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DNA-based human identity testing is conducted by comparison of PCR-amplified polymorphic Short Tandem
Repeat (STR) motifs from a known source with the STR profiles obtained from uncertain sources. Samples such
as those found at crime scenes often result in signal that is a composite of incomplete STR profiles from an
unknown number of unknown contributors, making interpretation an arduous task. To facilitate advancement in
STR interpretation challenges we provide over 25,000 multiplex STR profiles produced from one to five known

individuals at target levels ranging from one to 160 copies of DNA. The data, generated under 144 laboratory
conditions, are classified by total copy number and contributor proportions. For the 70% of samples that were
synthetically compromised, we report the level of DNA damage using quantitative and end-point PCR. In ad-
dition, we characterize the complexity of the signal by exploring the number of detected alleles in each profile.

1. Introduction

Amplification of multiple short tandem repeat (STR) fragments, also
known as microsatellites, followed by capillary electrophoresis and
laser-induced fluorescence detection is the chief technique by which
forensic and clinical laboratories identify the presence of a contributor
to unknown biological specimens [1,2]. Forensic laboratories conduct
human identity testing by examining hypervariable STR regions ob-
tained from evidence to assess the likelihood that a person-of-interest
(POI) was a contributor to the biological material, while clinical la-
boratories examine STR profiles to evaluate chimerism after hemato-
poietic stem cell transplantation [3] or to quality check cell lines within
the laboratory [4]. Other applications of multiplex-STR amplification
include parentage and kinship testing [5,6], and examinations of
human population diversity [7].

The analysis of forensic samples is particularly challenging as little
is known about the condition of, or complexity associated with, the
biological material present on an evidentiary item. Any number of
contributors could have deposited any number of cells on the substrate
from which the sample was collected. Furthermore, the forensic sample

may be obtained from environments that promote DNA degradation [8]
or PCR inhibition [9,10], leading to electropherograms (EPGs) that
exhibit a downward trend in peak heights as the molecular weight of
the amplicon increases [11]. The result is an STR profile that may
consist of incomplete signal from any number of unknown contributors.
This signal is further obfuscated by the presence of noise [12,13] and
stutter, a PCR-based artefact. Stutter occurs as a result of strand slip-
page during PCR which produces an echo peak at a fixed known dis-
tance from the allelic peak [14]. Stutter artefacts are typically one STR
unit larger or smaller than the biological allele and comprise a sig-
nificant portion of the total signal [15-17], complicating interpretation
of mixed source traces. For complex samples, this combination of issues
in conjunction with a range of post-processing EPG signal filtering and a
variety of inference techniques can contribute to contradictory in-
ference [18,19].

As suggested in [20] and [21], a large dataset would play a critical
role in demonstrating the foundational validity and robustness of new
or existing DNA identity testing technology. It would facilitate new
techniques in satisfying admissibility standards that require scientific
evidence to have earned widespread acceptance across all sample types
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before they are presented to the trier of fact. Additionally, all bur-
geoning technologies [22-24] need to be benchmarked against current
ones, making the availability of a readily accessible, universal testing
set crucial.

Producing a large set of DNA profiles garnered from cellular ad-
mixtures that are meticulously processed such that artificial dilution
effects [17,25] are minimized and all input masses are represented is an
involved endeavor requiring the extraction, quantification, amplifica-
tion, and electrophoresis of thousands of samples. Meeting that need,
here we describe the PROVEDIt (Project Research Openness for Vali-
dation with Empirical Data) dataset: a database containing over 25,000
STR profiles garnered from numerous sample types that contain DNA of
varying quality and quantity. The collection of profiles includes one to
five person mixtures of varying contributor ratios amplified with DNA
target masses ranging from 0.007 to 1 ng. The profiles were generated
using 144 laboratory conditions from samples containing untreated;
UV-damaged; enzymatically/sonically degraded; and inhibited DNA. To
the best of our knowledge, this constitutes the largest, most compre-
hensive, condition-dependent STR mixture database for purposes of
human identity testing.

The statistical comparison of evidentiary or unknown profiles to
profiles obtained from known persons is typically accomplished within
a likelihood ratio (LR) framework [26-28]. This approach compares the
probability of the data given two hypotheses: that a POI contributed to
the profile; and that the POI did not contribute. The LR framework has
recently replaced traditional means of determining evidential strength,
becoming the prevailing mechanism by which the strength of the evi-
dence is communicated [16]. Where traditional methods involve
binary, manual interpretation, the adoption of the LR framework has
resulted in movement towards utilizing probabilistic models to evaluate
unknown and evidentiary profiles [29-35]. The complex nature of low-
template, compromised, multi-contributor DNA signal elicits the need
for continued research, examination, and development in this arena
[36-38].

For example, probabilistic-based interpretation systems typically
require an assumption on the number of contributors (NOC) [39,40]. As
a result, work on NOC estimation and the NOC assumption [18,41-43]
has catalyzed the development of methods that manage this limitation
[44-47]. Moreover, proposed interpretation schemes do not all use the
same underlying probabilistic model. Model choice governs the prob-
abilistic computation, and different models can result in different LRs,
particularly for complex samples [48,49]. Thus, there is interest in
exploring the impact of model variations on the inference [20]. Despite
advances, the interpretation of whole signal remains challenging. Re-
cent work in the development of probabilistic peak detection algo-
rithms based on a Bayesian framework [50,51], the application of ar-
tificial neural networks [52], and the development of methods that do
not rely upon signal thresholds [33,53,54] demonstrates that im-
provement in the field of human identification is forthcoming.

Table 1
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The primary challenge here is the development of methods that
utilize all of the information contained within the data. Given that so-
lutions will likely require interdisciplinary approaches and perspec-
tives, a comprehensive dataset, such as the one introduced here, is
necessary to foster research and development in this realm. In what
follows, we first describe the dataset: the number and range of com-
plexity of the samples by providing an overview of sample types; the
number of contributors contained within the samples; and measures of
DNA degradation and stutter artefacts. We then illustrate its value by
considering a forensically relevant problem as an exemplar: we explore
the impact of various conditions and sample types on the ability to
detect the alleles from which the signal arose.

2. Materials and methods
2.1. Ethics

The procedures used to acquire the source materials for the database
were in accordance with the ethical standards of the Institutional
Review Board: Boston University School of Medicine Protocol Number
H-31941.

2.2. Defining the dataset

The collection of profiles was generated over a four-year period
using 144 different laboratory conditions. We extracted and purified
DNA using typical organic or silica-based purification techniques. Three
commercially available STR multiplexes (PowerPlex” 16 HS, Identifiler”
Plus, and GlobalFiler") and two generations of capillary electrophoresis
instruments were used to amplify and separate the STR fragments.
PowerPlex” 16 HS and Identifiler” Plus co-amplify 15 STR loci plus the
sex-determining Amelogenin locus, while GlobalFiler’ simultaneously
amplifies 21 autosomal STRs, 1 Y-STR, 1 Y indel, and Amelogenin. The
chromosomal locations and genetic diversity of the STRs amplified are
well-established [2]. The capillary electrophoresis instruments used
were the 3130 and 3500 Genetic Analyzers, both of which are com-
monly employed in operational settings [55].

The samples contained DNA originating from one to five persons,
and the amplification target masses ranged from 0.007 to 1 ng. In the
case of multi-contributor samples, contributor ratios ranged from equal
parts to mixtures containing 99 parts of one and one part of the other(s)
(Supplementary Tables 1 and 2). In addition, in a large subset of the
samples, the DNA was compromised prior to amplification by: enzy-
matic degradation; UV irradiation; sonication-induced degradation; or
PCR inhibition with humic acid. Table 1 summarizes the number of
samples generated under each condition. Detailed laboratory methods
are available in Supplementary Methods.

The two- to five-person mixture profiles were constructed using 37
different genotype combinations (Supplementary Tables 1 and 2). For

The number of STR single-source and mixture profiles generated under each laboratory condition. Mixtures were prepared using two methods as denoted under Sample Type: (1) DNA
Extract Mixtures (DEM) were created by mixing DNA extracts to reach the specified ratio of major to minor contributor(s), and (2) Whole Blood Mixtures (WBM) were prepared by
combining aliquots of whole blood from multiple contributors in the appropriate proportions prior to extraction. The STR multiplexes and the number of PCR cycles are listed in the
second column, while the capillary electrophoresis instrument type and injection times are described in the next two columns. The laboratory conditions used to induce DNA damage,
degradation, or PCR inhibition are specified. If additional damage was not induced in the laboratory environment, then the samples were classified as ‘Untreated.’.

Sample Type Kit (PCR cycle no.) 3130 (5, 10, 20 s) 3500 (5, 15, 25 s) Untreated DamagedUV Degraded Degraded Sonication Inhibited Humic Acid
Enzymatic
WBM IDPlus X 1560 1512 4728 1152 1512
(28 cycles)
DEM IDPlus X 3212
(29 cycles)
WBM GlobalFiler X 1560 1512 4728 1152 1512
(29 cycles)
DEM PP16HS X 1024

(32 cycles)
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Fig. 1. Schematic depicting a summary of the sample types. (A) A density plot of the proportion of the minor contributor versus the total copy number, as per qPCR, for two- to five-person
mixtures amplified with common human identity STR multiplexes, separated by the total number of PCR cycles utilized. The number of samples and the Genetic Analyzer type are also
presented. (B) The percentage of samples processed on the 3130 Genetic Analyzer. (C) The percentage of samples processed on the 3500 Genetic Analyzer.

mixtures amplified with each of the three commercially available STR
multiplexes, Fig. 1A provides a density plot of the proportion of the
minor contributor versus the total copy number, separated by the
number of PCR amplification cycles. Of the 5160 mixture samples, 76%
contain a contribution from at least one individual of less than 20% of
the total DNA content. Of 25,164 total samples, 17,808 were subjected
to a condition that was expected to induce inefficiencies in amplifica-
tion for some or all loci. Fig. 1B and C report the percentage of samples
processed per condition on the 3130 and 3500 Genetic Analyzers, re-
spectively. The database, therefore, is comprised of samples that range
from simple to complex, and cumulatively represents the wide variety
of data that might be encountered.

2.3. Description of the online resource

The dataset is available online at the Laboratory for Forensic
Technology Development and Integration on lftdi.com. There are three
versions of the data (Raw, Unfiltered, and Filtered), which are orga-
nized in folders under the PROVEDIt tab:

1) The raw data files (.hid and .fsa files) are catalogued in 24 groups
based on the number of contributors in the sample, the instrument
platform, the instrument injection time, the autosomal STRs tar-
geted during amplification (i.e., kit type) as well as the number of
PCR cycles.

2) Unfiltered CSV files are found in a folder labeled ‘UnFiltered’. These
are exported CSV files from GeneMapper' ID-X. Details regarding the
analysis settings are provided in the section Peak Detection and
Artefact Filtering, below. These data contain the allele designation,
basepair size and peak heights for all samples. Artefacts, such as
pull-up, minus A and raised baseline are not filtered from these data.

3) Filtered CSV files are found in a folder labeled ‘Filtered’. These are
the same CSV files described in 2), but with minus A and pull up
artefacts removed. In the case of samples amplified with the
GlobalFiler’ Amplification kit, exotic stutters in the SE33 locus,
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which are located half a repeat unit away from the allele, are also
filtered. Conditions for artefact removal are detailed in the section
Peak Detection and Artefact Filtering, below.

In addition to the data, each folder contains a file with the known
genotypes and a file explaining the sample naming convention, which is
recapitulated in the Supplementary Methods. There exist two sets of
samples, DNA Extract Mixtures (DEM) and Whole Blood Mixtures
(WBM), and the naming conventions between them differ. The DEM
sample set is designated with the project code RD12-0002, while the
WBM sample names contain project code RD14-0003. The names
function as an “answer key” and contain most of the pertinent in-
formation related to the sample, such as the true NOC, the sources of
DNA, the ratios of each contributor, and the total mass of DNA ampli-
fied. Inquiries regarding submission of additional samples to the data-
base may be addressed to the corresponding author.

2.4. Dataset quality control

Prior to inclusion in the database, each sample was evaluated and
compared to the known genotypes of the biological source(s). If a
sample exhibited indications of gross contamination, the sample was
omitted from the dataset. Gross contamination was defined as the
presence of at least two extraneous peaks with heights exceeding that of
baseline noise that could not be accounted for as part of the set of al-
leles or stutter belonging to the known contributors to that sample. All
other samples remain in the dataset, including those that contained
potential allele drop-in, which results from the amplification of extra-
neous fragments of DNA not native to the extract. Peak height balance
between heterozygous alleles within a locus for one-person samples was
evaluated. In accordance with expectations [15,55], the peak height
balance decreased as the average intensity of the peak decreased
(Supplementary Fig. 1). However, the dataset also includes samples
with anomalous or unusual results. Specifically, sample 41, which has a
known genotype of (14, 15) at the D1S1656 locus, reproducibly
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exhibited a lower than expected signal intensity for the 14 allele
(Supplementary Fig. 2).

2.5. Peak detection and artefact filtering

To create the Unfiltered and Filtered versions of the database,
electropherograms were analyzed with GeneMapper’ ID-X using Local
Southern sizing at an analytical threshold (AT) of one Relative
Fluorescent Unit (RFU). The genotype table for each sample was ex-
ported from GeneMapper® as a CSV file containing the allele, size, and
height for all peaks.

Prior to the analysis and interpretation described here, filtered data
were created. Artefacts were removed by employing Cleanlt, an auto-
mated filtering procedure used to remove signal associated with: cross-
talk or pull-up between EPG color channels and incomplete adenyla-
tion, also known as minus A. Cleanlt is available on Iftdi.com. Via that
tool, artefacts can be automatically removed from electropherogram
data in accordance with user-set values, and a new file containing fil-
tered signal is generated. This file can then be utilized for downstream
interpretation.

For purposes of the filtered data described here, three criteria were
applied to filter pull-up: 1) the potential pull-up peak and the parent
peak were labeled with different dyes; 2) the size of the potential pull-
up peak fell within + 0.6 base pairs (b.p.) of the size of the parent peak;
and 3) the height of the pull-up peak divided by the height of the parent
peak was < 6%. If all three criteria were fulfilled, the peak was clas-
sified as pull-up and removed from the data.

Similarly, Cleanlt categorized peaks as complex pull-up if the fol-
lowing five criteria were met: 1) two sister alleles present at the same
locus were one STR unit apart; 2) the two sister alleles were > 50% of
each other in height; 3) the potential complex pull-up peak(s) appeared
in a dye channel different from that of the sister alleles; 4) the size of
the complex pull-up peak (in b.p.) fell between the sizes of the two
sister alleles, + 0.3 b.p.; and 5) the height of the complex pull-up peak
(s) divided by the height of the shorter sister allele was < 6%. A peak
was removed from the data if all five criteria were met. Cleanlt cate-
gorized signal as minus A and removed it if a potential minus A peak
was within —1 * 0.6 b.p. of a plus A peak at the same locus and the
height of the potential minus A peak divided by the height of the plus A
peak was < 16%.

In the case of samples amplified with GlobalFiler®, stutter peaks at
the SE33 locus which were 2 base pairs to the left of the known allele
with a peak height less than 18% of the known allele were also filtered
from the dataset. CleanIt does not filter exotic stutter, and thus this task
was accomplished after Cleanlt filtering was completed.

2.6. Exploring signal quality and complexity

2.6.1. Forward and reverse stutter

Stutter is a PCR artefact that is commonly observed in STR ampli-
fication. Forward and reverse stutter intensities were evaluated as a
function of allele size and peak height, with the exception of peaks that
could have been the result of a combination of forward and reverse
stutter, which arises for genotypes whose alleles differ by two repeat
units. Specifically, we computed the stutter peak height ratio, defined
as the intensity of the peak in stutter position divided by the allele peak
height, and we plot the stutter ratio against the number of repeat units.

2.6.2. Evaluating DNA damage and PCR inhibition with gPCR and STR
contours

The majority of samples were quantified using the Quantifiler” Trio
DNA Quantification Kit (Life Technologies) on the 7500 Real-Time PCR
System using the manufacturer’s recommended thermalcycling protocol
and an external calibrator [56,57]. If Quantiﬁler@ Trio was not avail-
able, the Quantifiler" Duo assay was utilized. The Quantifiler’ Trio
assay co-amplifies four targets: a small autosomal human target (80
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b.p.), a large autosomal human target (214 b.p.), a human male target,
and an internal PCR control (IPC). The concentration of each target was
calculated by determining the cycle number at which the emitted
fluorescence of the given target reached a defined threshold and com-
paring that cycle number to an external calibration curve. The ampli-
fication of the smaller fragment relative to the larger fragment provided
information regarding the degree of DNA damage [58,59] and is a
potential predictor of quality of the STR profile. The quality index (QI),
which is the ratio of the concentrations of the small and large autosomal
fragments, was computed for all samples run with the Quantifiler’ Trio
assay.

The degree of degradation or inhibition was also assessed using the
contour of the STR signal, which was well modeled as exponential
decay in fluorescence as a function of molecular weight:

Hy = Ae™ ®

where H; is the sum of the peak heights associated with the known
genotypes at locus [, 5 is the average base pair size of the STR alleles at
locus [, and A and B are the exponential parameters obtained for each
sample using least squares regression. In extreme cases of decay, the
highest molecular weight peaks may not reach detectable levels. If high
molecular weight markers exhibit low peak heights due to degradation
or inhibition of the PCR reaction, B will take a large negative value. In
contrast, if there is good signal balance across all loci, indicating effi-
cient PCR and high quality template DNA, B will be near zero.

2.6.3. Signal detection
The non-detection (ND) rate was computed as:

Npps1 ]

expected

ND:l—[
@

where Nppy-; is the number of peaks in known allele positions with
height greater than or equal to one RFU, and Neypecreq is the expected
number of alleles in the profile as determined by the known genotypes.
Though related, ND is not equivalent to the rate of allelic dropout since
fluorescent signal from noise is observed at low fluorescent intensities
[60]. The number of peaks within a locus that exceeded one RFU were
counted and compared against the expected number given the known
genotypes for each sample. In addition, the largest number of known
allele positions containing RFU signal greater than zero within a locus
was compared against the true number of contributors.

3. Results
3.1. Signal quality and complexity

By plotting the stutter ratio against the number of repeat units we
found that, as previously described, stutter ratios increase with allele
size or, more specifically, with the longest uninterrupted repeat number
[15,61]. Further, as with the allele peak height balance, the stutter ratio
is also affected by the template mass of DNA available at PCR initiation.
Specifically, the stutter ratio for both reverse and forward stutter peaks
increased as the intensity of the allele signal decreased for all loci
(Supplementary Figs. 3-5), which may be attributed to slippage early in
the PCR process compounded by noise effects [17]. The average ratios
ranged from 3 to 12% and 1 to 4% for the reverse and forward stutter
categories, respectively.

Compromised DNA samples often exhibit decreasing signal with
increasing molecular weight wherein the rate of DNA decay depends on
factors that include whether the sample is exposed to microorganisms,
sunlight, unfavorable temperatures, or geochemical inhibitors found in
the environment. In some operational settings, quantification of the
DNA extract is a necessity [62] and may be used to guide downstream
laboratory processing decisions. Quantification is accomplished using
gPCR and the simultaneous detection of the per-cycle increase in the
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Fig. 2. The quality index (QI) obtained for WBM samples. The QI is a ratio of the concentrations of 80 and 214 b.p. fragments and may provide an indication of degradation, damage, or
inhibition early in the DNA processing pipeline. In general, the QI increases as the DNA extract becomes more compromised. QIs ranged from less than 0.3—439. The majority of data
represent samples originating from one person, but the full range of QIs from ‘not compromised’ to ‘severely compromised’ is also well represented in the complex mixtures of two to five
contributors. In highly compromised samples, the 214 b.p. large autosomal fragment often does not reach detectable levels, rendering the QI value as indeterminate (Ind). There were
1207 samples for which indeterminate QI values were obtained, and those data are not included in this plot.

concentration of two distinct PCR amplicons of different length. Fig. 2
displays a histogram of the QI of the samples as determined by qPCR,
demonstrating that the database consists of single-source and complex
mixture profiles of varying states of decay. Specifically, 26% of the
samples resulted in QI values suggesting moderate (QI = 1.5-4) and
12% severe (QI > 4) levels of degradation or inhibition. Supplemen-
tary Fig. 6 shows example qPCR data obtained for samples that de-
monstrate minor, moderate, and severe levels of amplification in-
efficiencies as measured by qPCR.

As illustrations of the different conditions of DNA and B values that
may be encountered, Fig. 3A and B depict EPGs obtained from single-
source samples that were untreated and severely damaged through
sonication, respectively. Fig. 3C presents the QI value versus B calcu-
lated for each sample, separated by the amplification chemistry and the
treatment protocol utilized. As expected, all untreated samples resulted
in QI values near one and B parameters near zero. Samples that were
subjected to conditions that degraded the DNA show that the QI and B
parameter are correlated, suggesting that the QI metric can be used to
predict the STR sloping pattern for these sample types. Interestingly,
samples subjected to conditions intended to induce PCR inhibition show
that while the qPCR QI metric demonstrates that PCR inhibitors affect
the amplification of the large autosomal fragment, the STR profile
presents only minor signs of inhibition. Spearman’s p for QI and B was
computed (Supplementary Table 3), with correlation being strong for
enzymatically degraded, sonicated, and UV-damaged samples (p be-
tween —0.8656 and —0.6324), but less so for untreated and inhibited
samples (p between —0.1382 and —0.0143).
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3.2. Signal detection rates

Depending on the laboratory process, the condition of the sample,
or the available template molecules, the rate of allele non-detection can
be large and can substantively impact profile quality. In extreme cases,
EPGs can contain partial STR profiles from many contributors where
the signal from one or all of the contributors has been compromised in
an unknown manner, resulting in inference challenges.

Given the known genotypes of each contributor within the sample,
Fig. 4A plots the number of expected alleles versus the number of peaks
observed in those allele positions. Notably, there is large overlap be-
tween the number of alleles observed in the three-, four- and five-
person mixtures, suggesting that factors associated with allele loss and
allele stacking can complicate downstream interpretation [63,64]. For
example, Fig. 4B represents EPG signal from three representative loci
obtained from a five-person mixture containing equal parts from each
contributor, wherein no more than seven alleles were detected at any
one locus, and the peak height ratios do not provide definitive evidence
that five, rather than four, persons comprise this mixture. Fig. 4C de-
picts the samples that exhibit a maximum of two, four, six, or eight
detected peaks in allele positions at any single STR locus as it relates to
the rate of allele non-detection. As the rate of allele non-detection
surpasses 0.1, many three- and four-person mixtures do not exhibit
more than four detected alleles at any one locus. Similarly, at high rates
of allele drop-out, some two-person mixtures do not contain loci with
more than two peaks detected in an allele positon. Profiles that ex-
hibited greater than four to five detects at a locus originated from
three-, four-, and five-person samples. Similarly, profiles that exhibited
seven to eight detects at a locus originated from four- or five-person
mixtures.
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Fig. 3. The degree of sloping observed in the STR profile. The exponent in the decay in fluorescence as a function of molecular weight, B, ranged from 0.02 to —0.04. B values
significantly below zero correspond to compromised samples and generally indicate some reduction in RFU signal as the length of the amplicons increase. (A) An electropherogram
obtained from an untreated sample amplified at 0.25 ng (~40 copies). There is good intra-locus peak height balance across all heterozygous loci, and the total RFU signal is ap-
proximately equivalent across all loci labeled with the same dye, which is represented in the B value (—0.0005). (B) An electropherogram obtained from a sample treated with 30
sonication cycles amplified at 0.25 ng. The decrease in peak height as the fragment length increases is apparent and characteristic of the “sloping effect” observed in degraded profiles;
this is represented by the highly negative B term obtained (—0.02). (C) The correlation between QI and B. The treatment protocol, PCR amplification kit, and number of profiles are noted
for each plot. The plots are color-coded by density, where yellow and light purple represent areas of highest and lowest sample density, respectively. Correlation, measured using
Spearman’s Rho, is summarized in Supplementary Table 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The mosaic plot of Fig. 4D summarizes the data for the two- to five-
person mixture profiles and shows the proportion of samples from the
known number of contributors versus the number of peaks detected in
allele positions. Interestingly, 53%, 45%, and 52% of samples that ex-
hibit five to six detected peaks at allele positions at a locus originated
from three-person mixtures for the GlobalFiler’, Identifiler” Plus, and
PowerPlex” 16 HS multiplexes, respectively. The remainder originated
from either four- or five-person mixtures. Similarly, 44%, 37%, and
39% of samples that exhibit a positive detection count of seven or eight
were from four-person mixtures, with the remainder originating from
five-person samples. Despite the variety of five-person genotype com-
binations represented, no five-person mixture displayed more than
eight detects at allele positions at any one locus (Supplementary Tables
1 and 2) for the samples in this database. This illustrates that the
PROVEDIt database contains samples of sufficient breadth and com-
plexity and contains numerous samples with high and low levels of false
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non-detections.

We note that the rate of non-detections reported in this work is
dependent on a number of factors including the analytical threshold
(AT) applied to the data and the peak detection parameters employed.
If the AT is increased from 1 RFU, the rate of non-detection will also
increase [17,65]; if the peak detection parameters such as smoothing
are relaxed, peak detection may increase. In addition to the filtered
data, the PROVEDIt database includes the raw files allowing for large-
scale, inter-institutional studies that evaluate the effects of these con-
ditions on detection and downstream inference.

4. Discussion
We have made available over 25,000 multiplex STR profiles, gar-

nered from 144 laboratory conditions that range from one- to five-
contributors at targets ranging from one to 160 copies of DNA. The
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Fig. 4. Allele stacking and allele dropout in PROVEDIt profiles. In plots (A), (C), and (D) the data are color-coded by the known number of contributors and separated according to the
PCR amplification kit utilized. (A) The expected number of alleles per profile, given the genotypes of the contributors in the mixture (left axis), connected to the number of times signal
=1 RFU was detected in allele positions (right axis). (B) An EPG of three representative loci obtained for a five-person mixture containing equal parts from each person: (1) Contributor 1;
(=) Contributor 2; () Contributor 3; (=) Contributor 4; and (m) Contributor 5. (C) The number of detected alleles at a locus for each sample against the rate of non-detection. The
magnitude of the y-axis is not significant as the points were jittered for visualization purposes. (D) The proportion of samples originating from the known number of contributors versus
the number of peaks =1 RFU at a locus for all samples. In no instance are greater than eight detections at allele positions observed at a locus, despite the presence of five-person genotype

combinations in the database.

profiles are comprehensive in their genetic diversity and quality. We
demonstrate that the database meets the needs of the human identifi-
cation community in that it consists of sample types regularly en-
countered in operations. We illustrate the value of the database by
showing that allele dropout and degradation effects are well re-
presented. We demonstrate that PCR artefacts, such as stutter, are
regularly encountered and are impacted by stochastic PCR or noise
effects in the low-template regime.

Due to the persistence of STR profiling in clinical and forensic la-
boratories, these data are pertinent to public health, as well as criminal
and international justice efforts. Further, from a global perspective, STR
typing continues to be a crucial means by which decedents in mass
graves, terrorist attacks, and mass disasters are identified [66]. As au-
tomated and/or probabilistic STR interpretation systems have begun to
replace manual interpretation, thorough validation of new methodol-
ogies and comparison against existing ones is critical and necessitates
the availability of a large-scale and open sample-set. We publish this
database to facilitate advances in interpretation of these complex traces
and foster continued multi-disciplinary development of approaches to
evaluating STR signal.

5. Conclusion

The PROVEDIt database provides the forensic, clinical, and broader
scientific community with a large-scale database that can be utilized for
purposes of developing new or comparing existing interpretation or
analysis strategies. The database is the largest, most comprehensive
dataset of its kind and is openly available. In addition, the PROVEDIt
data can be utilized as a benchmark against which new developments
can be judged or for pedagogical pursuits. Most importantly, this re-
source fills the gap highlighted by a recent high-profile report [20]
calling for large-scale studies that verify the use of computational
procedures for purposes of human identity testing using STR signal
obtained from mixed, possibly partial, sources.
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