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Abstract

In this study the tail systemic risk of the Brazilian banking system is examined, using the conditional

quantile as the risk measure. Multivariate conditional dependence between Brazilian banks is modelled with

a vine copula hierarchical structure. The results demonstrate that Brazilian financial systemic risk increased

drastically during the global financial crisis period. Our empirical findings show that Bradesco and Itaú are

the origin of the larger systemic shocks from the banking system to the financial system network. The results

have implications for the capital regulation of financial institutions and for risk managers’ decisions.
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1. Introduction

The recent financial crisis drew the attention of both regulators and investors, as it exposed the financial

system’s fragility and the potential risks arising from bank defaults. Since the collapse of Lehman Brothers

in mid September 2008, the assessment of systemic risk turned out to be crucial for decision makers, since

regulators started to evaluate the impacts of small, fragile, and seemingly isolated portfolios from one

financial institution in compromising the safety and soundness of other institutions. In consequence, systemic

risk is necessary to determine the amount of regulatory capital of financial institutions (Sanjiv Ranjan Das,

2004; Rosenberg and Schuermann, 2006). The Financial Stability Oversight Council (FSOC ; Dodd–Frank,

2010) remarked that financial institutions that are systemically important must be forced to have a greater

capacity for risk absorption, given their larger contribution to the systemic risk of the global financial system.
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Our research defines and calculates systemic risk as (i) the risk contribution from one bank to another,

and (ii) the risk contribution from each bank to the Brazilian financial system (BFIndex ). We describe

a hierarchical model with copulae for the banks’ dependence. The hierarchical copula modelling considers

bank interconnectedness, conditional systemic dependence, and specific peer-to-peer tail dependence. Using

this model, we calculate the effects from the vulnerability of one bank to another measuring the Value-at-

Risk (V aR) of the recipient institution, and disentangling direct and indirect effects. In addition a bivariate

copula dependence model is used to measure the contribution of each bank within the BFIndex. Previous

research by Silva et al. (2016) found evidence of the strong network interconnectedness in the Brazilian

banking system; nevertheless they used complex mathematical measures that are based on topology, while

we use a conditional quantile that can easily be compared to the traditional industry adopted measures such

as the unconditional quantile (VaR) and Conditional VaR.

V aR continues to be the most widely used measure of risk which assesses the potential losses in time using

a probabilistic model with a defined interval of confidence under normal market circumstances. V aR was

proposed during the 1990s by JP Morgan and adopted as the standard market risk measure for individual

institutions; nevertheless, it neglects the collateral effects of defaults over other institutions. The academic

literature on macroprudential policies has thus focused on examining the individual risk contributions from

one institution to another, and from one institution to the financial system, developing different risk measures

(see, for example, Bisias et al., 2012; Bernal et al., 2014).

In this study we measure the systemic impact of the financial crisis on listed banks1 of the Brazil stock

index (Bovespa), using bank and index daily prices from 1 January 2007 to 18 January 2016. The results

demonstrate that the multivariate dependence structure of Brazilian banks is given by a C-vine copula

hierarchical structure, on which Bradesco is the main influence in determining the conditional dependence

structure of the financial system. The seven banks presented significant mean dependence changes during

the whole period, revealing samples of changing tail dependence. The resulting conditional α-quantile shows

that systemic risk evolved during the sample period, increasing during the world financial crisis of 2007/2008.

The results show that Bradesco and Banco do Brasil have a systemic risk effect on all other banks and vice

versa, Itaú having the lower systemic risk effect over Bradesco and Banco do Brasil. While mean dependence

between banks was high in comparison to industry standards, study results demonstrate that tail dependence

is fundamental in determining systemic risk effects and their asymmetry in bear/bull markets: as a result

systemic effects from institution A into B are not reflected from institution B into A. Considering the effects

of listed banks on the modified BFIndex (ex-bank in comparison), the bivariate copula test exhibit a high

level of covariance between banks and the index, with the exception of Banco do Brasil which exhibits tail

independence. Our systemic risk estimations show that the key systemic risk impacts over the financial

1Bovespa listed banks are: ABC, Banco do Brasil, Bradesco, PanAmericano, Banrisul, Itaú and Paraná.
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system from Brazilian banks originated from Bradesco and Itaú, with Banco do Brasil as the bank with

lower transmission effect.

Barnhill and Souto (2009) proposed a new portfolio simulation methodology to test the Brazilian banking

system strength during the 2007/2008 financial crisis; they found that once sovereign risk is included in the

model, the Brazilian banking system is fragile to the effects of the financial crisis. Huang et al. (2009)

developed a systemic risk index that measures financial fragility using the prices of credit default swaps

(CDS ). Likewise, Segoviano and Goodhart (2009) applied CDS to develop an index of financial stability

that measured interbank dependence during extreme events. Rodŕıguez-Moreno and Peña (2013) found

empirical evidence of the adequacy of CDS in estimating systemic risk. Acharya et al. (2010) used the

expected shortfall (ES ) and the marginal expected shortfall (MES ) as measures for quantifying risks in

extreme situations, and for estimating financial institutions’ contributions to system risk. Brownlees and

Engle (2012) defined a systemic risk measure (SRISK), that is the required capital in demand to restore

the minimum level of mandatory regulatory capital. Allen et al. (2012) proposed a systemic risk measure

(CATFIN) to predict the decline in aggregated loan activity within six months. Billio et al. (2012) tested five

systemic risk measures that capture contagion and exposure in financial institutions’ relationships. Engle and

Manganelli (2004) developed a model of conditional autoregressive V aR (CaV iaR) using quantile regression

to capture the conditional distribution of the returns in the tails of the distribution.

More recently, Adrian and Brunnermeier (2011) proposed CoV aR (V aR conditional on financial dis-

tressed institutions) as a new systemic risk measure. CoV aR captures the spillover risks between financial

institutions, providing more information about the V aR of the financial system conditional on the instability

or default. In CoV aR, the systemic risk contribution from an institution is measured as the difference be-

tween the ∆CoV aR of an institution and the benchmark CoV aR, where ∆CoV aR is the linear sensitivity of

the institution CoV aR.2 Girardi and Ergün (2013), extended the CoV aR measure, including returns below

the V aR of the conditional distress event, in comparison to Adrian and Brunnermeier (2011) that considered

only returns equal to the V aR of the conditional distress event. Girardi and Ergün (2013) defined a systemic

risk CoV aR calculation different from that of Adrian and Brunnermeier (2011)’s quantile regression; this

new method adjusted the financial system joint returns density to a multivariate generalised autoregressive

conditional heterocedastic (MGARCH ), calculating the CoV aR by numerical methods from this adjusted

distribution. More recently,

The bank’s systemic risk dependence structure in this study is modelled using a multivariate hierar-

chical tree structure, a vine copula (Joe, 1996), from which we calculate the conditional α-quantile. This

hierarchical dependence structure prices the risk that one institution represents to another institution. Since

the hierarchical structure can be decomposed into sets of bivariate copulae (pair-copulae) which capture

2López-Espinosa et al. (2012) identified the determinants of systemic risk for a large set of international banks, applying
CoV aR as in Adrian and Brunnermeier (2011).
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dependence between two variables, the changes in the bivariate copula specification can be informative

about diverse dependence characteristics, such a mean, tail, symmetric, and asymmetric dependence. The

vine copula specification let us model the marginal distributions an the dependence structure separately,

and as a result, independently of the dependence structure we can capture the specific volatility dynamic

and asymmetry (volatility smirk)3 of the univariate bank return series. We study the bank individual risk

contribution to the financial system, modelling the dependence between each bank and a modified BFIndex

that removes the bank under consideration; we use bivariate copulas for this, that result in a conditional

α-quantile.

The structure of this paper is as follows: Section 2 presents the notation and definitions of systemic risk

in terms of vine copulae and bivariate copulae. Section 3 presents the data used for the study and in Section

4 presents the empirical findings. Finally, Section 5 provides concluding remarks and suggestions for further

extensions of the work.

2. Notation and methodology

Different risk measures have been proposed in the literature to assess the impact of a risky financial

institution over the system or over other individual financial institutions. In our research we define the

systemic risk as the individual institution conditional on the distress α-quantile of the returns distribution

effect over the financial system α-quantile, and the effect over other individual institutions.

2.1. Conditional α-quantile

The conditional α-quantile of a financial institution is the α-quantile conditioned on distress (low α-

quantile) of other financial institutions. Let X1
t be the returns of bank 1 and X2

t the returns of bank 2, the

α-quantile of bank 1 return distribution is P (X1
t 6 qXtα,t) = α, and can be calculated as:

q
X1
t

α,t = F−1
X1
t

(α), (1)

where F−1
X1
t

(α) is the inverse cumulative distribution function (cdf ) of X1
t . Value-at-Risk (V aR) at level α

is defined as the unconditional α-quantile for α = 0.05, 0.025, 0.01. Applying (1) for bank 2 we will obtain

the β-quantile inverse cdf of X2
t , defined as F−1

X2
t

(β). To calculate the conditional α-quantile of bank 1 at t

for certain β-quantile of bank 2 we define Pr(X1
t 6 q

X1
t |X

2
t

α,β,t |X2
t 6 q

X2
t

β,t ) = α that can be calculated as:

q
X1
t |X

2
t

α,β,t = F−1
X1
t |X2

t6q
X2
t

β,t

(α), (2)

3Volatility dynamics and asymmetry are fundamental for a precise estimation of the vine α-quantile, see Avramidis and
Pasiouras (2015).
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where F−1
X1
t |X2

t6q
X2
t

β,t

(α) is the inverse cdf of X1
t conditioned on X2

t 6 q
X2
t

β,t . In our methodology we calculate the

quantile of a distressed conditional distribution, that includes the conditional bivariate dependence between

X1
t , X

2
t , and the multivariate dependence with the financial system since the condition X1

t |X2
t 6 q

X2
t

β,t will

include indirect effects from any institutions of the system over X1
t . Considering the financial system is

composed of n banks, we define the conditional quantile as Pr(X1
t 6 q

X1
t |X

2
t

α,β,t |X2
t 6 qX

2

β,t , X
3
t , ..., X

n
t ) = α

that can be calculated by:

q
X1
t |X

2
t ,X

3
t ,...,X

n
t

α,β,t = F−1
X1
t |X2

t ,6q
X2
t

β,t ,X
3
t ,...,X

n
t

(α). (3)

Calculation of the conditional α-quantile in (3) consists in finding the quantile of the distribution considering

the financial distressed and dependence conditions of other banks with bank 1.

2.2. Models for marginal distributions

In this section unconditional quantiles of returns distribution are calculated. Let Xt have a time variant

mean (µt) and variance zero such that:

Xt = µt + εt, (4)

where µt = φ0 +
∑p
j=1 φjyt−j +

∑q
h=1 ϕjεt−h, with φ0, φj and ϕj denote a constant, an autoregressive (AR),

and a moving average (MA) parameter, respectively, considering that p and q are non-negative integers.

εt = σtzt is a stochastic variable, with σt being the conditional standard deviation and zt a stochastic

variable with zero mean and standard deviation equal to one. The variance of Xt is given by the variance

of εt, which has a truncated generalised autoregressive conditional heterocedastic (TGARCH ) dynamic

proposed by Zakoian (1994) and Glosten et al. (1993):

σ2
t = ω +

r∑
k=1

βkσ
2
t−k +

m∑
h=1

αhε
2
t−h +

m∑
h=1

λh1t−hε
2
t−h, (5)

where ω is constant; β and α are the GARCH and the autoregressive conditional heterocedastic (ARCH )

parameters, respectively. λ captures the asymmetry effect such that a negative shock has more impact in

the variance than a positive shock when λ > 0. Note that if λ = 0 we have a simple GARCH model. Let zt

have a Student’s t-distribution with mean zero and unitary variance, then:4

f(zi,t; ν) =
Γ[ 12 (ν + 1)]

π
1
2 Γ( 1

2ν)
[(ν − 2)σ2

t ]−
1
2

[
1 +

z2i,t
(ν − 2)σ2

t

)
1
2 (ν+1

]
, (6)

where ν are the degrees of freedom (2 < ν <∞).

4Student’s t assumption let us model heavy tails of the returns distributions (Bollerslev, 1987)
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2.3. Unconditional and conditional α-quantile estimation with copulae and vine copulae

From the mean and the variance of Xt, we can calculate the unconditional α-quantile of the returns

distribution as:

q
X1
t

α,t = µt + F−1ν (α)σt, (7)

where F−1ν (α) denote the unconditional α-quantile from a Student’s t-distribution in (3).

For calculating the conditional α-quantile, we use copula functions (Joe, 1997; Nelsen, 2006). Note that

Pr(X1
t 6 q

X1
t |X

2
t

α,β,t |X2
t 6 q

X2
t

β,t ) = α e Pr(X1
t 6 q

X1
t |X

2
t ,X

3
t ,...,X

n
t

α,β,t |X2
t 6 q

X2
t ,X

3
t ,...,X

n
t

β,t ) = α can be written as:

FX1
t ,X

2
t

(
q
X1
t |X

2
t

α,β,t , q
X2
t

β,t

)
FX2

t

(
q
X2
t

β,t

) = α, (8)

FX1
t ,X

2
t |X3

t ,...,X
n
t

(
q
X1
t |X

2
t ,X

3
t ,...,X

n
t

α,β,t , q
X2
t

β,t

)
FX2

t |X3
t ,...,X

n
t

(
q
X2
t

β,t

) = α. (9)

Then, to calculate the conditional quantiles we need the joint distribution of X1
t e X2

t , FX1
t ,X

2
t
(.). Con-

sidering the Copula theorem of Sklar (1959) let us express a distribution function in terms of a copula C,

where C(FX(x), FY (y)) = FXY (x, y), (8) and (9) can be expressed as:

CX1
t ,X

2
t

(
FX1

t

(
q
X1
t |X

2
t

α,β,t

)
, FX2

t

(
q
X2
t

β,t

))
= αβ, (10)

CX1
t ,X

2
t |X3

t ,...,X
n
t

(
FX1

t ,X
2
t |X3

t ,...,X
n
t

(
q
X1
t |X

2
t

α,β,t

)
, FX2

t |X3
t ,...,X

n
t

(
q
X2
t

β,t

))
= αβ. (11)

We can describe the values of the conditional α-quantile in terms of a bivariate or multivariate copula.

Applying a bivariate copula as in (10), we can calculate FX1
t

(
q
X1
t |X

2
t

α,β,t

)
with the inverse copula function

having the values α and of FX2
t

(
q
X2
t

β,t

)
= β, denoted as F̂X1

t

(
q
X1
t |X

2
t

α,β,t

)
5. Inverting the marginal distribution

of X1
t the conditional α-quantile yields:

q
X1
t |X

2
t

α,β,t = F−1
X1
t

(
F̂X1

t

(
q
X1
t |X

2
t

α,β,t

))
. (12)

The use of copula functions in a multivariate setting derived from (11) allows us not only to model the direct

contagion of financial distress from Bank 2 to Bank 1, but also allows us to explain the indirect effects of the

impact that Bank 2 can create over other banks. For the multivariate dependence setting in n dimensions

5Note that bivariate copulae relate two distributions FX(x) and FY (y), with a copula function. Once we have the specific
form of the copula function (given by αβ) and the numerical value of FY (y) when FY (y) = β, the problem is reduced to an
equation with one unknown, and solving this equation by numerical methods we find the value of FY (y).
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we consider vine copulae that allow us to disentangle the multivariate density in the product of marginal

densities, and a multivariate copula which is generated with a hierarchical structure decomposed in cascade

bivariate copulae defined as pair-copulae. We considered three types of vine copula: C-vine, D-vine, and

R-vine with different hierarchical structures and trees. The multivariate density for a C-vine copula is given

by:

f(x1, x2, ..., xn) =

n∏
k=1

fk(xk)

n∏
h=2

c1,h (F1(x1), F2(x2))

n−1∏
j=2

n−j∏
i=1

cj,j+1|1,...,j−1 (F (xj |x1, ..., xj−1), F (xj+1|x1, ..., xj−1)) ,

(13)

where cj,j+1|1,...,j−1 is the conditional copula on which the conditional distribution function of xi, on xj is

given by Joe (1997):

Fi|j(xi|xj) =
∂Cij (Fi(xi), Fj(xj))

∂Fj(xj)
. (14)

********************************

Please, insert Figure 1 here.

********************************

Figure 1 represents the C-vine copula using a hierarchical structure, on which the first level of the tree

n nodes are connected by edges that represent the dependence between two variables. In the next levels,

the nodes are derived from the set of edges of the previous level. Each tree (T ) has a star structure, where

each variable is fundamental for the system. The dependence is measured between the central variable with

the remaining variables of the first tree using bivariate copulae, as in the second term of (13), or using

conditional bivariate copulae in the remaining trees, as in the third term of (13). Once dependence on each

tree is modelled, the tree is expanded recursively such that the nodes of the trees are configured by the edges

of the previous trees, as shown in Figure 1. On each tree, the central variable which regulates dependence

is identified as the one that maximises the sum of pair-dependences measured by Kendall’s τ .

The D-vine copula has a different hierarchical dependence structure, given by:

f(x1, x2, ..., xn) =

n∏
k=1

fk(xk)

n−1∏
h=1

ch,h+1 (Fh(xh), Fh+1(xh+1))

n−1∏
j=2

n−j∏
i=1

ci,i+1|i+1,...,i+j−1 (F (xi|xi+1, ..., xi+j−1), F (xi+j |xi+1, ..., xi+j−1)) .

(15)

********************************

Please, insert Figure 2 here.

********************************
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Figure 2 represents the hierarchical dependence structure of the D-vine copula, where all the variables

that were treated similarly in the first tree determine the bivariate dependence in the remaining trees.

Finally, an n-dimensional density function of R-vine copula is given by:

f(x1, x2, ..., xn) =

n∏
k=1

fk(xk)

n−1∏
j=1

∏
e∈Ei

cj(e),k(e)|D(e)

(
F (xj(e)|xD(e)), F (xk(e)|xD(e))

)
,

(16)

where Ei denote the nodes and xD(e) is a sub-vector of x, indexed by the conditional set D(e). The R-vine

structure is calculated applying the minimal expansion tree that solves the following optimisation problem

for each tree:

max
∑

nodes e={i,j} generating tree

|τ̂ij |, (17)

where τ̂ij denotes empirical pairs of Kendall’s τ , and a generating tree is a tree on each node.

From this information on the vine hierarchical structure, we can calculate the conditional distribution

FX1
t ,X

2
t |X3

t ,...,X
n
t

(
q
X1
t |X

2
t

α,β,t

)
from (11). Once we have obtained that value and using the conditional copula

model, we can derive information from F̂X1
t

(
q
X1
t |X

2
t

α,β,t

)
. Finally, inverting the marginal cdf of X1

t the condi-

tional α-quantile is yielded from (12).

The estimation of the conditional α-quantile by using copula functions yields some advantages. First,

copulae offer flexibility, letting us to model marginals and the dependence structures separately. This is

important when there exist differences in the quantile dependence and the joint cdf is not elliptical, or when

the data have special characteristics (heteroscedasticity). Second, the calculation of conditional α-quantiles

by copula means is computationally straightforward, as only the copula definition, the returns marginal

distribution of an institution, and the cumulative probability of the quantiles of a second institution, are

required.

In our empirical research, different static copula specifications were used, to try to capture different

dependence characteristics: non-tail dependence (Gaussian, Plackett e Frank, see Joe, 1997; Nelsen, 2006),

tail symmetric dependence (Student’s t), and tail asymmetric dependence (Gumbel, Rotated Gumbel e

Symmetric Joe Clayton (SCJ), see Joe, 1997; Nelsen, 2006). Their principal characteristics are summarised

in Table 1.

********************************

Please, insert Table 3 here.

********************************

Using an inference function for the marginal distribution (Joe and Xu, 1996), we estimate marginal

parameters applying the maximum likelihood method, and then we estimate the copula parameters by
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pseudo-sampling of the probability integral transform of marginal standardised residuals. The number of

differences on the mean and variance equations for each series was selected in accordance with the Akaike

information criterion (AIC ), and the different copula models were compared with the AIC adjusted for

small sample bias, such in Breymann et al. (2003) and Reboredo (2011).

3. Data

In this research we tested the systemic impact of the default of Bovespa stock listed banks with other

banks of the Brazilian financial system (BFIndex ). We used daily data bank prices from 1 January 1 2007

to 18 January 2016. The bank dataset comprised seven banks: ABC, Banco do Brasil, Bradesco, Pan–

Americano, Banrisul, Itaú, and Paraná. Additionally, we considered daily data from the Brazilian financial

index (BFIndex ) as the reference for the financial system’s behaviour. When analysing the systemic impact

from a specific bank over the BFIndex, we excluded the share of the bank in the index, removing any direct

effects of the bank price fluctuations into the index (see, for example, López-Espinosa et al., 2012). Data

were collected from Bloomberg and returns were calculated with continuous compounding.

********************************

Please, insert Figure 3 here.

********************************

Figure 3 shows a time series of stock prices for the Brazilian banks and the BFIndex. On the first section

of the plot we observe a minor decline during the beginning of the 2007/2008 financial crisis, and at the

end we observe a minor decline due to the political crisis in Brazil. Table 2 shows that the banks’ returns

have similar characteristics; they do not present any significant trend, and the standard deviations were

larger than mean returns. All the banks exhibit similar volatility patterns. We detect the presence of tail

returns that is verified when the calculated excess kurtosis is higher than three. The Jarque and Bera (1980)

test (J–B) rejected the normality null hypothesis. The autoregressive conditional heteroscedastic–Lagrange

multiplier (ARCH–LM ), and Ljung–Box (L–B) statistics (see Lawless, 2003) for square returns indicate

that all series present ARCH effects.

********************************

Please, insert Table 2 here.

********************************

4. Empirical results

4.1. Marginal distribution estimation

The results of the marginal estimation (4)–(6) for each bank are presented in Table 3 and for the BFIndex

excluding the bank tested in Table 4. Different combinations of p,q,r, and m parameters were considered;
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differences from zero to a maximum of two were tested and the most adequate value was selected by AIC and

BIC methods. In Table 3, we observe temporal dependence for all bank series except Bradesco, Banrisul, and

Itaú, and the returns volatility is persistent when testing a calibrated GARCH(1, 1) volatility specification,

except that of ABC bank that is persistent for a GARCH(2, 1). Leverage effects were found in all series

except of ABC and PanAmericano banks. The degrees of freedom of the estimated Student’s t-distribution

confirm that the error terms are not normal. There is no temporal dependency in the mean returns from

the different indices shown in Table 4. The estimated volatility dynamic has a GARCH(1, 1) specification.

The last items in Tables 3 and 4 reveal the quality of the selected marginal models. The ARCH and

L–B statistics exhibit no serial autocorrelation nor ARCH effects in marginal residuals. We tested the null

hypothesis that the model residuals are UNIFORM (0, 1) distributed, comparing the empirical distribution

with theoretical distributions (Kolmogorov–Smirnov (KS ), Cramer-von Mises (C–vM ) e Anderson–Darling

(AD), see Lawless, 2003). The resulting p-values from these tests (the last items of Tables 3 and 4) show

that for any of the marginal models tested, the correct specification of the distribution function can not be

rejected at the 5% significance level. In general, tests of goodness of fit show that the marginal distributions

are properly specified.

********************************

Please, insert Table 3 here.

********************************

********************************

Please, insert Table 4 here.

********************************

4.2. Copulae models

Different copulae models were estimated (see Table 1), applying the integral of standard residuals from

each of the marginals, and pseudo-sampling methods. First, we present the results of the estimated vine

copula for each Brazilian bank paired with the BFIndex.

********************************

Please, insert Figure 4 here.

********************************

We estimated three vine copula models (13), (15), and (16), using static bivariate copulae. According to

the AIC values, the C-vine copula provides the best fit, as shown in Figure 4. The results show that Brade-

sco dominates the multivariate dependence structure, and Itaú has the lower influence in the dependence

structure of the dependent banks in the financial system, with lower dependence than Banco do Brasil,

ABC, PanAmericano Banrisul, and Paraná. These results are consistent with some fundamental facts: (i)
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Banco do Brasil is a mix of a public–private partnership (PPP) where the exposure is guaranteed by the

government; (ii) Bradesco is as large as Banco do Brasil but privately owned; and (iii) Itaú has less com-

mercial activity with smaller banks. We analyse the systemic risk implications of the resulting network for

the financial system.

Tables 6, 7, and 8 show the estimated parameters for the bivariate static copulae, into the different

hierarchical C-vine tree structures:

• The first tree corresponds to the Bradesco dependence with the remaining banks, and estimated

parameters confirm a positive and high level of dependence. Comparisons of different copula models

tested reveal that: (i) the Student’s t copula had the best fit for pairs: Bradesco-ABC, Bradesco-Itaú,

and Bradesco-Paraná, were in favour of symmetric tail dependence; (ii) the Frank copula produced

the best fit for Bradesco-Banco do Brasil and Bradesco-Pan with no tail dependence between them;

(iii) the BB1 copula yields the best fit for the Bradesco-Banrisul pair that revealed an asymmetric tail

dependence, with larger dependence in the upper tail.

• The second tree in the C-vine copula model corresponds to the pairs Banco do Brasil–ABC, Banco do

Brasil–PanAmericano, Banco do Brasil–Banrisul, Banco do Brasil–Itaú, and Banco do Brasil–Paraná.

The estimated parameters of the empirical pair-copula show mild positive dependence. According

to the AIC test; conditional dependence from Banco do Brasil with ABC, Itaú, and Paraná was

characterised by a static Student’s t copula, revealing symmetric tail dependence. For Banco do Brasil

with PanAmericano and Banrisul we find evidence of asymmetric tail dependence given the results of

the BB7 copula parameters where the lower tail has larger dependence.

• The third tree in the C-vine copula model corresponds to the dependence of ABC –PanAmericano,

ABC –Banrisul, ABC –Itaú, and ABC –Paraná. The best copula fit models were: (i) the Student’s t

for ABC –Banrisul and ABC –Paraná, (ii) the Gumbel for ABC –PanAmericano with larger upper tail

dependence and (iii) the Gaussian for ABC –Itaú.

• The fourth tree in the C-vine copula model corresponds to the conditional dependence between (i)

PanAmericano–Banrisul, (ii)PanAmericano–Itaú, and PanAmericano–Paraná. The best fit copula

models for each of the three pairs are in pairs-order: (i) Gaussian (symmetric dependence), (ii) Frank

(non-bias dependence), and (iii) Gumbel (asymmelarger upper tail dependence).

• The fifth tree represents the dependence of Banrisul–Itaú e Banrisul–Paraná, where the best fit copula

are given by a Gaussian for the first pair and by a Student’s t for the second pair.

• The sixth and last tree is the resulting conditional dependence model between Itaú and Paraná with

a Frank copula, with tail independence.
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The evidence about multivariate dependence structure derived from the C-vine copula model reveals

that there exists a rich diversity in bank dependency that provides information that can not be derived with

any mean dependency model. Tail dependency findings have important implications for the assessment of

systemic risk.

Table 5 presents the results of the bivariate copulae models when each bank is paired with the BFIndex.

Our findings show that there is strong dependence in the both tails (upper and lower) as the results fit into

a Student’s t copula. An exception was found in the dependence of the Banco do Brasil with the system, for

which we found tail independence as determined by the fitted Frank copula. These results have implications

for the systemic risk, as we show in the next section.

********************************

Please, insert Table 5 here.

********************************

********************************

Please, insert Table 6 here.

********************************

********************************

Please, insert Table 7 here.

********************************

********************************

Please, insert Table 8 here.

********************************

4.3. Results of α-quantile

Conditional and unconditional α-quantile values were calculated for the 95% confidence level (α =

0.05, β = 0.05)6, using univariate marginal distributions and best fit pair-copula estimated with the C-vine

hierarchical copula structure as in Tables 6, 7, 8, and 5. Figure 5 shows a map of the network relationships

and size of normalised systemic risk, i.e.,

Vine conditional α-quantile

unconditionalα-quantile
,

which represents systemic risk measure that individual institutions receive from the other seven banks of

the network during the sampling period. Each of the edges defines the normalised systemic risk received

or transmitted. The color represents the size of the systemic risk - red for very high risk, blue for high

6Results with a confidence level of 99% were produced and are available from the correspondent author.
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risk, and green for medium risk. The size of the node that represents each of the institutions illustrates the

relative total systemic risk generated by the institution in comparison with the other institutions. Descriptive

statistics are presented in Tables 9 and 10.

********************************

Please, insert Table 9 here.

********************************

********************************

Please, insert Table 10 here.

********************************

Figure 5 reveals that Bradesco is the institution that transmits more systemic risk for the other banks of

the system, in particular to Itaú. The second insitution that generates more systemic risk to Itaú is Banco

do Brasil. Banco do Brasil also generates high levels of systemic risk for others bank of the system, with the

exception of Banrisul. Itaú represents high levels of systemic risk, in particular to big banks (Bradesco and

Banco do Brasil). Banrisul, PanAmericano, and ABC ’s levels of systemic risk for the system are very low.

Our results on the systemic risk effects reveal that mean dependence between banks was relatively high,

and the tail dependence – fundamental to assess the effects of systemic risk – was asymmetric: a bank 1

can represent a high systemic risk for a bank 2, but not necessarily the opposite. The results demonstrate

the influential role of Bradesco in aggregating systemic risk to the system, by receiving or transmitting.

Banco do Brasil was a less influential institution in receiving or transmitting systemic risk, consistent

with the support that the bank receives from the government. Itaú, a large institution by asset size, was

not influential in aggregating systemic risk to the network, although it was still relevant for the big banks

(Bradesco and Banco do Brasil). Minor banks by asset size – Banrisul, Pan, and ABC – are not fundamental

in aggregating systemic risk to the network, they only aggregate risk between them.

********************************

Please, insert Figure 5 here.

********************************

In relation to the banks’ contribution to the systemic risk of the Brazilian financial system, Table 11

shows the descriptive statistics, and Figure 6 presents dynamics and size of the conditional and uncondi-

tional α-quantile during the sample period, exhibiting peaks during 2007/2008 financial crisis. The empirical

estimations of the conditional and unconditional α-quantile reveal some consistency with pair-institution

results, Bradesco and Itaú having the largest impact in the Brazilian financial system. Banks of smaller asset

size such as ABC, PanAmericano, and Banrisul, had a minor role in transmitting risk, and this transmission

role was even lower for the Paraná bank. Finally, Banco do Brasil was the institution that had the lowest

transmitting risk role for the index.
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********************************

Please, insert Table 11 here.

********************************

********************************

Please, insert Figure 6 here.

********************************

Our results have three important implications. First, systemic risk estimation should consider tail depen-

dence, conditional during financial distress. The multivariate dependence structure suggested in this study

reveals that unconditional dependence in the lower tail has a significant impact on systemic risk effects.

Second, our results have important conclusions for regulators, as the necessary capital due to systemic risk

changes will vary dynamically in time according to the financial institution, and in particular during a time

of financial crisis. Consequently, this study aims to produce a solution for the assessment and the inclusion

of systemic risk into regulatory capital. Third, results have implications for investors in terms of the risk

management of the portfolio. Notwithstanding that, the positive mean dependence shows low hedge prob-

abilities for investors of bank assets, our findings reveal that some banks have no systemic risk effects over

other banks, with important implications for asset pricing of the portfolio.

5. Concluding remarks

The 2007/2008 financial crisis raised regulators’ concerns about the systemic risk impact of defaulted

financial institutions. Systemic risk assessment is fundamental for a safe and sound regulation of financial

risks and the reduction of the impact of the shocks over the financial system.

We measured the systemic risk resulting from a default of a bank’s obligations and its influence for (i)

other banks of the Brazilian financial system, and (ii) over the entire financial system, using the conditional

α-quantile as a measure of systemic risk. For modelling the multivariate dependence structure between the

banks, we used a hierarchical dependence model, the vine copula, which can model the connections, the

conditional dependence, and the specific characteristics of tail dependence between banks. We applied a

bivariate copula model for each bank pair, and between each bank and the BFIndex with the purpose of

measuring the risk contribution of each bank to the Brazilian financial system.

Our empirical results – in relation to the period 1 January 2007 to 18 January 2016 – show that multi-

variate dependence between the banks is given by a C-vine hierarchical structure, on which Bradesco is the

predominant bank in determining the conditional dependence structure. All bank pairs exhibit covariance,

on average, during the sample period, demonstrating different tail dependence evidence. The contribution of

the systemic risk from one bank to other is similar during the sample period analysed. Bradesco was the key

influential institution receiving and transmitting risk to the other banks of the network. Itaú had a minor

14



influence. Banco do Brasil was the bank that was the least influential in transmitting systemic risk to the

network. Suggestions for future research includes the extension of our study in the search of the systemic

impact of financial institutions to other countries and regions, such as, the United States, Latin America,

Europe, and Asia.
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Table 2: Descriptive statistics for Brazilian banks and BFIndex

ABC BB Bradesco Pan Banrisul itaú Paraná System

Mean 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000
Std. Dev. 0.026 0.028 0.023 0.030 0.028 0.024 0.024 0.021
Maximum -0.188 -0.189 -0.122 -0.369 -0.142 -0.129 -0.187 -0.128
Minimum 0.182 0.188 0.200 0.235 0.160 0.210 0.152 0.190
Skewness -0.029 0.018 0.411 -1.177 0.073 0.500 -0.365 0.461
Kurtosis 8.471 7.676 8.983 29.085 5.777 9.650 11.600 11.018
J–B1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
L–B1 0.000 0.032 0.000 0.301 0.041 0.000 0.000 0.000
ARCH–LM 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1p-values lower than 0.05 demonstrate a null hypothesis rejection of the statistical tests with 5% confidence level.

Notes: Daily data prices for the period from 1 January 2007 until 18 January 2016. The table reports the basic
descriptive statistics for the prices returns series, including mean, standard deviation, skewness and kurtosis. J–B
represents the empirical statistics from Jarque–Bera normality test based on skewness and kurtosis. L–B repre-
sents the empirical statistics for the Ljung–Box test of serial autocorrelation of the return series calculated with 20
differences. ARCH refers to the empirical statistics of the autoregressive conditional heteroscedastic of tenth order.
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Table 3: Maximum likelihood estimation for the Brazilian banks’ marginal distributions parameters.

ABC BB Bradesco Pan Banrisul Itaú Paraná

mean
φ0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(-0.482) (-0.413) (-0.460) (-0.688) (-0.882) (-0.524) (-0.734)
φ1 0.802* 0.064* 0.983*

(5.159) (2.634) (230.215)
ϕ1 -0.804* -0.976* -0.145*

(-5.225) (-1302.43) (-6.093)
Variance
ω 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000*

(1.590) (0.753) (1.060) (2.037) (1.968) (3.403) (2.267)
α 0.042 0.042 0.017 0.367* 0.034* 0.011 0.157*

(1.731) (1.500) (0.970) (2.944) (2.005) (1.308) (2.050)
β1 0.714* 0.911* 0.929* 0.551* 0.888* 0.924* 0.733*

(31.440) (74.062) (79.610) (3.891) (22.227) (131.948) (8.606)
β2 0.194*

(8.023)
γ 0.036 0.076* 0.079* -0.032 0.067* 0.100* 0.148*

(1.581) (3.104) (2.705) (-0.332) (2.431) (4.091) (2.468)
Tail 6.989* 13.118* 11.785* 3.651* 8.819* 11.016* 3.603*

(6.688) (2.991) (3.745) (10.484) (4.929) (4.916) (10.142)
logLik 4564.579 4511.857 4871.937 4532.925 4304.213 4809.994 4933.897
L–B 29.596 20.844 23.277 28.327 18.472 26.492 18.211

[0.08] [0.41] [0.28] [0.10] [0.56] [0.15] [0.57]
L–B(2) 20.564 17.800 18.289 30.393 15.484 22.621 5.292

[0.42] [0.60] [0.57] [0.06] [0.75] [0.31] [1.00]
ARCH 20.135 19.714 18.226 30.891 15.358 23.064 5.537

[0.45] [0.48] [0.57] [0.06] [0.76] [0.29] [1.00]
K–S [0.55] [0.48] [0.53] [0.49] [0.45] [0.46] [0.46]
C–vM [0.51] [0.44] [0.49] [0.45] [0.41] [0.42] [0.42]
A–D [0.58] [0.50] [0.56] [0.51] [0.47] [0.48] [0.48]

Notes: This table presents the estimated maximum likelihood coefficients (ML) and z statistic for the marginal
distribution parameters. LogLik is the log-likelihood value. L–B represents the empirical statistics for the Ljung–
Box test of serial autocorrelation of return series calculated with 20 differences. L–B(2) represents the empirical
statistics for the Ljung–Box test of serial autocorrelation of squared errors calculated with 20 differences. K–S,
C–vM, and A–D denote the Kolmogorov–Smirnov, Cramér–von-Mises and Anderson–Darling tests for Student’s t
distribution model adequacy . The p-values (in brackets) below 0.05 indicate a rejection of the null hypothesis.
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Table 4: Maximum likelihood estimation for the Brazilian financial index.

System ex- System ex- System ex- System ex- System ex- System ex- System ex-
ABC BB Bradesco Pan Banrisul Itaú Paraná

mean
φ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(-0.077) (-0.078) (0.052) (-0.079) (-0.070) (0.037) (-0.078)
Variance
ω 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

(3.296) (2.919) (3.073) (3.294) (3.299) (3.300) (3.293)
α 0.014 0.009 0.012 0.014 0.014 0.023* 0.014

(1.227) (1.000) (1.242) (1.229) (1.220) (2.030) (1.224)
β 0.915* 0.925* 0.923* 0.915* 0.916* 0.903* 0.915*

(48.034) (48.695) (53.324) (48.007) (48.177) (45.648) (48.026)
γ 0.108* 0.104* 0.107* 0.108* 0.108* 0.108* 0.108*

(3.654) (3.516) (3.816) (3.649) (3.653) (3.686) (3.653)
Tail 9.994* 8.531* 9.226* 10.006* 10.054* 9.589* 10.008*

(4.296) (4.765) (4.308) (4.284) (4.255) (4.456) (4.280)
logLik 3747.390 3747.172 3734.221 3746.358 3744.236 3813.004 3746.082
LJ 21.460 25.131 22.751 21.473 21.334 19.390 21.438

[0.371] [0.196] [0.301] [0.370] [0.378] [0.497] [0.372]
L–J (2) 12.640 7.716 14.321 12.627 12.607 12.965 12.615

[0.892] [0.994] [0.814] [0.893] [0.894] [0.879] [0.893]
ARCH 12.180 7.685 13.488 12.166 12.150 12.755 12.155

[0.910] [0.994] [0.855] [0.910] [0.911] [0.888] [0.911]
K–S [0.46] [0.86] [0.62] [0.44] [0.91] [0.39] [0.11]
C–vM [0.42] [0.75] [0.57] [0.40] [0.76] [0.36] [0.15]
A–D [0.48] [0.88] [0.66] [0.46] [0.91] [0.40] [0.11]

Notes: This table presents the estimated maximum likelihood coefficients (ML) and z statistic for the marginal
distribution parameters. LogLik is the log-likelihood value. L–B represents the empirical statistics for the Ljung–
Box test of serial autocorrelation of return series calculated with 20 differences. L–B(2) represents the empirical
statistics for the Ljung–Box test of serial autocorrelation of squared errors calculated with 20 differences. K–S,
C–vM, and A–D denote the Kolmogorov–Smirnov, Cramér–von-Mises and Anderson–Darling tests for Student’s t
distribution model adequacy. The p-values (in brackets) below 0.05 indicate a rejection of the null hypothesis.

21



Table 5: Estimation of the bivariate copula model for the dependency between each of the banks and the BFIndex.

System System System System System System System
ABC BB Bradesco Pan Banrisul Itaú Paraná

Gaussian Copula
ρ 0.442 0.689 0.859 0.352 0.508 0.830 0.243

(0.01) (0.00) (0.01) (0.03) (0.01) (0.01) (0.02)
AIC -346.212 -277.304 -2593.729 -191.658 -579.452 -2263.353 -56.987
Student-t Copula
ρ 0.613* 0.621* 0.896* 0.561* 0.573* 0.869* 0.497*

(0.01) (0.02) (0.00) (0.02) (0.01) (0.00) (0.03)
ν 100.000* 100.000 5.665* 100.000* 11.722* 7.308* 100.000*

(3.21) (165.33) (0.41) (7.73) (2.81) (0.65) (4.87)
AIC -434.451 -315.878 -2858.491 -274.584 -607.422 -2441.654 -121.041
Gumbel Copula
σ 1.590* 1.585* 3.174* 1.467* 1.555* 2.775* 1.332*

(0.03) (0.04) (0.06) (0.04) (0.03) (0.05) (0.04)
AIC -341.331 -216.189 -2659.524 -192.620 -542.955 -2217.239 -71.182
Rotated Gumbel Copula
σ 1.625* 1.617* 3.199* 1.510* 1.580* 2.880* 1.360*

(0.04) (0.04) (0.06) (0.04) (0.03) (0.05) (0.04)
AIC -380.470 -241.530 -2680.354 -236.391 -574.904 -2343.086 -85.263
Plackett Copula
θ 5.445* 6.139* 38.431* 4.588* 5.433* 27.197* 3.689*

(0.36) (0.40) (1.86) (0.32) (0.33) (1.39) (0.30)
AIC -390.699 -327.182 -2775.275 -250.752 -546.390 -2321.147 -107.117
Frank Copula
θ 4.165* 5.047* 11.615* 3.698* 3.821* 9.948* 3.325*

(0.18) (0.19) (0.33) (0.19) (0.16) (0.23) (0.21)
AIC -414.535 -401.432 -2700.269 -265.032 -542.125 -2298.052 -120.347
Clayton Copula
θ 0.977* 0.844* 3.084* 0.798* 0.919* 2.735* 0.516*

(0.06) (0.06) (0.09) (0.06) (0.05) (0.08) (0.06)
AIC -324.609 -167.502 -2224.267 -201.967 -489.266 -1988.517 -60.161
BB1 Copula
θ 0.447* 0.360* 0.600* 0.438* 0.411* 0.757* 0.289*

(0.07) (0.06) (0.06) (0.07) (0.06) (0.07) (0.06)
δ 1.351* 1.387* 2.538* 1.255* 1.337* 2.120* 1.221*

(0.04) (0.05) (0.07) (0.04) (0.04) (0.07) (0.04)
AIC -391.733 -253.113 -2779.496 -242.655 -603.526 -2387.212 -96.030
BB7 Copula
θ 1.405* 1.377* 2.970* 1.281* 1.432* 4.720* 1.248*

(0.06) (0.06) (0.16) (0.05) (0.05) (1.33) (0.05)
δ 0.787* 0.682* 2.270* 0.679* 0.708* 3.071* 0.443*

(0.07) (0.06) (0.11) (0.06) (0.05) (0.10) (0.06)
AIC -368.745 -215.442 -2623.199 -228.588 -594.199 -1548.992 -87.657

Notes: This table reports the maximum likelihood (ML) estimation for the different copula models for BFIndex
(excluding the series in the column) and the indicated series in each column. Standard errors (in parenthesis) and
AIC values adjusted for small samples are provided for different copula models. The minimum value of the AIC
(bold) indicates the best fit copula. An asterisk (*) indicates a significance level of 5%.
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Table 6: Bank pairs vine copula model estimation: first branch.

T1
(3,1) (3,2) (3,4) (3,5) (3,6) (3,7)

Gaussian Copula
ρ 0.420 0.677 0.316 0.484 0.881 0.221

(0.02) (0.03) (0.00) (0.02) (0.01) (0.02)
AIC -305.182 -207.238 -150.080 -517.544 -2910.823 -44.903
Student-t Copula
ρ 0.586* 0.583* 0.521* 0.542* 0.901* 0.466*

(0.02) (0.05) (0.02) (0.02) (0.00) (0.03)
ν 100.000* 100.000* 100.000 10.055* 11.174* 100.000*

(1.42) (31.73) (146.62) (3.50) (1.57) (3.88)
AIC -379.865 -259.093 -202.172 -545.052 -2955.830 -96.407
Gumbel Copula
σ 1.552* 1.508* 1.412* 1.515* 3.263* 1.301*

(0.03) (0.04) (0.03) (0.03) (0.06) (0.04)
AIC -308.052 -174.947 -156.704 -491.174 -2812.151 -60.167
Rotated Gumbel Copula
σ 1.558* 1.506* 1.426* 1.520* 3.240* 1.298*

(0.03) (0.04) (0.03) (0.03) (0.06) (0.04)
AIC -318.479 -172.058 -172.128 -509.134 -2778.641 -58.686
Plackett Copula
θ 5.087* 5.283* 3.952* 4.946* 37.727* 3.320*

(0.34) (0.36) (0.29) (0.31) (2.14) (0.28)
AIC -351.485 -266.851 -193.507 -485.012 -2826.452 -84.500
Frank Copula
θ 3.923* 4.616* 3.275* 3.540* 11.913* 3.042*

(0.18) (0.19) (0.15) (0.16) (0.08) (0.21)
AIC -369.285 -334.398 -204.323 -476.428 -2809.653 -95.470
Clayton Copula
θ 0.851* 0.659* 0.646* 0.825* 3.110* 0.403*

(0.05) (0.06) (0.05) (0.04) (0.09) (0.06)
AIC -261.756 -111.803 -140.698 -437.068 -2288.187 -37.145
BB1 Copula
θ 0.332* 0.252* 0.314* 0.364* 0.542* 0.208*

(0.06) (0.06) (0.06) (0.05) (0.11) (0.06)
δ 1.370* 1.372* 1.260* 1.318* 2.655* 1.222*

(0.05) (0.05) (0.04) (0.04) (0.12) (0.04)
AIC -338.223 -194.314 -184.627 -545.587 -2918.388 -73.150
BB7 Copula
θ 1.421* 1.356* 1.291* 1.413* 3.055* 1.246*

(0.06) (0.05) (0.05) (0.05) (0.10) (0.05)
δ 0.648* 0.521* 0.527* 0.626* 2.252* 0.347*

(0.06) (0.06) (0.06) (0.05) (0.13) (0.06)
AIC -313.297 -159.220 -171.847 -539.250 -2756.593 -65.382

Notes: This table reports the maximum likelihood (ML) estimation for the different Brazilian banks pair copula
models. T in the first line represents the level of the tree. In the second line, numbers represent the banks names
1.- ABC ; 2.- BB ; 3.- Bradesco; 4.- Pan; 5.- Banrisul ; 6.- Itaú; 7,- Paraná. AIC minimum values (bold) indicate the
best fit copula. An asterisk (*) indicate a significance level of 5%.
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Table 7: Bank pairs vine copula model estimation: second and third branch.

T2 T3
(1,2—3) (2,4—3) (2,5—3) (2,6—3) (2,7—3) (1,4—2,3) (1,5—2,3) (1,6—2,3) (1,7—2,3)

Gaussian Copula
ρ 0.563 0.645 0.115 0.084 0.843 0.166 0.134 0.086 0.248

(0.00) (0.02) (0.01) (0.02) (0.00) (0.04) (0.02) (0.01) (0.01)
AIC -737.910 -1041.904 -21.695 -10.194 -2287.866 -52.336 -33.147 -12.420 -121.876
Student-t Copula
ρ 0.785* 0.850* 0.190* 0.120* 0.936* 0.192* 0.147* 0.087* 0.270*

(0.01) (0.00) (0.04) (0.03) (0.00) (0.07) (0.02) (0.02) (0.02)
ν 100.000 100.000* 10.184* 9.011* 100.001 8.296 19.850 61.751 6.907*

(117.86) (3.22) (1.06) (1.63) (154.37) (11.18) (16.82) (71.41) (2.20)
AIC -1057.873 -1515.666 -30.937 -16.855 -2844.030 -58.237 -34.422 -10.749 -131.158
Gumbel Copula
σ 2.148* 2.618* 1.141* 1.086* 4.038* 1.141* 1.094* 1.046* 1.198*

(0.04) (0.05) (0.03) (0.02) (0.08) (0.02) (0.02) (0.01) (0.02)
AIC -939.453 -1389.911 -30.003 -13.134 -2680.389 -59.708 -33.372 -10.271 -121.609
Rotated Gumbel Copula
σ 2.169* 2.647* 1.138* 1.094* 4.056* 1.135* 1.089* 1.049* 1.220*

(0.04) (0.05) (0.03) (0.02) (0.08) (0.02) (0.02) (0.02) (0.02)
AIC -962.958 -1430.170 -28.976 -15.454 -2692.874 -54.370 -26.695 -8.960 -131.010
Plackett Copula
θ 9.496* 15.777* 1.631* 1.392* 40.984* 1.674* 1.519* 1.262* 2.101*

(0.55) (0.82) (0.14) (0.13) (2.04) (0.11) (0.11) (0.09) (0.14)
AIC -799.562 -1239.805 -26.449 -11.320 -2481.743 -53.812 -33.392 -9.800 -112.388
Frank Copula
θ 5.867* 7.749* 0.968* 0.624* 13.067* 1.032* 0.822* 0.459* 1.473*

(0.19) (0.20) (0.18) (0.11) (0.14) (0.14) (0.14) (0.14) (0.14)
AIC -833.783 -1278.412 -25.738 -10.487 -2608.480 -53.366 -32.495 -9.618 -109.180
Clayton Copula
θ 1.885* 2.602* 0.237* 0.158* 4.677* 0.235* 0.146* 0.088* 0.398*

(0.07) (0.08) (0.05) (0.04) (0.11) (0.04) (0.03) (0.03) (0.04)
AIC -865.399 -1287.966 -24.960 -11.584 -2393.719 -40.250 -21.230 -8.130 -113.950
BB1 Copula
θ 0.655* 0.807* 0.114 0.084 0.799* 0.043 0.045 0.047 0.208*

(0.09) (0.10) (0.06) (0.06) (0.10) (0.05) (0.04) (0.04) (0.06)
δ 1.695* 1.959* 1.098* 1.057* 3.030* 1.123* 1.076* 1.031* 1.116*

(0.06) (0.08) (0.03) (0.03) (0.12) (0.03) (0.02) (0.02) (0.03)
AIC -1017.194 -1487.796 -31.976 -13.558 -2765.494 -58.416 -32.717 -10.175 -134.894
BB7 Copula
θ 2.109* 2.571* 1.132* 1.075* 4.329* 1.160* 1.091* 1.037* 1.161*

(0.08) (0.09) (0.04) (0.04) (0.14) (0.04) (0.03) (0.02) (0.03)
δ 1.549* 2.356* 0.174* 0.118* 4.756* 0.119* 0.090* 0.066* 0.292*

(0.09) (0.12) (0.05) (0.05) (0.25) (0.05) (0.04) (0.03) (0.05)
AIC -1043.938 -1518.338 -32.432 -13.549 -2734.663 -58.631 -31.257 -10.006 -138.269

Notes: This table reports the maximum likelihood (ML) estimation for the different Brazilian banks pair copula
models. T in the first line represents the level of the tree. In the second line, numbers represent the banks names
1.- ABC ; 2.- BB ; 3.- Bradesco; 4.- Pan; 5.- Banrisul ; 6.- Itaú; 7.- Paraná. AIC minimum values (bold) indicate the
best fit copula. An asterisk (*) indicate a significance level of 5%.
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Table 8: Bank pairs vine copula model estimation: fourth, fifth, and sixth branch.

T4 T5 T6

4,5—1,2,3 4,6—1,2,3 4,7—1,2,3 5,6—1, 2,3,4 6,7—1,2,3,4 5,7—1,2,3,4,6

Gaussian Copula
ρ 0.069 0.002 0.128 0.120 -0.017 -0.004

(0.02) (0.01) (0.04) (0.03) (0.02) (0.02)
AIC -7.249 1.992 -30.007 -26.020 1.451 1.968
Student-t Copula
ρ 0.075* 0.003 0.154* 0.117* -0.015 -0.003

(0.02) (0.02) (0.03) (0.02) (0.02) (0.01)
ν 84.568 500.000 9.021* 58.795 28.396* 275.634

(208.48) (3,242.59) (3.08) (153.57) (0.54) (424.76)
AIC -5.486 4.145 -35.851 -24.823 -0.284 3.913
Gumbel Copula
σ 1.037* 1.000* 1.105* 1.055* 1.006* 1.000*

(0.02) (0.02) (0.02) (0.01) (0.01) (0.02)
AIC -3.914 2.002 -35.890 -18.817 1.152 2.002
Rotated Gumbel Copula
σ 1.040* 1.001* 1.105* 1.059* 1.000* 1.000*

(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)
AIC -5.392 2.000 -31.146 -17.591 2.002 2.002
Plackett Copula
θ 1.196* 1.046* 1.544* 1.394* 0.943* 1.035*

(0.09) (0.07) (0.11) (0.10) (0.06) (0.06)
AIC -4.243 1.560 -34.283 -21.340 1.085 1.681
Frank Copula
θ 0.353* 0.091 0.860* 0.665* 0.000 0.070

(0.14) (0.14) (0.15) (0.09) (0.00) (0.10)
AIC -4.132 1.556 -35.679 -21.221 2.002 1.678
Clayton Copula
θ 0.072* 0.016 0.182* 0.108* 0.000 0.004

(0.03) (0.03) (0.04) (0.03) (0.03) (0.02)
AIC -4.634 1.641 -23.760 -17.347 2.010 1.973
BB1 Copula
θ 0.047 0.015 0.043 0.072* 0.001 0.003

(0.04) (0.62) (0.05) (0.03) (0.91) (0.60)
δ 1.020* 1.001 1.088* 1.032* 1.006* 1.001

(0.02) (0.55) (0.03) (0.02) (0.12) (0.54)
AIC -3.721 3.892 -34.589 -23.146 3.269 4.305
BB7 Copula
θ 1.024* 1.001* 1.106* 1.034* 1.011* 1.001*

(0.03) (0.44) (0.03) (0.02) (0.09) (0.43)
δ 0.059 0.015 0.104* 0.091* 0.001 0.003

(0.03) (0.21) (0.04) (0.03) (0.96) (0.20)
AIC -3.544 3.879 -33.726 -22.409 2.597 4.304

Notes: See notes in Table 6
.
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Table 9: Descriptive statistics for the Unconditional α-quantile and Vine Conditional α-quantile.

Vine Structure Unconditional α-quantile Conditional Vine α-quantile

Bradesco mean -0.034
std.dev. (0.01)

Bradesco — BB (2,3) mean -0.103
std.dev. (0.05)

Bradesco — ABC (1,3) mean -0.126
std.dev. (0.06)

Bradesco — Pan (4,3) mean -0.097
std.dev. (0.05)

Bradesco — Itaú (6,3) mean -0.141
std.dev. (0.07)

Bradesco — Banrisul (5,3) mean -0.133
std.dev. (0.06)

Bradesco — Paraná (7,3) mean -0.116
std.dev. (0.05)

BB mean -0.042
std.dev. (0.02)

BB — Bradesco (2,3) mean -0.103
std.dev. (0.04)

BB — ABC (1,2—3) mean -0.114
std.dev. (0.05)

BB — Pan (2,4—3) mean -0.132
std.dev. (0.06)

BB — Itaú (2,6—3) mean -0.146
std.dev. (0.07)

BB — Banrisul (2,5—3) mean -0.098
std.dev. (0.05)

BB — Paraná (2,7—3) mean -0.137
std.dev. (0.06)

ABC mean -0.040
std.dev. (0.01)

ABC — Bradesco (1,3) mean -0.121
std.dev. (0.05)

ABC — BB (1,2—3) mean -0.135
std.dev. (0.06)

ABC — Pan (1,4—2,3) mean -0.041
std.dev. (0.02)

ABC — Itaú (1,6—2,3) mean -0.039
std.dev. (0.02)

ABC — Banrisul (1,5—2,3) mean -0.044
std.dev. (0.02)

ABC — Paraná (1,7—2,3) mean -0.128
std.dev. (0.06)

Pan mean -0.047
std.dev. (0.02)

Pan — Bradesco (4,3) mean -0.094
std.dev. (0.04)

Pan — BB (2,4—3) mean -0.142
std.dev. (0.06)

Pan — ABC (1,4—2,3) mean -0.036
std.dev. (0.02)

Pan — Itaú (4,6—1,2,3) mean -0.062
std.dev. (0.03)

Pan — Banrisul (4,5—1,2,3) mean -0.032
std.dev. (0.02)

Pan — Paraná (4,7—1,2,3) mean -0.036
std.dev. (0.02)
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Table 10: Descriptive statistics for the Unconditional α-quantile and Vine Conditional α-quantile (cont.).

Vine Structure Unconditional α-quantile Vine Conditional α-quantil

Itaú mean -0.036
std.dev. (0.01)

Itaú — Bradesco (6,3) mean -0.132
std.dev. (0.06)

Itaú — BB (2,6—3) mean -0.045
std.dev. (0.04)

Itaú — ABC (1,6—2,3) mean -0.040
std.dev. (0.03)

Itaú — Pan (4,6—1,2,3) mean -0.072
std.dev. (0.04)

Itaú — Banrisul (5,6—1,2,3,4) mean -0.040
std.dev. (0.03)

Itaú — Paraná (6,7—1,2,3,4) mean -0.074
std.dev. (0.06)

Banrisul mean -0.045
std.dev. (0.01)

Banrisul — Bradesco (5,3) mean -0.128
std.dev. (0.05)

Banrisul — BB (2,5—3) mean -0.087
std.dev. (0.04)

Banrisul — ABC (1,5—2,3) mean -0.091
std.dev. (0.04)

Banrisul — Pan (4,5—1,2,3) mean -0.062
std.dev. (0.03)

Banrisul — Itaú (5,6—1,2,3,4) mean -0.067
std.dev. (0.03)

Banrisul — Paraná (5,7—1,2,3,4,6) mean -0.070
std.dev. (0.04)

Paraná mean -0.038
std.dev. (0.02)

Paraná — Bradesco (7,3) mean -0.112
std.dev. (0.05)

Paraná — BB (2,7—3) mean -0.126
std.dev. (0.05)

Paraná — ABC (1,7—2,3) mean -0.043
std.dev. (0.02)

Paraná — Pan (4,7—1,2,3) mean -0.023
std.dev. (0.01)

Paraná — Itaú (6,7—1,2,3,4) mean -0.024
std.dev. (0.01)

Paraná — Banrisul (5,7—1,2,3,4,6) mean -0.025
std.dev. (0.02)
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Table 11: Descriptive statistics for the Unconditional α-quantile and Vine Conditional α-quantile.

Unconditional α-quantile Conditional α-quantile

System -0.062
(0.03)

System — ABC -0.123
(0.05)

System -0.062
(0.03)

System — BB -0.105
(0.04)

System -0.063
(0.03)

System — Bradesco -0.140
(0.07)

System -0.062
(0.03)

System — Pan -0.120
(0.05)

System -0.062
(0.03)

System — Banrisul -0.124
(0.05)

System -0.060
(0.03)

System — Itaú -0.131
(0.06) )

System -0.062
(0.03)

System — Paraná -0.115
(0.05)
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Figure 1: C-Vine structure.
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Figure 2: D-Vine structure.
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Figure 3: Time series of the Brazilian stock prices and BFIndex prices from BM&FBOVESPA.
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Figure 4: Systemic risk network structure of the Brazilian financial system.
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Figure 5: Map of the systemic risk network of the Brazilian banks.
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Figure 6: Time series of conditional and unconditional α-quantile for Brazilian banks and for the Brazilian financial
system.
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