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The recent study by Hallman, Porter and Small (1989) of the inflation
process has received considerable attention including citation in Chairman
Greenspan's testimony on the Federal Reserve's Monetary Policy
Oobjectives.! The purpose of this paper is to review critically the
assumptions that are the basis of that inflation model, the so called P"
model, and to present the complete model of nominal income, real output and
inflation that is impljicit in the assumptions of that model given the
behavior of the monetary base and potential real output. This
macroeconomic model is then used to forecast in-sample and post-sample
economic behavior and to evaluate the efficiency of various monetary base
rules.

The dynamic behavior of real output growth and inflation implied by
the P" model of income determination appears suspect as an accurate
depiction of the behavior of the U.S. macroeconomy. In this model real
output growth and inflation are strongly negatively correlated and both
exhibit damped oscillatory responses to exogenous shocks. Nominal income
growth thus remains essentijally constant: McCallum-Metzler style rules can
affect only small improvements in this environment. Our analysis leads us,
therefore, to question both the practical applicability and the theoretical
foundation of the P* model.

The paper proceeds as follows. In Section I we examine the
fundamental assumptions of the P" model in light of the existing literature
on the behavior of M2 velocity. Specifically, we analyze the empirical
support for the main proposition of the P* model, that the velocity of M2
exhibits mean reversion, and discuss the corollary that the price level

also exhibits mean reversion. Finally, we critically evaluate the P*

1Testimony of Allan Greenspan on 1989 Monetary Policy
Objectives, February 21, 1989, Board of Governors of the Federal
Reserve System, p. 8; Carlson (1989), Humphrey (1989), Kuttner
(1990), Christiano (1989).
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reversion hypothesis. 1In Section II we discuss some of the implicit
assumptions of the P* model about the ﬁonetary base and the base-M2
multiplier, and from these implicit assumptions develop the complete model
of income determination. This model is then estimated. We examine the
historical performance and forecasts of this model in Section III, and in
Section IV we analyze and compare alternative policy regimes. The paper

concludes in Section V.

I. critical Assumptions of the P* Model.

A. Mean Reversion

The fundamental proposition of the P* model of Hallman, Porter and
Small (HPS) is a hypothesis about the type of shocks that drive the
behavior of the velocity (V2) of M2. This hypothesis is an implementation
of a long-run classical quantity theory of money with respect to US M2.
Their analysis contributes to the recent discussions in macroeconomics that
focus on how different kinds of shocks affect the economy. 1In particular,
researchers are interested in distinguishing between transitory shocks to
the level of a variable, permanent shocks to its level and permanent shocks
to its growth rate. As an example the working hypothesis that the velocity
of the monetary base is a random walk is frequently adopted; i.e. that its
behavior is predominately affected by permanent shocks to its level. Many
other economic variables appear to share this characteristic (Nelson and
Plosser [1982]). Such variables do not exhibit reversion to a trend or

mean. 2

2In more technical terms such variables are said to be
nonstationary in levels, to possess unit roots, to be drift
stationary, or to be integrated of order 2z 1.
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HPS assume that shocks to V2 are transitory shocks to the level of V2,
and that V2 eventually reverts to an unchanged mean (the V2 series is
stationary).3 The mean to which V2 reverts is V', the sample mean of V2
over the period 55,1 through 88,1 (quarterly) of 1.6527. The hypothesis
about the mean reverting behavior of V2 is crucial to the entire P* model.
If it is false, then V* does not exist!4

The properties of V' are critical to the P* model because P* is
defined in terms of V':

(1) P" = (M2 x V")/QPOT,
where QPOT is a measure of potential real output® and M2 is actual M2. In
terms of logs

(2) 1nP*, = 1nM2, + 1lnv" = 1lnQPCT,
Since

(3) 1nP, = lnM2, + lnv2, - 1nQ,
where Q. is actual real GNP, the "Price-Gap" which is the driving variable
in the HPS inflation model is

(4) (lnpy = 1nP",) = (1nv2, - 1nv") - (1nQ, - 1lnQPOT.).

SHPS leave open the possibility that the mean of V2 may have
changed since 1981.

4Gould and Nelson (1974) and Nelson and Plosser (1982) find
that annual velocity of M2 cannot be distinguished from a random
walk. However their measure of M2 differs from that used by HPS.
Both Gould and Nelson and Nelson and Plosser use M2 as defined by
Friedman and Schwartz (1963). The official Federal Reserve
concepts used by HPS are closer to what Friedman and Schwartz call
M3, Engle and Granger (1989) find marginal evidence that 1nM2
(current definitions) and 1lnGNP are cointegrated using quarterly
data from 59.1-81.2. Cointegration of these variables is a
necessary (but not sufficient) condition for V2 to exhibit mean
reversion.

Spotential real output is estimated following the procedure in
Braun (1990).
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By assumption the first term of the right hand side of equation (4) is the
deviation of V2 from its sample mean. The second term is the deviation of
actual real output from real potential output. The typical construction of
real potential output imposes the condition that real output reverts to
real potential output over the course of one or more business cycles, or
alternatively that (1nQ, - 1nQPOT.) reverts to zero. Hence
(1nQ, - 1nQPOT,) is forced to exhibit transitory shocks to its level.
Since (lnP. - lnP't) is just the sum of these two terms under the critical
V" assumption, deviations of 1nP, from InP‘, revert to zero. Thus the V*
hypothesis establishes P* as the equilibrium price level in the economy
towards which the actual price level reverts.

Unfortunately a definitive answer to the question of the stationarity
of 1nV2 cannot be achieved. Tests for unit roots, such as the Augmented
Dickey-Fuller (ADF) Test, produce values that are on the margin of
rejection (of the unit root hypothesis) at the 5% level. However, it is
well known that such tests have low power against the alternative
hypothesis of a near unit (but stationary) root. For example, (Eichenbaum
and Christiano [1989]) discuss the difficulty of testing stationarity
versus nonstationarity and are dubjious as to whether the imposition of a
unit root has any real policy or forecasting implications. Under these
circumstances in section II we test an implication of the stationarity of
V2 that is important in understanding the effects of monetary policy on

inflation, nominal income and real output.

B. The Reversion Process
HPS model the dynamics of the reversion process by their "Price=-Gap"

hypothesis:
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(5) AINF, = a(lnP.., - lnP"._;) + 1§1 BiAINF,._; + €

where INF, = AlnP, measures the inflation rate. They attempt to justify
this equation as a model of economic behavior based upon an inflation
expectation mechanism. These assumptions are reminiscent of the attempts
in the early 1960s to construct an economic: theory of the empirical
Phillips curve relationship. This relationship broke down with the
emergence of inflation in the late 1960s and 703 because it was not based
on economic behavior, but rather a reduced form that was specific to the
inflationary experience of the 19503 and early 60s. We should be concerned
that the "Price-Gap" model may suffer a similar fate.

The "Price-Gap" equation (5) may be interpreted, alternatively, as a
model of the time series properties of 1lnP, (or a reduced form model)
rather than as a model of economic behavior. It is known that the time
series behavior of the gquarterly GNP deflator is well described by an ARIMA
(0,2,1) model where the estimated value of the single moving average
parameter is on the order of -.65 (Rasche, [1987], Table IV.1l). This
process is

(6) AINP, = (4, = .65p._;),

or in autoregressive representation

(7 Eo (.65)*AINF,_, = u,,

or

(8) AINF, = -.65AINF,_; - .42AINF,_, - .27AINF._3 - .18AINF,_,

'35(-55"““&-1 + hy -
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The estimated lag coefficients in the "Price-Gap" equation are quite
similar to the first four lag coefficients in equation (8). Since 88
percent of the coefficient weights in an infinite geometric distributed lag
with a coefficient of .65 is achieved by lag 4, the fourth order
autoregressive structure assumed in the "Price-Gap" equation will be an
extremely close approximation to the infinite order AR structure of the
ARIMA (0,2,1) model of 1lnP. The only other difference is the inclusion of
(InPy_; - 1nP't_1) in equation (5) but not in equation (7). However, this
term is an appropriate addition to the time series model in equation (7)
under the V" hypothesis. Under this hypothesis deviations of 1lnP, from
lnP't are only transitory as argued above. If in addition 1nP, is an ARIMA
(0,2,1) model, then 1nP, and lnP't satisfy the properties of cointegrated
variables (Granger and Engle [1987]). Under these conditions the Granger
Representation Theorem establishes that the time series (reduced form) of

1nP, (and lnP't) is described by an error correction model of the form®
n n j - *
(9) AINF, = Lfl B{AINF, +£§1 @ 431nP", _; + 8(1nP,_; - 1nP*, ;) + €,

If we assume a; = 0 for all i, the error correction model for
(INF, - INF,_;) has the identical form to the "Price-Gap" equation.

There is no difficulty in using a correctly specified time series
model of the inflation rate for forecasting purposes. However, some
caution is required in using such an equation to investigate the outcomes
of monetary policies that differ significantly from the way that the
Federal Reserve has historically conducted monetary policy. Under such

conditions the time series properties of the inflation rate can change

SThe order of differencing of 1nP* (j) is that required to
achieve stationarity of this time series. From equation (2) it is
likely that 1lnM2 will determine the degree of integration of 1np*.
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considerably, and a model such as equation (9) or equation (5) will be
inappropriate and inaccurate. The "Price-Gap" equation can be seriously

affected by the "Lucas Critique" problem under such conditions.

II. The V' -- Price-Gap Model as a Model of Income Determination.

At first glance, it is not apparent that the V* -- Price-Gap model
offers an explanation of the impact of monetary policy on the economy .
Clearly it is capable of predicting the impact of changes in M2 on nominal
income, the price level and real output, but as Levy {1989] notes in
Congressional testimony, the model does not appear to link any of the
important macro aggregates to anything directly under the control of the
monetary authorities.

Upon close examination a link between the monetary base and economic
activity is implicit in the assumptions of the V" -- Price-Gap model. It
is well-documented that the velocity of the monetary base is driven by
permanent shocks to the level of the base, does not exhibit a tendency to
revert to trend, and as a first approximation it is well characterized as
random walk (e.g. Rasche {1987, 1988]).

Base velocity and M2 velocity are related by the identity:

(10) 1nVB -~ 1nMULT2 = 1nVv2
where VB is base velocity and MULT2 is the base multiplier for M2. It is
also likely that the M2 multiplier is dominantly affected by permanent
shocks to its level (Rasche and Johannes, {1987]). If the hypothesis that

V2 reverts to its mean is correct, then 1InVB and 1nMULT2 satisfy the

definition of cointegrated time serjes.’ The Granger Representation

TThis is true regardless of whether 1nMULT2 is driven by
permanent or transitory shocks to its level. The monetary base is
used here to represent a whole class of potential policy
instruments. The causal linkage between the monetary base, M2, and
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Theorem (Engle and Granger [1987]) shows that there is a reduced-form error
correction model for all cointegrated variables. Hence the assumption that
1nV2 reverts to its mean is an assumption of the existence of a reduced-
form bivariate error correction model in 1nVB and 1lnMULT2. Estimates of
such an error correction model are given in Table 1 over the 55,1-88,1
sample period.? Note that the maximum lag in the VAR in the log
differences of VB and MULT2 is 2. A preliminary estimation was constructed
with a lag length of 4, but all estimated coefficients of lags greater than
2 were insignificant. When the lag length is truncated at 2 all
autocorrelation coefficients up to order 4 are less than .09 in absolute
value, and Ljung-Box tests reject the hypothesis of serial correlation in
the residuals of each equation. The error correction model includes both a
constant and a dummy variable (D82) which is zero through 81,4 and 1.0
thereafter. The latter variable is included because of the strong evidence
of a "shift iﬁ the drift" of base velocity in late 1981 (Rasche, [1987,
1988]). The equations for 1lnVB and 1lnMULT2 are estimated by seemingly
unrelated regression (SUR) and the cross equation differences of the

estimated constants and the estimated coefficients of D82 are constrained

thus prices implicit in the P* model is empirically valid for the
US, but may not be so in other countries, such as the UK. This
leads one to doubt the general applicability of the model.
However, it may be in other countries that a P" type relationship
holds for some other measure of money, such as Ml.

8The Monetary Base data are those from the St. Louis Federal
Reserve Bank Adjusted Monetary Base as published in August 1989.
The GNP and M2 data are those described above. It is not necessary
to assume that the monetary base is the monetary policy operating
variable that will be set by the Federal Reserve. Alternative
error correction models could be specified from the net monetary
base (net of seasonal and adjustment borrowings), total reserves,
or nonborrowed reserves. It is likely that such alternative error
correction structures will exhibit larger variances for both the
operating variable velocity (and hence nominal income) and
multipliers (and hence M2) than the variances for the monetary base
that are estimated here.
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to zero. This is required to be consistent with the assumption that 1lnv2
reverts to its mean and does not exhibit any trend (Engle and Yoo, ([1987]).
The estimated constant and the estimated coefficient on D82 are constrained
to sum to zero since there is substantial evidence that there is no drift
in base velocity after 1981. These three restrictions are not rejected by
the data.’

In the absence of definative evidence that 1lnV2 is not stationary it
is unlikely that these specifications are subject to serious "spurious
regression® problems. The significance of the estimated coefficients on
the lagged deviations of 1lnV2 from its sample mean [1nv2t_1-1nv'] in both
of the equations in Table I is an additional important test of the
hypothesis that V2 reverts to its mean. If these coefficients are not
signiticantiy different from zero, then there is no evidence for a
relationship between the price level and a policy instrument subject to
Federal Reserve control. If the hypothesis that these coefficients equal
zero cannot be rejected, then the model becomes a simple VAR in the log
first difference of VB and MULT2 and the data do not support the assumption
that the difference in these variables is stationary. Since this
difference is just the log of V2, such a conclusion is inconsistent with
the hypothesis that V2 reverts to its mean. The computed Likelihood-Ratio
test statistic for the test that the two coefficients on (1nvzt_1-1nv') are

jointly equal to zero is 12.82 and has an asymptotic 12(2) distribution.

SUR estimation is used for three reasons: 1. the
cointegration hypothesis requires cross equation restrictions on
the estimated coefficient of the error correction model; 2. we
want to test additional joint restrictions on other coefficients
that appear in separate equations and 3. an estimate of the
covariance matrix of the several error terms which appear in the
model is required to determine the stochastic properties of. real
output, inflation and nominal income.
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Thus, the hypothesis that 1nVB and 1lnMULT2 are cointegrated with
cointegration vector (1,-1) is not rejected at .015 level.

For a given path of the monetary base established (explicitly or
implicitly) by the Federal Reserve, the error correction model of 1lnvB
determines the resulting path of nominal GNP. For the same path of the
monetary base, the error correction model for 1nMULT2 determines the
resulting path of M2. Both paths are constrained by the assumption that V2
reverts to its mean by the structure of the error correction process. Thus
the V* model is implicitly a model of nominal income driven by the monetary
base. The error correction model is an explicit reduced form
representation of that implicit model.

The forecast of M2 from the M2 multiplier model and the path of the
monetary base can be combined with the estimate of V* and the value of
potential output to produce a forecast of P*. This forecast of P* can be
used with the HPS "Price-Gap" hypothesis to generate forecasts of the path
of the price level and inflation. The forecast path of real GNP is then
determined as the residual component of nominal GNP through the identity

(11) 1lnY = 1lnP = 1nQ

where Y is nominal GNP and Q is real GNP.10

10The structure, though not the equations, of the V* -- Price-
Gap model is closely related to the structure of the old "St. Louis
Model” (Anderson and Carlson, [1970]). An alternative model of
inflation proposed by Kuttner (1990) (equation (4)) also can be
combined with the error correction model for base velocity and the
M2 multiplier to produce a complete model of inflation, real
output, and nominal income, driven by assumed paths of the monetary
base and real potential output. The behavior of nominal income in
the two models is identical. Kuttner's analysis of the inflation
dynamics of his alternative model ({1990], pp. 13~16) is incorrect
because he fails to realize that real output is determined
endogenously in his model, and sets it exogenously at real
potential output.
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our data closely replicate the estimates of the OLS "Price-Gap"
equation reported by HPS. For the sample period 55,1-88,1 our estimates
are:

(12) AINF, = -.030{1nP._; = lnP",_;] - .643AINF, ; - .4458INF,._,
(.008) (.085) (.098)

- .262AINF._; - .O77AINF._, R? = .307
(.097) (.080) se = ,00392

We estimate all three stochastic equations of the income determination
model (the two error correction equations and the "Price-Gap"” equation) by
seemingly unrelated regression (SUR). The resulting estimates are given in
Table II.

The estimates of the equations for base velocity and the M2-Base
multiplier in Table II are quite similar to those in Table I. In addition
the estimated coefficients in the inflation rate equation are almost the
same as the OLS estimates for this equation reported in equation (12). The
estimated covariance matrix of the disturbances indicates a sizable
positive correlation (.38) between the disturbance in the base multiplier
equation and the disturbance in the inflation equation.

We examine the stability of these specifications in the subsamples 55-
73 and 74-88:1. This is not an equal split of the sample period, but it
isolates the pre- and post- 1973 oil shock experience in the two
subsamples. We add to each equation interaction terms for each of the (17)
regressors with a dummy variable that is zero through 73:4 and 1.0
thereafter. We then test the joint hypothesis that the coefficients on all
these interaction variables are zero. (This test is equivalent to a Chow
test.) The computed value of the test statistic is 8.99 which is

distributed as x? with 17 degrees of freedom.
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Thus, the tests do not reject the hypothesis that the coefficients are
stable between the pre- and post-oil shock sample periods.

We also estimate the model in Table II recursively for samples
beginning with 55:1 and ending with 74:1 through 88:1. We focus on
estimates of the three error correction coefficients. Recursive estimates
of these parameters are plotted in Figure I against their respective end of
sample dates. The behavior of these estimates as the sample size is
changed reflects the relative precision of the estimates in Table II. The
estimated error correction coefficient in the inflation equation is the
most stable; the estimated error correction coefficient in the real output
equation is the least stable. The major instability in the latter series
is from the middle of 1980 to late 1981. This period immediately follows
the credit control experience in the U.S. and we believe the unusual
behavior of GNP at that time is responsible for the transitory variability
of this parameter estimate. On the whole, we believe that the recursive
regressions substantially confirm the stability of the reduced form error

correction models.

III. Historical Accuracy and Porecast Accuracy of a V' == Price-Gap Income
Determination Model.

There are two practical applications for the P' model of income
determination: forecasting and the evaluation of policy. In this and the
following section we ignore the caveats we and others have articulated for
using this model in either of these ways, and generate forecasts and policy
evaluations. These exercises give some insight into the reactions of the
U.S. economy should the Fed implement monetary policy using this model.

We carry out these analyses under the assumption that the structure

and parameters of the model are invariant to the choice of policy rules for
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the monetary base, and thus recognize that any results derived are suspect.
But, we believe that the exercise has merit, since, while the Lucas
critique is of theoretical importance, many economists contend that it is
of little practical importance (McCallum, 1988), for a range of experiments
like that considered below.

Some characteristics of the model's accuracy during the recent post-
sample period is presented in the attached Figures 2-6 for the growth rate
of the monetary base, nominal GNP, the inflation rate, the price level, and
real GNP. These Figures show the (one-period ahead) model errors for the
post-sample period (88,2-89,2).

The important characteristic of these graphs is that the base velocity
equation does not catch the upward drift that is currently estimated to
have occurred in 88-89. During the five post-sample quarters, the mean
error in base velocity growth is 2.5 percent (annual rates) which is
significantly different from zero (t ratio = 3.,16). The errors of the
inflation equation on the other hand, are not significantly different from
zero.

The important question for forecasters is how accurate are the
forecasts that can be produced from such a model assuming that the paths of
the exogenous variables can be projected without error. Fortunately, the
log- linear structure of this model permits the derivation of the exact
formula for the estimated h-step (h>0) ahead forecast errors. This formula
is provided by Engle and Yoo [1987] (equation (10)) in terms of the moving
average representation of the time series model.l! This is easily

determined by (1) rewriting the model in the form of an autoregressive

llthe problem is to obtain the required polynomials (C(B),
where B is the lag operator) for the moving average representation
from the error correction representation in Table II.
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model in the (log) levels of the endogenous variables, (2) computing the
determinental polynomial of the autoregressive polynomial matrix in the lag
operator B, (3) factoring the determinental polynomial into a residual
polynomial times a factor with a unit root, and (4) writing the moving
average representation of the (log) differences of the endogenous variables
in terms of the inverse of this residual polynomial matrix and the adjoint
matrix of the autoregressive polynomial matrix.l? fThe implicit
autoregressive and moving average representations of the four variables
1nVB, 1nMULT2, 1lnP and 1nQ are given in lag operator notation in Table TIITI.

Several important characteristics of the model are readily observed in
the moving average representation in this Table. First, base velocity and
the M2-Base multiplier are affected only by shocks to the first two
equatijons in Table II, and are not affected by shocks to the "Price-Gap"
equation. Hence nominal income is not affected by "Price-Gap"™ shocks.
Second, the ultimate effect of a maintained change in the growth rate of
the monetary base is an equal change in the maintained rate of growth of
inflation and no change in the growth rate of real output (since
a33(1)7! = - ¢ “}). Third, for a predetermined path of the monetary base,
any "Price-Gap" shock has an equal and opposite effect on (the log of) real
output, since the path of nominal income is independent of such shocks.

The impulse responsge functions of inflation, real output growth and
nominal income growth for each of the three shocks (€., €5, and €3.) are
shown in Figures 7-9 respectively. In each case nominal income growth
reaches the zero steady state response quickly (the impact and steady-state
responses to the "price-gap" shock are zero as discussed above) while the

inflation and real growth responses exhibit very slowly damped oscillatory

125ee Engle and Yoo ([1987], equations (15) - (17)
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behavior. The cumulative response function of the inflation rate to a
maintained change in base growth is shown in Figure 10. The response
exhibits slowly damped oscillations around the steady state value of 1.0.
This is exactly the response found by Kuttner ([1990] (Figure 1).

A particularly useful property of this type of model is that the exact
forecast errors can be computed for the (log) level of each of the
endogenous variables, assuming that the exogenous variables follow
deterministic paths. The moving average representation in Table III has
exactly the form of the model in equation (1) of Engle and Yoo [1987]. The
h-step ahead forecast error variance is computed for this model in their
equation (10). Of particular interest are the one period and four period
(one year) ahead forecast error variances. The standard error of the one
quarter ahead forecast of base velocity (and hence nominal GNP) is 4.03
percent at annual rates. The standard error of the one year ahead forecast
of base velocity (and nominal GNP) is 2.20 percent. The first of these
error statistics merely reflects the annualized standard error of the error
correction model for 1lnVB in Table II. Base velocity has considerable
quarter to quarter noise which is not well forecasted by either its own
history or the history of 1nMULT2 as indicated by the low R? of this
estimated equation. For short-term forecasting, the model is only

marginally better than the random walk model of base velocity.l?

Iv. Policy
Under the assumption that the structure and parameters of the model

are invariant to the choice of policy rules for the monetary base,

13The one-quarter ahead and one-~year ahead standard errors of
the base-M2 multiplier forecasts are 2.19 and 1.87 percent
respectively at annual rates.



16
conditional expectations and variances (based on time t information) can be
computed. From Table III.B it can be seen that as h goes to infinity
(13) E¢[(1-B)1nP.,,] = [-8,a,, (B)+0,a,, (B) ]¢Bas;~1(B)R™1(B) Inv"
- ¢Bay;(B)E, [ (1-B) InBASE,,,}
+ ¢Bay3(B)E.[(1-B) 1nQPOT.,;]
= Ey[(1-B)1nBASE.,,] - E.((1-B)1lnQPOT,,,]
and:
(14) Et(l-B)antﬂ,] = [8;a,, (B)-6,a,, (B) ]¢Bay;~1(B)R™1 (B) 1nV*
+ [=81a,,(B) + 8,a;,(B) JR"I(B)1nv*
+ (#Bay3(B)+1)E.[ (1-B) InBASE, ]
- ¢Ba,3(B)E.[ (1-B) 1nQPOT,, ;]
= E¢ [(1-B)1nQPOT,,.].
Under a constant base growth rule, (1-B)1nBASE,,, = r. Assuming that
InQPOTy,, = 4 + §t, then Ey[(1-B)InPy,p] = r - § and E[(1-B)1nQ.,,} = § as
h goes to infinity.
The conditional variances E[((1-B)1nPyy,y, = 1 - S]2 and
E [ (1-B)1nQu,p = 8§12 are given by the variance of Ctinje = et+h-1|t in Engle
and Yoo [1987]. The estimates of these variances for h = 250 (by which
point they are close to the asymptotic estimates) for this model are 1.52 x
107% and 2.25 x 107* for (1-B)1lnP,,, and (1~B) 1nQ.,;, respectively. Thus
from the historical estimates we would ultimately expect a constant base
growth rule to produce a standard deviation of the inflation rate about 1.2
percent around r-§ and a standard deviation of real output growth of about
1.5 percent around §. The two are strongly negatively correlated; the
estimated variance of nominal income around r is only 1.08 x 10™¢ or a
standard deviation of only one percent.
These estimates can be used as a benchmark against which to judge

alternative deterministic monetary policy rules with feedback such as those
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proposed by Meltzer [1987] and McCallum [1988]. The representation of this
model augmented by the McCallum feedback rule is given in Table IV. The
model specified in Table IV includes a judgmental interpretation of
McCallum's "target path value of nominal income” (1nx'=). Here we have
interpreted this (in logs) as 1nX", = 1nP, + 1nQPOT, and assume that the
constant term in McCallum's policy rule is the growth rate of "target GNP";
i.e. (1-B) (1nf, + 1lnQPOT,).

The impulse response functions for nominal income growth in Figures 7-
9 suggest that the McCallum (or Meltzer) type feedback rules have little
stabilization potential with this model. The impulse response function for
base velocity growth given a constant base growth is just the nominal
income impulse response function for each shock. These functions suggest
that base velocity will exhibit very little autocorrelation in response to
either e¢;, or ¢,, shocks; i.e. it exhibits behavior close to a random
walk. If base velocity is exactly a random walk, then any feedback rule
which introduces variance into base growth will necessarily increage the
variance of nominal income, since it cannot reduce the variance of base
velocity.

Under the McCallum feedback rule the one-period ahead forecast error
for nominal GNP is equal to that of the constant base growth rule, 4.03% at
annual rates, since the feedback rule is only effective with a one peried
lag. The standard error of the one year ahead forecast of nominal GNP
under the McCallum rule is 1.45 percent or about 35 percent smaller than
the 2.20 percent under the constant base growth rule. The conditional
variances of the inflation rate, nominal and real GNP growth as the
forecasting horizon (h) goes to infinity are identical under this rule

compared to the constant base growth rule.
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The optimal response function for the monetary base can be
investigated for policies that seek 1) to minimize the expected mean
squared error (MSE) of real output growth around real potential output
growth, 2) to minimize the expected MSE of inflation around zero and 3) to
minimize the expected MSE of nominal income growth around real potential
output growth. The derivation of the base growth rules (relative to real
potential output growth) is outlined in Appendix A. The first conclusion
that emerges from this analysis is that optimal control of real output
growth is not feasible in this model. The implied response functions for
base growth to each of the three shocks are rational polynomials in the lag
operator, B, with the denominator polynomial in all three cases equal to
[a;371(B)¢B+1].% However aj3(1) = = ¢, 50 [a33"1(1)¢+1] = 0 and the
denominator polynomial has a unit root. Hence the expected mean square
error of real output growth around real potential output growth in this
model using the growth of the monetary base as the policy instrument fails
because of instrument instability.

In contrast, the minimization of the expected MSE of nominal income
growth around real potential output growth implies very simple response
functions for monetary base growth. These response functions are just the
negative of the polynomials in the first three columns of the first row of
the moving average matrix in Table III.B, excluding the zero order term in
each polynomial. These polynomials are the impulse response functions for
nominal income plotted in Figures 7-10, which damp to zero.

Finally, minimization of the expected MSE of inflation around zero is
feasible in this model. The optimal response functions for base growth are

rational polynomials in the elements of the third row of the moving average

li4The polynomials are defined in Table III.
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polynomial matrix in Table III.B. While these response functions appear
complicated, they damp quickly to zero given the estimated parameters of

the model as in Figures 11-13.

IV. Conclusions

This study examines the implications of P* type models of inflation.
Under the maintained hypothesis that M2 velocity is a stationary random
variable, it is shown that the P" models imply a complete model of income
determination conditional upon the behavior of the monetary base (and
perhaps alternative monetary policy instruments). The forecast error
statistics for the income determination models are computed for both
constant base growth and McCallum feedback, monetary policy rules.
Finally, it is shown that optimal control of real output growth is not
feasible in such models using the monetary base, but that reasonably simple
response functions are implied for the optimal control of nominal income
growth or inflation using the monetary base.

our findings highlight many troubling features of the P" model. But,
the model maintains its strong visceral appeal. Future research directed
at improving this approach to income determination models must explore
carefully alternative price reversion processes such as those suggested by

Kuttner (1990).
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CONSTANT
D82
AlnvVB,.,
AlnvVB,_,
AlnMULT2,_,
ALnMULT2,_,
1nv2, ,-1nv*

R2

VARIABLE

CONSTANT
D82

AlnvB,_,
AlnvB,_,
AlnMULT2,_,
AlnMULT2,_,
1nv2,_,-1nV*

R2

Restrictions:
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Table I

DEPENDENT VARIABLE AlnQVB

FROM 55: 1

.181

COEFFICIENT

.3480809E-02
.3480809E-02
.2280595
.3910711E-01
.1151299
.3590652
.4124354E-01

B .l142

UNTIL 88: 1

STAND. ERROR

.7200136E-03
.7200136E-03
.8279808E-01
.8475201E-01
.1443930

.1452109

.2921858E-01

.103E-01

Estimated Residual Autocorrelations

1
—.045855

2
—-.008085

-.039172

3 4

Q= .61 [x%; p = .96]

DEPENDENT VARIABLE AInMULT2
FROM 55: 1 UNTIL 88: 1

.42

COEFFICIENT

.3480809E~02

—.3480809E-02
—-.6333032E-01
—.1086692

.4387845
.1836402
.4888616E-01

R .40

STAND. ERROR

.7200136E-03
.7200136E-03
.4684530E-01
.4794321E-01
.8181721E-01
.8159270E-01
.1616503E-01

SEE .562E-02

Estimated Residual Autocorrelations

1
.011620

2
—.014840

3
.056297

Q = 1.18 [x%4; p = .88]

CHI-SQUARE(3) = 5.22

-.029918

4
-.072790

T-STATISTIC

4.834365
—4,834365

2.754406

—.4614298
.7973374
472715
.411552

N

T-STATISTIC

4.834365
-4.834365
-1.351904
—2.266624

5.362986

2.250694

3.024193

SIGNIFICANCE LEVEL .156



VARTABLE

CONSTANT
D82
AlnVB,_,
AlnVB,_,
AlnMULT2,_,
AlnMULT2, ,
1lav2,;~1nV*

R2

VARIABLE

CONSTANT
D82
AlnVB,_,
AlnVB,_,
AloMULT2,,
A1nMULT2, ,

1nv2, ,—-1lnv*

RZ

.18 B .14

.42 B .40
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Table II

DEPENDENT VARIABLE AlnVB

FROM 55: 1 UNTIL 88: 1
COEFFICIENT STAND. ERROR
.3400168E-02 .718057E-03

—.3400168E-02
.2203893
—.1445296E-01
—.4979653E-01
.3225544
—.4910907E-01

.7181057E-03
.7867077E-01
.8050591E-01
.1361809
.1366344
.2848073E-01

SEE .103E-01
Estimated Residual Autocorrelations

1 2 3 4
~.034685 —.022528 -.025436 -.029907

Q = .43 [xPwy, » = .98]

DEPENDENT VARIABLE AlnMULT2
FROM 55: 1 UNTIL 88: 1

COEFFICIENT STAND. ERROR

.3400168E-02

—.3400168E-02
—.6101330E-01

.7181057E-03
.7181057E-03
.4675357E~01

-.1099130 .4784931E-01
.4341700 .8162360E-01
.1898260 .8139773E-01

.4974711E-01 .1614885E-01
SEE .562E-02
Estimated Residual Autocorrelations

1 2 3 4
.015675 —.018003 .054273  -.,072068

Q= 1.16 [x%uy p = .88]

T-STATISTIC

4.734912
-4.734912
2.801413
-.1795268
—.3656645
.360711
.724291

N

T-STATISTIC

4.734912
-4.734912
-1.304998
~2.297065

5.319172

2.332080

3.080536



VARTABLE

1nP,,—1nP",_,
AINF
AINF
AINF
AINF

RZ .33
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Table II, Continued
DEPENDENT VARIABLE AINF
FROM 55: 1 UNTIL 88: 1
COEFFICIENT STAND. ERROR

.3088223E-01 .7363251E-02

-.6766859 .7875914E-01
—.4735397 .9071340E-01
—.2904600 .8908796E-01
-.1189892 .7326262E-01

R .31 SEE .393E-02

Estimated Residual Autocorrelations

Restrictions:

VARTABLE

AlnVB
AlnMULT?2
AINF

1 2 3 4
.013686 .002958 -.007391 -.057763

Q= .48 [x%u4, ; p — .98]

T-STATISTIC

-4.194103
—8.591840
-5.220174
-3.260373
-1.624146

CHI-SQUARE(3) = 3.17 SIGNIFICANCE LEVEL .37

COVARTANCE MATRIX OF RESIDUALS

AlnVB AlnMULT2
.10136E-03 .15977
.87926E-05 .29881E-04
.14818E-04 -.15917E-05

AINF

.38219
—.75613E-01
.14830E-04
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Table IV Contirued
C. Column Vectors of Moving Average Representation

;3 (B)R(B)
-~ (BRI (B)
{1 = (l-25)B) tagy™  (BYRI(B) $B(822(B) [as,B+as; (B)] + a31(B) [1-(1-as,)B}
(1-(1~854)B) ™ R71(B) [23(B) [ 1-B—a5 (B) =233 (B)#B{azy(B) [ assB+as; (B) | +az (B) [1~(1-a5.B) )
~{1=(L-a5,)B) IR (B) az;(B) {agBtag (B) )

—ay;(B)R7I(B)
a5, (B)R(B)
—(1~(1-a5)B} " lagy L (B)R™(B)$B{ 2z, (B) [as B+as; (B) | +ay; (B) [1-(1-as)B])
—{1-(1=a5,)B)"'R"(B) [#,2(B) { 1~B—as; (B) }—a3; (B)$B{a;3(B) [ a5 B+as  (B) ] +a1; (B) [1-(1-as,) B} )
{1=(1=a5)B)"'R"1(B) a;3(B) (a3, B+as; (B))

( E

0

a35°1(B) (1-B}

~a3371(B) (1-B}
0

0
0
~{1-(1-a5)B) ™" ayy~'(B)4B(1-B)
(1-(1-a3,)B)™" a3y" (B) {ayy(B)+$B) (1-B)
(1-(1-a5,)87{1~B)
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Appendix A

This appendix outlines the solution process for determining the optimal base growth &
rule. It follows Sargent (1987) chapter 17 closely, and the reader is referred to that
source for a more complete presentation. It should be noted at the outset that these
rules are optimal only if the economy can be described by a model with parameters that are
invariant across the possible feedback rules the monetary authority may use. While this
is a very strong assumption, the same analysis will apply if the monetary authority has
operated a single policy rule for a long time and is committed (perhaps by law) to
continue to use it forever.

Consider, for example, the policy which seeks to minimize the expected mean squared
error of inflation around zero. (All other policies are determined by a like method and
are left to the reader). First, from Table III.B, inflation is (gathering terms)

(1-B)1nP, = AlnP, = k + W(B)e;, + X(B)ey, + Y(B)ey, + Z(B)AlnBase,"

where k =

[[#Baz; (BYagy *(BYIR*(B) (~4;) — $Bayy(B)agy *(B)RI(B) [-9;] a3 (B) (1~
B)4B]1lnV* (A.1)

a constant
W(B) = ¢Bay1(B)asyt(B)R™I(B) = ¢5(B)
X(B) = ~$Bay (B)as, 2(B)R7I(B) = €3,(B)
Y(B) = aj"}(B)(1-B) - ¢33(B)
Z(BY = a;"'(B)¢B
and

AlnBase®, = (1-B)[1lnBase,~1nQPOT].
Define the rule governing the base as
AlnBase’, = b + ¥ rBlejeq + 3 viBlegq + & ¥Bleg
1m0 10 im0
= b + T(B)Bey, + U(B)Bey, + V(B)Bey, (A.2)

Combine (A.1l) and (A.2)

AlnP, = [b+Z(1)B] + [W(B) + {(B)]ey, + [X(B)+E(B)]eg + [Y(B)+p(B)]ea, (A.3)
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where T (B) -E B¢ = BZ(B)T(B)
£(B) - 5;1 €,B¢ = BZ(B)U(B)
p(B) = Ex piBt = BZ(B)V(B)

¢(B),£(B) and p(B) are all rational polynomials in the lag operator B.

The optimal policy rule (the values of b, the r;, v, and ¥, are defined by minimizing
the mean squared error (MSE) of inflation around zero. That is, since the MSE is defined
as E[AlnP]?, the monetary authority

minimize E[AlnP,]2

minimize E([AlnP, — EAlnP,]?) + (ElnP,)? (A.4)

vhich is composed of the bias squared, [AlnP,-EAlnP,]?, and the variance (EALnP,)2. These
two terms can be minimized independently.

Recall that

E(ege) = 0 Vi

E(ejpeiy) = 0 Vimi, tms

E(egpeg,) = Oy t=s, V1,§.
Then, from (A.3) the bias is

EAlnP, = k + Z(1)b.

To minimize the bias squared, set

EAlnP, = 0

-
b=- %
k1093
-~k

since Z(1) = 1,
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From (A.3) the variance is
@ @
var AlnP, = [w,2 + 2 (w; + {;)varey + [ + 2 (x; + £;)%]vare,
=1 =1
* Iyt B Gy + p)?ivares
m
+2{wyxgy + '§1 Wy + §3) (x5 + €5)]cov (€,¢3)
=
#2lwyo + 2 (w5 + 5 (s + py)leov (ere3)
ju
+2{Xpyy + '§1 (%5 + €5)(y5 + p3)]cov (eze3).
ju

Then, the authority

minimize var AlnP,
Cir €1y P31

The first-order necessary conditions are
2vare; [w;+{;] + 2cov(erep) x5 + €;] + 2 cov(egez) [y + p3] =0 Vi >0
2vare; {x;+¢;] + 2cov(ezey) [wy + §3] + 2 cov(ezes) [y; + ps] =0 Vi >0

2vare; [yi;+p;i] + 2cov(eqe;) [wy + §;] + 2 cov(ees) [x; + €] =0 Vi >0

Solving yields

3 = ~wy
§1 = —xg
Pi ™ Y1

which implies

BZ(B)T(B) = — £ w;B! » T(B) = -5 w,Bi
im]l -

a3~ (B)¢B?

BZ(B)U(B) = - § x;B' » U(B) = -§ x,Bt
i=]1 i=

a3371(B) B2

BZ(B)V(B) = — £ y;Bi » V(B) = 2 y,Bt
i=1 i=1

533_1 (B) ¢Bz

Since Z(B) = a3 (B)¢B
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Thus, from the optimal control rules we have
BZ(B)T(B) + W(B) = w,
BZ(B)U(B) + X(B) = xq
BZ(B)V(B) + Y(B) = yq.
Substituting into (A.3) yields
ALnPy = woey, + Xgeze + Yo€ae-

The same method can be used for deriving the other optimal control rules mentioned in the
text. Specifically, if the base rule is defined as

*
AlnBase, = b’ + BM(B)e,, + BN(B)ey, + BS(B)ey,

then the optimal control parameters for minimizing the MSE of real output growth around
potential are defined by

BM(B) = c41(B)
{a3a"1(B)$B+1]
BN(B) = c42(B)
[a321(B)¢$B+1]
BS(B) = c4a(B)
{2327 (B)$B+1]
However, since as™'(l) = —¢7!, a3 '(l)¢+l = 0. Therefore, the denominator of the control

rules has a unit root, and the optimal control of real output growth around potential
growth is not feasible because of instrument instability.
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Figure 3
Kea/ GNP 88:2-89.2
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Figure 5
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Price Level 88:2-89:2
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Figure 7
Impulse Respanses, Velocity Shock
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Figure 8
Impulse Respanses, Multiplier Shock
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Figure 9
Impuise Respanses, P-Gap Shock
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Figure 10
Cumulative Respanse, Base Growth
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Figure 11
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Figure 13
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