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1 Introduction and statement of the result

Let Sn be the symmetric group of degree n ≥ 1 and let k be a field of characteristic p > 0. In [7,
Theorem 11.5] G. James constructed all irreducible kSn-modules Dλ where λ ranges over the
p-regular partitions of n. Here a partition is p-regular if each of its parts occurs with multiplicity
less than p.

As the alternating group An has index 2 in Sn, the restriction Dλ↓An is either irreducible
or splits as a direct sum of two non-isomorphic irreducible kAn-modules. Moreover, every
irreducible kAn-module is a direct summand of some Dλ↓An .

Henceforth we will assume, unless stated otherwise, that k is a field of characteristic 2 which
is a splitting field for the alternating group An. For this, it suffices that k contains the finite
field F4. D. Benson [1] has classified all irreducible kAn-modules:

Proposition 1.1. Let λ = (λ1 > λ2 > · · · > λ2s−1 > λ2s ≥ 0) be a strict partition of n. Then
Dλ↓An is reducible if and only if

(i) λ2j−1 − λ2j = 1 or 2, for j = 1, . . . , s, and

(ii) λ2j−1 + λ2j 6≡ 2 (mod 4), for j = 1, . . . , s.

In this note we determine the dual of each irreducible kAn-module. Now Dλ↓An is a self-dual
kAn-module, as Dλ is a self-dual kSn-module. So we only need to determine the dual of an
irreducible kAn-module which is a direct summand of Dλ↓An , when this module is reducible.

Theorem 1.2. Let λ be a strict partition of n such that Dλ↓An is reducible. Then the two

irreducible direct summands of Dλ↓An are self-dual if
s∑
j=1

λ2j is even and are dual to each other

if
s∑
j=1

λ2j is odd.

This paper is a contribution to the Special Issue on the Representation Theory of the Symmetric Groups
and Related Topics. The full collection is available at https://www.emis.de/journals/SIGMA/symmetric-groups-
2018.html
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For example D(7,5,1)↓A13
∼= S ⊕ S∗, for a non self-dual irreducible kA13-module S, and

D(5,4,3,1)↓A13 decomposes similarly. On the other hand D(7,6)↓A13
∼= S1 ⊕ S2 where S1 and S2

are irreducible and self-dual.
In order to prove Theorem 1.2, we use the following elementary result, which requires the

assumption that k has characteristic 2:

Lemma 1.3. Let G be a finite group and let M be a semisimple kG-module which affords
a non-degenerate G-invariant symmetric bilinear form B. Suppose that B(tm,m) 6= 0, for some
involution t ∈ G and some m ∈M . Then M has a self-dual irreducible direct summand.

Proof. We have M =
⊕n

i=1Mi, for some n ≥ 1 and irreducible kG-modules M1, . . . ,Mn. Write
m =

∑
mi, with mi ∈Mi, for all i. Then

B(tm,m) =
∑

1≤i≤n
B(tmi,mi) +

n∑
1≤i<j≤n

(
B(tmi,mj) +B(tmj ,mi)

)
=
∑

1≤i≤n
B(tmi,mi).

The last equality follows from the fact that char(k) = 2 and

B(tmi,mj) = B
(
mi, t

−1mj

)
= B(mi, tmj) = B(tmj ,mi).

Without loss of generality B(tm1,m1) 6= 0. Then B restricts to a non-zero G-invariant
symmetric bilinear form B1 on M1. As M1 is irreducible, B1 is non-degenerate. So M1 is
isomorphic to its kG-dual M∗1 . �

2 Known results on the symmetric and alternating groups

2.1 The irreducible modules of the symmetric groups

We use the ideas and notation of [7]. In particular for each partition λ of n, James defines the
Young diagram [λ] of λ, and the notions of a λ-tableau and a λ-tabloid.

Fix a λ-tableau x. So x is a filling of [λ] with the symbols {1, . . . , n}. The corresponding
λ-tabloid is {x} := {σ(x) |σ ∈ Rx}, where Rx is the row stabilizer of x. We regard {x} as an
ordered set partition of {1, . . . , n}. The Z-span of the λ-tabloids forms the ZSn-lattice Mλ, and
the set of λ-tabloids is an Sn-invariant Z-basis of Mλ.

Recall from [7, Section 4] that corresponding to each tableau x there is a polytabloid ex :=∑
sgn(σ){σx} in Mλ. Here σ ranges over the permutations in the column stabilizer Cx of

the tableau x. The Specht lattice Sλ is defined to be the Z-span of all λ-polytabloids. In
particular Sλ is a ZSn-sublattice of Mλ; it has as Z-basis the polytabloids corresponding to
the standard λ-tableaux (i.e., the numbers increase from left-to-right along rows, and from
top-to-bottom along columns).

Now James defines 〈 , 〉 to be the symmetric bilinear form on Mλ which makes the tabloids
into an orthonormal basis. As the tabloids are permuted by the action of Sn, it is clear that 〈 , 〉
is Sn-invariant.

Suppose now that λ is a strict partition and consider the unique permutation τ ∈ Rx which
reverses the order of the symbols in each row of the tableau x. In [7, Lemma 10.4] James shows
that 〈τex, ex〉 = 1, as {x} is the only tabloid common to ex and eτx (in fact James proves that
〈τex, ex〉 is coprime to p, if λ is p-regular, for some prime p). Set Jλ := {x ∈ Sλ | 〈x, y〉 ∈ 2Z,
for all y ∈ Sλ}. Then 2Sλ ⊆ Jλ and it follows from [7, Theorem 4.9] that Dλ := (Sλ/Jλ)⊗F2 k
is an absolutely irreducible kSn-module, for any field k of characteristic 2.
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2.2 The real 2-regular conjugacy classes of the alternating groups

A conjugacy class of a finite group G is said to be 2-regular if its elements have odd order.
R. Brauer proved that the number of irreducible kG-modules equals the number of 2-regular
conjugacy classes of G [4]. Now Brauer’s permutation lemma holds for arbitrary fields [3,
footnote 19]. So it is clear that the number of self-dual irreducible kG-modules equals the
number of real 2-regular conjugacy classes of G.

We review some well known facts about the 2-regular conjugacy classes of the alternating
group. See for example [8, Section 2.5].

Corresponding to each partition µ of n there is a conjugacy class Cµ of Sn; its elements
consist of all permutations of n whose orbits on {1, . . . , n} have sizes {µ1, . . . , µ`} (as multiset).
So Cµ is 2-regular if and only if each µi is odd.

Let µ be a partition of n into odd parts. Then Cµ ⊆ An. If µ has repeated parts then Cµ
is a conjugacy class of An. As Cµ is closed under taking inverses, Cµ is a real conjugacy class
of An.

Now assume that µ has distinct parts. Then Cµ is a union of two conjugacy classes C±µ

of An. Set m := n−`(µ)
2 and let z ∈ Cµ. Then z is inverted by an involution t ∈ Sn of cycle type

(2m, 1n−2m). Since CSn(z) ∼=
∏

Z/µjZ is odd, t generates a Sylow 2-subgroup of the extended
centralizer C∗Sn(z) of z in Sn. It follows that z is conjugate to z−1 in An if and only if t ∈ An.

This shows that C±µ are real classes of An if and only if n−`(µ)
2 is even. This and the discussion

above shows:

Lemma 2.1. The number of self-dual irreducible kAn-modules equals the number of non-strict
odd partitions of n plus twice the number of strict odd partitions µ of n for which n−`(µ)

2 is even.

3 Bressoud’s bijection

We need a special case of a partition identity of I. Schur [9]. This was already used by Benson
in his proof of Proposition 1.1:

Proposition 3.1 (Schur, 1926). The number of strict partitions of n into odd parts equals the
number of strict partitions of n into parts congruent to 0, ±1 (mod 4) where consecutive parts
differ by at least 4 and consecutive even parts differ by at least 8.

D. Bressoud [5] has constructed a bijection between the relevant sets of partitions. We
describe a simplified version of this bijection.

Let µ = (µ1 > µ2 > · · · > µ`) be a strict partition of n whose parts are all odd. We sub-
divide µ into ‘blocks’ of at most two parts, working recursively from largest to smallest parts.
Let j ≥ 1 and suppose that µ1, µ2, . . . , µj−1 have already been assigned to blocks. We form the
block {µj , µj+1} if µj = µj+1 + 2, and the block {µj} otherwise (if µj ≥ µj+1 + 4). Let s be the
number of resulting blocks of µ.

Next we form the sequence of positive integers σ = (σ1, σ2, . . . , σs), where σj is the sum of
the parts in the j-th block of µ. Then the σj are distinct, as the odd parts form a decreasing
sequence, with minimal difference 4, and the even parts form a decreasing sequence, with minimal
difference 8. Moreover, each even σj is the sum of a pair of consecutive odd integers. So σj 6≡ 2
(mod 4), for all j > 0.

We get a composition ζ of n+ 2s(s− 1) by defining

ζ1 = σ1, ζ2 = σ2 + 4, . . . , ζs = σs + 4(s− 1).

The even ζj form a decreasing sequence, with minimal difference 4, and the odd ζj form a weakly
decreasing sequence (ζj = ζj+1 if and only if ζj , ζj+1 represent two singleton blocks {2k − 1}
and {2k − 5} of µ, for some k ≥ 0).
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Choose a permutation τ such that ζτ1 ≥ ζτ2 ≥ · · · ≥ ζτs. Then we get a strict partition γ
of n by defining

γ1 = ζτ1, γ2 = ζτ2 − 4, . . . , γs = ζτs − 4(s− 1).

By construction, the minimal difference between the parts of γ is 4 and the minimal difference
between the even parts of γ is 8. Moreover, γj ≡ ζτj (mod 4). So γj 6≡ 2 (mod 4). Then µ→ γ
is Bressoud’s bijection.

Finally form a strict partition λ of n which has 2s− 1 or 2s parts, by defining

(λ2j−1, λ2j) =


(γj

2
+ 1,

γj
2
− 1
)
, if γj is even or(

γj + 1

2
,
γj − 1

2

)
, if γj is odd.

Then λ satisfies the constraints (i) and (ii) of Proposition 1.1. Conversely, it is easy to see that
if λ satisfies these constraints, then λ is the image of some strict odd partition µ of n under the
above sequence of operations.

Lemma 3.2. Let µ be a strict-odd partition of n and let λ be the strict partition of n constructed
from µ as above. Then n−`(µ)

2 =
∑
λ2j.

Proof. Each pair of consecutive parts λ2j−1, λ2j of λ corresponds to a block B of µ. Moreover
by our description of Bressoud’s bijection, there are integers q1, . . . , qs, with

∑
qj = 0 such that

(λ2j−1 + 2qj , λ2j + 2qj) =


(
µi + 1

2
,
µi − 1

2

)
, if B = {µi},

(µi, µi+1), if B = {µi, µi+1}.

In case B = {µi, µi+1}, we have µi = µi+1 + 2 and thus µi−1
2 + µi+1−1

2 = λ2j + 2qj . We conclude
that

n− `(µ)

2
=

`(µ)∑
i=1

µi − 1

2
=

s∑
j=1

(λ2j + 2qj) =
s∑
j=1

λ2j . �

4 Proof of Theorem 1.2

Let D(n) be the set of strict partitions of n and let S(n) be the set of strict partitions of n which
satisfy conditions (i) and (ii) in Proposition 1.1. So there are 2|S(n)|+ |D(n)\ S(n)| irreducible
kAn-modules.

Next set S(n)+ := {λ ∈ S(n) |
∑
λ2j is even}. Then it follows from Lemmas 2.1 and 3.2 that

the number of self-dual irreducible kAn-modules equals 2|S(n)+| + |D(n)\ S(n)|. Now Dλ↓An

is an irreducible self-dual kAn-module, for λ ∈ D(n)\S(n). So we can prove Theorem 1.2 by
showing that the irreducible direct summands of Dλ↓An are self-dual for all λ ∈ S(n)+.

Suppose then that λ ∈ S(n)+. Let τ ∈ Sn be the permutation which reverses each row of

a λ-tableau, as discussed in Section 2.1. We claim that τ ∈ An. For τ is a product of
2s∑
i=1

⌊λj
2

⌋
commuting transpositions. Now

⌊λ2j−1

2

⌋
+
⌊λ2j

2

⌋
= λ2j , as λ2j−1 − λ2j = 1, or λ2j−1 − λ2j = 2

and both λ2j−1 and λ2j are odd. So
2s∑
i=1

⌊
λi
2

⌋
=

s∑
j=1

λ2j is even. This proves the claim.

Since Dλ is irreducible and the form 〈 , 〉 is non-zero, 〈 , 〉 is non-degenerate on Dλ. Write
Dλ↓An = S1 ⊕ S2, where S1 and S2 are non-isomorphic irreducible modules. As τ ∈ An, it
follows from Lemma 1.3 that we may assume that S1 is self-dual. Now S∗2 6∼= S∗1

∼= S1 and S∗2 is
isomorphic to a direct summand of Dλ↓An . So S2 is also self-dual. This completes the proof of
the theorem.
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5 Irreducible modules of alternating groups
over fields of odd characteristic

We now comment briefly on what happens when k is a splitting field for An which has odd
characteristic p. Let sgn be the sign representation of kSn. So sgn is 1-dimensional but non-
trivial. G. Mullineux defined a bijection λ→ λM on the p-regular partitions of n and conjectured
that Dλ ⊗ sgn = DλM for all p-regular partitions λ of n. This was only proved in the 1990’s by
Kleshchev and Ford–Kleshchev. See [6] for details.

Now Dλ↓An
∼= DλM↓An , and Dλ↓An is irreducible if and only if λ 6= λM See [2] for details.

Moreover Dλ and DλM are duals of each other, by [7, Theorem 6.6]. So Dλ↓An is self-dual, if
λ 6= λM . However when λ = λM , we do not know how to determine when the two irreducible
direct summands of Dλ↓An are self-dual.
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