1-A3, the multicell power control
game defined admits a unique inner Nash equilibrium solution.

Proof. The proof of this theorem is similar to the ones of
Theorem 3.1 in [14] and of Theorem II.1 in [6]. It is briefly
outlined here for completeness. Let X := {x ∈ R

Mx :
xmin ≤ xil ≤ xmax ∀i, l} be a set of feasible received
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power levels at the base stations under the interference model
considered. Clearly, X is closed and bounded, and hence
compact. Furthermore, it is also convex, and has a nonempty
interior. By a standard theorem of game theory (Theorem
4.4 p.176 in [15]) the power control game admits a Nash
equilibrium. In addition, by A3 this solution has to be inner.

Let Ai,j := ∂2Ji

∂xi∂xjl
and Bi := ∂2Ji

∂x2
i

, where mobile i is
connected to the BS l. Define M × M matrix G(x) with
diagonal entries Bi and nonzero entries Ai,j , if j ∈ Ml,eff . It
follows from A2 that Bi > |Ai,j | ∀i, j. Hence, the symmetric
matrix G(x) + G(x)T is positive definite. Then, using an
argument similar to the one in the proof of Theorem 3.1
in [14] one can show that the inner NE solution is unique.
Thus, there exists a unique inner NE in the multicell power
control game.

IV. SYSTEM DYNAMICS AND STABILITY ANALYSIS

We consider a dynamic model of the power control game
similar to the one of [6] where each mobile uses a gradient
algorithm to solve its own optimization problem (7). Accord-
ingly, the power update algorithm of the ith mobile is:

ṗi =
dpi
dt

= −∂Ji
∂pi

,

for all i ∈ M. This can also be described in terms of the
received power level, xi, at the lth BS:

ẋi = h2
i

(
∂Ui(x)
∂xi

− dPi(xi)
dxi

)
:= φi(x), ∀i. (8)

By taking the second derivative of xi with respect to time,
we obtain

ẍi = h2
i

(
−ai − d2Pi(xi)

dx2
i

)
ẋi + h2

i

∑
j �=i

bi,j ẋjl := φ̇i(x),

(9)
where ai and bi,j are defined as

ai := −∂
2Ui(x)
∂x2

i

= ui
2σ2

l + γ̄i
x3
i

+ ui
∑
j �=i

1 +
2xi
γ̄ixjl(

xi +
x2
i

γ̄ixjl

)2 ,

and

bi,j :=
∂2Ui(x)
∂xi ∂xjl

= ui
γ̄i

(xi + γ̄ixjl)2
.

Notice that both ai and bi,j are positive.
We establish the stability of the power update scheme (8)

under some sufficient conditions. The set of feasible received
power levels is invariant by assumption A3, which immediately
follows from a boundary analysis. When xi = xmin for some
i ∈ M, we have ẋi > 0 under A3. Hence, the system trajectory
moves toward inside of X . Likewise, in the case of xi = xmax
for some i ∈ M, ẋi < 0, and hence, the trajectory remains
inside the set X . Let us introduce a candidate Lyapunov
function V : R

Mx → R as

V (x) :=
∑
i∈M

1
h2
i

φ2
i (x) ,

which is in fact restricted to the domain X . Note that because
of the uniqueness of the NE, x∗, φi(x) = 0 ∀i if and only if
x = x∗. Hence, V is positive for all x except for x = x∗.

Taking the derivative of V with respect to t on the trajec-
tories generated by (8), we obtain

V̇ (x) ≤
∑
i∈M

−(2v + 2ai)φ2
i +

∑
i∈M

max
j
bi,j
∑
j �=i

2|φiφj |.

It follows from a simple algebraic manipulation that∑
i∈M

max
j
bi,j
∑
j �=i

2|φiφj | ≤ 2(Meff − 1)max
i,j

bi,j
∑
i∈M

φ2
i ,

where Meff := maxlMl,eff .
Using this to bound V̇ further yields

V̇ (x) ≤ (−(2v + min
i

2ai) + 2(Meff − 1)max
i,j

bi,j)
∑
i∈M

φ2
i .

Next, we modify assumption A2 as follows:
A2

′
. Assume that the following inequality holds:

v(γ̄min + 1) x
2
min

umax
+ (Ml,eff − 1)γ̄min

umin
umax

x3
min

x3
max

> Meff − 1 ∀l.
Remark IV.1. A2

′
holds when γ̄min and/or v are sufficiently

large.

Under A2
′
, we have V̇ (x) < 0, uniformly in the xi’s on

the trajectory of (8). Thus, V is indeed a Lyapunov function,
and it readily follows that φi(x(t)) = ẋi(t) → 0, ∀ i.
This in turn implies that xi(t)’s converge to the unique Nash
equilibrium. Hence, the unique NE point (Theorem III.1) is
globally asymptotically stable on the invariant set X with
respect to the update scheme (8) under the assumptions A1,
A2

′
, A3 by Lyapunov’s stability theorem (see Theorem 3.1

in [16]).

V. ITERATIVE POWER CONTROL ALGORITHMS

We investigate in this section stability properties of syn-
chronous and asynchronous iterative power control schemes
as they are of practical importance. We first analyze gradient
based synchronous and asynchronous update algorithms of the
power control game in Section III. Consequently, we study
convergence of stochastic iterations to the unique NE solution
by taking communication constraints and estimation errors
into account.

A. Synchronous and Asynchronous Update Schemes

Consider a discrete-time counterpart of the update scheme
in (8) in a system with M mobiles where each mobile uses a
gradient algorithm to solve its optimization problem (7):

pi(n+ 1) = pi(n) − λi
∂Ji
∂pi

∀i ∈ M ,

where n = 1, 2, . . ., denotes the update instances and λi is the
user-specific step size defined by λi := λ/hi. Here, λ denotes
the system wide step size constant. For notational convenience
this can also be defined as a mapping from the received power
levels at the BS to the updated power levels, x(n + 1) =
T (x(n)), i.e.

xi(n+ 1) = Ti(x(n)) := xi(n) − λ
∂Ji
∂xi

∀i ∈ M . (10)
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In the case of synchronous update algorithm, each mobile
updates its power level at the same time instance. We study
here sufficient conditions for convergence of the system to the
unique NE, x∗, under the synchronous update. This analysis
follows lines similar to those in the proof of Proposition 1.10
of [17, p. 193]. Let x ∈ X = {x ∈ R

Mx : xmin ≤ xil ≤
xmax ∀i, l} and define a function gi(τ) : [0, 1] → R for the
ith mobile by

gi(τ) = τxi + (1 − τ)x∗i + λφi(τx + (1 − τ)x∗),

where φi is defined in (8). We then have

|Ti(x) − Ti(x∗)| = |gi(1) − gi(0)| =
∣∣∣∣
∫ 1

0

dgi(τ)
dτ

dτ

∣∣∣∣

≤ ∫ 1

0

∣∣∣∣dgi(τ)dτ

∣∣∣∣ dτ ≤ maxτ∈[0,1]

∣∣∣∣dgi(τ)dτ

∣∣∣∣ ,
where x∗, the NE, is the fixed point of the mapping T . We

bound

∣∣∣∣dgi(τ)dτ

∣∣∣∣ above by

∣∣∣∣dgi(τ)dτ

∣∣∣∣ ≤
∣∣∣∣xi − x∗i − λ

∑
j∈Ml,eff

∂φi
∂xj

· (xj − x∗j )
∣∣∣∣

≤
∣∣∣∣1 − λ

∂φi
∂xi

∣∣∣∣ |xi − x∗i | +
∑
j �=i λ

∂φi
∂xjl

∣∣∣xjl − x∗jl
∣∣∣ .

Imposing the condition λ∂φi/∂xi < 1, we have

∣∣∣∣dgi(τ)dτ

∣∣∣∣ ≤
⎛
⎝1 − λ

⎡
⎣∂φi
∂xi

−
∑
j �=i

∂φi
∂xjl

⎤
⎦
⎞
⎠ ‖x − x∗‖ ,

where ‖x‖ := maxi |xi| is the maximum norm. Define

Ki := max
x∈X

∂φi(x)
∂xi

and ρi := 1 − λ

⎛
⎝∂φi
∂xi

−
∑
j �=i

∂φi
∂xjl

⎞
⎠ ,

which leads to |Ti(x) − x∗i | ≤ ρi ‖x − x∗‖ for each i.
Let ρ := maxi ρi and K := maxiKi. We obtain then
‖T (x) − x∗‖ ≤ ρ ‖x− x∗‖, if λK < 1. An upper bound
on K in terms of system and cost parameters is

K̄ := maxi
d2Pi(xmax)

dx2
i

+
2(Meff − 1)γ̄maxxmax

(γ̄min + 1)x3
min

+
2σ2γ̄max
x3
min

.

(11)

Imposing the condition ρ < 1, it readily follows that for arbi-
trary x ∈ X , T n(x) → x∗ as n→ ∞, since ‖T n(x) − x∗‖ ≤
ρn ‖x − x∗‖. Furthermore, the condition ρ < 1 is satisfied if

∑
j �=i

γ̄2
i x

2
jl + 2γ̄ixixjl

x2
i (xi + γ̄ixjl)2

− γ̄i
(xi + γ̄ixjl)2

> 0 ∀i.

Let xmax = αxmin for some α > 0. Then, a sufficient
condition for ρ < 1 is

α < 1 +
√

1 + γ̄min,

which follows from a straightforward algebraic derivation.
Thus, under λK̄ < 1 and α < 1+

√
1 + γ̄min, the synchronous

power update scheme given in (10) converges to the NE

solution, x∗. This result is summarized in the following
theorem:

Theorem V.1. Let xmax = αxmin for some α > 0 and X :=
{x ∈ R

Mx : xmin ≤ xil ≤ xmax ∀i, l}. The synchronous
power update algorithm

pi(n+ 1) = pi(n) − λi
∂Ji
∂pi

∀i ∈ M

converges to the unique NE point of the power control game,
p∗ := [x∗1/h1, . . . , x

∗
M/hM ], on the set X if

λ

[
maxi

d2Pi(xmax)
dx2

i

+
2(Meff − 1)γ̄maxxmax

(γ̄min + 1)x3
min

+
2σ2γ̄max
x3
min

]
< 1,

and
α < 1 +

√
1 + γ̄min.

Remark V.2. Given xmin, xmax, α, and system parameters
Meff and σ2, the conditions of Theorem V.1 can be satisfied
by choosing λ and maxi d2Pi(xmax)/dx2

i sufficiently small
while keeping γ̄min sufficiently large. We refer to Section VI
for specific numerical examples that illustrate this.

A natural generalization of the synchronous update is the
asynchronous update scheme where only a random subset of
mobiles update their power levels at a given time instance.
This is in fact more realistic since it is difficult for the
mobiles to synchronize their exact power update instances in a
practical implementation. In this particular case, however, the
convergence analysis above also applies to the asynchronous
update algorithm. Define a sequence of nonempty, convex, and
compact sets

X(k) := [x∗1 − δ(k), x∗1 − δ(k)] × [x∗2 − δ(k), x∗2 − δ(k)]

. . .× [x∗M − δ(k), x∗M − δ(k)],

where δ(k) := ‖x(k) − x∗‖. Since by Theorem V.1, δ(k +
1) < δ(k), we have

. . . ⊂ X(k + 1) ⊂ X(k) ⊂ . . .X.

We next give the definitions of two well known conditions
which together are sufficient for asynchronous convergence of
a nonlinear iterative mapping x(n+ 1) = T (x) [17, p. 431].

Definition V.3 (Synchronous Convergence Condition). For a
sequence of nonempty sets {X(k)} with . . . ⊂ X(k + 1) ⊂
X(k) ⊂ . . . X, we have T (x) ∈ X(k + 1), ∀k, and x ∈
X(k). Furthermore, if {yk} is a sequence such that yk ∈ X(k)
for every k, then every limit point of {yk} is a fixed point of
T .

Definition V.4 (Box Condition). Given a closed and bounded
set Y in R, for every k, there exist sets Xi(k) ⊂ Y such that

X(k) := X1(k) ×X2(k) × · · · ×XM (k).

In our case Y is defined as the interval [xmin, xmax], and
Xi := [x∗i − δ(k), x∗i + δ(k)]. Hence, the box condition is sat-
isfied by the definition of X(k). Since δ(k) is monotonically
decreasing in k by Theorem V.1 the synchronous convergence
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condition also holds. Therefore, the next convergence result for
the asynchronous counterpart of the power update algorithm
in (10) immediately follows from asynchronous convergence
theorem [17, p. 431].

Theorem V.5. Let xmax = αxmin for some α > 0 and X :=
{x ∈ R

Mx : xmin ≤ xil ≤ xmax ∀i, l}. The asynchronous
power update algorithm

pi(n+ 1) =

{
pi(n) − λi

∂Ji

∂pi
, if i ∈ U(k)

pi(n), if i ∈ M\U(k),

where U(k) ⊂ M denotes the random subset of mobiles up-
dating their power levels at time k, converges to the unique NE
point of the power control game, p∗ := [x∗1/h1, . . . , x

∗
M/hM ],

on the set X if

λK̄ < 1 and α < 1 +
√

1 + γ̄min ,

where K̄ is defined in (11).

B. A Stochastic Update Scheme

In a real life implementation of the power control scheme,
communication constraints, approximations, estimation and
quantization errors may not be negligible, and hence have to
be taken into account in the convergence analysis. Hence, a
mobile does not have access to the exact values of the system
parameters such as its own channel gain or the feedback terms
provided by the BS. These uncertainties can be captured by
a stochastic update algorithm, as introduced below. For each
i ∈ M, let ξi(n) n = 1, 2, . . . be a sequence of independent
identically distributed (i.i.d.) random variables defined on the
common support set [1 − ε, 1 + ε], where 0 < ε < 1.
We further assume that the sequences {ξi} are independent
across i ∈ M. Using these random sequences, we model
the aggregate uncertainty in the term ∂Ji/∂pi of (10) due to
quantization, estimation, and multiplicatively approximation
errors. Thus, the stochastic counterpart of the synchronous
update algorithm is given by

pi(n+ 1) = pi(n) − λiξi(n)
∂Ji
∂pi

∀i ∈ M, (12)

which can also be described in terms of received power levels
at the base station as

xi(n+ 1) = xi(n) − λξi(n)
∂Ji
∂xi

=: Ti(x(n); ξi(n)) ∀i ∈ M.

(13)

We next follow steps similar to those in the previous
subsection for the convergence analysis. We have, for an
arbitrary x ∈ X :

E (|Ti(x; ξi) − x∗i |) ≤ E

( ∣∣∣∣1 − λξi
∂φi
∂xi

∣∣∣∣ |xi − x∗i |

+
∑
j∈Ml,eff , j �=i λξi

∂φi
∂xjl

∣∣∣xjl − x∗jl
∣∣∣
)
,

where E(x) denotes the expected (mean) value of x. Assume
λ(1 + ε)Ki < 1, where Ki, as defined earlier, provides an
upper bound on ∂φi/∂xi. Then, from the independence of ξi

and xi for all i, we obtain (by dropping the dependence on
n):

E (|Ti(x; ξi) − x∗i |) ≤ (1 − λE(ξi)K ′
i)E (|xi − x∗i |)

+λE(ξi)K̄i

∑
j �=i E

(∣∣∣xjl − x∗jl
∣∣∣
)
,

where K ′
i is a lower bound on ∂φi/∂xi, and K̄i is an upper

bound on ∂φi/∂xj for all j �= i. Let us redefine the maximum
norm as ‖x‖ = maxi E(|xi|). Then, E (|Ti(x; ξi) − x∗i )|) ≤
ρ̄i ‖x − x∗‖ ∀i, where ρ̄i := 1−λE(ξi)(K ′

i−(Meff−1)K̄i).
Defining ρ̄ := maxi ρi, we obtain

‖T (x; ξ) − x∗‖ ≤ ρ̄ ‖x − x∗‖ ,
if λ(1+ε)K̄ < 1, where ξ := [ξ1, ξ2, . . . , ξM ]. Now, imposing
the condition ρ̄ < 1, it readily follows that for arbitrary x ∈ X
and ξi(n) ∈ [1 − ε, 1 + ε] ∀i, n, we have T n(x; ξ) → x∗ as
n → ∞, since ‖T n(x; ξ) − x∗‖ ≤ ρ̄n ‖x − x∗‖. We note
that the condition K ′

i > (Meff − 1)K̄i ∀i is equivalent to
the one ρ̄ < 1. Hence, a derivation similar to the one in the
deterministic case yields a sufficient condition for ρ̄ < 1 to
hold, namely

α <
1
2
√
γ̄min +

1
4
,

where α is defined as before with xmax and xmin being upper
and lower bounds on the random variables xi for all i.

We next show that the stochastic update scheme (13)
converges almost surely (a.s.) [18] to the unique NE solution
x∗, under the given conditions, by an analysis similar to the
one in [5]. From the Markov inequality and using the definition
of the maximum norm, we obtain

∑∞
n=1 P (|xi(n)| > ε) ≤∑∞

n=1

E(|xi(n)|)
ε

≤ 1
ε

∑∞
n=1 ‖x(n)‖ ≤ 1

ε

∑∞
n=1 ρ̄

n ‖x(0)‖ ≤ ‖x(0)‖
ε(1 − ρ̄)

,

where ε > 0 and ‖x(0)‖ are constants, Pr(A) denotes
the probability of the event A, and the last inequality fol-
lows from the contraction property of the normed random
sequence. Hence, the increasing sequence of partial sums∑N

n=1 Pr(|xi(n)| > ε) is bounded above, and converges for
every ε > 0. Finally, from the Borel-Cantelli lemma [19], [20],
it follows that

Pr(lim sup{ω : |xi(ω)| > ε}) = 0 ∀i,
where ω is the probabilistic variable. Thus, the stochastic
update scheme (13) converges a.s. to the unique NE point
of the power control game under the conditions ρ̄ < 1 and
λ(1 + ε)K < 1.

Theorem V.6. Let xi(n) (ξi(n)) be random (random i.i.d.)
sequences for all i, where ξi is also independent across i and
has the support set [1 − ε, 1 + ε], 0 < ε < 1. The random
vector x takes values in the set X := {x ∈ R

Mx : xmin ≤
xil ≤ xmax ∀i, l}. Furthermore, let α > 0 be defined as
α := xmax/xmin. The stochastic power update algorithm

pi(n+ 1) = pi(n) − λξi(n)
∂Ji
∂pi

∀i ∈ M,
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Fig. 1. Locations of base stations and the paths of mobiles.

converges almost surely to the unique NE point of the power
control game, p∗, if

α <
1
2
√
γ̄min +

1
4

and λ(1 + ε)K̄ < 1

where K̄ is defined in (11).

VI. SIMULATIONS

The power control game based on outage probabilities is
simulated in MATLAB for a wireless network consisting of 6
arbitrarily placed base stations and 20 mobiles. The channel
gain of the ith mobile is determined by the Rayleigh fast-
fading and log-normal shadowing path loss model, given by
gi = (0.1/di)2.5 ·Y −1

σ ·fi, where di denotes the distance to the
BS, log(Yσ) is a zero-mean Gaussian random variable with a
standard deviation of σ = 0.1, and fi is a random variable
with Rayleigh distribution, modeling the fast-fading channel.
We generate the random variable fi at each time step and Yσ
every 20 time steps according to their respective distributions.
The distance based loss exponent is chosen as 2.5, which
corresponds to a low density urban environment [12]. Each
mobile connects to a single BS, which happens to be in the
closest geographical location. Hence, the cells in the network
are irregularly shaped polygons. The system parameters are
chosen as L = 128 and σ2

l = 0.1 ∀l.
The mobiles are initially distributed randomly over the net-

work, and their movement is modeled after a two-dimensional
random walk with a speed of 0.0001 units per update. In
order to relate the values of the simulation to real physical
quantities, we assume an update frequency of 1kHz and
geographical unit size of 100m. Thus, mobiles move with a
speed of 10m/s or 36km/h. We note, however, that these are
arbitrarily fixed values, for illustration purposes only. Fig. 1
depicts the locations of the BSs and the paths of all mobiles.

The class of user pricing functions which satisfy the earlier
convexity assumptions is fairly large. The relationship between
the pricing function and the performance of the system at the
NE point is in fact a very complex one, and therefore the

question of finding the “optimum” pricing function, though
interesting, does not seem to be within reach. Consequently,
we adopt a specific one without any optimality consideration;
namely we choose a quadratic function parametrized by vi
for the ith user as a representative pricing function in our
numerical studies. Thus, the cost function for the ith user
(mobile) is

Ji(x) =
1
2
vix

2
i − ui log(Pri(γi(x) ≥ γ̄i)),

where pricing and utility parameters are ui = 10, vi = 1, and
γ̄i = 10 (10dB), which are chosen to be the same for all users
for comparison purposes.

We first simulate a discrete update scheme with “perfect”
information where we ignore the communication constraints
between the BS and the mobiles. In order to estimate the slow
varying xi (= hipi) value of the ith mobile, the BS imple-
ments a maximum likelihood estimator (MLE) using the last
20 independent identically exponentially distributed samples
of the received power level [g(1)

i pi, g
(2)
i pi, . . . , g

(20)
i pi]. Here,

we consider a sufficiently high sampling frequency so that we
can assume pi to be constant within an interval of 20 samples.
A straightforward derivation of this unbiased MLE yields

hipi =

√√√√ π

4 · 20

20∑
k=1

(
g
(k)
i pi

)2

.

The output of this estimator is then filtered with a simple
infinite impulse response (IIR) low pass filter (LPF) to cancel
out the effect of high frequency estimation errors and other
disturbances. Fig. 2 depicts the instantenous and filtered
estimation channel gains from mobile 1 to its BS. Thus, given
the feedback information from the BS, the mobiles update
their power levels according to

pi(n+ 1) = pi(n) + λui
σ2
l γ̄i

h2
ilp

2
i (n)

+
λui

hilpi(n)
∑

j �=i
1

1 + hilpi(n)
hjlpj(n)γ̄i

− λvihipi(n),

(14)
where λ = 0.1 and n denotes the time, and mobile i is
connected to the lth BS.

The power levels and SIR values of a randomly selected
subset of mobiles for the duration of the simulation are shown
in Figs. 3 and 4, respectively. The average SIR values in
Fig. 4 are obtained by using the filtered channel gains of
mobiles instead of instantenous ones. They are provided in
order to visualize the trends in SIR values. The minimum
and maximum received power levels of the mobiles at their
respective BSs are xmin = 2.5 and xmax = 90. Hence, we
obtain α = xmax/xmin = 36. Fig. 5 depicts the evolution of
the received power levels of selected mobiles at their respec-
tive BSs. While these parameters satisfy assumption A2, they
violate assumption A2’ as well as conditions of Theorem V.1.
Since the derived analytical conditions in previous sections
were only sufficient, and not necessary, it is not surprising
that the power levels still converge to the equilibrium points
which slowly shift due to the movements of the mobiles.
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Fig. 3. Power levels of selected mobiles with respect to time.

In the next simulation, we change the SIR threshold value of
mobiles to γ̄i = 1000 (30dB) and let λ = 0.01. Furthermore,
we have xmin = 3 and xmax = 48, and hence, α = 16.
It is easy to see that these parameters satisfy assumptions
A2 and A2’, and the conditions of Theorem V.1. The results
in Figs. 6 and 7 show convergence as expected. However,
we observe that the convergence speed in this case is slower
due to the smaller step size. We conclude that although the
sufficient conditions derived analytically provide a guideline
for the convergence of the algorithm, they are by no means
necessary and may be too stringent in some cases.

We next consider a more realistic information feedback
scheme, where we take into account the distortion in feedback
information due to quantization and other effects. Multiplying
the parameter λ = 0.1 in the update algorithm (14) with ξ,
which is a random variable uniformly distributed on [0.7, 1.3],
we rerun the previous simulation with this imperfect feedback
algorithm. Figs. 8 and 9 depict respectively the power levels
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Fig. 5. The received power levels of selected mobiles at their respective BSs.

and SIR values of selected mobiles. In accordance with
Theorems V.1 and V.6, the convergence characteristics of the
system are not significantly affected. We finally study the
effect of the pricing parameter v on the overall performance
of the system. We calculate the sum of the utility values of
static arbitrarily located mobiles for u = 5. Fig. 10 displays
the sum of the utility values of mobiles averaged over the
fast fading process at the NE solution. After repeating this
analysis several times for various distributions of mobiles, we
conclude that there is a complex and nonlinear relationship
between the NE point and the pricing parameter v, which can
be interpreted as the cost on the battery usage of the user.

VII. CONCLUSIONS

In this paper, we have considered a power control game
similar to the one in [6], with a utility function defined as the
logarithm of the probability that the SIR level of the mobile
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Fig. 6. Power levels of selected mobiles with respect to time.
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Fig. 7. SIR and averaged SIR values of selected mobiles (in dB) with respect
to time.

is greater than a predefined individual threshold level. Hence,
we have established a relationship between the preferences
of the mobiles and outage probabilities. We have proven that
the noncooperative power control game admits a unique Nash
equilibrium for uniformly strictly convex pricing functions and
under some technical assumptions on the SIR threshold levels.
Furthermore, we have established the global convergence of
continuous-time as well as discrete-time synchronous and
asynchronous iterative power update algorithms to the unique
NE of the game under some conditions. Likewise, a stochas-
tic version of the discrete-time synchronous update scheme,
which accounts for the uncertainty due to quantization and
estimation errors, has been shown to converge to the unique
NE point almost surely. Finally, through extensive simulation
studies we have demonstrated the convergence and robustness
properties of power update schemes developed.

A possible extension of this study would involve the sim-
ulation of asynchronous update schemes as well as analysis
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Fig. 8. Power levels of selected mobiles with respect to time under imperfect
feedback information.
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Fig. 9. SIR and averaged SIR values of selected mobiles (in dB) with respect
to time under imperfect feedback information.

and simulation of various handoffs algorithms. Another re-
search direction would be the exploration of the relationship
between the pricing function and system performance, and its
investigation as an optimization problem.
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