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Revisiting the MIMO Capacity with Per-antenna

Power Constraint: Fixed-point Iteration and

Alternating Optimization
Thuy M. Pham, Student Member, IEEE, Ronan Farrell, Member, IEEE and Le-Nam Tran, Senior Member, IEEE

Abstract—In this paper, we revisit the fundamental problem of
computing MIMO capacity under per-antenna power constraint
(PAPC). Unlike the sum power constraint counterpart which
likely admits water-filling-like solutions, MIMO capacity with
PAPC has been largely studied under the framework of generic
convex optimization. The two main shortcomings of these ap-
proaches are (i) their complexity scales quickly with the problem
size, which is not appealing for large-scale antenna systems,
and/or (ii) their convergence properties are sensitive to the
problem data. As a starting point, we first consider a single user
MIMO scenario and propose two provably-convergent iterative
algorithms to find its capacity, the first method based on fixed-
point iteration and the other based on alternating optimization
and minimax duality. In particular, the two proposed methods
can leverage the water-filling algorithm in each iteration and
converge faster, compared to current methods. We then extend
the proposed solutions to multiuser MIMO systems with dirty
paper coding (DPC) based transmission strategies. In this regard,
capacity regions of Gaussian broadcast channels with PAPC are
also computed using closed-form expressions. Numerical results
are provided to demonstrate the outperformance of the proposed
solutions over existing approaches.

Index Terms—MIMO, fixed-point iteration, alternating opti-
mization, minimax duality, water-filling, dirty paper coding.

I. INTRODUCTION

Since its invention in the mid-90s [3], [4], multiple-input

multiple-output (MIMO) technology has been adopted in all

modern mobile wireless networks. From a system design

perspective, one of the most fundamental problems is to

compute the capacity of the system of interest. For a single

user MIMO (SU-MIMO) channel, pioneer studies proved that

the capacity can be achieved by Gaussian input signaling

[3], [4]. For multiuser MIMO (MU-MIMO) scenarios, the

seminal work of [5] showed that dirty-paper coding (DPC)

in fact achieves the entire capacity region of Gaussian MIMO

broadcast channel (BC). Since finding the capacity of MIMO

channels is computationally expensive in general, one is also

interested in near-capacity achieving transmission strategies
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such as successive zero-forcing DPC (SZF-DPC) [6], [7], for

which the achievable rate region is much easier to characterize.

The capacity of MIMO systems is investigated along with

a certain type of constraint on the input covariance matrices.

To this end, a majority of the related literature assumes a

sum power constraint (SPC) as it usually leads to efficiently

computational algorithms. In particular, under perfect channel

state information (CSI) at both transmitter and receiver, the

capacity of a SU-MIMO channel is found using the closed-

form water-filling (WF) algorithm [3], [4]. In [8], Yu et al.

presented an iterative WF (IWF) algorithm to compute the sum

capacity for a Gaussian vector multiple access channel (MAC).

In [9], Jindal et al. proposed sum power IWF to determine the

sum capacity of Gaussian MIMO BCs by exploiting the MAC-

BC duality. The entire capacity region of MIMO-BCs with a

SPC was characterized in [10], [11], using conjugate gradient

projection (CGP)- and pre-conditioned gradient projection-

based approaches, respectively.

In reality, each antenna is associated with a separate power

amplifier, each having a different dynamic range. As such,

per-antenna power constraint (PAPC) is of more practical

importance. If a sum power constraint is considered, some

antennas may be allocated a power level that is beyond their

dynamic range of the associated power amplifier, depending

on fading situations. This will result in nonlinear distortion

that has a detrimental impact on the whole system. In [5],

it was shown that DPC still achieves the full capacity region

of the MIMO BC under PAPC. However, finding the DPC

region with PAPC is more numerically difficult than with a

SPC. In fact, no closed-form design has been reported for

the computation of the capacity region of the MIMO BC

subject to PAPC. For this reason, numerous research endeavors

have been made to understand performance limits of various

sub-optimal transmission strategies such as zero-forcing (ZF)

beamforming, minimum mean square error (MMSE), and

SZF-DPC [12]–[19].

The capacity of a SU-MIMO channel with PAPC was

studied in [20], [21]. In particular, the author in [20], [21] pro-

posed an iterative mode-dropping algorithm based on closed-

form expressions to find the optimal input covariance. As

shown later, this algorithm still requires high computational

complexity and its convergence proof is not complete. Also,

the mode-dropping algorithm assumes a full-rank channel

which hardly holds true in various realistic conditions.

To the best of our knowledge, the only attempt to charac-

terize the entire capacity region of the MIMO BC subject to

PAPC was made in [22]. Specifically, the authors established
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a modified duality between the MAC and BC and transformed

the input optimization problem in the BC into a minimax

optimization problem in the corresponding MAC. Then the

resulting program is solved by a standard barrier interior-

point routine. Similarly, Tran et al. also proposed customized

interior-point methods to study the achievable rate region of

SZF-DPC in [18], [19]. However, the complexity of such

second order optimization methods increases quadratically

with the number of input dimensions, which is not practically

appealing for large-scale antenna systems (also known as

massive MIMO).

In this paper, we consider the problems of finding the

capacity of various MIMO settings subject to PAPC, ranging

from the SU-MU to MIMO BC. The goal is to arrive at closed-

form design for all considered problems which are particularly

useful for analyzing large-scale systems. In particular, our

specific contributions include the following.

• For a SU-MIMO channel we proposed two fast-

converging low-complexity iterative algorithms to com-

pute the optimal input covariance matrices under PAPC.

The first method is based on manipulating the optimality

conditions of the considered problem and fixed-point

iteration. The second one relies on the well-known MAC-

BC duality but the resulting minimax problem is solved

by a novel alternating optimization (AO) algorithm.

Specifically, we proposed to optimize the upper bound

of the objective with respect to a coordinate, eliminating

the zigzag effect likely occurring in a pure AO method.

Both proposed methods are provably convergent without

any specific assumption on the channel matrix. Extensive

analytical and numerical results are provided to demon-

strate the superior performance of the proposed method,

compared to the mode-dropping algorithm in [20], [21].

• We also characterize the entire capacity region of the

MIMO BC, which was studied in [22]. For the MIMO

BC, the weighted sum capacity is neither a concave nor

convex function of the covariance matrices. Thus, the

MAC-BC duality is invoked to obtain a convex formula-

tion in the dual MAC, which is given in the form of a

minimax optimization problem [22]. Instead of applying

a standard interior-point method to find a saddle point of

the resulting minimax program, we propose a closed-form

design based on AO, similar to the case of SU-MIMO.

The idea is to leverage the fact that the weighted sum

capacity problem under a SPC can be solved by closed-

form expressions in combination with a CGP method

[10].

The remainder of the paper is organized as follows. The

capacity of SU-MIMO is described in Section II. Section III

derives closed-form expressions for the capacity region of a

Gaussian MIMO BC while Section IV presents the numerical

results. Finally, we conclude the paper in Section V.

Notation: Standard notations are used in this paper. Bold

lower and upper case letters represent vectors and matrices,

respectively. I defines an identity matrix, of which the size can

be easily inferred from the context; CM×N denotes the space

of M ×N complex matrices; H† and HT are Hermitian and

normal transpose of H, respectively; Hi,j is the (i, j)th entry

of H; |H| is the determinant of H; rank(H) and null(H)
stand for the rank of H and a basis of the null space of

H, respectively; diag(x) denotes the diagonal matrix with

diagonal elements being x; diag(H), where H is a square

matrix, returns the vector of diagonal elements of H. The no-

tation x⊙y denotes the Hadamard product (i.e., the entrywise

product) of x and y. The notations A � B and A ≻ B mean

that (A−B) is a positive semidefinite and definite matrix,

respectively. Furthermore, we denote [x]+ = max(x, 0), 0n

and 1n to be a row vector of size n with all zeros and ones,

respectively. The Euclidean and Frobenius norms are denoted

by || · ||2 and || · ||F , respectively.

II. CAPACITY OF SU-MIMO

A. System Model

Consider a SU-MIMO channel, where the transmitter is

equipped with N antennas and the receiver with M antennas.

The channel matrix is represented by H ∈ CM×N , which is

assumed to be known perfectly at the transmitter. The received

signal is given by

y = Hs+ z (1)

where s is the vector of transmitted symbols of zero-mean,

and z ∈ CM×1 is the background noise with distribution

CN (0, IM ). Let S = E{ss†} be the input covariance matrix

for the transmitted signal. We are interested in finding the

capacity of the above channel with PAPC, which is formulated

as

maximize
S�0

log |I+HSH†| (2a)

subject to [S]i,i ≤ Pi, i = 1, 2, . . . , N (2b)

where Pi is the maximum power constraint on the ith antenna.

The problem (2) is a convex program, and can be solved by

general-purpose optimization software.1 However, the compu-

tational complexity of these convex solvers, which are usually

based on interior-point methods, increases rapidly with the

number of transmit antennas N , thereby not suitable for large-

scale MIMO systems. Herein, we propose two efficient itera-

tive algorithms which will be numerically shown to achieve a

superlinear convergence rate.

B. Proposed Algorithms

1) Fixed-point Iteration

We first note that the Slater condition is satisfied for (2) and

thus strong duality holds. Now, consider the partial Lagrangian

function of (2), which is given by

L(S,Λ) = log |I+HSH†| − tr(Λ(S−P)) (3)

where P = diag(P1, P2, . . . , PN ), and Λ =
diag(λ1, λ2, . . . , λN ) is the diagonal matrix comprising

the dual variables for the N power constraints in (2b). The

dual objective of (2) is

g(Λ) = max
S�0

L(S,Λ). (4)

1More specifically, (2) in the current form is in fact a MAXDET program
[23] but can be reformulated as a semidefinite program (SDP) [24, p. 149]
for which dedicated solvers are more available.
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To find the optimal solution of (2), we only need to consider

the case where Λ ≻ 0, i.e, λi > 0 for all i, otherwise

g(Λ) is unbounded above, which cannot be the dual optimal

of (2). This can be easily seen by contradiction. Suppose

λi = 0 for some i. Then create a diagonal matrix S =
diag([0, . . . , 0, αi, 0, . . . , 0]

T ). Accordingly, we can check that

L(S,Λ) = log(1 + αi

∑M
j=1 |Hj,i|2) → ∞ if αi → ∞.

Moreover, for a given Λ ≻ 0, we can solve (4) efficiently as

described next. Let us denote Ŝ = Λ1/2SΛ1/2. Then finding

S to maximize L(S,Λ) amounts to solving the following

problem

maximize
Ŝ�0

log |I+HΛ−1/2ŜΛ−1/2H†| − tr(Ŝ) (5)

The above problem admits the solution based on water-

filling algorithm with fixed water level [25]. Explicitly, let

VΣV† = Λ−1/2H†HΛ−1/2 be the eigenvalue decomposition

(EVD) of Λ−1/2H†HΛ−1/2, where V ∈ CN×N are unitary

matrix, and Σ ∈ C
N×N is a matrix of (possibly zero)

eigenvalues in decreasing order of Λ−1/2H†HΛ−1/2. Let

r = rank(HΛ−1/2), and ρi, i = 1, . . . r, be r positive

eigenvalues of Λ−1/2H†HΛ−1/2. Then, Ŝ can be found as

Ŝ = V diag([1−
1

ρ1
]+, . . . , [1−

1

ρr
]+,0N−r)V

†. (6)

Consequently, S is given by

S = Λ−1/2V
(
diag([1−

1

ρ1
]+, . . . , [1−

1

ρr
]+,0N−r

)
V†Λ−1/2.

(7)

As a closer look at (7), let s be the largest number such that

1− 1
ρs

> 0. Then, S is equivalently written as

S = Λ−1/2V diag(1−
1

ρ1
, . . . , 1−

1

ρs
,0N−s)V

†Λ−1/2. (8)

Since VV† = I, S is further simplified as

S = Λ−1 −Λ−1/2V diag(
1

ρ1
, . . . ,

1

ρs
,1N−s)V

†Λ−1/2. (9)

We can prove that at the optimum, [S]i,i = Pi for all i =
1, . . . , N . Thus, in order to find optimal S, we need to find Λ

such that
[

Λ−1 −Λ−1/2V diag(
1

ρ1
, . . . ,

1

ρs
,1N−s)V

†Λ−1/2

]

i,i

= Pi.

(10)

Since Λ is a diagonal matrix, (10) equals to
(

I−
[
V
(
diag(

1

ρ1
, . . . ,

1

ρs
,1N−s

)
V†

]

i,i

)[
Λ−1

]

i,i
= Pi.

(11)

Let Ψ(λ̃) =
[
V
(
diag( 1

ρ1
, . . . , 1

ρs
,1N−s

)
V†

]
. Then, we can

rewrite (11) in the form of a nonlinear system as

λ̃− diag(Ψ(λ̃))⊙ λ̃ = p (12)

where λ̃ , [λ−1
1 , λ−1

2 , . . . , λ−1
N ]T , p , [P1, P2, . . . , PN ]T .

It is easy to see that
[

Ψ(λ̃)
]

i,i
=

∑N

j=1
ρ̃j |vi,j |

2 (13)

where ρ̃j =
1
ρj

< 1 for 1 ≤ j ≤ s, and ρ̃j = 1 for s < j ≤ N .

Since
∑N

j=1 |vi,j |
2 = 1, it holds that Ψ(λ̃) ≺ I for all λ̃ ≻

0, and (12) is thus well defined. Unfortunately, there is no

analytical solution to (12), mostly due to the fact that Ψ(λ̃)
is a nonlinear function of λ̃. However, (12) already suggests

a way to find λ̃ iteratively as follows

λ̃n+1 = p+ diag(Ψ(λ̃n))⊙ λ̃n , I(λ̃n). (14)

In fact, (14) is written in a fixed-point iteration form and its

convergence is stated in the following lemma.

Lemma 1. The iterations in (14) converge to the unique fixed-

point of (12), thereby solving (2).

The proof of Lemma 1 is provided in Appendix A. The key

is to show that I(x) is a standard interference function.

We can see that the fixed-point algorithm based on (14)

requires iteratively performing EVD of Λ−1/2H†HΛ−1/2. A

simple way is to treat it as a new matrix at each iteration,

but this is not computationally efficient. Exploiting the fact

that the channel matrix H remains the same during the whole

iterative process, we present a way to compute the EVD of

Λ−1/2H†HΛ−1/2 more efficiently. To this end, let H = GR,

where G is unitary and R is upper triangular, be a QR factor-

ization of H. Then we can write HΛ−1/2 = (GR)Λ−1/2 =
G(RΛ−1/2). Since Λ is diagonal, RΛ−1/2 is also an upper

triangular matrix. Now let RΛ−1/2 = UΣ̄V† be the SVD of

RΛ−1/2. Then the EVD of Λ−1/2H†HΛ−1/2 is simply given

by VΣ̄
2
V†. We remark that SVD computation for an upper

triangular matrix is much cheaper than for a full matrix [26,

p. 492], which leads to a huge reduction in the computation

cost of the proposed algorithm. The proposed algorithm based

on fixed-point iteration is outlined in Algorithm 1.

Algorithm 1 Proposed solution based on fixed-point iteration.

Input: Λ0 diagonal matrix of positive elements, ǫ > 0.

1: Set n := 0 and τ = 1 + ǫ.
2: Perform QR decomposition of H: H = GR, where G is

a unitary matrix and R is an upper triangular matrix.

3: while τ > ǫ do

4: Perform the SVD of RΛn
−1/2: RΛn

−1/2 =
UnΣ̄nV

†
n, where Σ̄n is diagonal. Let ρi = σ2

i , i =
1, . . . , r, where σi is the ith non-zero entry of Σ̄n and

r = rank(RΛ−1/2
n ).

5: Σ̃n := diag([1− ρ−1
1 ]+, ..., [1− ρ−1

r ]+,0N−r).
6: Ψn := Vn(I− Σ̃n)V

†
n.

7: Sn := Λ−1
n −Λ−1/2

n ΨnΛ
−1/2
n .

8: τ =
∑N

i=1[Λn]i,i|[Sn −P|]i,i.
9: λ̃n+1 = p+ diag(Ψn)⊙ λ̃n.

10: Λn+1 = (diag λ̃n+1)
−1.

11: n := n+ 1.

12: end while

Output: Sn.

Remark 1. To solve (2), the work of [20], [21] proposed two

different algorithms for two corresponding cases: M ≥ N
and M < N . Moreover, these algorithms are dedicated to

full-rank channel matrices. In this regard, Algorithm 1 is

more universal in the sense that it is applicable to channel

matrices of any dimension and rank-deficiency. Another issue
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of the methods presented in [20], [21] is that a complete

analytical proof of their convergence is sill missing. On the

contrary, Algorithm 1 is provably convergent from an arbitrary

starting point λ̃0 > 0. Moreover, analytical and numerical

results demonstrate Algorithm 1 achieves lower complexity,

compared to the ones in [20], [21].

2) Alternating Optimization

The second proposed iterative method exploits an interesting

result from the duality between BC and MAC [27], [28]. In

fact it is shown that (2) is equivalent to the following minimax

optimization problem [22]

min
Q�0

max
S̄�0

log |Q+H†S̄H|
|Q| , f(Q, S̄)

subject to tr(S̄) ≤ P, tr(QP) ≤ P ;Q : diagonal
(15)

where P ,
∑N

i=1 Pi. In the above formulation we define

log |Q| = −∞ if Q is singular. For the development of

the second proposed method, without loss of optimality, we

assume that ||hi||2 > 0 where hi is the ith column of the

channel matrix H, which is normally the case in practice.

If hi happens to be all-zero vector, the ith transmit antenna

can be dropped to obtain a reduced channel matrix, to which

the following proposed method is applied. As a result of

Appendix B, the relationship between (2) and (15) is stated in

the following fact.

Fact 1. There exists a saddle point (S̄⋆,Q⋆) for (15) such

that Q⋆ ≻ 0. Denote UΣV† to be an SVD of H(Q⋆)−1/2

where Σ is square and diagonal. Then, the optimal solution

S⋆ to (2) can be found as

S⋆ = (Q⋆)−1/2VU†S̄⋆UV†(Q⋆)−1/2. (16)

The above result is in fact a special case of the MAC-to-

BC transformation presented in [28] when applying to a single

user system.

It is trivial to see that the optimality of (15) is not affected if

the inequalities are made to be equality. To appreciate the idea

behind the second proposed method, let us define Q , {Q|Q :
diagonal,Q � 0, tr(QP) = P} and S = {S̄|S̄�0, tr(S̄) =
P}. Now, (15) can be rewritten in an abstract form as

min
Q∈Q

max
S̄∈S

f(Q, S̄). (17)

We note that f(Q, S̄) is concave with S̄, and convex with Q,

and twice differentiable. Thus a saddle point (Q∗, S̄∗) exist

for (17) and it holds that

f(Q∗, S̄) ≤ f(Q∗, S̄∗) ≤ f(Q, S̄∗). (18)

We can see that solving (15) boils down to finding a saddle

point for (17). In fact, this interpretation was used in the

interior-point method proposed in [22]. The minimax formu-

lation in (17) also suggests a way to find a saddle point

by alternatively optimizing Q and S̄. This method was also

mentioned in [22] but note that it is not provably convergent.

In fact we have very often observed that this pure method

will suffer a ping-pong effect, and thus fail to converge to an

optimal solution of (17) (cf. Fig. 2 for an example on this).

In the second proposed algorithm, we still capitalize on

the idea of AO, but do it in a novel way to ensure strict

monotonicity. Suppose at the nth iteration, we have obtained

Qn. Then S̄n is found as the solution to the following problem

maximize log |Qn +H†S̄H|
subject to tr(S̄) = P ; S̄ � 0.

(19)

It is well known that the above problem admits the solution

based on water-filling algorithm [3], [4]. More explicitly, let

UnΣnU
†
n = HQ−1

n H† be the EVD of HQ−1
n H†, where

Σn = diag(ρ1, ρ2, . . . , ρr) is a matrix of non-negative

eigenvalues of HQ−1
n H†, and r = rank(HQ

−1/2
n ). Then, S̄n

can be found as

S̄n = UnΣ̂nU
†
n (20)

where Σ̂n = diag([µ− 1
ρ1
]+, [µ−

1
ρ2
]+, . . . , [µ−

1
ρr
]+) and µ

is the water-level, which is chosen to satisfy the total power

constraint
r∑

i=1

[µ−
1

ρi
]+ = P. (21)

Note that S̄n in (20) is the unique solution to (19). To find

Qn+1, we invoke the following inequality, which results from

the concavity of the logdet function,

log |Q+H†S̄nH| ≤ log |Φn|+ tr
(

Φ−1
n

(
Q−Qn

))

(22)

where Φn = Qn+H†S̄nH. In the second proposed algorithm,

Qn+1 is found to optimize the upper bound of (15), i.e., Qn+1

is the solution to the following problem

minimize
Q�0

tr
(

Φ−1
n Q

)

− log |Q|

subject to tr(QP) = P ;Q : diagonal.
(23)

We will see shortly that in the second proposed iterative

algorithm, Qn ≻ 0 for all iterations n, and thus Φ−1
n is well

defined. Also, it is worth mentioning that the gradient of the

objective in (23) with respect to Q is identical to that of the

original objective in (15) when Q = Qn. This is essentially to

ensure that the first order optimality conditions of the original

problem are preserved even with the use of an upper bound. To

clarify this point let us write the partial derivative of f(Q, S̄n)
with respect to qi as

∂qi
f(Q, S̄n) = [(Q+H†S̄nH)−1]i,i − q−1

i (24)

The partial derivative of the upper bound with respect to qi
obtained at iteration n of the proposed method is

[Φ−1
n ]i,i − q−1

i = [(Qn +H†S̄nH)−1]i,i − q−1
i (25)

It is now clear that the partial derivatives of the original

objective and the upper bound in (23) with respect to any qi are

the same when Q = Qn. Thus when the iterates {(Qn, S̄n)}
converge, they will satisfy the KKT conditions of the original

problem, though an upper bound of the objective is minimized.

Before proceeding further we provide a remark regarding

the use of the upper bound in (23) for updating Q. First it is

a well-known fact that if we simply alternate optimization of

Q and S̄ as done in a pure AO method, then convergence to a

saddle point is not guaranteed as monotonic convergence of the
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objective is not achieved. In the second proposed algorithm,

the key point is to make the objective decrease after each

cyclic update of Q and S̄. For this purpose we minimize an

upper bound of the objective for updating Q. In fact, this

idea is largely inspired by successive convex approximation

(SCA) principle for nonconvex optimization problems [29].

Roughly speaking, for SCA-based methods, the nonconvex

objective is approximated by a convex upper bound in each

iteration, which ensures monotonic decrease of the sequence of

the objectives. However, the main challenge is that SCA only

concerns minimization (or equivalently maximization) prob-

lems, while our considered problem is a minimax program. As

such the proof for the convergence of SCA-based algorithms

is not applicable to Algorithm 2, as shown in Appendix B.

Since Q in (23) is in fact diagonal, i.e., Q = diag(q), we

can rewrite (23) as

minimize
q≥0

∑N
i=1 φn,iqi − log qi

subject to
∑N

i=1 Piqi = P
(26)

where φn,i =
[
Φ−1

n

]

i,i
. Interestingly, the above problem also

has a water-filling-like solution as

qi =
1

φn,i + γPi
> 0 (27)

where γ ≥ 0 is the solution of the equation

N∑

i=1

Pi

φn,i + γPi
= P. (28)

From (27) it is clear that Qn ≻ 0 for all n and thus Φ−1
n

exists as mentioned below (23). Further, from the definition

of Φn, it holds that φn,i =
[
Φ−1

n

]

i,i
≤

[
Q−1

n

]

i,i
. As the

result, we obtain
∑N

i=1
Pi

φn,i
≥ tr(QnP) = P , where the

equality holds since Qn is the solution to (23) in the previous

iteration. Note that the left hand side of (28) is decreasing

with γ, and thus (28) always has a unique solution, which can

be found efficiently, e.g., by the bisection or Newton method.

The second proposed algorithm based on AO is summarized in

Algorithm 2. The main point of Algorithm 2 is the use of the

inequality in (22) to optimize Q for a given S̄. This step will

eliminate the ping-pong effect mentioned above and ensure

the objective sequence is strictly decreasing. The convergence

proof of Algorithm 2 is provided in Appendix B.

We note that the error tolerance τ in line 4 of Algorithm

2 is only computed for n ≥ 1. We remark that line 3 in

Algorithm 2 involves the EVD of HQ−1
n H†, which can be

computed similarly as done in Algorithm 1 to reduce the

overall complexity. Specifically let GR = H be the QR

decomposition of H. Next we compute the SVD of the upper

triangular matrix RQ
−1/2
n as ŨnΣ̃nṼ

†
n = RQ

−1/2
n . Then the

EVD of HQ−1
n H† is simply given by UnΣnU

†
n = HQ−1

n H†,

where Un = GŨn and Σn = Σ̃
2

n. Moreover, we note that S̄n

needs not be computed explicitly as in (20) for each iteration.

The reason is that the diagonal elements of Φ−1
n in line 5 can

be found efficiently from the SVD of RQ
−1/2
n as shown in

the following.

Algorithm 2 Proposed solution based on alternating optimiza-

tion.

Input: Q0 is feasible to Q, and ǫ > 0.

1: Initialize n := 0, τ = 1 + ǫ.
2: while τ > ǫ do

3: Apply water-filling algorithm (i.e., (20) and (21)) to

compute S̄n = argmax
S̄∈S

log |Qn +H†S̄H|.

4: For n ≥ 1, let τ = |f(Qn, S̄n)− f(Qn−1, S̄n−1)|.
5: Φ−1

n := (Qn +H†S̄nH)−1.

6: Find Qn+1 = argmin
Q∈Q

tr
(
Φ−1

n Q
)
− log |Q|, using

(27) and (28).

7: n := n+ 1.

8: end while

Output: S̄n and use (16) to compute optimal S.

Using the matrix-inversion lemma, we can write Φ−1
n =

Q
−1/2
n (I + Q

−1/2
n H†S̄nHQ

−1/2
n )−1Q

−1/2
n = Q

−1/2
n (I +

ṼnΣ̂nṼ
†
n)

−1Q
−1/2
n , where the latter equality holds due to

(20). Now let Σ̇n be the diagonal matrix containing all

strictly positive entries of Σ̂n, and V̇n be the corresponding

singular vectors. Then we can write (I + ṼnΣ̂nṼ
†
n)

−1 =

(I + V̇nΣ̇nV̇
†
n)

−1 (a)
= I − V̇n

(
Σ̇

−1

n + V̇†
nV̇n

)−1
V̇†

n

(b)
= I −

V̇n

(
Σ̇

−1

n + I
)−1

V̇†
n, where (a) is due to the matrix inversion

lemma, and (b) holds true since V̇†
nV̇n = I. In summary, we

have Φ−1
n = Q−1

n −Q
−1/2
n V̇n

(
Σ̇

−1

n + I
)−1

V̇†
nQ

−1/2
n . Since

Σ̇
−1

n + I is diagonal, its inversion can be computed easily. It

is also clear that, to compute Φ−1
n , what we need is only Σ̃n

and Ṽn from the SVD of RQ
−1/2
n .

C. Complexity Analysis

In this section, we analyze the complexity of the proposed

algorithms in the preceding section, counted as the number

of flops. Although flop counting is a crude way to measure

the actual computational complexity, it somewhat captures

the order of the computation load. To this end we first

assume M ≥ N (i.e, more receive than transmit antennas)

and summarize the relevant results presented in [26] and

[30] as follows. QR decomposition of an M × N matrix

using Householder transformation requires 2N2(M − N/3)
flops for only R, and 4M2N − 2MN2 + 2

3N
3 flops for

both R and Q. The computation of SVD of a full M × N
matrix needs 4M2N + 8MN2 + 9N3 flops for (Σ,V,U),
4MN2 + 8N3 flops for (Σ,V), and 4M2N − 8MN2 flops

for (Σ,U) while that of an upper triangular matrix requires

4M2N+22N3, 2M2N+11N3, 4M2N+13N3, respectively.

The number of flops for the water-filling algorithm with N
eigenmodes is 2N2 + 6N . Inversion of an N ×N symmetric

matrix requires N3 flops. Note that these flop counts are for

a real matrix. For complex matrices, we simply treat every

operation as a complex multiplication which is equal to 6 real

flops [30], [31]. That is, QR decomposition of an M × N
complex matrix requires 4N2(3M −N) flops.

In the complexity analysis presented in the following, we

only consider the main operations having the most significant

complexity and ignore those contributing negligibly to the
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overall complexity (e.g., subtraction or addition).

1) Complexity of Algorithm 1

Algorithm 1 performs a QR decomposition (cf. line 2)

at the first iteration and only R is needed, which requires

4N2(3M − N) flops as explained above. In the subsequent

iterations, Algorithm 1 involves an SVD of an upper triangular

matrix (line 4), in which only (Σ,V) needs to be computed.

This step takes 6(2MN2 + 11N3) flops. We note that other

operations in Algorithm 1 have minor complexity, compared

to QR decomposition and SVD, and thus are neglected.

2) Complexity of Algorithm 2

To reduce the complexity, Algorithm 2 performs a full QR

decomposition in the first iteration, which takes 6(4M2N −
2MN2 + 2

3N
3) flops. Then, the complexity incurred in line

3 of Algorithm 2 is due to finding (Σ̃n, Ṽ
†
n) in the SVD of

the upper triangular matrix RQ
−1/2
n . The flop count of the

step is 6(2M2N +11N3). The water-filling algorithm to find

positive eigenmodes that meet the sum power constraint needs

6(2N2+6N) flops. The complexity of line 5 (i.e., computing

the diagonal elements of Φ−1
n ) and that of line 6 are lower

compared to the remaining steps and thus can be ignored.

3) Complexity of the mode-dropping algorithm in [20], [21]

For comparison purpose we now present the complexity

of the so-called mode-dropping algorithm proposed in [20],

[21]. Specifically, this method requires an SVD of a full

M ×N matrix, in the first iteration, for which the flop count

is 6(4M2N + 8MN2 +9N3). From the second iteration, the

most complex operation of the mode-dropping algorithm is to

compute an EVD which requires 6(4MN2 + 8N3) flops.

Basically, the complexity of the proposed algorithms for the

case N > M can be obtained by simply switching N and M
in the above analytical expressions. However, for the mode-

dropping algorithm, two additional matrix inversions need to

be performed, resulting in an increased complexity. The per-

iteration complexity comparison (after the first iteration) is

summarized in Table I, where the bold text refers to the

algorithm with the lowest complexity, i.e., Algorithm 1 and 2.

However, the total complexity of an iterative algorithm heavily

depends on the number of iterations required to converge. This

issue is evaluated for various numerical experiments in Section

IV.

4) Complexity of interior-point methods

As mentioned earlier, problem (2) can be reformulated

as an SDP and then solved by general-purpose optimization

packages. These optimization tools are normally based on

primal-dual path-following methods to solve a convex model.

However, the per-iteration complexity of such interior-point

solvers is O(N6) [15], [32], which is prohibitively high for

large-scale MIMO systems. A numerical complexity compar-

ison is shown in Fig. 5 to further demonstrate this point.

III. CAPACITY REGION OF A GAUSSIAN MIMO BC

In this scenario we compute the capacity region of a MIMO

BC. It was proved in [5] that the capacity region of a Gaussian

MIMO BC is achieved by DPC. For a SPC, this problem was

TABLE I
PER-ITERATION COMPLEXITY COMPARISON

Algorithms M ≥ N M < N

Mode-dropping [20], [21] 6(4MN2 + 8N3)
6(4NM2 + 8M3)

+12(N −M)3

Algorithm 1 6(2MN
2 + 11N3) 6(2NM

2 + 11M3)
Algorithm 2 6(2MN

2 + 11N3) 6(2NM
2 + 11M3)

addressed in a number of previous studies [9], [10], [37]. The

related research for PAPC is quite limited. Specifically, the

capacity region can be characterized by solving the following

weighted sum rate maximization

maximize
{Sk�0}

∑K
k=1 wk log |

|I+Hk

∑
k
i=1

SiH
†

k
|

|I+Hk

∑k−1

i=1
SiH

†

k
|

subject to
∑K

k=1[Sk]i,i ≤ Pi, ∀i
(29)

for different sets of the weights wi. Without loss of generality,

we assume that 0 < w1 ≤ w2 ≤ ... ≤ wK and
∑K

k=1 wk = 1
in the following. Since (29) is nonconvex at hand, Algorithm

1 cannot be extended to solve it. Fortunately, it can be

solved efficiently using the BC-MAC duality and alternating

optimization as shown next. First, by the BC-MAC duality

[22], (29) is equivalent to

min
Q≻0

max
{S̄k�0}

∑K
k=1 ∆k log |Q+

∑K
i=k H

†
i S̄iHi|

−wK log |Q|

subject to
∑K

k=1 tr(S̄k) = P, tr(QP) = P,Q : diagonal
(30)

where ∆k = wk − wk−1. Before proceeding further we

remark for the same problem, an interior-point algorithm was

proposed in [22]. The complexity of such a method does

not scale favorably with the problem size, compared to our

proposed approach presented in what follows, which is based

on closed-form expressions.

Let ({S̄n
k},Q

n) denote the value of ({S̄k},Q) after n
iterations of the proposed method. In view of AO, {S̄n

k} is

the solution to the following problem

maximize
∑K

k=1 ∆k log |Qn +
∑K

i=k H
†
i S̄iHi|

subject to
∑K

k=1 tr(S̄k) = P ; {S̄k � 0}.
(31)

Problem (31) can be solved by off-the-shelf convex solvers

but it can be solved more efficiently by a CGP method. The

motivation is that projection onto the feasible set of (31) can

be reduced to projection onto a canonical simplex, as shown

in Appendix C. Thus, a CGP method can be derived to find

the optimal solution of (31) (The details are skipped due to

the space limitation). We note that similar approaches were

also presented in [10], [11].

For the important case of the sum capacity of the MIMO

BC, (31) becomes

maximize log |Qn +
∑K

i=1 H
†
i S̄iHi|

subject to
∑K

k=1 tr(S̄k) = P ; {S̄k � 0}.
(32)

For the above specific problem, the sum power iterative water-

filling algorithm proposed in [9] and dual decomposition based

method in [25] are particularly efficient.
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We now turn our attention to finding Qn+1, which can be

done exactly the same as for the SU-MIMO case. Specifically,

it holds that

log |Q+
∑K

i=k H
†
i S̄

n
i Hi| ≤ log |Φn

k |+tr
(
Φ−n

k

(
Q−Qn

))

(33)

where Φn
k , Qn+

∑K
i=k H

†
i S̄

n
i Hi. Thus, Qn+1 is the solution

to the following problem

minimize
∑K

k=1
∆k

wK
tr
(

Φ−n
k Q

)

− log |Q|

subject to tr(QP) = P,Q : diagonal;Q � 0.
(34)

We note that the idea of using the upper bound in (34) to

optimize Q follows exactly the same as that of Algorithm 2.

The above problem has the same form as (23), and thus closed-

form solution using (27) and (28) can be applied. The overall

proposed algorithm to solve (29) is summarized in Algorithm

3. We can prove the convergence of Algorithm 3 using the

same lines as those for Algorithm 2 and thus the details are

omitted due to space limitation. Similar to Algorithm 2, τ is

only calculated for n ≥ 1.

Algorithm 3 Proposed algorithm for the computation of the

capacity region of a MIMO BC based on AO.

Input: Q := Q0 diagonal matrix of positive elements, ǫ > 0
1: Initialization: Set n := 0 and τ = 1 + ǫ.
2: while (τ > ǫ) do

3: Solve (31) and denote the optimal solution by {S̄n
k}

4: For n ≥ 1, let τ = |fDPC(Qn, {S̄n}) −
fDPC(Qn−1, {S̄n−1})|, where fDPC(·) denotes the objec-

tive in (30).

5: For each k, compute Φ−n
k = (Qn +

∑K
i=k H

†
i S̄

n
i Hi)

−1.

6: Solve (34) to find Qn+1.

7: n := n+ 1.

8: end while

Output: Use the obtained {S̄n
k}

K
k=1 and the BC-MAC trans-

formation in [28] to find the optimal solution to (29).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance

of the proposed algorithms presented in this paper. For all

iterative algorithms of comparison, we set an error tolerance

of ǫ = 10−6 as the stopping criterion. The condition number

κ is defined as the ratio between the largest singular value

and the smallest one. The initial values Λ0 and Q0 in the

corresponding proposed algorithms are set to the identity

matrix for all simulations, if not mentioned otherwise. Other

simulation parameters are specified for each setup. The codes

are executed on a 64-bit desktop that supports 8 Gbyte RAM

and Intel CORE i7.

A. Single user MIMO

In the first numerical experiment, we demonstrate the con-

vergence rate of Algorithms 1 and 2, and the mode-dropping

algorithm in [20], [21]. In particular we consider the same

channel matrix as given in [20, Eq. (26)] and a total power of
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Fig. 1. Convergence comparison of different iterative methods for a point-
to-point MIMO system with N = 2 and M = 2. The channel matrix is
taken from [20].
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Fig. 2. Illustration of the ping-pong effect of the pure AO method, P1/P =
0.5. The upper part of the figure plots the objective of both methods in
comparison when it is optimized with S̄, while the lower part in gray color
plots with Q. The border line represents the objective of the saddle point.

0 dBW. As can be seen in Fig. 1, monotonic convergence is

not always achieved for Algorithm 1, which is expected for

an iterative method based on standard interference function.

For the considered scenario, Algorithm 2 converges much

faster than other methods of comparison. It can be implied

from the iteration in (14) that Algorithm 1 will attain a good

convergence rate if all the diagonal entries of Ψ(λ̃n) are

much less than 1 during the whole iterative process, which

is likely to occur if the singular values of H and/or p are

relatively large. The same argument can also be applied to

the mode-dropping method. However, this is not the case for

the considered scenario, leading to slower convergence rates

for Algorithm 1 and the mode-dropping method, compared to

Algorithm 2. Further numerical results on this will be provided

in Fig. 3.

In Fig. 2 we provide an example to show that a pure

AO approach may fail to yield the optimal solution to

(15) as briefly discussed earlier. The channel matrix is
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H = [−0.0723 − 0.6116i, 0.2257 − 0.1166i;−0.1707 −
0.0212i, 0.2212+0.4439i], which is generated randomly. The

other simulation parameters are the same as those for Fig. 1.

The initial value Q0 is set to identity. We can easily see that

the objective returned by the pure AO method is oscillating and

not converging to the optimal one. On the contrary, Algorithm

2 always guarantees a monotonically decreasing objective

sequence converging to the optimal solution.

In the next set of numerical experiments we further investi-

gate the convergence results of the algorithms in comparison.

The numbers of transmit and receive antennas are set to

N = 2 and M = 4, respectively. In particular, Λ0 in

Algorithm 1 is generated in the same way as done in the

mode-dropping method [20], [21]. Fig. 3 plots the average

number of iterations as a function of P1/P over 100 randomly

generated channel realizations, and the total transmit power P
is specified in the legends of the figure. In this considered

setting, the channel matrix has two singular values. First,

entries of H are generated following the i.i.d. zero mean and

unit variance Gaussian, and then the smaller singular value is

scaled accordingly to achieve a specific value of κ as given in

Figs. 3(a) and 3(b).

As can be seen clearly in Fig. 3, the convergence behavior

of Algorithm 2 is quite consistent for different settings. On

the other hand, Algorithm 1 and the mode-dropping scheme

obtain the same convergence rate which is sensitive to κ and

p. In particular, Algorithm 1 takes more iterations to converge

when the channel matrix is ill-conditioned (cf. Fig. 3(b)).

However, Algorithm 1 converges faster for well-conditioned

channel matrix and large p (cf. Fig. 3(a)). We can also see that

the convergence rate of Algorithm 1 becomes inferior when

one of the power limits Pi is small. For such a case, one of the

diagonal element of Ψ(λ̃n) is very close to 1 for all iterations,

making the fixed-point iteration converge slowly. In fact, these

observations agree with what has been explained in Fig. 1.

As mentioned earlier, the overall complexity of an iterative

algorithm depends on not only the per-iteration complexity

but also the number of iterations that it takes to terminate.

The overall complexity in terms of flop counts of the iterative

methods in case N ≤ M is plotted in Fig. 4. As shown in

the figure, Algorithm 2 has the lowest overall complexity. The

reason is that Algorithm 2 has not only low per-iteration com-

plexity but also (and more importantly) the smallest number

of iterations as analyzed in Fig. 3. We also observe that if

Algorithm 1 and the mode-dropping method start from the

same initial point, the number of iterations to converge is

identical. Thus, Algorithm 1 outperforms the mode-dropping

method when N < M . However, when N = M , the total

complexity of Algorithm 1 is 6N3(13n + 4/3) while that

of mode-dropping is 6N3(12n+ 21) where n is the number

of iterations to converge. For this special case, it is possible

that the total complexity of Algorithm 1 can be higher than

the mode-dropping algorithm, depending on the number of

iterations (n ≥ 20) and vice versa.

In Fig. 5 we benchmark the average run time of proposed

algorithms against interior-point methods. In particular the

commercial interior-point-based solver MOSEK [38] is chosen

for this purpose due to its recognized good performance. The
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Fig. 3. Average number of iterations required to converge of different iterative
algorithms with N = 2 and M = 4.

results in Fig. 5 are averaged over 1000 channel realizations

which are randomly generated using the i.i.d. channel model.

It can be seen clearly that the run time of MOSEK increases

quickly with the number of transmit antennas. This observation

is expected and consistent with the complexity analysis of

interior-point methods presented earlier in Section II-C. On

the contrary, other algorithms in comparison are more scalable,

and Algorithms 1 and 2 still achieve better performance than

the method in [21].

B. Multiuser MIMO

In the next part of this section we numerically study

the performance of the proposed algorithms for the MIMO

systems considered in the paper. In the following simulation,

the number of receive antennas M and the number of transmit

antennas N are fixed to 1 and 128 antennas, respectively. The

number of users K is specified for each setup and the power

limit for all antennas is equal to P/N .

Taking the advantage that the proposed algorithms have low

complexity, in the last numerical experiment we characterize

the capacity region of a massive MIMO system with PAPC.

In particular, we also consider achievable rate region of the

well-known ZF scheme. The purpose is to understand the

performance of ZF in comparison with the capacity achieving

coding scheme under some realistic channel models. To this

end we consider a simple urban scenario using WINNER

II B1 channel model [39], where a base station, equipped

with N = 128 antennas, is located at the center of the cell

and single-antenna receivers are distributed randomly. The

total power at the BS is P = 46 dBm and each antenna
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Fig. 5. Run time versus the number of transmit antennas N . Four methods
are compared: [21], Algorithm 1, Algorithm 2, and the interior-point-based
method implemented in [38]. The number of receive antennas is taken as
M = 2.

is subject to equal power constraint, i.e., Pi = P/N for

i = 1, 2, . . . , 128. As can be seen clearly in Fig. 6, there

is a remarkable gap between the achievable rate region of

ZF and the capacity region, especially when the number of

users increases. This basically implies that ZF is still far

from optimal for a practical number of transmit antennas. Our

observation opens research opportunities in the future to strike

the balance between optimal performance by DPC and low-

complexity by ZF.

V. CONCLUSIONS

We have solved the problem of computing the capacity of

MIMO systems under PAPC. For a SU-MIMO system, two

efficient algorithms have been proposed, one based on fixed

point iteration and the other based on the MAC-BC duality

together with AO. Extensive numerical experiments have been

provided to demonstrate the superior performance of the two

proposed algorithms over the known methods in [20], [21]

in terms of computational complexity. We have also explored

the capacity of multiuser MIMO systems subject to PAPC. For

DPC which is the capacity-achieving transmission scheme, we

have presented a method to compute the full capacity region.

Using this low-complexity method, we have also character-

ized the capacity region of a single cell multiuser massive

MIMO system subject to PAPC. The numerical results have

demonstrated that the conventional ZF scheme still operates far

from the capacity boundary for a practical number of transmit
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Fig. 6. Comparison of capacity region of a massive MIMO setup with N =
128,M = 1. For the case K = 8 users, the capacity region is projected on
the first two users.

antennas.

APPENDIX A

PROOF OF LEMMA 1

The key to prove the convergence of the fixed-point iteration

in (14) is to show that I(x) is a standard interference function.

That is, for all x ≥ 0 then I(x) satisfies the following three

properties

• Positivity: I(x) > 0.

• Monotonicity: If x ≥ y, then I(x) ≥ I(y).
• Scalability: For all α > 1, αI(x) > I(αx).

According to [40, Theorem 2], if a function satisfies three

properties listed above, it will converge to a unique fixed point.

The positivity is obvious and the scalability can be easily

shown by the following inequalities

I(αx) = p+ α diag(Ψ(αx)) ⊙ x (35)

(a)

≤ p+ α diag(Ψ(x)) ⊙ x (36)

(b)
< α(p+ diag(Ψ(x)) ⊙ x) = αI(x) (37)

where (a) can be proven from the definition of Ψ(x) as

follows. Let X = diag(x) and VΣV† = XH†HX be the

EVD of XH†HX, where Σ = diag([ρ1, ρ2, . . . , ρr,0N−r])
and r = rank(H†H). Then it follows immediately that

VΣ̃V† = X̃H†HX̃ where X̃ = diag(αx), Σ̃ =
diag([ρ̃1, ρ̃2, . . . , ρ̃r,0N−r]), and ρ̃i = α2ρi for i =
1, 2, . . . , r. Since α > 1, we have 1

ρ̃i
= 1

α2ρi
< 1

ρi
, and thus

Ψ(αx) = V diag(
1

ρ̃1
, · · · ,

1

ρ̃s′
,1N−s′)V

†

� Ψ(x) = V diag(
1

ρ1
, · · · ,

1

ρs
,1N−s)V

† (38)

where s′ and s are the largest number such that 1− 1
ρs′

> 0 and

1− 1
ρs

> 0, respectively. Note that s′ ≥ s and thus the above
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inequality is easily justified. Consequently, diag(Ψ(αx)) ≤
diag(Ψ(x)) which completes (a). The inequality (b) holds

since p < αp for α > 1, which results in p+α diag(Ψ(x))⊙
x < α(p+ diag(Ψ(x)) ⊙ x) = αI(x).

To prove the monotonicity of I(x), we need to show

that for all x,y ≥ 0 then I(x) ≥ I(y) or equivalently

diag(Ψ(x)) ⊙ x ≥ diag(Ψ(y)) ⊙ y. Let X = diag(x),Y =
diag(y). Then monotonicity proof is equivalent to showing

that diag(X1/2Ψ(x)X1/2) ≥ diag(Y1/2Ψ(y)Y1/2) for X �
Y � 0.

Let us first consider the case N ≤ M and H is full column

rank. Then we can write the EVD of Λ−1/2H†HΛ−1/2 as

Λ−1/2H†HΛ−1/2
︸ ︷︷ ︸

B

= VΣV†. (39)

For notational convenience, let K = H†H. Note that K is

full-rank and thus invertible. Then the above equation can be

rewritten as

B−1 = Λ1/2K−1Λ1/2 = VΣ−1V† (40)

which the results in

B−1 − I = V
(
Σ−1 − I

)
V†. (41)

Let Σ̃ be the (N−k) positive eigenvalues of B−1−I and Ṽk

consist of the corresponding N − k eigenvectors, Σ̄ be the k
non-positive eigenvalues of B−1 − I, and V̄k consist of the

corresponding k eigenvectors, and define

A+ = ṼkΣ̃Ṽ
†
k (42a)

A− = V̄kΣ̄V̄
†
k. (42b)

Then it holds that

B−1 − I = A+ +A− (43)

and that A−A+ = 0. Now we can write Ψ(λ̃) = A− + I =
B−1 −A+ and thus

[Ψ(λ̃)Λ−1]i,i = [Λ−1/2Ψ(λ̃)Λ−1/2]i,i

= [Λ−1/2
(
B−1 −A+

)
Λ−1/2]i,i

= [Λ−1/2B−1Λ−1/2]i,i − [Λ−1/2A+Λ−1/2]i,i

= [K−1]i,i − [Λ−1/2A+Λ−1/2]i,i

= [K−1]i,i − [Λ̃
1/2

A+Λ̃
1/2

]i,i. (44)

To proceed further we need to show that if X � Y then

[X1/2A+
XX1/2]i,i ≤ [Y1/2A+

Y Y
1/2]i,i. (45)

Now from (43) we have

X−1/2K−1X−1/2 − I = A+
X +A−

X (46)

which is equivalent to

K−1 −X = X1/2A+
XX1/2 +X1/2A−

XX1/2. (47)

The same result applies to Y, i.e.,

K−1 −Y = Y1/2A+
Y Y

1/2 +Y1/2A−
Y Y

1/2. (48)

Since X � Y ≻ 0 it holds that

K−1 −X � K−1 −Y. (49)

Substituting (47) and (48) into (49) yields

X1/2A+
XX1/2 +X1/2A−

XX1/2

� Y1/2A+
Y Y

1/2 +Y1/2A−
Y Y

1/2. (50)

We now recall the following inequality. For Hermitian matrices

A and B, if A � B, then SASH � SBSH for S � 0 [41,

Observation 7.7.2]. Applying this inequality to (50) leads to

A+
X −X−1/2Y1/2A+

Y Y
1/2X−1/2

� X−1/2Y1/2A−
Y Y

1/2X−1/2 −A−
X (51)

which is then equivalent to
(
A+

X

)1/2(
A+

X −X−1/2Y1/2A+
Y Y

1/2X−1/2
)(
A+

X

)1/2

�
(
A+

X

)1/2(
X−1/2Y1/2A−

Y Y
1/2X−1/2 −A−

X

)(
A+

X

)1/2

� 0. (52)

The above inequality holds true since
(
A+

X

)1/2
A−

X

(
A+

X

)1/2
= 0. It is easy to see that (52)

results in

X1/2A+
XX1/2 � Y1/2A+

Y Y
1/2 (53)

and thus

[X1/2A+
XX1/2]i,i ≤ [Y1/2A+

Y Y
1/2]i,i (54)

for all i. Here we have used a well-known fact that for A � B,

then [A]i,i ≥ [B]i,i.

We now turn our attention to the general case where K is

singular. This occurs when N > M or N ≤ M but H is

not full column rank, i.e. the columns of H are not linearly

independent. First we add a small regularization term to both

sides of (39) to obtain

Bǫ = Λ−1/2H†HΛ−1/2 + ǫΛ−1

= Λ−1/2
(
H†H+ ǫI

)
Λ−1/2

= VΣV† + ǫΛ−1. (55)

We note that Bǫ is invertible for any ǫ > 0. Let VǫΣǫV
†
ǫ

be the EVD of Bǫ and thus

B−1
ǫ = VǫΣ

−1
ǫ V†

ǫ . (56)

Applying the result for the nonsingular case, we achieve the

following inequality

Ψǫ(x)X � Ψǫ(y)Y (57)

for arbitrarily small ǫ and X � Y, and Ψǫ(·) in constructed

from Bǫ. To complete the proof we are left to show that Ψǫ(λ̃)
is continuous with ǫ, i.e., lim

ǫ→0+
Ψǫ(λ̃) = Ψ(λ̃) = A− + I.

To proceed, we note that (43) is changed into

B−1
ǫ − I = A+

ǫ +A−
ǫ (58)

where A+
ǫ and A−

ǫ are defined similarly to (42). We will show

that limǫ→0 A
−
ǫ → A−. To this end let ǫmin = ǫ×mini{1/λi}

and ǫmax = ǫ×maxi{1/λi}, where λi is the ith diagonal entry

of Λ. It is clear from from (55) that the following inequality

holds

V
(

(Σ+ ǫminI)
−1 − I

)

V†

︸ ︷︷ ︸

Ξǫmin

≻ B−1
ǫ − I

≻ V
(

(Σ+ ǫmaxI)
−1 − I

)

V†.
︸ ︷︷ ︸

Ξǫmax

(59)

Further, the matrix Ξǫmin
can be explicitly written as

Ξǫmin
= V diag([

1

ρ1 + ǫmin
− 1, . . . ,

1

ρr + ǫmin
− 1,

1

ǫmin
− 1, . . . ,

1

ǫmin
− 1

︸ ︷︷ ︸

(N−r) terms

])V† (60)
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where r = rank(K). Following (43), we decompose Ξǫmin
as

Ξǫmin
= A+

ǫmin
+A−

ǫmin
(61)

where A+
ǫmin

and A−
ǫmin

consists of positive and non-positive

eigenvalues, respectively. As ǫ → 0+ we have 1
ρi+ǫmin

→ 1
ρi

for all i = 1, 2, ..., r, and 1
ǫmin

≫ 1. Thus , the term 1
ǫmin

−1 in

(60) becomes strictly positive and thus is excluded in A−
ǫmin

.

As a result, we have limǫ→0+ A−
ǫmin

= A−. Following the

same arguments we can also show that limǫ→0+ A−
ǫmax

= A−.

From (59) it is clear that lim
ǫ→0+

A−
ǫ = A− and thus

lim
ǫ→0+

Ψǫ(λ̃) = lim
ǫ→0+

(A−
ǫ + I) = A− + I = Ψ(λ̃). (62)

By the continuity property shown above, the monotonicity of

Algorithm 1 also holds for the singular case, which completes

the proof.

APPENDIX B

CONVERGENCE PROOF OF ALGORITHM 2

We note that the function log |Q+H†S̄H| is jointly concave

with Q and S̄. Thus the following inequality holds

log |Q+H†S̄H| ≤ log |Qn +H†S̄nH
︸ ︷︷ ︸

Φn

|+tr(Φ−1
n (Q−Qn))

+ tr(HΦ−1
n H†(S̄− S̄n)) (63)

for all Q ∈ Q and S̄ ∈ S. The above inequality comes from

the first order approximation of log |Q +H†S̄H| around the

point (Qn, S̄n). Substitute Q := Qn+1 and S̄ := S̄n+1 into

the above equality, we have

log |Qn+1+H†S̄n+1H| ≤ log |Φn|+tr(Φ−1
n (Qn+1−Qn))

+ tr(HΦ−1
n H†(S̄n+1 − S̄n)). (64)

Since S̄n = argmax
S̄∈S

log |Qn + H†S̄H|, the optimality

condition results in

tr(HΦ−1
n H†(S̄− S̄n)) ≤ 0 (65)

for all S̄ ∈ S. For S̄ = S̄n+1 the above inequality means

tr(HΦ−1
n H†(S̄n+1 − S̄n)) ≤ 0 (66)

which leads to

log |Qn+1+H†S̄n+1H| ≤ log |Φn|+tr(Φ−1
n (Qn+1−Qn)).

(67)

Subtract both sides of the above inequality by log |Qn+1|
results in

f(Qn+1, S̄n+1) = log |Qn+1 +H†S̄n+1H| − log |Qn+1|

≤ log |Φn|+ tr(Φ−1
n (Qn+1 −Qn))− log |Qn+1|. (68)

Since Qn+1 solves (23) it holds that

log |Φn|+ tr
(

Φ−1
n

(
Qn+1 −Qn

))

− log |Qn+1|

≤ log |Φn|+ tr
(

Φ−1
n

(
Q−Qn

))

− log |Q| (69)

for all Q ∈ Q. For the special case Q := Qn, the above

inequality is reduced to

log |Φn|+ tr
(

Φ−1
n

(
Qn+1 −Qn

))

− log |Qn+1|

≤ log |Φn| − log |Qn|
︸ ︷︷ ︸

f(Qn,S̄n)

. (70)

Combining (68) and (70) results in f(Qn, S̄n) ≥
f(Qn+1, S̄n+1).

It is easy to see that {f(Qn, S̄n)} is bounded below, and

thus {f(Qn, S̄n)} is convergent. We also note that (22) is

strict if Q 6= Qn. Consequently, the sequence {f(Qn, S̄n)} is

strictly decreasing unless it is convergent.

Let us consider the set Q+ , {tr(QP) ≤ P ;Q ≻ 0}. Note

that Q+ is open. As mentioned previously, Qn ∈ Q+ for all

n. We will prove the two following properties regarding the

convergence of Algorithm 2:

• Algorithm 2 generates at least a convergent subsequence.

• Let Q∗ be the limit point of {Qn}. Then Q∗ is nonsin-

gular, i.e. Q∗ ∈ Q+.

The first property is relatively trivial. It is easy to see that

the set Q+ is bounded (though it is open). As Q+ and S are

both bounded, Algorithm 2 must produce at least a convergent

subsequence, due to the Bolzano-Weierstrass theorem [42],

[43]. The proof for the second property is quite involved,

which is done by contraction as follows.

Suppose the contrary that Q∗ is singular, i.e., there exists

{qn,i} → 0 for some i. Recall that S̄n = argmax log |Qn +
H†S̄H|, and thus replacing S̄n = P

N I which is a feasible point

to the maximization problem results in

log |Qn +H†S̄nH| ≥ log |Qn + P
NH†H|. (71)

Consequently we have

f(Qn, S̄n) ≥ log |Qn + P
NH†H| − log |Qn|

= log |I+ P
NQ−1/2

n H†HQ−1/2
n |

= log |I+ P
NHQ−1

n H†|

= log |I+ P
N

N∑

l=1

q−1
n,lhlh

†
l |. (72)

Note that hl is the lth column of H. Let An,i = I +
P
N

∑N
l 6=i q

−1
n,lhlh

†
l . Then we can write

f(Qn, S̄n) ≥ log |An,i +
P
N q−1

n,ihih
†
i |

= log |An,i|+ log |I+ P
N q−1

n,iA
−1/2
n,i hih

†
iA

−1/2
n,i |

= log |An,i|+ log(1 + P
N q−1

n,ih
†
iA

−1
n,ihi). (73)

Let υmax
n,i be the maximum eigenvalue of An,i, and thus 1

υmax
n,i

is the minimum eigenvalue of A−1
n,i. Then we have

f(Qn, S̄n) ≥ log(υmax
n,i ) + log(1 + P

Nqn,iυmax
n,i

||hi||
2
2) (74)

where we have used the fact that all eigenvalues of An,i are

no less than 1, and that x†Bx ≥ λmin||x||22, where λmin is

the minimum eigenvalue of B.

To proceed further we consider two cases. Specifically,

if limn→∞ υmax
n,i = ∞, then it immediately holds that

limn→∞ f(Qn, S̄n) = ∞. Now suppose that there exists

c < ∞ such that 1 ≤ υmax
n,i ≤ c for all n. In this case we

obtain

f(Qn, S̄n) ≥ log(1 + P
Nc

1
qn,i

||hi||
2
2). (75)

It is straightforward to see that f(Qn, S̄n) → ∞ as qn,i → 0,

due to the fact that ||hi||2 > 0.

In summary we have proved that if there exists {qn,i} → 0
for some i, then {f(Qn, S̄n)} → ∞. This contradicts the fact

that ∞ > f(Q0, S̄0) ≥ f(Qn, S̄n) for all n as proved earlier.

Thus it is concluded that the limit point of Algorithm 2 Q∗

is non-singular. By the continuity of f(·) over S and Q+, we

have lim
n→∞

f(Qn, S̄n) = f(Q∗, S̄∗).
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Now let {(Qnk
, S̄nk

)} be the subsequence converging to

the limit point. Next we shall show that {(Qnk+1, S̄nk+1)} →
(Q∗, S̄∗). In fact, it is sufficient to prove that Qnk+1 → Q∗

which can be done by contradiction. Assume the contrary that

Qnk+1 does not converge to Q∗. Consequently, there exists a

d > 0 such that

d ≤ dnk
= ||Qnk+1 −Qnk

||, ∀k (76)

where || · || stands for arbitrary norm. We have

f(Qnk+1, S̄nk+1) ≤ F (Qnk+1;Qnk
, S̄nk

) (77)

= F (Qnk
+ dnk

Γnk
;Qnk

, S̄nk
) (78)

≤ F (Qnk
+ δdΓnk

;Qnk
, S̄nk

), ∀δ ∈ [0, 1]

≤ F (Qnk
;Qnk

, S̄nk
) (79)

= f(Qnk
, S̄nk

) (80)

where Γnk
, (Qnk+1 − Qnk

)/dnk
is the normalized dis-

tance between Qnk+1 and Qnk
, F (Qnk+1;Qnk

, S̄nk
) =

log |Φnk
| + tr

(

Φ−1
nk

(
Qnk+1 − Qnk

))

− log |Qnk+1|. Note

that ||Γnk
|| = 1 and thus Γnk

lies in a compact set and has

a limit point Γ∗. Letting k → ∞ (by further restricting to a

subsequence converging to Γ∗) leads to

f(Q∗, S̄∗) ≤ F (Q∗ + δdΓ∗;Q∗, S̄∗) ≤ f(Q∗, S̄∗) (81)

or equivalently

f(Q∗, S̄∗) = F (Q∗ + δdΓ∗;Q∗, S̄∗), ∀δ ∈ [0, 1]. (82)

Furthermore

F (Qnk+1
;Qnk+1

, S̄nk+1
) = f(Qnk+1

, S̄nk+1
)

≤ f(Qnk+1, S̄nk+1) ≤ F (Qnk+1,Qnk
, S̄nk

)

≤ F (Q;Qnk
, S̄nk

), ∀Q ∈ Q+. (83)

Letting k → ∞ we obtain

F (Q∗;Q∗, S̄∗) ≤ F (Q;Q∗, S̄∗), ∀Q ∈ Q+ (84)

which further implies that Q∗ is the minimizer of

F (·;Q∗, S̄∗). Since Qnk+1 = argmin
Q∈Q+

F (Q;Qnk
, S̄nk

) it

follows that

F (Qnk+1;Qnk
, S̄nk

) ≤ F (Q;Qnk
, S̄nk

), ∀Q ∈ Q+. (85)

Letting k → ∞ implies

F (Q∗;Q∗, S̄∗) ≤ F (Q;Q∗, S̄∗), ∀Q ∈ Q+. (86)

That is

〈∇QF (Q;Q∗, S̄∗)|Q=Q∗ ,Z−Q∗〉 ≥ 0, ∀Z ∈ Q+ (87)

where 〈.〉 denotes the inner product. Recall that F (·;Q, S̄) is

the first order of f(Q, S̄). Thus it is easy to see that

∇QF (Q;Q∗, S̄∗)|Q=Q∗ = ∇f(Q∗, S̄∗) (88)

and thus (87) is equivalent to

〈∇Qf(Q∗, S̄∗),Z−Q∗〉 ≥ 0, ∀Z ∈ Q+. (89)

In the same way we can show that

〈∇S̄f(Q
∗, S̄∗),W − S̄∗〉 ≤ 0, ∀W ∈ S. (90)

Two above inequalities imply that (Q∗, S̄∗) is a saddle point

of (15), which completes the proof.

APPENDIX C

PROJECTION ONTO THE FEASIBLE SET OF (31)

The projection of {S̃k} onto the feasible set of (31) is

formulated as

minimize
∑K

k=1 ||S̄k − S̃k||
2
F

subject to
∑K

k=1 tr(S̄k) = P ; {S̄k � 0}.
(91)

Let UkD̃kU
†
k = S̃k be the EVD of S̃k, where Uk is unitary

and D̃k is diagonal. Then we can write S̄k = UkD̄kU
†
k for

some D̄k � 0. Since Uk is unitary, it holds that tr(S̄k) =
tr(D̄k) and that ||S̄k − S̃k||F = ||D̄k − D̃k||F . That is to say,

(91) is equivalent to

minimize
∑K

k=1 ||D̄k − D̃k||2F
subject to

∑K
k=1 tr(D̄k) = P ; {D̄k � 0}.

(92)

It is easy to see that D̄k must be diagonal to minimize the

objective of (92). Next let d̄k = diag(D̄k), d̃k = diag(D̃k),
d̄ = [d̄T

1 , d̄
T
2 , . . . , d̄

T
K ]T , and d̃ = [d̃T

1 , d̃
T
2 , . . . , d̃

T
K ]T . Then

(92) can be reduced to

minimize 1
2 ||d̄− d̃||22

subject to 1M̃ d̄ = P ; d̄ ≥ 0
(93)

where M̃ =
∑K

1 Mk. It is now clear that (93) is the projection

onto a canonical simplex and efficient algorithms can be found

in [35].
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