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Predictive contract mechanisms such as dead reckoning are widely 
employed to support scalable remote entity modelling in Distributed 
Interactive Applications (DIAs). By employing a form of controlled 
inconsistency, a reduction in network traffic is achieved. Previously, 
we have proposed the Dynamic Hybrid Strategy Model (DHSM) as 
an extension to the concept of dead reckoning that adaptively selects 
extrapolation models based on the use of local performance criteria. 
In this paper, we formalize the notion of the DHSM as a generalized 
framework for network traffic reduction in DIAs, alongside a set of 
consistency metrics for use as local performance criteria. 
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I   INTRODUCTION 
A Distributed Interactive Application (DIA) is a 
distributed virtual reality system through which 
individuals can share information via individual and 
collaborative interaction with each other and their 
environment [1]. Distributed Interactive Applications 
offer the realization of simulated virtual worlds that 
embody a modern extension of communication, 
encompassing the concepts of shared time, shared 
space and shared presence [2]. The definition of a 
DIA encompasses a diverse range of applications 
that have seen rapid advances in technology and 
global popularity due to the widespread availability 
and ease-of-use of the Internet [3]. 

The two primary factors limiting the large-scale 
deployment of a DIA are network latency and 
network bandwidth. Network latency refers to the 
delay in communication between two end-points, 
while network bandwidth refers to the rate at which 
data can be communicated per unit time between two 
end-points. High network latency and low network 
bandwidth capacity represent the largest contributors 
to the difficulties faced by DIAs in maintaining and 
supporting: (a) shared state consistency, (b) potential 
scalability, and (c) real-time interactivity. 

In this paper, we are concerned with the use of 
predictive contract mechanisms for the reduction of 
network traffic in DIAs, including the well-known 
dead reckoning algorithms formally defined in the 

IEEE Standard for Distributed Interactive Simulation 
(DIS) [4]. Traditional dead reckoning mechanisms 
often ignore available contextual information that 
may be influential to the state of an entity, sacrificing 
remote predictive accuracy in favour of low resource 
and computational overhead [2]. Previously, we have 
proposed an extension of dead reckoning, known as 
the Dynamic Hybrid Strategy Model (DHSM), that 
builds upon the foundation of the Hybrid Strategy 
Model (HSM) technique [5, 6]. Both the HSM and 
the DHSM are hybrid predictive contract techniques 
that dynamically select remote extrapolation models 
based on local evaluation of current entity dynamics. 

In this paper, we formalize the concept of the 
DHSM as a generalized framework for the reduction 
of network traffic in DIAs, providing a specification 
and associated algorithm for implementation in real-
world scenarios. We formalize a set of corresponding 
consistency metrics that can be used as performance 
criteria for the dynamic (and adaptive) selection of 
extrapolation models, including the use of time-space 
consistency metrics as a combination of spatial and 
temporal threshold dimensions. 

The rest of this paper is organized as follows. In 
Section 2, we review work relating to both predictive 
contract mechanisms and measures of consistency. In 
Section 3, we formally define consistency metrics in 
relation to dead reckoning mechanisms. In Section 4, 
we present our proposed DHSM framework. Section 
5 offers conclusions and suggestions for future work. 
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II   RELATED WORK 

a) Predictive Contract Mechanisms 

Dead reckoning is the most widely employed form of 
predictive contract mechanism in current use. It was 
introduced during the development of SIMNET [7] 
and subsequently formally defined within the IEEE 
Standard for Distributed Interactive Simulation (DIS) 
[4]. Controlling hosts interacting within a DIA are 
required to maintain two parallel models for each 
entity under their control – a high-fidelity dynamical 
model that represents true entity state as determined 
through autonomous local control, and a low-fidelity 
dynamics model representing remotely approximated 
entity state. By periodically comparing the deviation 
between the two models against an error threshold or 
violating a transmission timeout criterion, controlling 
hosts can locally determine when state information is 
required to be replicated to remote hosts. Hence, by 
employing a form of controlled inconsistency, dead 
reckoning achieves a reduction in network traffic. 

The methodology behind dead reckoning (that is 
to say, the distribution of low-fidelity models to 
remote hosts and the subsequent (non-periodic) 
update of those models based on local computation 
performed by the controlling host) is quite often 
referred to as the ‘players and ghosts’ paradigm [8]. 
In this case, it is assumed than each entity is owned 
by a single controlling host (the player), who is 
required to update the remote simulations of that 
entity (the ghosts) when the deviation between local 
and remote state exceeds the given threshold(s). 

Dead reckoning mechanisms consist of two main 
components, namely prediction and convergence [2]. 
Prediction algorithms (often known as extrapolation 
models) are defined in Section IV. They specify how 
entity state is remotely extrapolated between entity 
state updates (ESUs). Convergence algorithms define 
how remote entity state is smoothly corrected due to 
errors arising from inaccurate extrapolation. Detailed 
discussion of convergence algorithms is beyond the 
scope of this paper. 

As previously described, dead reckoning schemes 
ignore available contextual information that may be 
influential to the state of an entity. To compensate, a 
number of adaptive extrapolation schemes have been 
proposed throughout the literature, aimed at reducing 
the error associated with remote extrapolation. These 
schemes can be distinguished according to the nature 
of computation associated with the adaptive process: 
 
1. Local Computation Schemes: Local computation 

schemes require controlling hosts to select an 
appropriate extrapolation model for each entity 
under their control, distributing application-wide 
computational overhead linearly with the number 
of hosts [5, 6, 9, 10, 11]; 

 
2. Remote Computation Schemes: Remote hosts are 

required to adaptively select extrapolation models 

for each remotely modelled entity. Computational 
overhead is distributed throughout the application 
quadratically with the number of hosts [12, 13]. 

 
In order to determine when to send a new entity 

state update (ESU), dead reckoning mechanisms 
require an explicit means of measuring the current 
degree of dynamic shared state consistency between 
the high-fidelity and low-fidelity entity models (in a 
practical sense, the level of inconsistency accrued 
between the local and remote representations of an 
entity will be higher than that estimated locally due 
to the presence of network latency). 

Traditionally, dead reckoning mechanisms have 
relied on spatial-based and temporal-based metrics as 
orthogonal quantities, merely issuing an entity state 
update (ESU) when either has been exceeded (these 
metrics are used under the guise of ‘error threshold’ 
and ‘transmission timeout’, respectively). The error 
threshold is designed to bound the remote predictive 
error associated with the extrapolation of entity state, 
while the transmission timeout seeks to guarantee a 
minimum frequency of ESU transmission at the cost 
of potentially redundant bandwidth usage. Used in 
isolation, temporal-metrics are quite often referred to 
as frequent state regeneration with heartbeat packets 
[2, 14]. In order to optimise the selection of these 
parameters, various adaptive error threshold schemes 
have been proposed throughout the literature [8, 10, 
15, 16, 17, 18, 19], along with a series of techniques 
for reducing the reliance on the transmission timeout 
criterion [14]. 

b) Measures of Consistency 

In the literature, drift distance has been defined as a 
metric for evaluating the consistency in a DIA that 
represents absolute spatial difference between local 
and remote entity models [20]. Phase difference has 
been defined as a consistency metric that represents 
the temporal difference between the rendering times 
for local and remote entity models [21]. Export error 
has been defined as the deviation in physical time of 
the remote entity model from the local entity model 
[22]. Deviation and uncertainty have been defined as 
absolute spatial difference and the size of the area in 
which an entity could reside in, respectively [17]. 

More recently, the use of a formalized time-space 
consistency metric has been proposed to evaluate the 
effect of inconsistency on user perception in a DIA, 
and it is given by the following equation [23]: 
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where ∆(t) is the spatial difference between local and 
remote entity models, ε is the minimum perceivable 
error (from a user perspective), t0 is the time at which 
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the difference starts, and τ is the duration for which 
the difference persists. When Ω equals zero, absolute 
consistency occurs. Time-space consistency metrics 
have been proposed for use as local error thresholds 
within dead reckoning mechanisms [24]. 

In the next section, we formalize the concepts of 
spatial, temporal, and time-space consistency metrics 
within the context of dead reckoning mechanisms. It 
should be noted that our proposed set of definitions 
are specific to our particular application domain, and 
are not intended as general metrics. This means, for 
instance, that our definition for temporal consistency 
is independent of other definitions proposed in such 
papers as [25], which typically deal with intervals of 
validity for sampled variables. 

III   CONSISTENCY METRICS 

a) Concepts of Time 

We view a DIA as a discrete domain where time is 
modelled as a monotonically increasing sequence of 
time instances bounded by a minimal element t0 = 0: 
 

 { } { } +ℑ∪∈∀= 0, itT i  (2) 

 
Given the above model of time, we define the closed 
interval between any pair of time instances [tm, tn] as: 
 

 [ ] { }nimiitt tttTttT
nm

≤≤∈= ,,  (3) 

 
We define a temporal-metric τ for referencing wall-
clock time as the constant duration (as measured in 
seconds) between successive time instances: 
 

 Ttitt iii ∈∧ℑ∈∀−= +
− ,1τ  (4) 

 
Hence, a given time instance ti can be de-referenced 
to the corresponding wall-clock (physical) time by: 
 
 Ttit ii ∈∀= ,τ  (5) 
 
Equations (2-5) provide a time-base for the definition 
of dead reckoning consistency metrics, as proposed 
throughout the following series of subsections. 

b) Spatial Consistency 

We define a measure of spatial consistency for entity 
E interacting in a DIA at time ti as the instantaneous, 
absolute positional difference between the local low-
fidelity and high-fidelity models (denoted as xlow and 
xhigh respectively) for that entity: 
 

 low
t

high
tt iii

xxE −=∆  (6) 

 
Hence, for the purposes of dead reckoning, we say an 
entity E is spatially consistent (SC) at time ti if and 

only if the measured spatial consistency for the entity 
at that time is less than or equal to a bounded spatial 
error threshold δ∆: 
 

 ∆≤∆⇔ δEE
ii ttSC  (7) 

c) Temporal Consistency 

We define a measure of temporal consistency for an 
entity E interacting within a DIA as the total elapsed 
wall-clock duration (measured in seconds) during the 
closed interval [tr, ti], where tr is an arbitrarily chosen 
past time instance such that r < i: 
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−=−=ΦE
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Hence, for the purposes of dead reckoning, we say an 
entity E is temporally consistent (TC) at time ti if and 
only if the measured temporal consistency for the 
entity during the closed interval [tλ

E, ti] is less than or 
equal to a bounded temporal error threshold δΦ, such 
that tλ

E represents the transmission time of the most 
recent entity state update (ESU) for that entity: 
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λ
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d) Time-Space Consistency 

We define a measure of time-space consistency for 
an entity E interacting in a DIA as the area under the 
graph of spatial consistency over time throughout the 
closed interval [tr, ti], where tr is an arbitrarily chosen 
past time instance such that r < i: 
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Hence, for the purposes of dead reckoning, we say an 
entity E is temporally-spatially consistent (TSC) at 
time ti if and only if the measured time-space 
consistency for the entity during the closed interval 
[tλ

E, ti] is less than or equal to a bounded temporal-
spatial error threshold δΩ, such that tλ

E represents the 
time of transmission of the most recent entity state 
update (ESU) for that entity: 
 

 [ ] Ω≤Ω⇔ δ
λ

EE
E

ii ttt ,
TSC  (11) 

IV   DHSM FRAMEWORK 

a) Specification 

A Dynamic Hybrid Strategy Model (DHSM) D can 
be specified as an ordered quadruple of the following 
form: 
 
 ><= HmMD ,,, 0 ρ  (12) 
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wherein: 
 
• M is a finite, non-empty set of n candidate 

extrapolation models, only one of which is ever 
active at any one time: 

 
 { }nmmmM ,,, 21 K=  (13) 
 
• m0 ∈ M is the default active extrapolation model; 
 
• ρ is a performance function used to rate the 

accuracy of state estimation across the set of 
extrapolation models M, such that: 

 
 { })(,),(),()( 21 nmmmM ρρρρ K=  (14) 
 
• H is a model transition table (function) that maps 

from M × ρ → M, and can be represented as a set 
of ordered triples of the following form: 

 

 ><= ji mMmH ,)(, ρ  (15) 

 
wherein: 
 
• mi ∈ M is the current active extrapolation model 

at time tn; 
 
• mj ∈ M is the next active (selected) extrapolation 

model at time tn+1. 

b) Extrapolation Models 

Given the discrete time-base defined previously by 
Equations (2-5), we can specify the general form for 
an extrapolation model mi ∈ M as a direct functional 
mapping from both the current and k previous states, 
actions, and environmental (external) influences on 
the future (estimated) state q steps ahead for an entity 
E interacting in a DIA at time ti: 
 

 [ ] [ ] [ ]),,( ,,,
EEEE eass
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wherein: 
 

• Es
qit +

 is the estimated entity state q steps ahead; 

• [ ]
Es

iki tt ,−
 are the current and k past entity states; 

• [ ]
Ea

iki tt ,−
 are the current and k past entity actions; 

• [ ]
Ee

iki tt ,−
 are the current and k past influences. 

 
The functional form of f defines how entity state 

is extrapolated remotely, while its inputs define what 
information must be communicated over the network 
in the form of entity state updates (ESUs) (due to the 
fact that remote hosts must have the information to 
perform the extrapolation). Dead reckoning schemes 

typically extrapolate over single steps (q = 1), ignore 
action and environmental variables, and traditionally 
define state vectors in terms of multi-dimensional 
location, velocity, and acceleration components. 
Equation (16) implicitly defines both one-step (k = 0) 
and multi-step (k > 0) extrapolation models [10]. 

A detailed discussion on how to define the form 
of the extrapolation function f is beyond the scope of 
this paper. The problem may be formulated as one of 
inference in a temporal probability model, and in this 
respect has been well studied in the field of artificial 
intelligence using statistical models such as Dynamic 
Bayesian Networks (DBNs) and Kalman Filters [26]. 

c) Performance Function 

The role of the performance function ρ is to assign a 
rating (or score) for each extrapolation model based 
on overall predictive performance (i.e. the accuracy 
of entity state estimation) between consecutive entity 
state update (ESU) transmissions. Thus, for an entity 
E interacting in a DIA at time ti, ρ is defined over the 
interval [tλ

E, ti], where tλ
E is the time of transmission 

of the most recent ESU for that entity. Naturally, the 
obvious choice would be to simply utilize the current 
consistency metric to rate model performance. In this 
respect, a temporal consistency metric is independent 
of entity dynamics, and has no performance function 
analogue. For spatial consistency metrics, scores can 
be assigned using the average spatial consistency for 
an entity E over the interval [tλ

E, ti], given by: 
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For time-space consistency metrics, scores can be 

assigned using Equation (10). Performance functions 
and consistency metrics are not mutually exclusive – 
hence the distinction we have made between the two. 
For instance, it is entirely reasonable to utilize spatial 
consistency metrics for ESU generation, alongside a 
time-space performance function for assigning scores 
to models. 

d) Model Transition Table 

The model transition table H utilizes the performance 
function ρ to dynamically select active extrapolation 
models, as shown in Figure 1. It accepts the current 
active extrapolation model (denoted as mi ∈ M) and 
the performance function evaluated over the set of all 
extrapolation models (denoted as ρ(M)), and outputs 
the next active extrapolation model (denoted as mj ∈ 
M). Technically, it can be called at any time ti and for 
any arbitrary performance function interval [tm, tn] to 
select a new active extrapolation model. In general, 
however, we only call it whenever a new ESU needs 
to be transmitted from the local host to remote hosts 
for an entity E (i.e. an interval [tλ

E, ti], where ti is the 
present time and tλ

E the time of most recent ESU). 
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Figure 1: Selecting a new active extrapolation model. 

The model transition table H can be viewed as a 
black-box, whose role is to define the set of rules that 
govern the dynamic selection of active extrapolation 
models. In a basic form, it simply chooses the model 
that exhibits the best score, as determined using the 
performance function. Issues may arise, however, in 
situations where multiple models exhibit an identical 
performance rating. In such cases, the responsibility 
for resolving the contention and specifying the model 
precedence also falls to the model transition table H, 
and this must be dealt with by defining any ancillary 
model selection conditions, parameters, functions or 
criteria that must be met. 

e) Algorithmic Description 

The operation of the DHSM, from the perspective of 
the local (controlling) host for an entity E interacting 
in a DIA, can be described as follows: 
 
1. M is distributed to remote hosts, alongside a state 

update to initialise E and inform them of m0. m0 
is set as the default active extrapolation model; 

 
2. At each time instance ti during the simulation, the 

local host: 
a) Computes the current high-fidelity entity state 

based on user-input; 
b) Estimates the current low-fidelity entity state 

for each model mi ∈ M in parallel; 
c) Quantifies the prediction error for each model 

mi ∈ M using the given consistency metric(s); 
d) Checks for error threshold violation (i.e. ESU 

transmission) using the active model only; 
e) Promptly proceeds to Step 3 (see below) if an 

error threshold violation is detected; 
 
3. If an error threshold violation is detected, an ESU 

is required to be transmitted to remote hosts, and 
the local host: 
a) Assigns a score to each model mi ∈ M using 

the performance function, as described above; 

b) Uses the model transition table to select a new 
active model, as described previously; 

c) Sends the identifier and required state data for 
the new active model to remote hosts ASAP; 

d) Resets the score and state estimators for each 
model mi ∈ M, and proceeds back to Step 2. 

 
For simplicity of description, the algorithm given 

above assumes a single entity E. Handling multiple 
entities is a trivial task, however – the only real issue 
is whether to define the components of the DHSM in 
an entity-centric or host-centric domain. In an entity-
centric domain, components are defined on a one-to-
one basis for each individual entity, offering greater 
potential flexibility at the cost of enlarged processing 
and memory overhead. In a host-centric domain, the 
components are shared among sub-ordinates who are 
controlled by the host – so for instance, performance 
functions and sets of extrapolation models are shared 
among entities. The choice is application-dependent. 

V   CONCLUSIONS 
In this paper, we have defined a formal specification 
for the Dynamic Hybrid Strategy Model (DHSM) as 
a general framework for the reduction of network 
traffic in DIAs. The DHSM expands on the concepts 
of traditional dead reckoning and incorporates theory 
relating to the field of Switching Kalman Filters [26], 
namely the use of multiple state estimators in parallel 
with one another. By scoring model performance as a 
measure of consistency and subsequently rating them 
relative to one another, the DHSM attempts to make 
an informed decision regarding the suitable selection 
of remote extrapolation models based on their recent 
accuracy in estimating future entity state locally. The 
dynamic model switching feature enables the DHSM 
to adapt to perceived changes in entity behaviour, all 
computed on a local-basis by each controlling host. 

Ultimately, the utility of the DHSM for providing 
a further reduction in network traffic over traditional 
dead reckoning mechanisms depends on the capacity 
of the set of extrapolation models that comprise it to 
accurately estimate entity state. The DHSM assumes 
that recent entity behaviour provides an indication of 
future entity behaviour on a comparatively long-term 
basis. Given this limitation, future work will involve 
the investigation of alternative extrapolation models 
based on the techniques of user modelling [27]. 
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