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and real if it is conjugate to its inverse. Moreover a real element is strongly real if it is
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inverted by an involution and otherwise it is said to be weakly real. If & is a field, then
a kG-module is said to have quadratic type if it affords a non-degenerate G-invariant
k-valued quadratic form. The following is a recent result of R. Gow and the author [3]:

Proposition 1. Suppose that k is an algebraically closed field of characteristic 2. Then
for any finite group G, the number of isomorphism classes of quadratic type principal
indecomposable kG-modules is equal to the number of strongly real 2-regular conjugacy
classes of G.

Our focus here is on the double cover 2.4, of the alternating group A4,. All real
2-regular elements of A, are strongly real. So every self-dual principal indecompos-
able kA,-module has quadratic type. On the other hand, 2..4,, may have real 2-regular
elements which are not strongly real. In this note we determine which principal inde-
composable k(2.A4,,)-modules have quadratic type.

Let S,, be the symmetric group of degree n and let D(n) be the set of partitions of n
which have distinct parts. In [6, 11.5] G. James constructed an irreducible kS,-module
D# for each partition u € D(n). Moreover, he showed that the D are pairwise non-
isomorphic, and every irreducible k£S,,-modules is isomorphic to some D*.

As A,, has index 2 in §,,, Clifford theory shows that the restriction D*] 4, is either
irreducible or splits into a direct sum of two non-isomorphic irreducible k.A,-modules.
Moreover, every irreducible kA,,-module is a direct summand of some D*| 4, .

D. Benson determined [1] which D*| 4, are reducible and we recently determined
[8] when the irreducible direct summands of D#| 4 are self-dual (see below for de-
tails). Throughout this paper we use D’} to denote an irreducible direct summand
of D“iAn .

As the centre of 2.4, acts trivially on any irreducible module, D’{ can be considered
as an irreducible k(2.4,,)-module, and all irreducible k(2.4,,)-modules arise in this way.

The alternating sum of a partition p is |ulq :== > (=1)7T'p;. We use €,(u) to denote
the number of odd parts in p. So |p|e = €o(p) (mod 2) and |p|qe > £o(p), if 1 has distinet

parts. Our result is:

Theorem 2. Let p be a partition of n into distinct parts and let P* be the projective
cover of the simple k(2.A,)-module D,. Then P" has quadratic type if and only if

Co(p)

n;ml§4mgn_2

, for some integer m.

Note that P* is a principal indecomposable k(2..4,,)-module, but is not a k.A,,-module.
Throughout the paper all our modules are left modules.
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2. Notation
2.1. Principal indecomposable modules

This section consists of statements of well known facts. See [10, Sections 1.1, 1.10, 3.1,
3.6] for details and proofs.

The group algebra of a finite group G over a field k is a k-algebra kG together with
a distinguished k-basis whose elements are identified with the elements of G. So each
geG Ag9, where Ay € k for all g € G. The algebra
multiplication in kG is the k-linear extension of the group multiplication in G.

element of kG is unique expressible as

Multiplication on the left makes kG into a module over itself, the so-called regular
kG-module. The indecomposable direct summands of kG are called the principal inde-
composable kG-modules. Each such module has the form kGe, where e is a primitive
idempotent in kG.

Let P be a principal indecomposable kG-module. The sum of all simple submodules
of P is a simple kG-module S. Moreover, P/J(P) = S, where J(P) is the sum of all
proper submodules of P. So P is the projective cover of S. Moreover P <+ S establishes a
one-to-one correspondence between the isomorphism classes of principal indecomposable
kG-modules and the isomorphism classes of irreducible kG-modules.

Let (K, R, k) be a p-modular system for G, where p is prime. So R is discrete valuation
ring of characteristic 0, with unique maximal ideal J containing p, and R is complete
with respect to the topology induced by the valuation. Also K is the field of fractions of
R, k = R/J is the residue field of R and k has characteristic p. We assume that K and
k are splitting fields for all subgroups of G.

In this context every principal indecomposable kG-module P has a unique lift to a
principal indecomposable RG-module P (this means that Pisa finitely generated free
RG-module, which is projective as RG-module, and the kG-module P /J P is isomorphic
to P).

A conjugacy class of G is said to be p-regular if its elements have order coprime
to p. The number of isomorphism classes of irreducible kG-modules equals the number
of p-regular conjugacy classes of G. So the number of isomorphism classes of principal
indecomposable kG-modules equals the number of p-regular conjugacy classes of G.

2.2. Symplectic and quadratic forms

A good reference for this section is [5, VII, 8]. A kG-module M is said to be self-dual
if it is isomorphic to its dual M* = Homy (M, k). This occurs if and only if M affords
a non-degenerate G-invariant k-valued bilinear form. A self-dual M has quadratic, or-
thogonal or symplectic type if it affords a non-degenerate G-invariant quadratic form,
symmetric bilinear form or symplectic bilinear form, respectively.

If p # 2, R. Gow showed that an indecomposable kG-module is self-dual if and only
if it has orthogonal or symplectic type, and these types are mutually exclusive. See [5,
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VII, 8.11]. W. Willems, and independently J. Thompson [12], showed that the type of a
principal indecomposable module coincides with the type of its socle.

If p = 2, P. Fong noted that each non-trivial self-dual irreducible kG-module has
symplectic type. This form is unique up to scalars, by Schur’s Lemma. See [5, VII, 8.13].
However now it is possible that the projective cover has neither orthogonal nor symplectic
type.

The correspondence P <+ S between principal indecomposable kG-modules and simple
kG-modules respects duality. So P is self-dual if and only if S is self-dual. As the number
of isomorphism classes of self-dual irreducible kG-modules equals the number of real
p-regular conjugacy classes of G, it follows that the number of isomorphism classes
of self-dual principal indecomposable kG-modules equals the number of real p-regular
conjugacy classes of G.

Recall that g — g1, for g € G, extends to a k-algebra anti-automorphism x +— z° on
kG called the contragredient map.

Proposition 3. Let (K, R, k) be a 2-modular system for G and let P bea principal inde-
composable RG-module. Set P = P/JP and S = P/rad(P), let ® be the character of P
and let ¢ be the Brauer character of S. Then the following are equivalent:

(i) P has quadratic type.
(ii) P has quadratic type.
(iii) P has symplectic type.

)

iv) There is an involution t in G and a primitive idempotent e in kG such that P =

kGe and t'et = e°.

(v) If B is a symplectic form on S, then B(ts,s) # 0, for some involution t in G and
some s in S.

(vi) ©(g9) ¢ 2R, for some strongly real 2-reqular elements g of G.

(vii) |§G(?;)‘ € 2R, for all weakly real 2-reqular elements g of G.

The equivalence of (i), (ii), (iii) and (iv) was proved in [4] and that of (ii), (vi) and
(vii) in [3]. We only need the equivalence of (ii) and (v) to prove Theorem 2. This was
first demonstrated in [7].

3. The double covers of alternating groups
3.1. Strongly real classes

The alternating group .A,, is the subgroup of even permutations in the symmetric
group S,,. So As, Ag, ... is an infinite family of finite simple groups. For n > 4, A,, has
a unique double cover 2.A4,,. Then 2.A4,, is a subgroup of each double cover 2.5, of S,,.
Moreover 2.A4,, is a Schur covering group of A, if n = 5 or n > 8. In this section we
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describe the conjugacy classes and characters of these groups. See [11] for an elegant
exposition of this theory.

Given distinct i1,42,...,%m € {1,...,n}, we use (i1,42,...,%mn) to denote an m-cycle
in Sy, So (i1,12,...,%y) maps i; to i;41, for j =1,...,m—1, sends 4y, to i; and fixes all
i #11,...,0n. Now each permutation o € S,, has a unique factorization as a product of

disjoint cycles. If we arrange the lengths of these cycles in a non-increasing sequence, we
get a partition of n, which is called the cycle type of o. The set of permutations with a
fixed cycle type A is a conjugacy class of S,,, here denoted C'y. In particular the 2-regular
conjugacy classes of S, are indexed by the set O(n) of partitions of n whose parts are
odd.

A transposition in S, is a 2-cycle (4, j) where 4, j are distinct elements of {1,...,n}. So
(i,4) has cycle type (2,1"2). It is clear that there is one conjugacy class of involutions
for each partition (2™,1%~2™) of n, with 1 < m < n/2. We call a product of m-disjoint
transpositions an m-involution in S,. It follows that S, has |3 ]| conjugacy classes of
involutions; the m-involutions, for 1 < m < n/2.

Suppose that @ = (i1,414m)(i2824m) - - . (im, l2m) IS an m-involution in &,. Then
we say that (i1,%14m), (i292+m),- -+, (im,d2m) are the transpositions in 7 and write
(4j,ij4m) € m, for j = 1,...,m. Notice that each {i;, 74} is a non-singleton orbit

of mon {1,...,n}.

Let A be a partition of n. We use £(\) to denote the number of parts in A, and we
say that X is even if n = £(A\) mod 2. Then C) C A, if and only if X is even, and if A
is even, then C) is a union of two conjugacy classes of A, if A has distinct odd parts
and otherwise C) is a single conjugacy class of A,,. In either case we use C) 4 to denote
an A,-conjugacy class contained in Cy. If A has distinct odd parts then C) 4 is a real
conjugacy class of A, if and only if n = ¢(\) mod 4.

Next let z € 2.A4,, be the involution which generates the centre of 2.4,. As (z) is a
central 2-subgroup of 2..4,,, there is a one-to-one correspondence between the 2-regular
conjugacy classes of 2.4, and the 2-regular conjugacy classes of A, = (2.4,)/(z); if A
is an odd partition of n the preimage of Cy 4 in 2.4, consists of a single class C’A,A of
odd order elements and another class zCA’A, 4 of elements whose 2-parts equal z.

Notice that an m-involution belongs to A, if and only if m is even. Moreover, the
2m-involutions form a single conjugacy class of A,. So A, has | %] conjugacy classes of
involutions; the 2m-involutions, for 1 < m < n/4. Now each 2m-involution in A,, is the
image of two involutions in 2..4,,, if m is even, or is the image of two elements of order
4 in 2.4, if m is odd.

Set m,(\) as the number of parts which occur with odd multiplicity in A.

Lemma 4. If X is a partition of n with all parts odd then CA’A,A is a strongly real conjugacy
class of 2. A, if and only if there is an integer m such that %@‘) <4m < %”(A)



86 J. Murray / Journal of Algebra 512 (2018) 81-91

Proof. Let o € A, have cycle type A and let m be an m-involution in §,, which inverts
o. Set £ :={£(\), and let X1,..., X, be the orbits of o on {1,...,n}. Then 7 permutes
the sets Xq,..., X,.

If 7X; = Xj, for some j, then 7 fixes a unique element of X, and hence acts as an
%—involution on X;. If instead 7.X; # X, then 7 is a bijection X; — 7X;. So 7

acts as an | X |-involution on X; U 7X;. We may order the X; and choose k£ > 0 such
that 7X; = X4, for j =1,...,k, and 7X; = X, for j = 2k + 1,2k + 2,...,£. Then
from above

k 4
m:2M+ > Xj [ —1_nt2k—0

- 2 ) 2
Jj=1 j=2k+1

Now the maximum value of 2k is 2k = £ —m, (), when 7 pairs the maximum number of

%"()‘). The minimum value of
2k is 0. This occurs when 7 fixes each orbit of o. It follows from this that m > %(’\).

Conversely, it is clear that for each m > 0 with "74 <m < %"()‘), there is an

orbit of o which have equal size. This implies that m <

m-~involution m € §,, which inverts o; 7 pairs {4+2m—n orbits of ¢ and fixes the remaining
n — 2m orbits of o. The conclusion of the Lemma now follows from our description of
the involutions in 2.A4,,. O

3.2. Irreducible modules

By an n-tabloid we mean an indexed collection R = (Ry, ... R;) of non-empty subsets

of {1,...,n} which are pairwise disjoint and whose union is {1,...,n} (also known as
an ordered partition of {1,...,n}). We shall refer to Ry,..., Ry as the rows of R. Set
Ai = |R;|. Then we may choose indexing so that A = (A\1,...,A¢) is a partition of n,

which we call the type of R. Now §,, acts on all A-tabloids; the corresponding permutation
module (over Z) is denoted M?*.

Next recall that the Young diagram of X is a collection of boxes in the plane, oriented
in the Anglo-American tradition: the first row consists of A; boxes. Then for i = 2,...., /¢
in turn, the i-th row consists of A\; boxes placed directly below the (i — 1)-th row, with
the leftmost box in row ¢ directly below the leftmost box in row 7 — 1.

By a A-tableau we shall mean a bijection ¢ : [A\] = {1,...,n}, or a filling of the boxes
in the Young diagram with the symbols 1,...,n. So for 1 <r < fand 1 <c¢ < A, we
use t(r, ¢) to denote the image of the position (r,¢) € [A] in {1,...,n}. Conversely, given
i €{l,...,n}, there is a unique r = r4(i) and ¢ = ¢,(¢) such that ¢(r, c) = i. We say that
1 is in row r and column c of t.

Clearly there are n! tableaux of type A and S,, acts regularly on the set of A-tableau.
For o € S, we define ot : [\] = {1,...,n} as the composition (ot)(r,c) = o(t(r,c)),
for all (r,¢) € [A]. In other words, the permutation module of S,, acting on tableau is
(non-canonically) isomorphic to the regular module ZS,,; once we fix ¢, we may identify
o € S, with the tableau ot.
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Associated with ¢, we have two important subgroups of S,,. The column stabilizer
of tis Cy := {0 € S, | (i) = ¢t(oi), for i = 1,...,n} and the row stabilizer of ¢ is
Ry :={0 €S8, |r(i) =roi), fori=1,...,n.

We use {t} to denote the tabloid formed by the rows of ¢. So {t}, := {t(r,¢) | 1 < ¢ <
A}, for r=1,..., 4. Also {s} = {t} if and only if s = ot, for some o € R;. Notice that
the actions of S,, on tableau and tabloids are compatible, in the sense that o{t} = {ot}.
In other words, the map ¢ ~— {t} induces a surjective S,-homomorphism ZS, — M?.
The kernel of this homomorphism is the Z-span of {ot | o € R;}.

The polytabloid e, associated with ¢ is the following element of M*:

er = Z sgn(o){ot}.

oceCy

We use supp(t) := {{ot} | 0 € C;} to denote the set of tabloids which occur in the
definition of e;. Note that e;; = sgn(m)es, for all # € Cy. In particular, if r(i) = r:(j),
then e(; jy; = —e;. Also if m € S, then Cry = 7Cyn' and Ry = nRym L. So eny = ey
and supp(wt) = 7 supp(t).

The Z-span of all A-polytabloids is a S,,-submodule of M* called the Specht module.
It is denoted by S*. So S* is a finitely generated free Z-module (Z-lattice).

3.3. Involutions and bilinear forms

Let 1 be a partition of n which has distinct parts and let {,) be the symmetric
bilinear form on M* with respect to which the p-tabloids form an orthonormal basis.
Now let k be a field of characteristic 2. Then according to James, D* := S* /St (S#)+
is a non-zero irreducible kS,,-module. Here (S*)+ := {m € M* | (m,s) € 2Z,Vs € S*}.

Suppose that p has parts g3 > -+ > pes—1 > pas > 0. Benson’s classification of the ir-
reducible kA,-modules [1], and our classification of the self-dual irreducible k.A,-modules
[8], are given by:

Lemma 5. D* | 4, is reducible if and only if for each j >0
(Z) H25—-1 — M2 = 1 or2 and (Z’L) H2j5—-1 —+ 25 7_é 2 (mod 4)

If D¥ | 4, is reducible, its irreducible direct summands are self-dual if and only if

> js0 M2y is even.

Let @ denote the residue of an integer n mod 2. Then

Lemma 6. Let ¢ : S* — D" be the ZS,,-projection. Then B(¢x, ¢y) := (x,y), for z,y €
SH, defines a non-zero symplectic bilinear form on D, if p # (n).
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Remark 7. Notice that if x,y € D* and 7 is an involution in §,, then
B(w(z+y),z +y) = B(rz,z) + B(my,y).
So we can focus on a single polytabloid in S*.
Lemma 8. If t is a p-tableau and w is an involution in S,, then
(e, er) = {T € supp(wt) Nsupp(t) | 7T =T} mod 2.
In particular, if (met,es) is odd, then m € Ry, for some o € Cy.
Proof. We have

(e, er) = Z sgn(roym 1) sgn(oo){(mo1 {t}, o2{t})

01,02€C}

{(o1,02) € Cy x Cy | mo1{t} = o2{t}}| (mod 2)

= |supp(7t) N supp(t)|.

Now notice that T — 7T is an involution on supp(7t)Nsupp(t). So | supp(nt)Nsupp(t)| =
{T € supp(wt) Nsupp(t) | #T =T} mod 2.

Suppose that (met,es) is odd. Then by the above, there exists o € C; such that
m{ot} = {ot}. This means that 7 € Ry;. O

Lemma 9. Let t be a p-tableau and let m be a positive integer such that (met, es) is odd,

n—~f, (1)
2

for some m-involution m € S,,. Then m < and w fizes at most one entry in each

column of t.

Proof. By the previous Lemma, we may assume that 7 € R;. Now R, = S,,. For i > 0,
there is j-involution in §; for j =1, ... L%J So there is an m-involution in R; if and only
if

i pi—1  n—{o(p)
2 ?JFZ 2 2

s even i odd

m< 2|5

Let ¢, j belong to a single column of ¢. We claim that i, j belong to different columns of
mt. For suppose otherwise. Then (4, j) € CyNCry. So the map T +— (4, 7)T is an involution
on supp(nt) N supp(t) which has no fixed-points. In particular |supp(wt) N supp(t)| is
even, contrary to hypothesis. This proves the last assertion. O

We can now prove a key technical result:

Lemma 10. Let t be a p-tableau and let m be a positive integer such that (weq, e;) is odd,

for some m-involution m € S,,. Then m > %
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Proof. Let T' € supp(nt) Nsupp(t) such that 77 = T. Write 7; for the restriction of
to the rows T;_1 and Th; of T, for each j > 0. Then there is m; > 0 such that 7; is an
m-involution, for each j > 0. Som =) mj and 7 = mma. .. (IENp

2

We assume for the sake of contradiction that m < % Now % = Zj>0 2.
So m; < pg; for some j > 0, and we choose j to be the smallest such positive integer.

There is a unique o € Cy such that T = {ot}. Set s = ot. So m € Rs. We define the
graph Grr(s) of 7 on s as follows. The vertices of Grr(s) are labels 1,..., p9;_1 of the
columns which meet row j12;_; of s. There is an edge c¢; <— ¢ if and only if one of the
two transpositions (s(2j — 1,¢1),5(2j — 1,¢2)) or (s(24,¢1),s(24,¢c2)) belongs to m;. As
there are at most two entries in each column of s which are moved by 7, it follows that
each connected component of Gr,(s) is either a line segment or a simple closed curve.

We claim that Grr(s) has a component with a vertex set contained in {1,..., uo;}.
For otherwise every component I' of Gry(s) is a line segment and | Edge(T")| > | Vx(I') N
{1,..., u2;}|. Summing over all I' we get the contradiction

oy = S IVR(D) N {1, g} < 3 | Edge(D)] = m.

Now let X be the union of the component of Gry (s) which are contained in {1,. .., po; }
and let T be the component of Gr,(s) which contains min(X). In particular Vx(I") C
{1’ R U2j}'

Consider the involution or := [ cvyr)(t(27 — 1,¢),¢(2j,¢)). This transposes the
entries between rows 2j — 1 and 25 in each column in Vx(T'). Now it is clear that 7 is in
the row stabilizer of ors. So {ors} € supp(nt) Nsupp(t). Moreover, Grr(s) = Gry(ors)
and s = or(ors). It follows that the pair T # orT of tabloids makes zero contribution
to (mweg, e;) modulo 2. But T is an arbitrary m-fixed tabloid in supp(wt) N supp(¢). So
(mey, e4) is even, according to Lemma 8. This contradiction completes the proof. O

3.4. Proof of Theorem 2

Suppose first that P* has quadratic type. Then by (ii)<=(v) in Proposition 3,
B(#tz,x) # 0, for some € D'} and involution 7t € 2.4,,. Let m be the image of # in A,,.
Then Remark 7 implies that there is a u-tableau ¢ such that (weq,e;) is odd. Now 7 is a
4m-involution, for some m > 0, and Lemmas 9 and 10 imply that % <4m < %"(”).
This proves the ‘only if’ part of the Theorem.

According to Lemma 4, the strongly real 2-regular conjugacy classes of 2.4, are

enumerated by A € O(n) such that there is a positive integer m with %@‘) < 4m <

n—mo(A) ( n—£(A) _ n=—mo(})
2 2 2

2.A,, labelled by A, in all other cases there is a single 2-regular class of 2..4,, labelled by

A)

if A has distinct parts, and there are two 2-regular classes of

By Theorem 2.1 in [2] (or the main result in [9]) there is a bijection ¢ : O(n) — D(n)
such that £(A\) = |p(A)], and my(A) = £, (H(N)), for all A € O(n). Then from the previous



90 J. Murray / Journal of Algebra 512 (2018) 81-91

paragraph the number of strongly real 2-regular conjugacy classes of 2.4, coincides
with the number of irreducible k(2..4,)-modules enumerated by p € D(n) such that
% < 4m < %"(“) for some integer m. However, from earlier in the proof, these
are the only P* which can be of quadratic type. We conclude from Proposition 1 that
each of these P" is of quadratic type, and furthermore that no other P* is of quadratic

type. O
3.5. Example with 2.A13

The 18 distinct partitions of 13 give rise to 21 principal indecomposable k(2..A4;3)-
modules. The types are:

p [P tvpe
(7,6) 6 6 |2 non-quadratic
(8,5) 5 6 non-quadratic

(6,5,2) 5 6 non-quadratic
(6,4,2,1)| 5 6 non-quadratic
(5,4,3,1)| 5 5 2 not self-dual

(7,5,1) 5 5 2 not self-dual

(9,4) 4 6 quadratic

(7,4,2) 4 6 quadratic

(6,4,3) 4 6 quadratic

(8,4,1) 4 6 quadratic
(7,3,2,1)| 4 5 quadratic

(10,3) 3 6 quadratic

(8,3,2) 3 6 quadratic

(9,3,1) 3 5 quadratic

(11,2) 2 6 quadratic
(10,2,1)| 2 6 quadratic

(12,1) 1 6 quadratic

(13) 0 6 quadratic

Using (i) and (ii) in Lemma 5, we see that D*| 4,, is a sum of two non-isomorphic
irreducible k(2.A413)-modules for u = (7,6),(5,4,3,1) or (7,5, 1). For all other p, D*] 4,
is irreducible. So there are 21 = 18 4+ 3 projective indecomposable k(2..4;3)-modules.

By the last statement in Lemma 5, the two irreducible k(2..413)-modules Df’4’3’1) are
duals of each other, as are the two irreducible k(2..4;3)-modules DEZ’E””. By the same
result both irreducible k(2.A;3)-modules Dgﬁ) are self-dual. However 6 = 2 (mod 4).
So neither principal indecomposable k(2.A4;3)-module P(7:9) is of quadratic type.

Next if 4 = (8,5),(6,5,2) or (6,4,2,1) we have “—s — 5 and "=2) — ¢ S0
the principal indecomposable k(2.413)-module P* is not of quadratic type for any
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of these u’s. For each of the remaining partitions pu, the principal indecomposable
k(2.A13)-module P* is of quadratic type, according to Theorem 2.
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