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ABSTRACT 
 

Entity state prediction mechanisms are used in 

order to reduce the number of packets required 

to maintain a consistent state in a Distributed 
Interactive Application (DIA). Typically in the 

case where the entity is representing a 

participant in a networked game this is achieved 

by continually comparing the output of a 

prediction algorithm against a player’s actual 
state. The state usually comprises position and 

orientation information in such cases. If the 

error exceeds a pre-defined threshold value, then 

an update packet is transmitted, which contains 

the player’s latest trajectory information. 

However, obtaining a suitable threshold value 
remains one of the key challenges that face such 

entity state prediction techniques. Furthermore, 

these methods can employ two different 

threshold metrics. These are spatial, which 

exploits distance measures, and time space, which 

uses both time and distance measures.  While a 
spatial threshold value can be arguably 

determined based on a prior knowledge of the 

gaming environment, it remains difficult, at best, 

to obtain a corresponding value for the time 

space threshold metric.  

 This paper proposes the novel use of user 

perception as a suitable means to solve the 

aforementioned problem. Here we employ the 

most common entity update mechanism, namely 

dead reckoning, and use perceptual feedback to 

determine suitable threshold values for both 
spatial and time space threshold metrics. This 

involves collecting linguistic feedback on short 

scenes recorded from a racing game. This 

technique is compared and contrasted with an 

alternative method whereby equivalent spatial 

and time space threshold values are obtained 

based on a common measure of inconsistency. 

Details of the experimentation and an analysis of 

the results are presented within. 
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1.  INTRODUCTION 

Distributed Interactive Applications (DIAs) 

have to continually deal with the limitations of their 

underlying networks, i.e. latency, jitter and network 

congestion. As a result, it is desirable to minimise 

the number of packets that must be sent across a 

network in order reduce the possibility of remote 

users having an inconsistent view. To achieve this, 

prediction mechanisms are used to model remote 

entities. 

One of the most popular techniques used to 

date is the entity state prediction mechanism known 

as dead reckoning. This was introduced in the IEEE 

Distributed Interactive Simulation (DIS) standard 

[1] and has become the standard for commercial 

games, such as Doom, Quake and Tribes II. Dead 

reckoning is a method of predicting a user’s future 

actions based on their dynamics, which results in the 

transmission of less data to remote nodes. The most 

basic of these is to set the new position and velocity 

to the transmitted position and velocity, which is 

known as first order dead reckoning and is 

employed in this paper. Further information on dead 

reckoning can be found in [1,2]. Other packet 

reduction techniques used in DIAs include the area 

of interest management, Hybrid Strategy Model, 

data compression and dynamic load balancing [3-6]. 

One of the key factors in all entity update 

methods is when to send the updated information. 

For a dead reckoning model an update is sent once a 

certain tolerance value has been exceeded. This 

value is known as the error threshold. Typically this 

threshold value is arbitrarily chosen and generally 

reflects what ‘appears’ to be appropriate with 

respect to the underlying application.  

Traditionally the most popular error metric 

has been spatial distance. Spatial distance compares 

the distance between a player’s actual position and 

their local model. If the distance exceeds the error 

threshold value then an update is sent. The spatial 

metric is popular as it is simple to implement and 

the game environment can be used as a reference 



point to determine suitable error thresholds. For 

example, a narrow racing track may require a tighter 

threshold than a wide track, as an entity leaving the 

track would be apparent sooner on the narrow track.  

However, the spatial metric does not take 

the duration of an error into consideration, which led 

to the development of the time space metric [7]. For 

example, if the model continually has an inaccuracy 

just below the error threshold the spatial metric will 

allow this error to continue indefinitely. As the time 

space metric takes the duration of an error into 

consideration it will eventually send an update 

packet to correct this scenario, resulting in greater 

overall consistency.  

Time space error refers to the cumulative 

spatial error over time. Figure 1 shows the time 

space error over one time period, where D 

represents the spatial distance error. Effectively this 

is the area under the curve between the local 

player’s actual position and the local model over 

time. Similar to the spatial metric, the cumulative 

error is then compared to an error threshold. The 

biggest problem with the time space metric is 

determining a suitable error threshold. Unlike the 

spatial metric the environment alone cannot be used 

as a reference point for potential thresholds.  

 

 
 

Figure 1: Time Space Metric Error  

 

This paper proposes the novel use of 

perceptual feedback to determine equivalent spatial 

and time space error thresholds. We describe an 

experiment that collects relevant user perceptual 

feedback. From the collected perceptual feedback a 

lookup table is generated, for equivalent spatial and 

time space thresholds. Recent research has proposed 

a method of determining equivalent threshold values 

based on a common measure of inconsistency, 

namely the mean squared error [8]. A similar lookup 

table is generated using the mean squared error. The 

results for the two methods are compared and some 

possible outcomes are discussed. 

The remainder of the paper is structured as 

follows. Section 2 details the design and 

implementation of the experiment used to collect 

information pertaining to the end-user perceptual 

experience. The resulting data is then analysed and 

discussed in section 3. Finally some conclusions and 

suggestions for future work are given in section 4.  

 

2. EXPERIMENTATION 

This section details the design and 

implementation of the experiment used to gather 

user perceptual feedback. The primary design goal 

was to examine the performance of the dead 

reckoning model for both spatial distance and time 

space error metrics. 

 

2.1 Video Clips  

 

In order to obtain the required feedback, a 

set of game-like video clips was created. This was 

achieved by recording the movements of a computer 

controlled entity or ‘bot’ under various conditions. 

The first scenario was created under ideal 

conditions, with no error or latency, and was used as 

the benchmark video. Each subsequent video 

consisted of the bot modelled with dead reckoning 

under various error thresholds. The user was then 

asked to compare the models with the original 

benchmark video. Feedback from our previous work 

[9] suggested that subjects find it difficult to 

continually recall the benchmark video. As a result 

the benchmark video was repeated after every four 

model videos. The latency was set to 200ms, with 

random jitter set to between ±10% of the latency 

value. These latency and jitter values were chosen as 

it has been shown that the average transmission 

times fall within the region of 200ms [10]. 

One of the main challenges encountered in 

designing this experiment was the creation of a 

suitable track for the bot to race around. In order to 

avoid subject fatigue during the experiment, due to 

long video durations, the track had to be relatively 

short. This resulted in an elliptical course being 

chosen. The Torque Game Engine [11] was used to 

create the track and scenarios used in this 

experiment. Most of the game measurements, such 

as the spatial distance, are calculated in Torque 

Game Units (tgu). As a reference point the track 

used in this experiment is approximately 100 tgu in 

width, 250 tgu in length and the two straight 

sections are about 30 tgu wide. Finally, the various 

games scenes where recorded as AVI files using 

FRAPS (http://www.fraps.com), a utility designed 

for recording game footage. 

 

2.2 User Feedback 

 

Previously our work in [9] highlighted bot 

smoothness, or ‘jumpiness’, as being a challenge in 

rating a video clip. A bot may be very accurate but 

nevertheless appear to ‘jump’ from time to time, 

which resulted in lower ratings. As a result users 

were asked to rate the model using two measures, its 

smoothness and motion accuracy. It was hoped that 

this would result in more realistic results for the 

motion accuracy score. 



Linguistic variables were used to obtain 

subject feedback. The player smoothness and 

motion accuracy variables were rated as Extremely 

Poor, Very Poor, Poor, Okay, Good, Very Good and 

Excellent. A seven-point linguistic scale was chosen 

in order to avoid difficulties in quantifying specific 

levels of accuracy and it has been shown that 

humans can reliably distinguish between seven 

distinct states [12].  

Subject feedback from our previous 

experiment indicated that staying focused for the 

duration of an experiment was difficult. In order to 

avoid this, the duration of the experiment was kept 

under fifteen minutes and subjects were asked to 

give continuous feedback about the overall quality 

of the scene, both player smoothness and motion 

accuracy. The continuous feedback was recorded on 

a discrete sliding scale from Poor to Good. A 

smaller scale was chosen for the continuous 

feedback in order to make it quick and easy for 

subjects to update their score. This also gave a 

greater level of interaction in the experiment, which 

more closely resembles the experiment source 

material, and would potentially allow for closer 

examining of a scene to determine when and for 

how long a subject’s perception was altered. The 

application used in this experiment is shown in 

Figure 2. 

 

 
Figure 2: Java Media Data Recorder playing the 

Elliptical Racing track 

 

2.3 Experimental Set-up 

 

Before the experiment began each subject 

had the task explained to them and were shown a 

demonstration video to illustrate the tasks involved 

in the experiment. In order to avoid biasing the 

results, the difference between the two error metrics 

was not explained to the subjects. The tests began 

once the subject felt confident they understood the 

requirements for the experiment. The experiment 

consisted of the subject watching a video clip once, 

whilst giving continuous feedback. In addition, at 

the end of each video, participants were asked to 

rate Player Smoothness and Motion Accuracy. 

There was a total of twenty-eight video 

clips per experiment. A demonstration video was 

also shown to participants to ensure that they 

understood the experiment. Six of the experiment 

videos were benchmark videos, twenty were unique 

models and two were duplicates. Each video lasted 

approximately twenty seconds and the entire 

experiment lasted approximately fifteen minutes. 

 

3. ANALYSIS AND DISCUSSION 

A total of ten subjects took part in this 

experiment, consisting of six males and four 

females, ranging in age from fifteen to thirty five. 

All subjects had some level of experience with using 

a computer, while six had some experience with 

computer games and four had experience with 

networked games. 

The spatial thresholds used in the 

experiment were 6, 7.5, 9 and 10.5 tgu. These 

thresholds were chosen as our previous work 

indicated that the perceptual ratings would fall 

below acceptable within this region. A more 

explorative set of time space error thresholds were 

chosen, specifically 1, 2, 3, 4, 5 and 7 tgu. 

 

3.1 Experimental Results for Discrete Feedback  

 

This section is representative of the data 

collected from the subjects’ ratings after viewing a 

video and does not take continuous feedback into 

consideration. Figure 3 represents the perceptual 

rating for the motion accuracy. For the four spatial 

thresholds, 6, 7.5 9 and 10.5 tgu, the perceptual 

rating is extracted from the graph in Figure 3a. 

These perceptual ratings are then applied to the 

motion accuracy scores for the time space metric in 

Figure 3b.  For example, Figure 3a highlights the 

perceptual rating for the spatial threshold of 7.5 tgu, 

which has a rating just above ok. The equivalent 

perceptual rating in Figure 3b gives a time space 

error of 2.35 tgu. From this information a perceptual 

lookup table can be generated that relates equivalent 

spatial and time space thresholds, which can be seen 

in Table 1. 

It should be noted that the data for time 

space graph is not entirely smooth. This is most 

likely a result of the relatively low number of 

participants and should be taken into consideration 

when analysing these results. Increasing the number 

of participants should ameliorate this issue.   

For comparison purposes, a lookup table is 

also determined according to [8]. The mean squared 

error is calculated by summing the absolute spatial 

inconsistency at every time interval and taking its 

average over the total time. Larger error thresholds 

will naturally result in larger mean squared errors. 

Figure 4a shows the mean squared error for the 

spatial metric. The mean squared error for each of 



the four threshold values is highlighted. Figure 4b 

highlights the mean squared error for the time space 

threshold. By taking the corresponding spatial mean 

squared error and plotting it on this graph, 

equivalent spatial and time space thresholds can be 

determined and a lookup table generated. Table 2 

represents the lookup table generated from Figure 4 

and excludes the spatial threshold of 10.5 as it goes 

beyond the region covered in Figure 4b. 

Interestingly only the smallest equivalent 

threshold in Table 1 corresponds to it’s equivalent in 

Table 2, with values of 1.6 and 1.8 tgu respectively 

for the spatial threshold of 6 tgu. It is possible that 

for above average perceptual ratings the lookup 

tables will match. In this case both the spatial and 

time space graphs are likely to exhibit a steeper 

decline in perceptual rating, from excellent to just 

above ok, for a spatial threshold from 0 to 6 tgu. 

However, for large error thresholds there 

does not appear to be a correlation between the two 

lookup tables. For example, a spatial error of 7.5 

gives a time space error of 2.35 in Table 1 and 4.1 in 

Table 2, which is a reasonable difference. It should 

be noted that the perceptual rating has a defined 

scale; from excellent to extremely poor, while the 

mean square error does not and will continue to 

grow as the error threshold increases. In other 

words, no matter how large the error threshold gets 

the perceptual feedback would be limited to 

extremely poor while the mean squared error would 

become very large. 

 

 

 

 
(a) 

 

 
(b) 

Figure 3: Plot of the Motion Accuracy Rating for 

the (a) Spatial and (b) Time Space metrics 

 

Spatial Perceptual Rating Time Space 

6 Just Above Ok 1.6 

7.5 Just Below Ok 2.35 

9 Between Ok/Poor 2.85 

10.5 Poor 4.5 

Table 1: Lookup table for Perceptual Ratings 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 4: Plot of the Mean Squared Error for the 

(a) Spatial and (b) Time Space metrics 

 

Spatial Mean Squared Error Time Space 

6 8.8 1.8 

7.5 9.5 4.1 

9 9.8 5.9 

Table 2: Lookup table for Mean Squared Error 

 

 

 



Ultimately it is the region that garners 

above acceptable error thresholds that is of use to 

developers. The mean squared error can 

theoretically generate equivalent time space values 

for very large spatial thresholds, but they would 

result in poor end user experience and therefore be 

undesirable.  Therefore it is of most interest to 

examine the relationships between the error 

thresholds that garner above acceptable perceptual 

ratings. Clearly future work is required to examine 

if smaller thresholds will produce similar lookup 

tables. 

Additionally, previous work suggested 

that the perceptual rating would fall below 

acceptable around 8 tgu for a fast paced entity 

using a spatial metric [8]. In this experiment the 

motion accuracy falls below acceptable just before 

7.5 tgu, which is in keeping with our previous 

findings. The entity used in this experiment was 

slightly slower than that of our previous work and 

as a result slightly lower acceptable spatial 

threshold is to be expected. 

 

3.2 Experimental Results for Continuous Feedback  

 

This section focuses on the continuous 

data collected during each video. The results are 

compared to those presented in Section 3.1. During 

each video the continuous feedback could be at one 

of three ratings, Poor, Ok, or Good. The average 

percentage time per each score was calculated for 

each scenario and is shown in Table 3. 

 

Scenario Good % Ok % Poor % 

Spatial 6 55.72 38.59 5.68 

Spatial 7.5 58.08 27.46 14.44 

Spatial 9 54.58 34.01 11.4 

Spatial 10.5 50.16 26.46 23.36 

Time Space 1 70.87 26.69 2.42 

Time Space 2 54.86 35.3 9.82 

Time Space 3 51.17 24.5 24.31 

Time Space 4 52.44 26.08 21.46 

Time Space 5 48.69 15.51 35.78 

Time Space 7 49.92 15.35 34.72 

Table 3: Breakdown of the Average Time Duration 

for each Continuous Rating Scenario 

 

As expected the amount of time with a 

poor rating increases as the thresholds increase. 

Interestingly for the spatial metric the amount of 

time with a poor rating never goes above 24%, 

whereas for a time space threshold anything above 

and including 3 tgu gives a higher percent for the 

poor rating. Surprisingly the amount of time with a 

good rating remains high regardless of metric or 

threshold, generally above 50%. Analysing the data 

further reveals that most of the negative ratings 

occur around the two corners of the track. A high 

rating is maintained during the straights and into 

the early part of each bend. 

Despite spending a relatively long period 

of time with an acceptable rating, a subject may 

rate the player smoothness and motion accuracy 

scores as unacceptable. For example, a spatial error 

of 9 tgu gives a perceptual rating of poor for the 

motion accuracy but the continuous feedback is 

rated as acceptable 90% of the time. This would 

indicate that if a large enough error occurs in a 

simulation, even for a small amount of time, it 

significantly impacts an end user’s experience. This 

highlights the need for appropriate error thresholds. 

If an error threshold is chosen on the grounds that it 

‘appears’ suitable, without any research into the 

end user experience, then it may be acceptable for a 

large proportion of the time but still be considered 

a bad system and ultimately be dismissed by 

potential users. 

 

4. CONCLUDING REMARKS 

This paper has shown how psycho-

perceptual measures can be used as a tool to garner 

feedback on various entity update scenarios. Dead 

reckoning was examined for both spatial and time 

space metrics under various error thresholds. The 

resultant perceptual feedback was analysed, which 

highlighted some interesting issues.  

In keeping with our previous work, the 

perceptual acceptability for a spatial metric falls 

between 6 and 7.5 tgu for this application. A 

perceptual lookup table was created that outlined 

equivalent spatial and time space thresholds. 

Similarly, the mean squared error for both the 

spatial and time space metrics were calculated. The 

two lookup tables were then compared. 

Except for the smallest threshold value the 

two lookup tables did not match. For large error 

thresholds the finite nature of the perceptual scale 

results in an upper limit on the potential perceptual 

rating, whereas the mean squared error can always 

increase. This results in a perceptual graph that will 

decrease until it reaches its upper limit, extremely 

poor, whereas the graph for the mean squared error 

will always increase. Interestingly the smallest 

threshold value appears to match. This may 

indicate that, for above acceptable ratings, the 

lookup tables will match, which would be the area 

of most interest to developers. Future work will 

examine smaller error thresholds to determine if 

this is the case. It is, to a degree, irrelevant to 

calculate the mean squared error for large error 

thresholds if it is going to be considered extremely 

poor by the end user. 

Finally the continuous feedback data was 

analysed. As expected larger error thresholds 

resulted in more time with a poor rating. However, 

for both metrics, the amount of time with at least an 

acceptable rating never falls below 64%, yet the 

resulting player smoothness and motion accuracy 



scores were considered unacceptable. It appears 

large errors, even for a relatively small period of 

time, result in dissatisfaction for the end user. Error 

thresholds that are arbitrarily chosen may work 

most of the time but may ultimately result in a poor 

end user experience.  Also as such thresholds are 

typically static, there is a need for research into 

adaptive error thresholds, which future work will 

focus on. 
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