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1. Introduction

Each linear representation of a finite group G over a field k is a group homomorphism 
G → GL(V ), where V is a finite dimensional k-vector space. The isomorphism classes 
of faithful representations of G correspond to the conjugacy classes of subgroups of 
general linear groups which are isomorphic to G. Likewise a symplectic representation is 
a homomorphism G → Sp(V ) into a symplectic group and an orthogonal representation is 
a homomorphism G → O(V ) into an orthogonal group. The isometry classes of faithful 
symplectic and orthogonal representations of G then correspond, respectively, to the 
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conjugacy classes of subgroups of symplectic and orthogonal groups which are isomorphic 
to G. The conjugacy classes of symplectic and orthogonal groups were enumerated by 
G.E. Wall in [6]. This is essentially equivalent to a classification of the symplectic and 
orthogonal representations of cyclic groups.

Now let kG be the group algebra of G over k. A symplectic kG-module is a pair 
(M, B), where M is a kG-module and B is a G-invariant symplectic form on M . We 
say that (M, B) is indecomposable if B is degenerate on each proper submodule of M . 
One example of a symplectic kG-module can be constructed as follows. Let M be any 
kG-module, with dual kG-module M∗ = Homk(M, k). The evaluation (f, m) �→ f(m), 
for f ∈ M∗ and m ∈ M , then defines a G-invariant quadratic form on M∗ ⊕ M . Its 
polarization is the G-invariant symmetric form P ((f, m), (f ′, m′)) := f(m′) + f ′(m), for 
f, f ′ ∈ M∗ and m, m′ ∈ M . This is symplectic in characteristic two. We call (M∗⊕M, P )
the paired module.

From now on, unless otherwise specified, G is the Klein-four group and k is a perfect 
field of characteristic 2. In this paper we determine the isometry classes of indecom-
posable symplectic kG-modules. For each such module (M, B) we also determine the 
isometry classes of G-invariant quadratic forms on M which polarize to B.

As usual k× is the multiplicative group of k and P(k) is a set of representatives for the 
cosets of {λ2 + λ | λ ∈ k} in the additive group of k. Hence |P(k)| = 2, if k is finite and 
|P(k)| = 1, if k is algebraically closed. We use sp(v1, . . . , vn) to denote the k-span of vec-
tors v1, . . . , vn in a k-vector space and �r� to denote the largest integer less than or equal 
to r ∈ R. Other notation will be developed as needed. All our modules are left modules.

Recall that kG has tame representation type. In particular there are only finitely many 
indecomposable kG-modules of any given dimension. In Section 4 we review Conlon’s 
classification [1] of these modules. In addition to the trivial module A0 = B0 = kG and 
the regular module D = kG, the families are

An, Bn, Cn(π) and Cn(∞),

where n runs over all positive integers and π runs over all irreducible k-polynomials. The 
kG-modules which give rise to indecomposable symplectic kG-modules are:

(kG)2, kG, (kG)2, An ⊕Bn, Cn(π), Cn(π)2, Cn(∞) and Cn(∞)2.

Now up to scaling kG has a unique symmetric bilinear form, and this form is clearly 
not symplectic. Moreover any statement about symplectic forms on kG ⊕ kG is just 
a statement about symplectic vector spaces. By [4, Theorem 2.10] if (k ⊕ k, b) is a 
symplectic vector space, then b is a non-zero multiple of the paired form. So (k⊕ k, b) is 
a hyperbolic plane. The quadratic forms on k ⊕ k which polarize to b are parametrized 
by d ∈ k. Moreover, as d ranges over P(k), we get representatives for all isometry classes 
of quadratic forms which polarize to b. See [4, Theorem 12.9] and [4, Proposition 13.14]
for full details.
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In [3], Gow and Willems described all group invariant symplectic and quadratic forms 
on the regular module of a finite group. However they did not discuss the isometry 
classes of such forms. Here we show that the G-invariant symplectic forms on kG are 
parametrized by the triples (a, b, c) ∈ k3 with a +b +c 	= 0. Furthermore those triples with 
a + b + c = 1k represent the isometry classes of forms. Also the G-invariant quadratic 
forms which polarize to a given symplectic form are parametrized by k, and all such 
forms are isometric. The details can be found in Theorem 5.1.

The isometry classes of indecomposable G-invariant symplectic forms on (kG)2 fall 
into three families: the paired module, a family parametrized by k× and a family 
parametrized by the projective line P1(k). So if k = Fq is the field with q elements, 
there are 2q + 1 isometry classes of such modules. The G-invariant quadratic forms 
which polarize to a given symplectic form are parametrized by k2, and all such forms 
are isometric. See Theorems 5.2 and 5.3.

For the modules An ⊕ Bn, the isometry classes of G-invariant symplectic forms are 
parametrized by the vectors in k2n which have first non-zero coordinate 1k. This in-
cludes the zero vector, which corresponds to the paired module. So if k = Fq, there 
are 1 + (q2n − 1)/(q − 1) isometry classes. Furthermore there is a G-invariant quadratic 
form which polarizes to a symplectic form in the isometry class of (λ1, . . . , λ2n) ∈ k2n

if and only if λ2i = λ2i+1, for i = 1, . . . n − 1. In the case of the paired module there 
is one isometry class of G-invariant quadratic forms. Otherwise the isometry classes of 
quadratic forms are parametrized by P(k). For full details, see Theorems 6.4 and 6.7.

The results on symplectic and quadratic forms on Cn(π) are developed in Section 7.1. 
Set K = k[x]/(π), an extension field of k of degree m = deg(π). Then the isometry classes 
of G-invariant symplectic forms on Cn(π) are parametrized by K�n/2�. So if k = Fq is 
finite, there are qm�n/2� isometry classes of symplectic forms. For a given π and n ≥ 1, 
there is at most one isometry class of symplectic forms for which there exist corresponding 
G-invariant quadratic forms. For each symplectic form in this class, the isometry classes 
of corresponding quadratic forms are parametrized by P(k). See Theorems 7.5 and 7.7.

We consider the modules Cn(π)2 in Section 7.2. The isometry classes of inde-
composable G-invariant symplectic forms on Cn(π)2 are parametrized by quadruples 
(v, w, f1, f2), where 1 ≤ v < w ≤ n + 1 with w − v odd and f1, f2 ∈ K[x]. Moreover if 
w = v + 1, then f1 = 0. Otherwise deg(f1) ≤ (w − v − 3)/2. Also if w ≥ n, then f2 = 1. 
Otherwise deg(f2) ≤ (n − w − 1)/2 and f2(0) 	= 0. The paired module is given by the 
quadruple (n, n +1, 0, 1). In this case there is one isometry class of G-invariant quadratic 
forms. Otherwise corresponding G-invariant quadratic forms exist depending on n + v, 
π and f1. Either n + v is even, π ∈ {x, x + 1} and f1 = 1 or n + v is odd, π /∈ {x, x + 1}
and there is one possibility for f1. In both cases the isometry classes of quadratic forms 
are parametrized by P(k). See Theorems 7.8 and 7.10.

Finally Cn(∞) is the module Cn(x), where the role of two generators of G has been 
interchanged. Consequently the G-invariant symplectic and quadratic forms for Cn(∞)
and Cn(∞) ⊕ Cn(∞) are the same as for Cn(x) and Cn(x) ⊕ Cn(x), respectively. Full 
details are given in Theorems 8.1, 8.3, 8.4 and 8.6.
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We recall basic results and define notation for matrices in Section 3. These are used 
throughout the remainder of the paper. Section 3.2 outlines the algebraic background 
needed to understand the modules Cn(π) and Cn(∞).

2. Forms and modules

The theory of symmetric, symplectic and quadratic forms is highly dependent on 
whether the characteristic is odd or even. In this section we give full definitions and 
briefly overview the theory of forms in both cases.

2.1. Bilinear and quadratic forms

Let M be a finite dimensional vector space over a field k, with dual space M∗ and 
endomorphism ring Endk(M). Fix an ordered basis M = (m1, . . . , mn) of M and let 
MT = (mT

1 , . . . ,m
T
n ) be the dual basis of M∗. So mT

i mj = δij , for all i, j. This extends 
to a k-isomorphism T : M → M∗, m �→ mT , for all m ∈ M . Note that mTm′ = (m′)Tm, 
for all m, m′ ∈ M .

A bilinear form on M is a map B : M × M → k which is linear in both variables. 
Given B, there is a unique β ∈ Endk(M) such that B(m, m′) = mTβm′. This is clear 
as B and β are uniquely determined by the values B(mi, mj) and mT

i βmj , for all i, j =
1, . . . , n, respectively. In this sense we can identify B and β. Also we can identify B and 
the Gram matrix (mT

i βmj)1≤i,j≤n. Note that this identification depends on the choice 
of M. We say that B is non-degenerate if β, or equivalently (mT

i βmj)1≤i,j≤n is invertible.
Next define BT (m, m′) := B(m′, m), for all m, m′ ∈ M . Then B → BT is an invol-

untary k-algebra anti-automorphism of Endk(M). Note that the Gram matrix of BT is 
the transpose of the Gram matrix of B. Also mTBTm′ = (m′)TBm = (Bm)Tm′, and 
thus (Bm)T = mTBT , for all m ∈ M .

We say that B is symmetric if BT = B, and skew-symmetric if BT = −B. These are 
mutually exclusive properties if char(k) 	= 2, but they are equivalent if char(k) = 2. We 
say that B is alternating if B(m, m) = 0, for all m ∈ M . It is easy to check that each 
alternating form is skew-symmetric. Also if char(k) 	= 2, each skew-symmetric form is 
alternating. However if char(k) = 2, a form B is alternating if and only if it is symmetric 
and hollow (meaning B(mi, mi) = 0, for i = 1, . . . , n).

We say that B is a symplectic form if it is both alternating and non-degenerate. 
In this case we call (M, B) a symplectic space. Then M has an ordered basis which 
represents B as a diagonal sum of 2 × 2 block matrices ( 0 1

−1 0
). In particular dim(M) is 

even. Conversely each even dimensional space has one symplectic form, up to isometry.
Next let B be non-degenerate and let α ∈ Endk(M). We define Bα(m, m′) :=

B(m, αm′), for all m,m′ ∈ M . Then Bα is a bilinear form on M and Bα = Bα. In 
particular Bα is non-degenerate if and only if α is invertible. Moreover {Bα | α ∈
Endk(M)} uniquely describes all bilinear forms on M . For instance BT = Bσ, where 
σ = B−1BT . Also there is a unique αo ∈ Endk(M) so that B(αm,m′) = B(m,αom′), for 
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all m, m′ ∈ M . We call the map o the adjoint of B. As (αm)T = mTαT , for all m ∈ M , 
we have αo = B−1αTB. So o is a k-algebra anti-automorphism of Endk(M). Also note 
that σo = σ−1.

Next, a quadratic form on M is a map q : M → k such that q(λm) = λ2q(m), for all 
λ ∈ k, m ∈ M , and q(m + m′) = q(m) + q(m′) + Pq(m, m′), for all m, m′ ∈ M , where 
Pq is a bilinear form, called the polarization of q. We note that Pq is symmetric. If Pq is 
non-degenerate, we say that q is non-degenerate and call (M, q) a quadratic space.

Now suppose that B is a bilinear form. Then the diagonal of B is the quadratic form

ΔB(m) := B(m,m), for all m ∈ M .

Notice that ΔB polarizes to B + BT and ΔB = 0 if and only if B is alternating. In 
particular ΔB = ΔB′, for bilinear forms B and B′, if and only if B −B′ is alternating.

Now q = 1
2ΔPq if char(k) 	= 2. However if char(k) = 2, this does not make sense and 

indeed Pq is alternating and q cannot be recovered from Pq. To rectify this situation, we 
define the upper-triangular part of B as the bilinear form

∇B(mi,mj) :=
{

B(mi,mj), if i < j.
0, if i ≥ j.

Of course, ∇B depends on the choice M of an ordered basis. Also define Dq(mi, mj) =
q(mi)δij , for all i, j. Then Dq defines a bilinear form which has a diagonal matrix relative 
to M. Moreover q = Δ(Dq + ∇Pq), or more concretely

q

(
n∑

i=1
λimi

)
=

n∑
i=1

λ2
i q(mi) +

∑
1≤i<j≤n

λiλjPq(mi,mj), for all λ1, . . . , λn ∈ k. (1)

Conversely, given an alternating form B, it is clear that

{Δ(D + ∇B) | D diagonal} is the set of all quadratic forms which polarize to B.

(2)

2.2. Symplectic and quadratic modules

Now suppose that M is a kG-module and let EndG(M) be the algebra of kG-endo-
morphisms of M . Identify g ∈ G with m �→ gm in Endk(M). Then EndG(M) =
{α ∈ Endk(M) | gα = αg}. We say that a bilinear form B on M is G-invariant if 
B(gm, gm′) = B(m, m′), for all g ∈ G and m, m′ ∈ M . Hence B is G-invariant if and 
only if gTBg = B, for all g ∈ G.

We say that M is self-dual if M ∼= M∗ as kG-modules. Given a kG-isomorphism 
φ : M → M∗, set B(m, m′) := φ(m)(m′), for all m, m′ ∈ M . Then B is a non-
degenerate G-invariant bilinear form on M . Conversely, each non-degenerate G-invariant 
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bilinear form on M defines a kG-isomorphism M ∼= M∗. So M affords a non-degenerate 
G-invariant bilinear form if and only if M is self-dual.

Let B be a non-degenerate G-invariant bilinear form on M . For α ∈ Endk(M)
recall Bα as defined in section 2.1. Then Bα is G-invariant if and only if α ∈
EndG(M). Overall the set of G-invariant symplectic forms on M is {Bα | α ∈
AutG(M) and Bα is alternating}.

Next suppose that B is a G-invariant symplectic form. We then call (M, B) a sym-
plectic kG-module. For each submodule N of M , set N⊥ := {m ∈ M | B(m, n) = 0,
for all n ∈ N}. Then N⊥ is a submodule of M such that M/N⊥ ∼= N∗. In particular 
dim(M) = dim(N) + dim(N⊥). Hence if B restricts to a non-degenerate form on N , 
then M = N ⊕N⊥, as kG-modules, and (N⊥, B) is symplectic. We say that (M, B) is 
indecomposable if it is not a sum of two proper symplectic kG-modules. The proposition 
in [2] (and its proof) shows that:

Lemma 2.1. Let (M, B) be a symplectic kG-module and let M = M1 ⊕ · · · ⊕ Mt be 
a decomposition of M into indecomposable kG-modules. Then for each i ∈ {1, . . . , t}
either Mi is non-degenerate or there exists j 	= i such that B : Mi × Mj → k is a 
non-degenerate pairing. In particular Mj

∼= M∗
i and B is non-degenerate on Mi ⊕Mj.

The lemma implies that (M, B) is indecomposable if and only if M is indecomposable, 
or M ∼= N ⊕N∗, where N is indecomposable and (N, B) is degenerate.

We say that α : (M, B1) → (M, B) is an isometry of symplectic kG-modules if α ∈
EndG(M) and B1(m, m′) = B(αm, αm′), for all m, m′ ∈ M (or equivalently if B1 =
αTBα). For example, m �→ μm, for μ ∈ k×, defines an isometry (M, μ2B) ∼= (M, B).

Note that an isometry is necessarily a kG-isomorphism. Clearly isometry is an equiv-
alence relation on the G-invariant symplectic forms on M . We fix a set of representatives 
Isom(M) for the corresponding equivalence classes.

Next let q be a quadratic form on M . Then for each g ∈ G, the map m �→ q(gm), for 
m ∈ M , is a quadratic form on M . Moreover q(g−) polarizes to gTPqg. So q and q(g−)
polarize to Pq, if Pq is G-invariant. We say that q is G-invariant if q(g−) = q, for all 
g ∈ G. Now suppose that q = ΔQ, for some bilinear form Q. Then q(g−) = Δ(gTQg). 
As a consequence

q is G-invariant if and only if Q− gTQg is alternating, for each g ∈ G. (3)

Notice that (1) implies that if Pq is G-invariant, then q is G-invariant if and only if 
q(gmi) = q(mi), for i = 1, . . . , n and all g ∈ G.

Let q′ be another G-invariant quadratic form on M . We say that α ∈ EndG(M) is an 
isometry (M, q) → (M, q′) if q′(m) = q(αm), for all m ∈ M . Notice that if α exists then 
it induces an isometry (M, Pq) → (M, Pq′).

Now suppose that q is G-invariant with polarization B and let (M, B′) be isometric 
to (M, B). Then B′ = βTBβ, for some invertible β ∈ EndG(M). Then the quadratic 
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form βT qβ is G-invariant and β : (M, q) → (M, βT qβ) is an isometry. This discussion 
shows that once Isom(M) is fixed, each isometry class of non-degenerate G-invariant 
quadratic forms on M contains a form q such that Pq ∈ Isom(M). We let QIsom(M, B)
be a full set of representatives for the distinct isometry classes of G-invariant quadratic 
forms on M which polarize to B.

2.3. Pairings between a module and its dual

Let k be a field of characteristic 2 and let M be an indecomposable kG-module. 
Equivalently EndG(M) is a local ring, in the sense that every element of EndG(M) is 
either nilpotent or invertible. Let J(EndG(M)) be the Jacobson radical of EndG(M). 
Then EndG(M) := EndG(M)/ J(EndG(M)) is a division algebra over k. In particular 
EndG(M) is a field if k is finite, and EndG(M) ∼= k if k is algebraically closed.

Suppose that M � M∗. Then M∗ ⊕ M has no self-dual indecomposable direct 
summand. So the paired module (M∗ ⊕ M, P ), as defined in the introduction, is in-
decomposable.

For the rest of this section we assume that M is self-dual. We briefly discuss symplectic 
forms on M2, as we face this situation in Sections 7.2 and 8.

We identify M2 with ordered pairs (m1
m2

) of elements of M . The kG-endomorphisms of 
M2 are 

(
a b
c d

) (
m1
m2

) := (
am1 + bm2
cm1 + dm2

), for all (m1
m2

)∈ M2, where a, b, c, d ∈ EndG(M). Likewise 
the G-invariant bilinear forms on M2 are

(
A B
C D

) ((
m1
m2

)
,
(
m3
m4

)) := A(m1,m3) + B(m1,m4) + C(m2,m3) + D(m2,m4),

for all (m1
m2

)
,
(
m3
m4

)∈ M2, where A, B, C, D are G-invariant bilinear forms on M .
Let (A B

C D

) be an indecomposable symplectic form on M2. As (A B
C D

)T =
(
AT CT

BT DT

)
, 

A and D are alternating and C = BT . Lemma 2.1 implies that A and D are degenerate 
and B is non-degenerate.

Lemma 2.2. Suppose that EndG(M) is a field and that the adjoint of some (and thus all) 
non-degenerate G-invariant form on M acts trivially on EndG(M). Then the indecom-
posable G-invariant symplectic forms on M2 are

{(
A B
BT D

)
|

B non-degenerate G-invariant bilinear form on M

A,D degenerate G-invariant alternating forms on M

}
.

Proof. Let μ : EndG(M) → EndG(M) be the projection, with kernel J(EndG(M)). The 
assumption on EndG(M) implies that M is indecomposable. So every indecomposable 
direct summand of M2 is the image of an injective kG-homomorphism φ : M → M2. We 
can write φ(m) = (

φ1m
φ2m

), for all m ∈ M , where φ1, φ2 ∈ EndG(M). Then for m1, m2 ∈ M

we have
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(
A B

B
T

D

)((
φ1m1
φ2m1

)
,

(
φ1m2
φ2m2

))
= A(φ1m1, φ1m2) + B(φ1m1, φ2m2)+

BT (φ2m1, φ1m2) + D(φ2m1, φ2m2)

Recall from section 2.1 that A = Bα and D = Bδ, for some α, δ ∈ J(EndG(M)), and 
let σ = B−1BT . Then the right hand side equals Be(m1, m2), with e = φo

1αφ1 + φo
1φ2 +

φo
2σφ1 + φo

2δφ2. So μ(e) = μ(φo
1φ2 + φo

2σφ1), using μ(φo
1αφ1) = μ(φo

2δφ2) = 0.
Next the hypothesis on EndG(M) implies that μ(ζo) = μ(ζ)o = μ(ζ), for all ζ ∈

EndG(M). In particular μ(σ)−1 = μ(σ−1) = μ(σo) = μ(σ). This forces μ(σ) = 1, as 
EndG(M) is a field of characteristic 2. So

μ(e) = μ(φo
1)μ(φ2) + μ(φo

2)μ(σ)μ(φ1) = 0.

We deduce that e ∈ J(EndG(M)). So 
(

A B
BT D

)
is degenerate on φM . In particular we 

conclude that (M2, 
(

A B
BT D

)
) is indecomposable. �

Let B be any non-degenerate G-invariant bilinear form on M . Recall that (m1, . . . , mn)
and (
1, . . . , 
n) are B-dual bases of M if B(
i, mj) = δij , for all i, j. Then (
i, mj) �→
(mT

i , mj), for all i, j, extends to an isometry (M2, 
(

0 B
BT 0

)
) → (M∗ ⊕M, P ). So under 

the hypothesis of Lemma 2.2, the paired module (M∗ ⊕M, P ) is indecomposable.
We note that there is a 2-dimensional self-dual indecomposable F2C3-module M whose 

paired module is decomposable. In this case EndG(M) ∼= F4 and the adjoint of a sym-
plectic form on M acts as the Frobenius automorphism λ �→ λ2 on F4.

3. Matrices

Let k be a perfect field of characteristic 2. For all m, n ≥ 1, we let Matm×n(k) be the 
k-space of m × n matrices with entries in k, simplified to Matn(k) if m = n.

3.1. Definitions and notation

Suppose that M ∈ Matn(k). Then the centralizer and transposer of M are

CMatn(k)(M) := {X ∈ Matn(k) | XM = MX},
TMatn(k)(M) := {X ∈ Matn(k) | XM = MTX}.

We simplify to C(M) and T(M), if n and k are clear from the context. Then C(M) is 
a subalgebra of Matn(k), and T(M) = T C(M), if T is an invertible matrix in T(M). 
Now C(U−1MU) = U−1C(M)U , for all U ∈ GLn(k). Moreover

Lemma 3.1. If U ∈ GLn(k) then T(U−1MU) = UTT(M)U .

We say that M is alternating if it is hollow (has a zero diagonal) and symmetric. Then 
a pairing argument gives:
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Lemma 3.2. Let M ∈ Matn(k) be symmetric and let U ∈ GLn(k). Then M is hollow if 
and only if UTMU is hollow. Moreover, for V ∈ Matn(k) we have

(V TMV )ii =
n∑

j=1
MjjV

2
ji, for each i ∈ {1, . . . , n}.

We use Es,t to denote a matrix, of unspecified dimensions, which has the single non-
zero entry 1 at position (s, t). We simplify to Es for the diagonal matrix Es,s. By fiat Es,t

is the zero matrix in Matm×n(k), if s /∈ {1, . . . , m} or t /∈ {1, . . . , n}. We use Diagn(k) to 
denote the diagonal matrices in Matn(k). We write diag(A1, . . . , At) for a matrix which 
has the square blocks A1, . . . , At positioned successively along its diagonal. We use � to 
denote a block of arbitrary entries and · to denote a block with 0 entries in any matrix.

A matrix is Toeplitz if it has constant diagonals. For each integer s we define Ts :=∑
i Ei,i+s−1. So Ts is a non-zero Toeplitz matrix in Matm,n(k), if 2 − m ≤ s ≤ n. 

Moreover (T2−m, . . . , Tn) is a basis for the space Tm×n(k) of all m ×n Toeplitz matrices. 
We use Tn(k) to refer to Tn×n(k).

A matrix is Hankel if it has constant anti-diagonals. For each integer s we define 
Hs :=

∑
i Ei,s−i. So Hs is a non-zero Hankel matrix in Matm,n(k), if 2 ≤ s ≤ m + n. 

Moreover (H2, . . . , Hm+n) is a basis for the space Hm×n(k) of all m ×n Hankel matrices. 
We use Hn(k) to refer to Hn×n(k). Notice that each square Hankel matrix is symmetric.

We call a Hankel matrix monic if its first non-zero row has first non-zero entry 1, and 
we use MHm×n(k) to denote the set of all monic m ×n Hankel matrices. Now label the 
anti-diagonal containing (i, j) by i + j. Then we use DH(n+1)×n(k) to denote the set of 
monic (n + 1) × n Hankel matrices which are constant on the anti-diagonals labeled by 
2i − 1 and 2i, for all i = 2, . . . n. Note that both MHm×n(k) and DH(n+1)×n(k) contain 
the zero matrix.

We write Ĩn for the n ×n Hankel matrix Hn+1, simplified to Ĩ if n is understood. We call 
Ĩ the exchange matrix. So Ĩ has 1’s on its main anti-diagonal. Note that Ĩ2 = I and that 
Hs is non-singular if and only if Hs = Ĩ. Also ĨnTs = Hn+s. So Ĩn ·Tn×m(k) = Hn×m(k).

For all m, n ≥ 1, exchange-transpose is a map Matm×n(k) → Matn×m(k) defined by

AT̃ := ĨnA
T Ĩm, for all A ∈ Matm×n(k). (4)

This variant of the transpose turns the first (second etc.) column of A into the last 
(second last etc.) row of AT̃ but in reversed order.

3.2. Companion matrices

In this section we prove results which we need when dealing with the modules Cn(π)
and Cn(∞). So let π be an irreducible polynomial over a perfect field k of characteristic 2
and set m := deg(π). Then π has distinct roots ε1, . . . , εm in a splitting field k̂ over k. 
Set K = k(ε1).
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Fix n ≥ 1 and let P ∈ Matmn(k) be the companion matrix of πn. So P =
T0 +

∑mn
i=1 λi−1Ei,n, where πn =

∑mn
i=0 λix

i. Now P is a non-derogatory matrix, mean-
ing that its characteristic and minimal polynomials are equal (to πn). In particular 
CMatmn(k)(P) = k[P] is isomorphic to k[x]

(πn) . Next k[x]
(πn) is a commutative ring with a 

unique maximal ideal (π). Also k[x]
(π)

∼= K, and so k[x]
(πn)

∼= K[t]
(tn) . Corresponding to this 

isomorphism, there is a unique expression (Jordan decomposition)

P = E + N , where E has minimal polynomial π and N is nilpotent.

The following lemma gives a more explicit version of this decomposition:

Lemma 3.3. Let f(x) ∈ k̂[x] be the unique polynomial of degree < mn such that

f(x) ≡ εi mod (x− εi)n, i = 1, . . . ,m.

Then f(x) has coefficients in k. Set E := f(P) and N := P −E. Then E �→ ε and N �→ t

extends to a k-algebra isomorphism CMatmn(k)(P) ∼= K[t]
(tn) .

Set C(P) = CMatmn(k)(P) and identify k(E) with K. Then each A ∈ C(P) can be 
written uniquely as A =

∑n−1
i=0 αiN i, where αi ∈ K for i = 0, . . . , n − 1. Set |A| =

min{i ≥ 0 | αi 	= 0}, if A 	= 0, and |A| := n, otherwise. Then | · | is almost a Euclidean 
valuation, as

|A| = 0, if and only if A is a unit in k[P],

|AB| = |A| + |B|, if B ∈ C(P) with AB 	= 0, and

|A + B| ≥ min{|A|, |B|}, with > if and only if |A| = |B| and α|A| = β|B|.

(5)

Now K is perfect as k is perfect. So an easy consequence of Lemma 3.3 is that the set 
of squares in C(P) is {f(N 2) | f ∈ K[x], deg(f) ≤ (n − 1)/2}. In particular the squares 
form a k-subspace of C(P) of dimension m�n+1

2 �.

Lemma 3.4. Let 0 ≤ v ≤ w < n such that w − v is even and let A ∈ C(P) with |A| = v. 
Then there are U, V ∈ C(P) such that AU2 = Nw +Nw+1V 2. This expression is unique, 
in the sense that AW 2 = Nw+Nw+1X2, with W, X ∈ C(P), if and only if AW 2 = AU2.

Proof. Write A = N vP 2 + N v+1Q2, with P, Q ∈ K[N ]. Then P is a unit, as |A| = v. 
Set U = P−1N (w−v)/2. Then AU2 = Nw + Nw+1V 2, where V = P−1Q.

Now suppose that AW 2 = Nw + Nw+1X2, for some W, X ∈ C(P). Then 
A(U2 + W 2) = Nw+1(V 2 + X2). It follows that A(U2 + W 2) = 0, as otherwise we 
get the impossible integer equality v + 2|U + W | = w + 1 + 2|V + X|. �

As a particular case, A is a unit in C(P) if and only if there are U, V ∈ C(P) such 
that AU2 = 1 + NV 2. In this case U is a unit and NV 2 is uniquely determined.
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Next, it is well-known that given an n × n matrix M over any field F , there is a 
non-singular symmetric matrix S in TMatn(F )(M). For example, if Jn(λ) = λIn + T2 is 
an n × n Jordan block matrix, for λ ∈ F , then ĨnJn(λ) = Jn(λ)T Ĩn. Moreover, it is 
a theorem of O. Taussky and H. Zassenhaus [5] that all matrices in TMatn(F )(M) are 
symmetric if and only if M is non-derogatory. In particular all matrices in TMatmn(k)(P)
are symmetric.

We can describe the symplectic forms on Cn(π) and Cn(π)2 in terms of an arbitrary 
non-singular matrix T ∈ TMatmn(k)(P). However, in order to determine the existence of 
corresponding G-invariant quadratic forms (in Theorems 7.7 and 7.10) we must choose 
T carefully, as we now explain. This requires some Jordan form and Galois theory.

Let J ∈ Matmn(k̂) be a Jordan normal form matrix of P. So without loss of gener-
ality J = diag(Jn(ε1), . . . , Jn(εm)), where Jn(ε) := εIn + T2, for all ε ∈ k̂. Notice that 
diag(Ĩn, . . . , Ĩn) is an invertible symmetric matrix in TMatmn(k)(J ).

Lemma 3.5. There exists V ∈ GLmn(k̂) such that P = V −1J V and V T diag(Ĩn, . . . , Ĩn)V
has entries in k.

Proof. As P has Jordan form J , there exists V ∈ GLmn(k̂) such that P = V −1J V . Let 
V (j) ∈ Matmn×1(k̂) be the j-th column of V . As P = T−1 +

∑mn
i=1 λi−1Ei,n, we have 

V (j+1) = V ·P(j) = J ·V (j), and thus V (j) = J j−1 ·V (1), for j = 2, . . .mn. In particular 
V is uniquely determined by V (1).

Let s ∈ {1, . . . , m} and set μs := Vsn,1. Note that for j = 1, . . .mn, the (sn)-th row 
of J j has a single non-zero entry εjs in the (sn)-th position. As V (j) = J j−1 · V (1), the 
(sn)-th row of V is μs(1, εs, . . . , εmn−1

s ). Since V is non-singular, we deduce that μs 	= 0.
Form the n × n upper-triangular Toeplitz matrix Xs :=

∑n
i=1 Vsn+1−i,1Ti, for s =

1, . . . , m. Then Xs is non-singular, as it has diagonal entries μs. Moreover it is clear that 
diag(X−1

1 , . . . , X−1
m )V (1) is an mn-tuple with entry 1 at each position n, 2n, . . . , mn, and 

zeros elsewhere. Now Xs ∈ CMatn(k̂)(Jn(εs)). So replacing V by diag(X−1
1 , . . . , X−1

m )V , 
we may assume that V (1) =

∑m
s=1 Esn,1 in Matmn×1(k̂).

Next there are V(i,j) ∈ Matn(k̂) such that

V =

⎛⎜⎜⎜⎝
V(1,1) V(1,2) . . . V(1,m)
V(2,1) V(2,2) . . . V(2,m)

...
...

...
V(m,1) V(m,2) . . . V(m,m)

⎞⎟⎟⎟⎠
Also set V(i) = (V(i,1) V(i,2) . . . V(i,m) ) ∈ Matn×mn(k̂), and let V (j)

(i) denote the j-th 
column of V(i). Then for i = 1, . . . , m and j = 2, . . .mn we have

V
(j) = Jn(ε)j−1 · V (1) = Jn(ε)j−1 · En,1. (6)
(i) (i)
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Now write Gal(k̂/k) = {σ1, . . . , σm} where σi(ε1) = εi, for i = 1, . . . , m. Acting on 
matrices entry-wise, σi extends to a map Matn×mn(k(ε1)) → Matn×mn(k(εi)). Then (6)
implies that V(i,j) = σiV(1,j), for i, j = 1, . . . , m.

Now write V T diag(Ĩn, . . . , Ĩn)V in Matm(Matn(k̂)); the (i, j)-th block is

m∑
k=1

V T
(k,i)ĨnV(k,j) =

m∑
k=1

(
σkV

T
(1,i)

)
Ĩn
(
σkV(1,j)

)
=
(

n∑
k=1

σk

)
V T

(1,i)ĨnV(1,j).

As this is Gal(k̂/k)-invariant, we conclude that V T diag(Ĩn, . . . , Ĩn)V has entries in k. �
For the rest of the paper we take V to be as in the statement of Lemma 3.5 and define

T = V T diag(Ĩn, . . . , Ĩn)V. (7)

So T is an invertible symmetric matrix in TMatmn(k)(P).

Corollary 3.6. TMatmn(k)(P) = T k[P] = V T diag(Ĩn, . . . , Ĩn)k[J ]V .

Let q ∈ k[x] be as in the statement of Lemma 3.3. Then for i = 1, . . . , m, we have 
q(Jn(εi)) = εiIn and T2 = Jn(εi) − εiIn. As P = V −1J V , it follows that

E = V −1 diag(ε1In, ε2In . . . , εmIn)V, and N = V −1 diag(T2, T2 . . . , T2)V.

Notice that as each matrix in T(P) is symmetric we have

XTT X = (T X)TX = T X2, for all X ∈ C(P).

So T is determined up to multiplication by the square of a unit in C(P). Our next lemma 
depends crucially on our choice of T .

Corollary 3.7. The alternating matrices in TMatmn(k)(P) are

{T C2 | C ∈ k[P]} if n is even,

{T NC2 | C ∈ k[P]} if n is odd.

Proof. By Lemma 3.2 and Corollary 3.6 the alternating matrices in T(P) correspond 
to the alternating matrices in diag(Ĩn, . . . , Ĩn)k[J ] = diag(Ĩnk[Jn(ε1)], . . . , Ĩnk[Jn(εm)]). 
Next note that k[Jn(εj)] is the space Tn(k(εj)) of n ×n upper-triangular Toeplitz matrices 
with entries in k(εj). Let B =

∑n−1
i=0 μiT1+i, with μ0, . . . , μn−1 ∈ k(εj). Then ĨnB =∑n−1

i=0 μiHn+1+i.
Suppose first that n is even. Then the diagonal of ĨnB is (0, . . . , 0, μ1, μ3, . . . , μn−1). So 

ĨnB is alternating if and only if μ1 = μ3 = · · · = μn−1 = 0. Also T1+2i = (T i
2)2, for i ≥ 0

and k(εj) is a perfect field. So ĨnB is alternating if and only if B = (
∑n/2

i=0
√
μ2i T

i
2)2 is 
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a square in k[Jn(εj)]. Then Corollary 3.6 implies that the alternating matrices in T(P)
are {T C2 | C ∈ k[P]}.

Next suppose that n is odd. Then the diagonal of ĨnB is (0, . . . , 0, μ0, μ2, . . . , μn−1). 
So ĨnB is alternating if and only if μ0 = μ2 = · · · = μn−1 = 0. It follows that ĨnB is 
alternating if and only if B = T2(

∑(n−1)/2
i=0

√
μ1+2i T

i
2)2. Then Corollary 3.6 implies that 

the alternating matrices in T(P) are {T NC2 | C ∈ k[P]}. �
4. Indecomposable symplectic modules for the Klein-Four group

The Klein-Four group is

G = {g1, g2, g3, g4},

where g1 is the identity and g2, g3, g4 = g2g3 are involutions. Let k be a perfect field of 
characteristic 2. The indecomposable kG-modules are described in [1], where they are 
enumerated using the notation:

D, An, Bn, Cn(π) and Cn(∞).

Here n ≥ 1 and π is an irreducible polynomial over k. As mentioned in the introduction, 
we use kG to denote the trivial module A0 = B0 and kG to denote the regular module D.

Recall that an indecomposable symplectic kG-module is even-dimensional and either 
indecomposable as a kG-module or isomorphic to N∗ ⊕ N , for some indecomposable 
kG-module N . The modules An and Bn are odd-dimensional and dual to each other, 
and Cn(π) and Cn(∞) are self-dual. So the kG-modules that are candidates for inde-
composable symplectic modules are:

(kG)2, kG, (kG)2, An ⊕Bn, Cn(π), Cn(π)2, Cn(∞), Cn(∞)2.

We discussed (kG)2 in the introduction. We deal with the remaining families in turn in 
the rest of the paper. For a module M in each family we compute the endomorphism 
ring Endk(M) and describe all G-invariant symplectic forms on M . We then give a 
set of representatives Isom(M) for the isometry classes of symplectic forms. Finally, we 
determine which symplectic forms have an associated G-invariant quadratic form, and 
for each such symplectic form B we give a set of representatives QIsom(M, B) for the 
isometry classes of G-invariant quadratic forms on M which polarize to B.

5. The regular module

Temporarily let G be an arbitrary finite group and see [3] for further details. We 
express x ∈ kG as x =

∑
g∈G x(g)g, where x(g) ∈ k, for all g ∈ G. If X ⊆ G, then 

by X+ we mean 
∑

x∈X x ∈ kG. The augmentation map is a k-algebra homomorphism 
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| | : kG → k, |x| =
∑

g∈G x(g), for all x ∈ kG. Its kernel is called the augmentation ideal 
of kG.

Let B be the non-degenerate G-invariant symmetric bilinear form on kG such that

B(g, h) =
{

1k, if g = h

0k, if g 	= h
for all g, h ∈ G. (8)

It is well-known that EndkG(kG) can be identified with kGop. Here x ∈ kGop acts by 
right-multiplication on kG: y �→ yx, for all y ∈ kG. The adjoint of B is the contragredient 
map o on kG given by go = g−1, for all g ∈ G. For each x ∈ kG, set Bx(y, z) := B(y, zx), 
for all y, z ∈ kG. Then {Bx | x ∈ kG} is the set of all G-invariant bilinear forms on kG. 
Note that Bx(g, h) = x(h−1g), for all g, h ∈ G. So the G-invariant symplectic forms are

{Bx | x a unit in kG, x(g1) = 0k and x(g) = x(g−1), for all g ∈ G},

with g1 the identity in G. In the notation of Section 2.1 we have the G-invariant quadratic 
form ΔB(x) = |x|2, for all x ∈ kG. Note that ΔB polarizes to 0. More generally fix a 
total order g1 < g2 < · · · < gn on G. Let Bx be a symplectic form on kG, for x ∈ kG, 
and let χ ∈ k. Define qχ,x := χΔB + Δ∇Bx. Then

qχ,x(y) = χ|y|2 + ∇Bx(y, y), for all y ∈ kG.

So qχ,x is a G-invariant quadratic form which polarizes to Bx. Conversely let q be a 
G-invariant quadratic form on kG which polarizes to Bx. Write q(g1) = μ, for some 
μ ∈ k. Then by G-invariance q(g) = μ, for all g ∈ G. It then follows from (1) that 
q = qμ,x.

We now return to our assumption that G is the Klein-Four group. So kG is a com-
mutative ring, o is the identity map, and x2 = |x|2g1, for all x ∈ kG. In particular x is 
a unit in kG if and only if |x| 	= 0k.

Theorem 5.1. Isom(kG) = {Bx | x ∈ kG, x(g1) = 0k, |x| = 1k}.
So if k = Fq then | Isom(kG)| = q2.
The G-invariant quadratic forms which polarize to Bx are {qχ,x | χ ∈ k}. Each qχ,x

is isometric to q0,x = Δ∇Bx.

Proof. By the discussion above, {Bx | x ∈ kG, |x| 	= 0k, x(g1) = 0k} are the G-invariant 
symplectic forms on kG. Fix a symplectic form Bx and let u be a unit in kG. Then 
uxuo = u2x = |u|2x. Now as k is perfect we can choose u such that |u|2 = |x|−1. Then 
|u2x| = 1k. So Bx is isometric to By, for a unique y ∈ kG such that y(g1) = 0k and 
|y| = 1k. This completes our description of Isom(kG).

Next let qχ,x be a G-invariant quadratic form on kG, for χ ∈ k. Let u ∈ kG with 
|u| 	= 0k. Then qχ,x(u−) is a G-invariant quadratic form which polarizes to B|u|2x. So 
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{qχ,x(u−) | u ∈ kG, |u| = 1} give all non-degenerate G-invariant quadratic forms on kG
which polarize to Bx and which are isometric to qχ,x. Now if |u| = 1k, we get

qχ,x(u−) = qμ,x, where μ = qχ,x(u).

Choose u = (1k + r)g1 + r(g2 + g3 + g4), with r = |x|−1χ. Then |u| = 1k and so by (1),

μ = χ|u|2 + (x(g2) + x(g3) + x(g4))((1k + r)r + r2) = 0.

Thus we conclude that qχ,x is isometric to q0,x. �
5.1. Two copies of the regular module

We next consider (kG)2, which we identify with {(xy ) | x, y ∈ kG}. Recall the form B
on kG, given by (8), with trivial adjoint. The G-invariant bilinear forms on (kG)2 can 
be written as (a b

c d

), with a, b, c, d ∈ kG, where

(
a b
c d

) ((
x1
y1

)
,
(
x2
y2

)) := Ba(x1, x2) + Bb(x1, y2) + Bc(y1, x2) + Bd(y1, y2),

for all (x1
y1

)
,
(
x2
y2

) ∈ (kG)2. Now {Bx | x ∈ sp(g2 + g4, g3 + g4)} is the space of degenerate 
G-invariant alternating forms on kG. Moreover the Jacobson radical of EndG(kG) = kG

is the augmentation ideal of kG. So EndG(kG) ∼= k. Now by Lemma 2.2, the indecom-
posable symplectic forms on (kG)2 are 

{(
a b
b d

) | a, b, d ∈ kG, |b| 	= 0k, a, d ∈ sp(g2 + g4,

g3 + g4)
}
.

We denote the ‘projective line’ in the plane sp(g2 + g4, g3 + g4) by

P1 := {g3 + g4} ∪ {(g2 + g4) + λ(g3 + g4) | λ ∈ k}.

Theorem 5.2. Isom((kG)2) =
{(

0 g1
g1 0

)
,

(
x g1
g1 0

)
,

(
g2 + g4 g1

g1 μ(g3 + g4)

)
|
x ∈ P1

μ ∈ k×

}
.

So | Isom((kG)2)| = 2q + 1, if k = Fq.

Proof. We fix an indecomposable G-invariant symplectic form 
(
a b
b d

) on (kG)2. So b is 
a unit in kG and a, d ∈ sp(g2 + g4, g3 + g4). Let (r s

t u

) be a unit in EndG((kG)2), with 
non-zero ‘determinant’ χ := ru + st. Then

(
r s
t u

)T (
a b
b d

)(
r s
t u

)
=
(

r2a + t2d χb + rsa + tud
χb + rsa + tud s2a + u2d

)
.

So the isometry class of (a b
b d

) is

{(
|r|2a + |t|2d χb + rsa + tud

2 2

)
| r, s, t, u ∈ kG, ru + st 	= 0

}
. (9)
χb + rsa + tud |s| a + |u| d
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Take r = g1, s = t = 0 and u = b−1 in (9). Then 
(
a b
b d

) is isometric to 
(

a g1
g1 μd

), with 
μ = |b|−2. There are three cases which we analyze in turn.

Case (i): Suppose that a = d = 0. Then ((kG)2, (0 b
b 0

)) is isometric to the paired 
module. In particular all these forms are isometric to 

( 0 g1
g1 0

).
Case (ii): Next suppose that a and d are linearly dependent but not both 0. Taking 

r = u = 0 and s = t = g1 in (9) we see that (a b
b d

) is isometric to 
(
d b
b a

). So we can and 
do assume that a 	= 0 and d = ε2a, for some ε ∈ k.

Now there is δ ∈ k such that δ2a = g3 + g4 or δ2a = (g2 + g4) + λ(g3 + g4), for some 
λ ∈ k. Choose r = δg1, s = εg1, t = 0, u = g1 in (9), we see that (a b

b d

) is isometric 
to 

(
g3 + g4 δb + δεa
δb + δεa 0

) or ( (g2 + g4) + λ(g3 + g4) δb + δεa
δb + δεa 0

). These forms are in turn isometric to (
g3 + g4 g1

g1 0
) or ( (g2 + g4) + λ(g3 + g4) g1

g1 0
), respectively. Moreover, it is clear from (9) that 

these forms are pairwise non-isometric.
Case (iii): Finally suppose that a and d are linearly independent. Then there are 

α, β, γ, δ ∈ k, with αγ + β2 	= 0k such that

α2a + γ2d = g2 + g4 and β2a + δ2d = g3 + g4.

Taking r = αg1, s = βg1, t = γg1, u = δg1 in (9), and with χ = αγ+β2, we see that 
(
a b
b d

)
is isometric to 

(
g2 + g4 χb + αβa + γδd

χb + αβa + γδd g3 + g4

)
. This is in turn isometric to 

(
g2 + g4 g1

g1 μ(g3 + g4)
)

with μ2 = |χb + αβa + γδd| = χ|b|. In particular μ 	= 0k.
Now suppose that (g2 + g4 g1

g1 μ(g3 + g4)
) is isometric to 

(
g2 + g4 g1

g1 μ′(g3 + g4)
) with μ′ ∈ k×, 

via an isometry 
(
r s
t u

). As by assumption |r|2|u|2 	= |s|2|t|2 in k, the equalities

|r|2(g2 + g4) + |t|2μ(g3 + g4) = (g2 + g4)

|s|2(g2 + g4) + |u|2μ(g3 + g4)= μ′(g3 + g4)

imply that |r| = 1k, |u|2μ = μ′ and |s| = |t| = 0k. But also

(ru + st)g1 + tu(g2 + g4) + rsμ(g3 + g4) = g1.

So |r||u| = 1k. As |r| = 1k we get |u| = 1k. We conclude that μ′ = μ. �
In order to describe the G-invariant quadratic forms, fix a symplectic form (

a b
b d

). 
Then for all α, δ ∈ k, there is a G-invariant quadratic form which polarizes to 

(
a b
b d

):
q(α

δ

)
,
(
a b
b d

)(x
y

) := qα,a(x) + Bb(x, y) + qδ,d(y), for all x, y ∈ kG.

So q(α
δ

)
,
(
a b
b d

) = Δ(
αg1 0
0 δg1

) + Δ∇(
a b
b d

), in the notation of Section 2.1.

Theorem 5.3. {q(α
δ

)
,
(
a b
b d

) | α, δ ∈ k} are the G-invariant quadratic forms on (kG)2

which polarize to 
(
a b
b d

). Each of these is isometric to q(0
0
)
,
(
a b
b d

) = Δ∇(
a b
b d

).
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Proof. Let q be a G-invariant quadratic form on kG which polarizes to 
(
a b
b d

), and set 
α := q

(
g1
0
) and δ := q

( 0
g1

). The G-invariance of q implies that q
(
g
0

)
= α and q

(0
g

) = δ, 
for all g ∈ G. Now the diagonal of the upper-triangular form of 

(
a b

b d

)
is the G-invariant 

quadratic form

Δ∇(
a b
b d

)(
x
y

) = q0,a(x) + Bb(x, y) + q0,d(y), for all x, y ∈ kG.

It then follows from (1) that q = q(α
δ

)
,
(
a b
b d

).
To describe the isometry classes of quadratic forms, let (r s

t u

) be a unit in 
EndG((kG)2). Then q(α

δ

)
,
(
a b
b d

) ((r s
t u

)−) is a G-invariant quadratic form on (kG)2 which 

polarizes to 
(

|r|2a + |t|2d χb + rsa + tud

χb + rsa + tud |s|2a + |u|2d

)
, according to (9). Now consider the unit with 

r = u = g1 and s = μG+, t = νG+, for μ, ν ∈ k. This fixes (a b
b d

), as χ = 1k, 
sa = μ|a|G+ = 0 and td = μ|d|G+ = 0. Now

Δ∇(
a b
b d

) ((
g1 μG

+

νG
+

g1

)(
g1
0
)) = q0,a(g1) + Bb(g1, νG

+) + q0,d(νG+) = ν|b|.

Likewise Δ∇(
a b
b d

) ((
g1 μG+

νG+ g1

)( 0
g1

)) = μ|b|. Taking ν = α|b|−1 and μ = δ|b|−1, we see 

that q(α
δ

)
,
(
a b
b d

) is isometric to Δ∇(
a b
b d

). �
6. The modules An ⊕ Bn

We follow the description of An and Bn given in [1]. First note that dimk(An) =
dimk(Bn) = 2n +1 is odd. So neither An nor Bn afford a G-invariant symplectic form. Set 
n2 := g1+g2 and n3 := g1+g3 in kG. Then n2 and n3 act on a basis (a1, . . . , an, b0, . . . , bn)
of An as follows:

n2ai = n3ai = 0, for all i = 1, . . . , n.

n2b0 = n3bn = 0, n2bj = n3bj−1 = aj , for all j = 1, . . . , n.

So with respect to the basis

n2 =
(

0 T2
0 0

)
and n3 =

(
0 T1
0 0

)
.

Here T2 and T1 are n × (n + 1) Toeplitz matrices with 1’s on the superdiagonal and 
diagonal, respectively. Likewise n2 and n3 act on a basis (a0, . . . , an, b1, . . . , bn) of Bn as 
follows:

n2ai = n3ai = 0, for all i = 0, . . . , n.

n2b1 = a0, n3bn = an, n2bj+1 = n3bj = aj , for all j = 1, . . . , n− 1.

So with respect to the basis
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n2 =
(

0 T1
0 0

)
and n3 =

(
0 T0
0 0

)
,

where T1 and T0 are (n + 1) × n Toeplitz matrices with 1’s on the diagonal and subdi-
agonal, respectively.

Lemma 6.1. A∗
n
∼= Bn, for all n ≥ 0.

Proof. By inspection if n2 maps bi to aj in An, then n2 maps bn−j+1 to an−i in Bn. The 
same is true of n3. It follows that the map bn−i+1 �→ aTi , for i = 1, . . . , n, and an−j �→ bTj , 
for j = 0, . . . , n, extends to a kG-isomorphism Bn

∼= A∗
n. Equivalently

Ĩ2n+1

(
0 T2
0 0

)T

Ĩ2n+1 =
(

0 T1
0 0

)
and Ĩ2n+1

(
0 T1
0 0

)T

Ĩ2n+1 =
(

0 T0
0 0

)
. �

We represent the elements of An⊕Bn by column vectors (ab ), with a ∈ An and b ∈ Bn, 
and we use the following ordered basis of An ⊕Bn:

B :=
{(a1

0
)
, . . . ,

(an

0
)
,
( 0
a0

)
, . . . ,

( 0
an

)
,
(
b0
0
)
, . . . ,

(
bn
0
)
,
( 0
b1

)
, . . . ,

( 0
bn

)}
.

So the action of kG on An ⊕Bn is defined by the following matrices, with respect to B:

n2 =
(

0 T2
0 0

)
and n3 =

(
0 I2n+1 + En+1
0 0

)
. (10)

Here T2 is the (2n + 1) × (2n + 1) Toeplitz matrix with 1’s on the superdiagonal and 
I2n+1 + En+1 = diag(1n, 0, 1n). In fact in the following we describe all endomorphisms 
and forms on An ⊕Bn with respect to the basis B.

Now recall that Tm×n(k) is the space of m ×n Toeplitz matrices and that M T̃ = ĨMT Ĩ

is the exchange-transpose operation, as defined in (4).

Lemma 6.2. EndG(An ⊕Bn) =
{⎛⎜⎜⎝αIn X � �

· βIn+1 � �

· · αIn+1 XT̃

· · · βIn

⎞⎟⎟⎠ | α, β ∈ k,
X ∈ Tn×(n+1)(k)

}
.

Proof. Let A, B, C, D ∈ Mat2n+1(k). Then 
(
A B
C D

) ∈ EndG(An ⊕Bn) if and only if

(i) A · T2 = T2 ·D
(ii) C · T2 = 0 = T2 · C

(iii) A + A · En+1 = D + En+1 ·D
(iv) C + C ·En+1 = 0 = C + En+1 · C

First note that (ii) and (iv) hold if and only if C = 0. Next (i) holds precisely if for all 
k 	= 2n + 1 and l 	= 1 we have
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Ak,l−1 = Dk+1,l and A2n+1,k = 0 = Dl,1. (11)

Finally (iii) holds if and only if for all k, l 	= n + 1 we have

Ak,l = Dk,l and An+1,l = 0 = Dk,n+1. (12)

Hence the matrices described in the statement indeed belong to EndG(An ⊕Bn).
Now suppose that C = 0 and (11) and (12) are satisfied. Then A =

(X1 a1 X2
· a2 ·

X3 a3 X4

)
and 

D =
⎛⎝X1 · X2

d1 d2 d3
X3 · X4

⎞⎠, by (12). Here each Xi is an n × n matrix, a2, d2 ∈ k, and a1, a3 and 

d1, d3 are columns and rows of length n, respectively. Let k, l ∈ {1, . . . , 2n + 1}. Then 
Ak,l = Dk+1,l+1, unless k = 2n + 1 or l = 2n + 1, by (11). Also Ak,l = Dk,l, unless 
k = n + 1 or l = n + 1, by (12). In particular Ak,l = Ak+1,l+1, unless k, l ∈ {n, 2n + 1}
and Dk,l = Dk+1,l+1, unless k, l ∈ {n + 1, 2n + 1}. Therefore the following matrices are 
Toeplitz-matrices

(
X1 ·
d1 d2

)
,
(
a1 X2
� d3

)
,
( ·
X3

)
,
(
a2 ·
a3 X4

)
.

Above we have seen that the first column of D is zero except possibly for the first entry, 
which we call α. Also the last row of A is zero except possibly for the last entry, which 
we call β. Thus it follows that X1 = αI, d1 = 0, d2 = α, X3 = 0, a2 = β, a3 = 0, 
X4 = βI and d3 = aT̃2 . Finally consider the n × (n + 1) matrix X := (a1 X2 ). Then X
is a Toeplitz matrix and X T̃ = (

X2
d3

). This completes the proof. �
Next recall that Hm×n(k) is the space of m × n Hankel matrices.

Lemma 6.3. The G-invariant alternating forms on An ⊕Bn are{(
0 B
BT D

)
| B =

(
0 αĨn

αĨn+1 H

)
,

α ∈ k×, H ∈ H(n+1)×n(k)

D ∈ Mat2n+1(k) alternating

}

Proof. The proof of Lemma 6.1 can be interpreted as showing that Ĩ4n+2 is the Gram 
matrix, with respect to B, of a G-invariant symplectic form on An⊕Bn (this is equivalent 
to the identities g2

T · Ĩ4n+2 · g2 = Ĩ4n+2 and g3
T · Ĩ4n+2 · g3 = Ĩ4n+2). It follows from 

this that {Ĩ4n+2 ·A | A ∈ EndG(An ⊕Bn)} is the set of all G-invariant bilinear forms on 
An ⊕Bn. Now in the statement of Lemma 6.2, X is an n × (n + 1) Toeplitz matrix. Set 
H = ĨnX. Then HT = XĨn = Ĩn+1X

T̃ . Moreover H is an (n + 1) × n Hankel matrix. 
The Lemma follows from these facts. �

Recall that MHm×n(k) is the set of monic m ×n Hankel matrices. We can now prove 
the main theorem of this section.

Theorem 6.4. Isom(An⊕Bn) =
{(

0 B
BT 0

)
| B =

(
0 Ĩn˜

)
, H ∈ MH(n+1)×n(k)

}
.

In+1 H
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Proof. By Lemma 6.3 each indecomposable symplectic form on An ⊕ Bn has a matrix (
0 A

AT D

)
where A, D ∈ Mat(2n+1)(k), with D alternating and A =

(
0 μĨn

μĨn+1 H′

)
for some 

μ ∈ k× and H ′ ∈ H(n+1)×n(k). By Lemma 6.2 each unit in EndG(An⊕Bn) has the form (
M1 M2
0 M4

), where M1 = (
αIn X
0 βIn+1

), M4 =
(
αIn+1 XT̃

0 βIn

)
, for α, β ∈ k× and X ∈ Tn×n+1(k), 

and M2 ∈ Mat2n+1(k). Then

(
M1 M2
0 M4

)T ( 0 A

AT D

)(
M1 M2
0 M4

)
=
(

0 MT
1 AM4

MT
4 ATM1 MT

2 AM4 + MT
4 ATM2 + MT

4 DM4

)
(13)

As D is symmetric and hollow there is some Z ∈ Mat2n+1(k) such that D = Z +ZT . 
Applying (13) with M1 = M4 = I2n+1 and M2 = A−TZ, we see that 

(
0 A

AT D

)
is isometric 

to 
(

0 A
AT 0

)
. So from now on we assume that D = 0.

Now the previous paragraph and (13) show that 
(

0 A
AT 0

)
is isometric to 

(
0 B

BT 0

)
if 

and only if B = MT
1 AM4, where M1 and M4 are of the form given above. Now

MT
1 AM4 =

(
0 αβμĨn

αβμĨn+1 βμ(XT Ĩn + Ĩn+1X
T̃ ) + β2H ′

)
=
(

0 αβμĨn

αβμĨn+1 β2H ′

)
,

as Ĩn+1X
T̃ = XT Ĩn. Next there is β ∈ k× such that H := β2H ′ lies in MH(n+1)×n(k). 

Moreover note that β is unique if H ′ 	= 0. Now set α := (βμ)−1 ∈ k×. Then MT
1 AM4 =(

0 Ĩn
Ĩn+1 H

)
. Finally H is clearly determined by the isometry class of 

(
0 A

AT D

)
. �

Corollary 6.5. If k = Fq, then | Isom(An ⊕Bn)| = 1 + q2n−1
q−1 .

We use our next lemma to describe the isometry classes of G-invariant quadratic forms 
on An ⊕Bn, and reuse it for the modules Cn(π) and Cn(π)2. Recall that Et is a square 
matrix with (i, j)-th entry δi,tδj,t and P(k) is a set of representatives for the distinct 
cosets of the additive subgroup {λ2 + λ | λ ∈ k} in (k, +). Also we write A � B for 
square matrices A, B if A + B is alternating.

Lemma 6.6. Let M be a kG-module of dimension 2n such that with respect to a given 

basis B we have 
(
In X
0 In

)
∈ EndG(M), for all X ∈ Matn(k). Also let Δ 

(
A B
0 D

)
be 

a G-invariant quadratic form on M , where B ∈ GLn(k) and A, D ∈ Diagn(k).

(i) If A = 0, then Δ 
(

0 B
0 D

)
is isometric to Δ 

(
0 B
0 0

)
.

(ii) If A 	= 0, there exists t ∈ {1, . . . , n} such that (B−1AB−T )t,t 	= 0. Then Δ 
(
A B
0 D

)
is isometric to Δ 

(
A B
0 τEt

)
for a unique τ ∈ (B−1AB−T )−1

t,t P(k).
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Proof. We note that Δ(
A B
0 D

) polarizes to the G-invariant symplectic form 
(

0 B
BT 0

)
. Let 

X ∈ Matn(k). Then by assumption 
(
In X
0 In

) is a unit in EndG(M) and

(
In X
0 In

)T (
A B
0 D

)(
In X
0 In

)
=
(

A AX + B
XTA XTAX + XTB + D

)
.

First suppose that A = 0. Choose X = B−TD. Then XTAX +XTB+D = 0. So 
(
A B
0 D

)
and 

(0 B
0 0

) are isometric. In particular part (i) holds.
Next suppose that A 	= 0 and set Ã := B−1AB−T . Then Ã is not hollow, by 

Lemma 3.2. Let t ∈ {1, . . . , n} be such that η := Ãt,t is not zero.
We construct a symmetric matrix L ∈ Matn(k) such that LÃL + L + τEt � D, for 

some τ ∈ η−1P(k). First set Li,j = 0, for all i, j ∈ {1, . . . , n}\{t}. Then by Lemma 3.2
we have

(LÃL + L + τEt)i,i =

⎧⎪⎨⎪⎩
ηL2

t,i, if i 	= t.
n∑

j=1
Ãj,jL

2
j,t + Lt,t + τ, if i = t.

As k is perfect, we can choose Lt,i = Li,t ∈ k such that ηL2
t,i = Di,i, for i 	= t. We 

complete the construction of L by making the unique choice of Lt,t, τ ∈ k such that 
τη ∈ P(k) and

n∑
j=1
j 	=t

Ãj,jL
2
j,t + η−1((ηLt,t)2 + ηLt,t + τη) = Dt,t.

Now set X = B−TL. Then XTAX +XTB+D = LÃL +L +D � τEt. Consequently 
Δ(

A B
0 D

) is isometric to Δ(
A B
0 τEt

).
To show that τ ∈ η−1P(k) is unique, we compute the Arf invariant of our quadratic 

form Q := Δ(
A B
0 τEt

). Let S =
(

0 B
BT 0

)
be the polarization of Q. Now

(
B−1 0

0 In

)(
A B
0 τEt

)(
B−T 0

0 In

)
=
(
Ã In
0 τEt

)
is the matrix of Q with respect to a symplectic basis (u1, . . . , un, v1, . . . , vn) of M relative 
to S. This means that S(ui, uj) = S(vi, vj) = 0 and S(ui, vj) = δij , for all i, j. Then the 
Arf invariant of Q is 

∑n
i=1 Q(ui)Q(vi) = Ãt,tτ = τη (see [4, Theorem 13.13]). It follows 

that if τ ′ ∈ η−1P(k) and τ ′ 	= τ then Δ(
A B
0 τ ′Et

) is not isometric to Δ(
A B
0 τEt

). �
Recall that DHn+1×n(k) is the set of monic (n + 1) × n Hankel matrices in sp(H2,

(H3 + H4), (H5 + H6), . . . , (H2n−1 + H2n), H2n+1).
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Theorem 6.7. Given α ∈ k× and H ∈ H(n+1)×n(k), there is a G-invariant quadratic 

form on An ⊕ Bn which polarizes to 
(

0 B
BT 0

)
with B =

(
0 αĨn

αĨn+1 H

)
if and only 

if H ∈ DH(n+1)×n(k).
Suppose that H = μ1H2 +

∑n
i=2 μi(H2i−1 +H2i) +μn+1H2n+1, with μ1, . . . , μn+1 ∈ k.

(i) Set D = diag(0n, μ1, . . . , μn+1) ∈ Mat2n+1(k). Then the G-invariant quadratic 

forms which polarize to 
(

0 B
BT 0

)
are {Δ 

(
D B
0 E

)
| E ∈ Diag2n+1(k)}.

(ii) If H = 0 then Δ 
(

0 B
0 E

)
is isometric to Δ 

(
0 B
0 0

)
.

If H 	= 0, there exists t ∈ {1, . . . , n + 1} such that μn+2−t 	= 0. Then

QIsom(An ⊕Bn,

(
0 B
BT 0

)
) = {Δ

(
D B
0 τEt

)
| τ ∈ μ−1

n+2−tP(k)}.

Proof. By (2) the quadratic forms which polarize to 
(

0 B
BT 0

)
are ΔQ, where Q = (

D B
0 E

), 
with D, E ∈ Diag2n+1(k). According to (3), ΔQ is G-invariant if and only if Q − gTQg

is alternating, for all g ∈ G. Write D = diag(d1, . . . , d2n+1) where d1, . . . , d2n+1 ∈ k.
We described the action of n2 = g1 + g2 on An ⊕Bn in (10). So

gT2 Qg2 =
(
I2n+1 0
TT

2 I2n+1

)
·
(
D B
0 E

)
·
(
I2n+1 T2

0 I2n+1

)
= Q +

(
0 DT2

TT
2 D 0

)
+
(

0 0
0 TT

2 DT2 + TT
2 B

)
.

Now TT
2 B = BTT2, and thus TT

2 DT2 + TT
2 B is symmetric. It follows that Q − gT2 Qg2 is 

alternating if and only if TT
2 DT2 + TT

2 B is hollow. Now TT
2 = T0 and

(T0 ·D · T2 + T0 ·B)ii =
{

0 if i = 1
di−1 + Bi−1,i, if i ∈ {2, . . . , 2n + 1}.

So Q − gT2 Qg2 is alternating if and only if di = Bi,i+1, for all i = 1, . . . , 2n.
Similarly Q − gT3 Qg3 is alternating if and only if (I2n+1 + En+1)D(I2n+1 + En+1) +

(I2n+1 + En+1)B is hollow, or equivalently if and only if di = Bi,i, for all i ∈ {1, . . . ,
2n + 1}\{n + 1}.

Write H = μ1H2 +
∑n

i=2(μ′
iH2i−1 + μiH2i) + μn+1H2n+1, with μi, μ′

i ∈ k. Then the 
superdiagonal and diagonal of B are

(0n, μ1, μ2, . . . , μn) ∈ k2n and (0n, α, μ′
2, μ

′
3, . . . , μ

′
n, μn+1) ∈ k2n+1 respectively.

So by the work above, ΔQ is G-invariant if and only if μ′
i = μi, for i = 2, . . . , n and



114 L. Pforte, J. Murray / Journal of Algebra 505 (2018) 92–124
D = diag(0n, μ1, . . . , μn, μn+1).

Thus H = μ1H2 +
∑n

i=2 μi(H2i−1 +H2i) +μn+1H2n+1 belongs to DH(n+1)×n(k). More-
over, when H ∈ DH(n+1)×n(k) then D is as described in the statement of (i).

We now prove (ii). Let (D B
0 E

) with E ∈ Diag2n+1(k) and D as in part (i). Note that 
all assumptions of Lemma 6.6 are satisfied.

If H = 0 then D = 0 and Δ(0 B
0 E

) is isometric to Δ(0 B
0 0

), by Lemma 6.6(i).
If H 	= 0 then D 	= 0. Then by direct calculation B−1DB−T = Ĩ2n+1DĨ2n+1 =

diag(μn+1, μn, . . . , μ1, 0n). Choose t ∈ {1, . . . , n + 1} with (B−1DB−T )t,t = μn+2−t 	= 0. 
Then it follows from Lemma 6.6(ii) that there is a unique τ ∈ μ−1

n+2−tP(k) such that 
Δ(

D B
0 E

) is isometric to Δ(
D B
0 τEt

). This completes the proof. �
7. The modules Cn(π) and Cn(π)2

7.1. The modules Cn(π)

Let π ∈ k[x] be a monic irreducible k-polynomial of degree m and let n ≥ 1. Recall 
the results of Section 3.2 on the companion matrix P ∈ Matmn(k) of πn. In particular 
the Jordan decomposition of P is

P = E + N ,

where E has minimal polynomial π and N is nilpotent, of nilpotency index n. Also 
K = k[E ] is a field extension of k of degree m and C(P) = k[P] coincides with the set of 
K-polynomials in N of degree less than n. Finally T(P) = T k[P], where T ∈ GLmn(k)
is as defined in (7). In particular T ∈ T(P).

As before, set n2 = g1 + g2 and n3 = g1 + g3 in kG. Write πn =
∑mn

i=0 λix
i, with 

λi ∈ k. Following Conlon [1], Cn(π) is the 2mn-dimensional kG-module with a basis 
B := (a0, . . . , amn−1, b1, . . . , bmn) with respect to which the kG-action is given by:

n2aj = n3aj = 0, j = 0, . . . ,mn− 1,

n2bj = aj−1, j = 1, . . . ,mn,

n3bj = aj , j = 1, . . . ,mn− 1, and n3bmn =
mn−1∑
i=1

λiai.

So the matrices of n2 and n3 with respect to B are

n2 =
(

0 Imn

0 0

)
, n3 =

(
0 P
0 0

)
. (14)

Lemma 7.1. EndG(Cn(π)) =
{(

A B
0 A

)
| A ∈ C(P), B ∈ Matmn(k)

}
.
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Proof. Let A, B, C, D ∈ Matmn(k). Then 
(
A B
C D

) ∈ EndG(Cn(π)) if and only if A = D, 
C = 0 and AP = PA. �
Lemma 7.2. 

(
0 T
T 0

)
is a symplectic form on Cn(π). In particular Cn(π)∗ ∼= Cn(π).

Proof. Set B = ( 0 T
T 0

). Then g2
TBg2 = B and g3

TBg3 = B. So B is a non-degenerate 
G-invariant bilinear form on Cn(π). �
Corollary 7.3. EndG(Cn(π)) ∼= K and the adjoint of

(
0 T
T 0

)
acts as the identity on 

EndG(Cn(π)).

Proof. Let (A B
0 A

) ∈ EndG(Cn(π)), with A ∈ C(P), B ∈ Matmn(k). We may write 
A = a(N ), where a(x) ∈ K[x]. Then 

(
A B
0 A

) �→ a(0k) is a k-algebra epimorphism onto K, 
with kernel J(EndG(Cn(π))). It follows that EndG(Cn(π)) ∼= K.

Next let o be the adjoint of ( 0 T
T 0

) on EndG(Cn(π)). Then

(
A B
0 A

)o =
(

0 T −1

T −1 0

)(
A

T 0
B

T
A

T

) ( 0 T
T 0

) =
(
T −1

A
TT T −1

B
TT

0 T −1
A

TT

)

But ATT = T A. So T −1ATT = A. Hence o acts as the identity on EndG(Cn(π)). �
Lemma 7.4. 

{(
0 B
B D

)
| B ∈ T(P), D ∈ Matmn(k)

}
are the G-invariant bilinear forms 

on Cn(π). A form is symplectic if and only if B is invertible and D is alternating.

Proof. Let A ∈ C(P) and X ∈ Matmn(k). Then 
( 0 T
T 0

) (
A X
0 A

) = ( 0 T A
T A T X

). The result 
now follows from Lemmas 7.1 and 7.2. �
Theorem 7.5. Isom(Cn(π)) =

{(
0 T (Imn + Nf2)

T (Imn + Nf2) 0

)
| f ∈ K[N ]

deg(f) ≤ n−2
2

}
.

Proof. Let B ∈ T(P) be invertible and let D ∈ Matmn(k) be alternating. So 
( 0 B
B D

) is 
an indecomposable symplectic form on Cn(π). Let X be a unit in C(P) and let Y ∈
Matmn(k). Then 

(
X Y
0 X

) is a unit in EndG(Cn(π)) and

(
X Y
0 X

)T ( 0 B
B D

)(
X Y
0 X

)
=
(

0 XTBX
XTBX Y TBX + XTBY + XTDX

)
. (15)

Note that as D is alternating, there is some Z ∈ Matmn(k) so that D = Z + ZT . 
Choosing X = Imn and Y = B−1Z we see that ( 0 B

B D

) is isometric to 
( 0 B
B 0

). Furthermore ( 0 B
B 0

) is isometric to some 
( 0 C
C 0

) if and only if C = XTBX, for some unit X ∈ C(P). 
But XTBX = BX2. Now by Lemma 3.4 there are X, Y ∈ C(P) such that T −1BX2 =
Imn+NY 2. Moreover Imn+NY 2 is uniquely determined. Clearly we may choose Y = f , 
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where f ∈ K[N ] is a unique K-polynomial in N of degree at most (n − 2)/2. This 
completes the proof. �
Corollary 7.6. If k = Fq then | Isom(Cn(π))| = qm�n

2 �.

Recall that P(k) is a set of representatives for the cosets of {λ2 +λ | λ ∈ k} in (k, +).

Theorem 7.7. For a unit B ∈ T(P), there is a G-invariant quadratic form on Cn(π)

which polarizes to 
(

0 B
B 0

)
if and only if one of the following holds:

(i) π ∈ {x, x +1}, n is odd and 
(

0 B
B 0

)
is isometric to 

(
0 T (Imn + N )

T (Imn + N ) 0

)
.

(ii) π /∈ {x, x +1}, n is even and 
(

0 B
B 0

)
is isometric to 

(
0 T (P + P2)

T (P + P2) 0

)
.

If (i) or (ii) holds, let D ∈ Diagmn(k) be the diagonal of B. Then the corresponding 

G-invariant quadratic forms on Cn(π) are {Δ 
(
D B
0 E

)
| E ∈ Diagmn(k)}. Moreover, 

we can choose t ∈ {1, . . . , mn} such that (B−1)t,t 	= 0k. For any such t, Δ 
(
D B
0 E

)
is 

isometric to a unique Δ 
(
D B
0 τEt

)
with τ ∈ (B−1)−1

t,t P(k).

Proof. By (2) a quadratic form with polarizes to 
( 0 B
B 0

) is given by ΔQ, where Q =(
D B
0 E

) with D, E ∈ Diagmn(k). By (3), ΔQ is G-invariant if and only if Q − gTj Qgj is 
alternating, for j = 2, 3. One checks quickly that

Q− gT2 Qg2 =
(

0 D
D D + B

)
, Q− gT3 Qg3 =

(
0 DP

PTD PTDP + PTB

)
.

Notice that D+B and PTDP +PTB are symmetric. Also PTDP +PTB = PT (D+
B)P + (PTBP + PTB). So if D + B is hollow, Lemma 3.2 implies that PTDP + PTB

is hollow if and only if PTBP +PTB is hollow. Moreover PTBP +PTB = B(P2 +P). 
We deduce that ΔQ is G-invariant if and only if D + B and B(P2 + P) are hollow.

First note that D+B is hollow if and only if D = diag(B1,1, . . . , Bmn,mn). In particular 
D is determined by B. Next write B = T U , where U is a unit in C(P).

For (i), suppose that π ∈ {x, x +1}. Then P+P2 = N +N 2. If n is even, Corollary 3.7
implies that B(P2 + P) is hollow if and only if U(N + N 2) = C2, for some C ∈ C(P). 
This is impossible, as |U(N + N 2)| = 1 but |C2| is even. Here | · | is the valuation 
given by (5). If n is odd, then Corollary 3.7 implies that B(P2 + P) is hollow if and 
only if U(N + N 2) = NC2, for some unit C ∈ C(P). This means that U(Imn + N ) =
C2 +λNn−1, for some λ ∈ K. But K is perfect and n − 1 is even. So UX2 = (Imn +N ), 
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where X = (Imn + N )(C +
√
λN (n−1)/2)−1 is unit in C(P). Now the isometry follows 

from (15) with Y = 0.
For (ii), suppose that π /∈ {x, x + 1}. Then P + P2 = (E + E2) + N + N 2 is a unit in 

K[N ], as E 	= E2. If n is odd, Corollary 3.7 implies that B(P2 +P) is hollow if and only 
if U(P + P2) = NC2, for some C ∈ C(P). This is impossible, as |U(P + P2)| = 0 and 
|NC2| > 0. If n is even. So Corollary 3.7 implies that B(P2 +P) is hollow if and only if 
U(P+P2) = C2, for some unit C ∈ C(P). Thus UX2 = P+P2, where X = (P+P2)C−1. 
Again the stated isometry follows from (15) with Y = 0.

Now suppose that (i) or (ii) hold and let Δ(
D B
0 E

) be a G-invariant quadratic form on 
Cn(π). We claim that B is not hollow. If n is odd this follows at once from Corollary 3.7, 
as in that case T(P) contains no hollow units. If n is even then π /∈ {x, x +1} and we may 
assume that T −1B = (E + E2) +N +N 2. As this is not a square in C(π), Corollary 3.7
again implies that B is not hollow. This proves our claim.

As B is not hollow, neither is B−1 = B−1BB−T . Choose t ∈ {1, . . . , mn} such that 
(B−1)t,t 	= 0 and set ν = (B−1)t,t. Now notice that B−1(D + B)B−T is hollow. So 
ν = (B−1DB−T )t,t. It now follows from Lemma 6.6(ii) that Δ(

D B
0 E

) is isometric to 
Δ(

D B
0 τEt

), for a unique τ ∈ ν−1P(k). �
7.2. The modules Cn(π)2

Recall the basis B := (a0, . . . , amn−1, b1, . . . , bmn) of Cn(π). Now Cn(π)2 is the Carte-
sian product of Cn(π) with itself. We use the following ordered basis of Cn(π)2:

C := ((au, 0), (0, av), (bw, 0), (0, bx)) , 0 ≤ u, v ≤ mn− 1, 1 ≤ w, x ≤ mn.

Lemma 7.1 can be used to show that, with respect to C

EndG(Cn(π)2) =
{(

A B
0 A

)
| A ∈ Mat2(C(P)), B ∈ Mat2mn(k)

}
.

In turn Lemmas 2.2 and 7.4 show that the G-invariant symplectic forms on Cn(π)2 are⎧⎪⎪⎨⎪⎪⎩
(

0 B
B D

)
|
D ∈ Mat2mn(k)

alternating
, B =

(
B̃1 B̃2
B̃2 B̃4

)
,

B̃1, B̃2, B̃4 ∈ T(P)

B̃2 nonsingular

B̃1, B̃4 singular

⎫⎪⎪⎬⎪⎪⎭
Theorem 7.8. Each indecomposable symplectic form on Cn(π)2 is isometric to exactly 

one form 
(

0 B
B 0

)
with B =

(
T N v(I + Nf2

1 ) T f2
T f2 T Nw

)
.

Here 0 < v < w ≤ n +1, w−v is odd and f1, f2 ∈ K[N ]. Also f1 = 0, if w = v+1, and 
otherwise deg(f1) ≤ w−v−3

2 . Moreover if w ∈ {n, n + 1} then f2 = Imn, and otherwise 
deg(f2) ≤ n−w−1

2 and f2(0) 	= 0.
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Proof. Let ( 0 B
B D

) be a symplectic form on Cn(π)2. So D ∈ Mat2mn(k) is alternating 

and B =
(
B̃1 B̃2
B̃2 B̃4

)
with B̃1, B̃2, B̃4 ∈ T(P) such that B̃2 is invertible and B̃1, B̃4 are not 

invertible. We first show that the isometry class of ( 0 B
B D

) contains a form which has one 
of the given types. We then show that this form is unique in its isometry class.

Let (X Y
0 X

) be a unit in EndG(Cn(π)2). So X is a unit in Mat2(C(P)) and Y ∈
Mat2mn(k). Also

(
X Y
0 X

)T ( 0 B
B D

)(
X Y
0 X

)
=
( 0 XTBX

XTBX Y TBX + XTBY + XTDX

)
.

Now as D is alternating, there is some Z ∈ Mat2mn(k) such that D = Z +ZT . Choosing 
X = I2mn and Y = B−1Z we see that ( 0 B

B D

) is isometric to 
( 0 B
B 0

). Moreover ( 0 B
B 0

) is 
isometric to all 

(
0 XTBX

XTBX 0

)
as X ranges over the units of Mat2(C(P)).

We consider XTBX in more detail. Write X = (
P Q
R S

), where P, Q, R, S ∈ C(P), and 
PS + QR is a unit in C(P). Now ATT = T A, for all A ∈ C(P). Moreover C(P) is a 
commutative ring. An easy calculation then gives

XTBX =
(

B̃1P
2 + B̃4R

2 B̃2(PS + QR) + B̃1PQ + B̃4RS

B̃2(PS + QR) + B̃1PQ + B̃4RS B̃1Q
2 + B̃4S

2

)
.

So the isometry class of ( 0 B
B D

) contains all 
(

0 B′

B′ 0

)
where B′ =

(
B̃′

1 B̃′
2

B̃′
2 B̃′

4

)
, and if we write 

B̃i = T Bi and B̃′
i = T B′

i, with Bi, B′
i ∈ C(P), for i = 1, 2, 4, then

B′
1 = B1P

2 + B4R
2,

B′
2 = B2(PS + QR) + B1PQ + B4RS,

B′
4 = B1Q

2 + B4S
2,

(16)

for some P, Q, R, S ∈ C(P) such that PS + QR is a unit in C(P).
We consider a number of cases. Set v = |B1|, where | · | is the valuation given by (5). 

Then 0 < v ≤ n, as B1 is not invertible in C(P).

Case 1: Suppose that B1 = B4 = 0. Setting P = B−1
2 , Q = R = 0 and S = Imn, (16)

gives B′
1 = B′

4 = 0 and B′
2 = Imn. So 

( 0 B
B D

) is isometric to 
(

0 B′

B′ 0

)
with B′ = ( 0 T

T 0
), 

and 
(
Cn(π)2, ( 0 B

B D

)) is isometric to the paired module. In this case v = n, w = n + 1, 
f1 = 0 and f2 = 1.

Case 2: Suppose that exactly one of B1 and B4 is 0. Taking P = S = 0 and Q =
R = Imn, (16) gives B′

1 = B4, B′
2 = B2 and B′

4 = B1. So we may assume, and we do, 
that B1 	= 0 and B4 = 0. Now by Lemma 3.4 there are V, W ∈ C(P), with V a unit, such 
that B1V

2 = N v +N v+1W 2. Choosing P = V, Q = R = 0 and S = V −1B−1
2 , (16) gives 

B′
1 = N v + N v+1W 2, B′

2 = Imn and B′
4 = 0. So ( 0 B

B D

) is isometric to 
(

0 B′
′

)
with 
B 0
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B′ =
(
T (N v + N v+1W 2) T

T 0

)
. We note that T N v+1W 2 = T N v+1f2

1 , for some f1 ∈ K[N ]
such that v+ 1 + 2 deg(f1) ≤ n − 1. Choose w ∈ {n, n + 1} such that w− v is odd. Then 
deg(f1) ≤ (w − v − 3)/2. Also in this case f2 = Imn.

Final Case: We now suppose that B1 	= 0 and B4 	= 0. Also set w = |B4|. We may 
assume that v ≤ w and that w − v is maximal in the isometry class of ( 0 B

B D

).
We claim that w − v is odd. For suppose otherwise. Then take P = Imn, Q =

λN (w−v)/2, for some λ ∈ K, R = 0 and S = Imn. Then (16) gives B′
1 = B1, B′

4 =
B1λ

2N (w−v) + B4. But |B1λ
2N (w−v)| = |B4|. So we may choose λ so that |B′

4| > |B4|. 
Then |B′

4| − |B′
1| > w − v, which contradicts the maximality of w − v. This proves our 

claim.
Now by Lemma 3.4 there are V1, W1 ∈ C(P), with V1 a unit, such that B1V

2
1 =

N v + N v+1W 2
1 . Choosing P = V1, Q = R = 0 and S = Imn in (16), we can replace 

B1 by B′
1 = N v + N v+1W 2

1 and B′
4 = B4. By similar reasoning, we may assume that 

B4 = Nw + Nw+1W 2
4 , for some W4 ∈ C(P).

Next take P = Imn, Q = N (w−v+1)/2W4, R = 0, S = Imn. Then B′
1 = B1 and we 

may replace B4 by B′
4 = Nw + Nw+2(W1W4)2. Now choose P = Imn, Q = R = 0, S =

(Imn + NW1W4)−1. Then B′
1 = B1 and we can replace B4 by B′

4 = Nw.
Write B1 = N v +N v+1f1(N 2) +NwL2, where f1 ∈ K[x] and deg(f1) ≤ (w−v−3)/2

and L ∈ C(P). Choosing P = Imn, Q = 0, R = L, S = Imn, we get B′
1 = N v +

N v+1f1(N 2) and B′
4 = B4.

We now modify B2 as much as we can, without changing B1 or B4. Notice that the 
annihilator of Nw in K[N ] is generated by Nn−w. So t := �n−w−1

2 � is the largest integer 
such that w+2t < n. Next write B2 = f2(N ) +EN t+1, where f2 ∈ K[x] with deg(f2) ≤ t

and E ∈ C(P). Choosing P = Imn, Q = R = 0, S = (1 + B−1
2 EN t+1) we get B′

1 = B1, 
B′

4 = B4, and we replace B2 by B′
2 = B2 + EN t+1 = f2(N ).

Uniqueness: Let ( 0 B
B 0

) and 
(

0 B′

B′ 0

)
be isometric symplectic forms on Cn(π)2 with

B1 = N v + N v+1f1(N 2), B2 = f2(N ), B4 = Nw,

B′
1 = N x + N x+1f ′

1(N 2), B′
2 = f ′

2(N ), B′
4 = N y,

where v, w, f1, f2, and likewise x, y, f ′
1, f

′
2, satisfy the constraints in the statement of the 

theorem. Moreover (16) holds for certain P, Q, R, S ∈ C(P).
First note that (16) implies that |B′

1| ≥ min{|B1| + 2|P |, |B4| + 2|R|} ≥ |B1|. But as 
isometry is a symmetric relation, we likewise have |B1| ≥ |B′

1|. So v = x.
We claim that B′

4 = B4. For otherwise we may assume that B′
4 	= 0 and |B4| > |B′

4|. 
Now |B1Q

2| 	= |B4S
2|. So |B′

4| = min{|B1| + 2|Q|, |B4| + 2|S|}. This forces |B′
4| =

|B1| + 2|Q| = |B′
1| + 2|Q|. So y − x is even, which is false. This proves our claim.

The equation for B′
4 in (16) can now be rearranged to

Nw(Imn + S2) = B1Q
2.
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If B1Q
2 	= 0, then |Imn+S2| is even. So w ≡ v mod 2, which is false. So in fact B1Q

2 = 0
and Nw(Imn +S2) = 0. Recall that t is the largest integer such that 2t < (n −w). Then

Q ≡ 0 mod N t+1, and S ≡ Imn mod N t+1. (17)

The equation for B′
1 in (16) can likewise be rearranged to

N v(Imn + P 2) = N v+1(f ′
1(N 2) + f1(N 2)P 2) + NwR2.

As w− v is odd, it follows that both sides are 0. So N v = N vP 2. Substituting this back 
into the previous displayed equation gives

N v+1(f ′
1 + f1)(N 2) = NwR2.

But deg(f ′
1 + f1) ≤ w−v−3

2 . So NwR2 = 0 and f ′
1(N 2) = f1(N 2), whence B′

1 = B1.
Now N v = N vP 2 and NwR2 = 0 implies that

and P ≡ Imn mod N t+1, and R ≡ 0 mod N t+1. (18)

Finally, we may use (17), (18) and the equation for B′
2 in (16) to obtain the congruence

(f2 + f ′
2)(N ) ≡ 0 mod N t+1.

But deg(f2 + f ′
2) ≤ t. So B2 = f2(N ) = f ′

2(N ) = B′
2. �

Corollary 7.9. If k is finite, set q := |k|m. Then

| Isom(Cn(π)2)| =
{
n · q n−2

2 , if n is even,
(n+1

2 q + n−1
2 ) · q n−3

2 , if n is odd.

Proof. We count the number of choices we have for v, w and f1, f2 ∈ K[N ], subject to 
the constraints of Theorem 7.8. So fix v, with 0 < v ≤ n. The case v = n corresponds to 
B1 = B4 = 0 and f2 = Imn. So there is one such isometry class.

From now on we assume that v < n. Set 
 := �n−v
2 �. So 
 = |{w | v < w < n,

w − v odd}|. First note that w ∈ {n, n + 1} corresponds to B4 = 0, f2 = Imn and 
deg(f1) ≤ w−v−2

2 . So we have q� choices for f1. Suppose then that w < n. Then deg(f1) ≤
w−v−3

2 , deg(f2) ≤ n−w−1
2 and f2(0) 	= 0 as f2 is a unit. So there are q(w−v−1)/2 choices 

for f1 and (q − 1)q�n−w−1
2 � choices for f2. But 
 = �n−w−1

2 � + w−v+1
2 as w − v ≡ 1

mod 2. So the number of choices for the pair f1, f2 is (q − 1)q�−1. Now as there are 

allowed values of w strictly between v and n, the total number of isometry classes with 
parameter v < n is

q� + 
(q − 1)q�−1 = (
 + 1)q� − 
q�−1.



L. Pforte, J. Murray / Journal of Algebra 505 (2018) 92–124 121
Suppose that n is even. Then as v ranges over {1, . . . , n}, 
 takes each value in 
{0, . . . , n−2

2 } twice. So the total number of isometry classes of symplectic forms is given 
by the telescoping sum

2
n−2

2∑
�=0

((
 + 1)q� − 
q�−1) = nq
n−2

2 .

Suppose that n is odd. Then as v ranges over {1, . . . , n}, 
 takes each value in 
{0, . . . , n−3

2 } twice and n−1
2 once. So now the total number of isometry classes of sym-

plectic forms is given by the sum

2
n−3

2∑
�=0

((
 + 1)q� − 
q�−1) +
(
n + 1

2 q
n−1

2 − n− 1
2 q

n−3
2

)
= n + 1

2 q
n−1

2 + n− 1
2 q

n−3
2 . �

Theorem 7.10. There is a G-invariant quadratic form on Cn(π)2 which polarizes to (
0 B
B 0

)
if and only if there is a unit U ∈ Mat2(C(P)) and one of the following holds:

(i) UTBU =
(

0 T
T 0

)
. So 

(
0 B
B 0

)
is isometric to the paired form.

(ii) π ∈ {x, x + 1}, n + v is odd and UTBU =
(
T N v(Imn + N ) T

T 0

)
.

(iii) π /∈ {x, x + 1}, n + v is even and UTBU =
(
T N v(P + P2) T

T 0

)
.

If (i), (ii) or (ii) holds, let D ∈ Diagmn(k) be the diagonal of B. Then the corresponding 

G-invariant quadratic forms are {Δ 
(
D B
0 E

)
| E ∈ Diagmn(k)}.

In case (i) D = 0 and Δ 
(

0 B
0 E

)
is isometric to Δ 

(
0 B
0 0

)
.

In cases (ii) and (iii) we can choose t so that (B−1)t,t 	= 0. Then Δ 
(
D B
0 E

)
is 

isometric to Δ 
(
D B
0 τEt

)
for a unique τ ∈ (B−1)−1

t,t P(k).

Proof. First note that g2 = (
I2mn I2mn

0 I2mn

) and g3 = (
I2mn P2

0 I2mn

), with respect to the basis 
C of Cn(π)2. Here P2 denotes (P 0

0 P
) in Mat2(C(P)).

Let Q = Δ(
D B
0 E

) be a quadratic form which polarizes to 
( 0 B
B 0

) and with D, E ∈
Diagmn(k). Then Q is G-invariant if and only if Q − gTj Qgj is alternating, for j = 2, 3. 
One checks quickly that

Q− gT2 Qg2 =
(

0 D
D D + B

)
, Q− gT3 Qg3 =

(
0 DP2

PTD PTDP + PTB

)
.

2 2 2 2
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Write B =
(
B̃1 B̃2
B̃2 B̃4

)
, where B̃1, B̃2, B̃4 ∈ T(P). Then B̃T

i = B̃i, and PT B̃i = B̃iP, for 
i = 1, 2, 4. So D + B and PT

2 DP2 + PT
2 B are symmetric. Now D + B is hollow if and 

only if PT
2 (D + B)P2 is hollow. It follows that D + B and PT

2 DP2 + PT
2 B are hollow if 

and only if D + B and PT
2 BP2 + PT

2 B are hollow.
Now PT

2 BP2 + PT
2 B =

(
B̃1(P + P2) B̃2(P + P2)
B̃2(P + P2) B̃4(P + P2)

)
. We conclude that Q is G-invariant if 

and only if each of D + B, B̃1(P + P2) and B̃4(P + P2) are hollow.
Notice that if D + B is hollow if and only if D is the diagonal of B. Next, we may 

assume that B̃1 = T N v(I + Nf2) and B̃4 = T Nw, where 0 < v < w ≤ n + 1, w − v is 
odd and f ∈ K[N ].

If v = n, then w = n + 1 and so B̃1 = B̃4 = 0. This is case (i).
Suppose then that v < n. First let π ∈ {x, x + 1}. Then P + P2 = N + N 2. So

B̃1(P + P2) = T
(
N v+1(Imn + N 2f2) + N v+2(Imn + f2)

)
.

Then Corollary 3.7 implies that B̃1(P + P2) is hollow if and only if n + v is odd and 
f = Imn i.e. B̃1 = T N v(Imn + N ).

Next suppose Nw 	= 0. Then Corollary 3.7 implies that B̃4(P + P2) = T (Nw+1 +
Nw+2) is hollow if and only if w = n − 1. But then w + n is odd. As w − v is odd, 
we conclude that B̃4(P + P2) is hollow if and only if B̃4 = 0. This gives case (ii).

Finally let π /∈ {x, x +1}. Then γ := E +E2 is a non-zero element of K and P +P2 =
γ + N + N 2 in K[N ]. In this case

B̃1(P + P2) = T
(
N v(γ + N 2(Imn + f2)) + N v+1(Imn + (γ + N 2)f2)

)
.

So by Corollary 3.7, B̃1(P+P2) is hollow if and only if n +v is even and f2 = (γ+N 2)−1

i.e.

B̃1f
−2 = T N v(γ + N + N 2) = T N v(P + P2).

Now just as in the case π ∈ {x, x + 1} we have that B̃4(P + P2) is hollow if and only if 
B̃4 = 0.

Now suppose that Δ(
D B
0 E

) is a G-invariant quadratic form. Note that in case (i) B is 
hollow and thus D = 0. Now Lemma 6.6(i) applies. In the cases (ii) and (iii) we see from 
Corollary 3.7 that B is not hollow. For if n +v is odd then N j(1 +N ) is not a square, for 
j = v, v− 1, and if n + v is even, then N j(γ +N +N 2) is not a square, for j = v, v− 1.

Now B−1 = B−1BB−T is not hollow. Choose t ∈ {1, . . . , mn} such that (B−1)t,t 	= 0
and set ν = (B−1)t,t. Since D+B is hollow, it follows that B−1(D+B)B−T is hollow. So 
ν = (B−1DB−T )t,t. Then Lemma 6.6(ii) shows that Δ(

D B
0 E

) is isometric to Δ(
D B
0 τEt

), 
for a unique τ ∈ ν−1P(k). �
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8. The modules Cn(∞) and Cn(∞)2

In [1] Conlon defines Cn(∞) as a 2n-dimensional kG-module with the basis B :=
(a1, . . . , an, b1, . . . , bn) such that

n2 =
(

0 T2
0 0

)
, n3 =

(
0 In
0 0

)
.

Note that up to conjugation by diag(Ĩn, Ĩn) the action on Cn(∞) equals the action on 
Cn(x) given by (14), but with the roles of n2 and n3 interchanged. Hence Cn(∞) and 
Cn(x) have the same symplectic and quadratic forms and the same isometry classes. For 
Cn(x) we have K = k, P = N = T0 and T = Ĩn = Hn+1. Also ĨnT N v Ĩn = N vT =
Hn+1+v, for all integers v ≥ 0. The following results for Cn(∞) are with respect to the 
basis B. Theorem 7.5 implies

Theorem 8.1.

Isom(Cn(∞)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

0 Hn+1 +
�n

2 �∑
i=1

λiHn+2i

Hn+1 +
�n

2 �∑
i=1

λiHn+2i 0

⎞⎟⎟⎟⎠ | λ1, . . . λ�n
2 � ∈ k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Corollary 8.2. If q = |k| then | Isom(Cn(π))| = q�
n
2 �.

For quadratic forms, Theorem 7.7 gives:

Theorem 8.3. A bilinear form on Cn(∞) is the polarization of a G-invariant quadratic 

form if and only if n is odd and the form is isometric to 
(

0 Hn+1+Hn+2
Hn+1+Hn+2 0

)
.

In this case the G-invariant quadratic forms which polarize to the above symplectic 

form are Δ 
(
En+1

2
Hn+1 + Hn+2

0 D

)
for D ∈ Diagn(k). Each of these is isometric to 

Δ 
(
En+1

2
Hn+1 + Hn+2

0 μEn+1
2

)
for a unique μ ∈ P(k).

The remaining three statements are with respect to the ordered basis

C := ((a1, 0), . . . , (an, 0), (0, a1), . . . , (0, an), (b1, 0), . . . , (bn, 0), (0, b1), . . . , (0, bn))

on Cn(∞)2 and follow from Theorem 7.8, Corollary 7.9 and Theorem 7.10, respectively.
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Theorem 8.4. Each symplectic form on Cn(∞)2 is isometric to one form 
(

0 B
B 0

)
with

B =

⎛⎝ Hv +
∑w−v−1

2
i=1 λiHv−1+2i Hn+1 +

∑� 2n−w+2
2 �

i=1 μiHn+i

Hn+1 +
∑� 2n−w+2

2 �
i=1 μiHn+i Hw

⎞⎠
Here n + 1 < v < w ≤ 2n + 1, w − v is odd, λi, μi ∈ k and μ1 	= 1k

Corollary 8.5. If k = Fq then | Isom(Cn(∞)2)| =
{
n q

n−2
2 , if n is even,

(n+1
2 q + n−1

2 )q n−3
2 , if n is odd.

Theorem 8.6. There is a G-invariant quadratic form on Cn(∞)2 which polarizes to (
0 B
B 0

)
if and only if there is a unit U ∈ Mat2(C(T2)) so that one of the follow-

ing holds:

(i) UTBU =
(

0 Hn+1
Hn+1 0

)
.

(ii) UTBU =
(
Hv + Hv+1 Hn+1

Hn+1 0

)
, where v > n + 1 and v is even.

If (i) holds, {Δ
(

0 B
0 D

)
| D ∈ Diagn(k)} are the corresponding G-invariant quadratic 

forms. Each of these are isometric to Δ 
(

0 B
0 0

)
.

If (ii) holds, choose t so that (B−1)t,t 	= 0. Then Δ 
(
D B
0 E

)
is isometric to 

Δ 
(
D B
0 τEt

)
, for a unique τ ∈ (B−1)−1

t,t P(k).
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