
Future Generation Computer Systems 88 (2018) 373–384

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An ontology for heterogeneous resources management
interoperability and HPC in the cloud
Gabriel G. Castañé *, Huanhuan Xiong, Dapeng Dong, John P. Morrison
Department of Computer Science, University College Cork, Ireland

h i g h l i g h t s

• An ontology for interoperability in heterogeneous cloud infrastructures isproposed.
• Enable the adoption of heterogeneous physical resources in selfmanaged clouds-Support forHPC-in-Cloud, hardware accelerators, resource abstraction

methods.
• A proposed architecture to explot the semantic and sintactic benefits.
• Included into the CloudLightning project for large scale Cloud Computing environments.

a r t i c l e i n f o

Article history:
Received 31 December 2017
Received in revised form 19 April 2018
Accepted 30 May 2018
Available online 19 June 2018

Keywords:
Cloud interoperability
HPC in cloud
Resource management
Ontology
Self-management clouds

a b s t r a c t

The ever-increasing number of customers that have been using cloud computing environments is driving
heterogeneity in the cloud infrastructures. The incorporation of heterogeneous resources to traditional
homogeneous infrastructures is supported by specific resource managers cohabiting with traditional re-
sourcemanagers. This blend of resourcemanagers raises interoperability issues in the Cloudmanagement
domain as customer services are exposed to disjoint mechanisms and incompatibilities between APIs and
interfaces. In addition, deploying and configuring HPC workloads in such environments makes porting
HPC applications, from traditional cluster environments to the Cloud, complex and ineffectual.

Many efforts have been taken to create solutions and standards for ameliorating interoperability issues
in inter-cloud and multi-cloud environments and parallels exist between these efforts and the current
drive for the adoption of heterogeneity in the Cloud. The work described in this paper attempts to exploit
these parallels; managing interoperability issues in Cloud from a unified perspective. In this paper the
mOSAIC ontology, pillar of the IEEE 2302 — Standard for Intercloud Interoperability and Federation,
is extended towards creating the CloudLightning Ontology (CL-Ontology), in which the incorporation
of heterogeneous resources and HPC environments in the Cloud are considered. To support the CL-
Ontology, a generic architecture is presented as a driver to manage heterogeneity in the Cloud and,
as a use case example of the proposed architecture, the internal architecture of the CloudLightning
system is redesigned and presented to show the feasibility of incorporating a semantic engine to alleviate
interoperability issues to facilitate the incorporation of HPC in Cloud.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing environments offer customers a wide diver-
sity of services through loosely coupled instances, and storage
systems, guaranteeing certain levels of services. Features such
as availability on demand, large capacity, elasticity, and service-
level performance have been attracting end-users to migrate (to
Cloudify) their applications from traditional cluster environments.

* Corresponding author.
E-mail addresses: gabriel.gonzalezcastane@ucc.ie (G.G. Castañé),

h.xiong@ucc.ie (H. Xiong), d.dong@ucc.ie (D. Dong), j.morrison@ucc.ie
(J.P. Morrison).

It is estimated that by the year 2019 more than 85% of workloads
will be processed by Cloud environments [1].

The Cloud market is expanding [2,3] and this growth is at-
tracting specific users demanding specific services that are driving
the traditional homogeneous Cloud infrastructure to become a
heterogeneous ecosystem. In particular, supporting High Perfor-
mance Computing (HPC) services in the Cloud requires an evolu-
tion of the traditional homogeneous cloud [4]. HPC as-a-service
(HPCaaS) is leading the availability of services that, from a cloud
management perspective, are challenging to support. Cloudifying
HPC applications while maintaining performance, while desirable,

https://doi.org/10.1016/j.future.2018.05.086
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.05.086
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.05.086&domain=pdf
mailto:gabriel.gonzalezcastane@ucc.ie
mailto:h.xiong@ucc.ie
mailto:d.dong@ucc.ie
mailto:j.morrison@ucc.ie
https://doi.org/10.1016/j.future.2018.05.086

374 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

presents significant challenges. Virtualization management, vir-
tual machine monitoring, communications, and processing over-
heads, detract from the baremetal performance of applications [5].
Currently, only a few such have been Cloudify-ed, since they have
been optimized over decades for specific hardware architectures.
Early forays into this process can be seen in the attempts to create
models for determining the effectiveness of cloud environments in
supporting such HPC workloads [6–8].

Cloud-based HPC solutions are offered by several commer-
cial vendors. The include dedicated servers and containers used
to access hardware accelerators in cloud computing infrastruc-
tures. For example, Amazon EC2 provides instances based on Xeon
servers with GPU accelerators and FPGA instances as dedicated
servers [9,10]. To support diverse resource abstraction methods,
these providers offer multiple frameworks, as required. Foremost
among these are OpenStack Nova [11] and OpenNebula [12] to
manage virtualized environments; Kubernetes [13], Mesos [14],
and Docker Swarm [15] tomanage container environments; Open-
Stack Magnum [16] to manage containers within virtualized envi-
ronments; OpenStack Ironic [17] to bare-metal servers; and finally,
traditional cluster management frameworks for HPC/HTC such as
SLURM [18] and ROCKS [19]. However, in spite of the maturity of
these frameworks, none supports all resource abstraction mecha-
nisms. Thus, in a heterogeneous environment multiple interacting
frameworks are required to adequately support the diversity of
resources in that environment. This complexity is exacerbated in
the HPC domain where services running on heterogeneous re-
sources may co-operate to deliver the HPC application. Combining
resources in this manner is currently state-of-the-art and requires
expert low-level configuration. Customers need to be able to con-
figure, deploy, and link services associated with diverse instances
and address the interoperability issues associated with using dif-
ferent resource abstractions under the control ofmultiple resource
managers. The deployments of services interacting across a num-
ber ofmanagement domains are tailored to specific resourcesman-
agers and are currently supported by specific-to-vendor interfaces
potentially using different, and often incompatible, APIs.

Fig. 1 shows an idealized extensible heterogeneous cloud ar-
chitecture containing multiple resources. This architecture would
require sophisticated mechanisms to enable services hosted on
different heterogeneous resources to interactwithin theworkflow.

Physical resources (labeled from R1 to R5 in the figure) rep-
resent different sets of heterogeneous hardware available in the
cloud infrastructure. For example, commodity hardware, servers
with hardware accelerators, and servers with enhanced capabil-
ities such as low latency networks. In the figure, four coexisting
local resource managers are deployed in the system, partitioning
the Cloud in support of multiple hardware types and resource
abstraction methods: LocalRM1 uses a VirtualizationLayer for pro-
viding virtual machines on R1 and R5 resources, e.g., OpenStack
Nova, Eucalyptus, or OpenNebula; LocalRM2 and LocalRM4 uses a
ContainerizationLayer to provide containers on R3, R4, and part of
the R5 physical resources, e.g., Marathon, Kubernetes, or Docker-
Swarm; and finally LocalRM3 accesses R5 hardware resources in
a dedicated server fashion, e.g. ROCKS, SLURM, or specific propri-
etary resource managers. On the left hand side, Fig. 1 shows how
the incorporation of a new resource manager into the resources
fabricwill increase the number of resourcemanagement partitions
within themanagement domain of the Cloud. For example,Amazon
EC2 F1 and G2 instance types [20] offer virtual machines instances
based on FPGA and GPU hardware that have to be manually con-
figured and linked to reflect the composition of services within an
application using this hardware.

A consequence of the work proposed in this paper is the elim-
ination of this manual configuration step. The approach take is to
define and use an ontology as a mechanism to achieve semantic
interoperability [21] in heterogeneous systems.

The main goals of this work are: to create an ontology, known
as the CloudLightning Ontology (CL-Ontology) that supports het-
erogeneous and high performance resources in the Cloud; to ame-
liorate interoperability issues between existing resourcemanagers
and resource abstractions; tomaintain compatibilitywith previous
standards for interoperability.

The CL-Ontology extends the IEEE-2302 (SIIF) — Standard for
Intercloud Interoperability and Federation [22], and the IEEE-2301,
Guide for Cloud Portability and Interoperability Profiles (CPIP) [23].
This extensions incorporate support for resource management,
specific hardware accelerators, and different resource abstraction
methods, such as virtual machines and containers into the Cloud;
matching service requests to specific heterogeneous infrastruc-
tures, and enabling intelligent resource discovery. To the best of
our knowledge this is the first attempt to explicitly address an
Ontology supporting HPC in Cloud.

In addition to the CL-Ontology, in an effort to demonstrate its
utility, this paper presents a conceptual Service Oriented Architec-
ture (SOA) for autonomic resource management. In the proposed
architecture, the CL-Ontology is used as part of a semantic engine
to dynamically incorporate resources into the cloud resource fab-
ric, and to support decisions making for targeting service requests
to appropriate resources. Finally, the architectural design of the
CloudLightning [24,25] (EU H2020-ICT programme under grant
#643946) system is presented as use case into which the proposed
semantic engine is incorporated, and where the management of
heterogeneous resources at scale is undertaken.

2. Related work

Many efforts have been made towards addressing interoper-
ability issues in the Cloud by creating common interfaces and APIs
that enhance the compatibility between deployment models and
public vendors. The Open Cloud Manifesto [26] is an initiative by
industry for supporting open standards in cloud computing. The
main targets are grouped into five categories: security, data ap-
plication interoperability, data application portability, monitoring
and portability between clouds. However, the Manifesto does not
incorporate current cloud technologies nor support for hardware
accelerators within any of the above mentioned categories. Sim-
ilarly, the Universal Cloud Interface (UCI) [27,28] was proposed
to solve inter-cloud interoperability avoiding lock-in issues with
proprietary solutions by unifying the representation of all cloud
resources in a common interface. Its evolution has been very lim-
ited and UCI does not incorporate concepts emerging from cloud
technologies.

The Guide for Cloud Portability and Interoperability Profiles
(CPIP) [23] assist cloud computing vendors and users in develop-
ing, building, andusing standards/based cloud computing products
and services. For each element, multiple options are proposed
regarding interfaces, file formats and operational conventions.
However, these are grouped in the ‘‘Standard profiles’’, as drivers
for interoperability from a user perspective, does not support con-
cepts on specialized hardware nor emerging resource abstraction
methods in Cloud.

Another initiative, specifically targeting the IaaS service model,
is the Open Cloud Computing Interface (OCCI) [29]. OCCI defines
an interface to support the creation of hybrid cloud environments
independently of cloud providers and frameworks. It specifies, in
UML, real-world resources and their links, expressed in a similar
manner to an OWL [30] ontology definition. However, OCCI targets
a user-view perspective of the Cloud, in which resource managers
manage traditional homogeneous resources, and hence, do not ad-
dress interoperability issues causedwhenmultiple services coexist
and use diverse abstraction methods and specialized hardware.

By using ontologies, it is possible to generate intelligent deci-
sion support mechanisms for addressing interoperability issues in

G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384 375

Fig. 1. An idealized cloud infrastructure containing heterogeneous resources.

services-based architectures. Accordingly, ontologies have already
been used in the HPC arena. Zhao et al. [31] created an HPC
ontology exposing the lack of a flexible and open infrastructure
for the HPC community to effectively share, accumulate, and reuse
knowledge. Although the authors emphasize the design of an HPC
ontology, their work is in an early stage. Another ontology in
HPC computing is proposed by Tenschert A. in [32], describing
a matching method for decomposing HPC applications into dis-
tributed environments by using an HPC ontology. However, the
main goal of the authors is to decompose applications between
compute and data processes for HPC environments, rather than
cloud environments.

Cloud ontologies have been widely used in recent years. Imam
F. describes in [21] well known applications of Ontologies to Cloud
Computing. These are grouped into security [33], resource man-
agement and service discovery [34,35], and interoperability cate-
gories. The most remarkable work in the interoperability category
is the mOSAIC cloud ontology [36], showing a detailed and simple
description of cloud computing resources. This ontology has been
developed in the mOSAIC project within the European framework
FP7 and is targeted to promote transparency in multiple clouds
accesses. For its development both, the taxonomy proposed by the
National Institute of Standards and Technology (NIST), and the IBM
Cloud computing Reference architecture were extended, for the
later incorporation to the Guide for Cloud Portability and Inter-
operability Profiles (CPIP) IEEE-2301 [23]. Thus, mOSAIC ontology
is currently part of the standard SIIF-IEEE P2302 [22], addressing
inter-cloud interoperability from the user interaction perspective,
providing detailed entities for SLAs and Interfaces/APIs. Moreover,
the ISO–IEC JCT 1, Standard in Cloud computing and Distributed
Platforms [37] focuses on the standardization for interoperable
distributed application platforms and web services, service ori-
ented architectures, and cloud computing. Specifically, the ISO/IEC
18384 [38] uses ontologies to describe actors, services consumers,
services providers, and legal aspects of the Cloud. However, re-
cent advances in technology, hardware accelerators, resourceman-
agers, and resource abstraction methods required to avoid inter-
operability issues arisen from the incorporation of heterogeneous
resources into Cloud, are not part of these standards.

Other initiatives in the EU frameworks FP7 and H2020 tar-
geting interoperability and lock-in vendor issues in cloud com-
puting environments have been explored. Foremost among these
are: Cloud4-SOA [39], a platform that performs seamless adaptive
multi-cloud management, semantically interconnecting heteroge-
neous PaaS offerings across different cloud providers with the
same technology and supported by Apache Brooklyn blueprints
and TOSCA extensions; PaaSport [40] where Cloud PaaS tech-
nologies are combined with lightweight semantics and in which
application models and SLAs follow a Descriptions and Situations

Pattern Technique, used to deliver a thin and non-intrusive Cloud-
broker in the form of a Cloud Marketplace; Paassage [41] that
constructs a deployment mechanism for applications across pub-
lic and private clouds constrained by a set of rules described in
the CAMEL [42] modeling language; ModaClouds [43] that fol-
lows a Model-Driven-Development for Clouds and Multi-Clouds,
performing semi-automatic translations into code to enable de-
ployments across public and hybrid cloud vendor platforms; and
finally, the Mikelangelo project [44], that provides support for
HPC in Cloud environments by implementing a bespoke virtual
machine manager to allow the management in of HPC and Cloud
resources. Although these projects succeed in exploring different
alternatives for interconnecting heterogeneous vendor service of-
ferings, enhancing extant interfaces, or providing decision support
systems, either they neglect the incorporation of HPC into the
Cloud and the subsequent need for having multiple resource man-
agement domains, or they do not support a wider heterogeneous
environment, being constrained to only resource management,
hardware accelerators, or resource abstractions in the same Cloud.

3. CL-Ontology

The CL-Ontology has been developed to address interoperabil-
ity in a heterogeneous cloud resource fabric. The basis of the CL-
Ontology is the mOSAIC ontology and, although the latter focuses
on intercloud/multicloud environments from a SaaS and PaaS per-
spective, it provides a strong foundation enabling extensions to
capture the emerging heterogeneous cloud.

Incorporating HPC environments in the cloud is made possible
by extending the interoperability concept considered by the mO-
SAIC ontology with additional semantics to support: inter/intra-
cloud environments, and heterogeneity in the usage of resources,
resource managers, and co-processors.

The creation of the CL-Ontology is a methodical procedure for
which each extension requires seeking and analyzing classes, con-
cepts, attributes, and characteristic from the mOSAIC ontology to
ensure consistency.Moreover, when an element has been added as
a new class or subclass, it is necessary to analyze the relationships
created between that extension and all of the relevant parts of
the base ontolgy. That analysis unearth issues with relationships,
constraints, and restrictions thatwere unforeseen and unexpected.
More detailed information of this process can be found at [45].

The CL-Ontology has been developed in the OWL language by
using Protégé 5.2.1 as ontology editor, knowledge management,
and visualization system, and used also to generate all Figures in-
cluded in this section. Finally, for clarity and to distinguish between
the original mOSAIC Ontology components (shown as emphasized
text), the CL-Ontology extensions are presented highlighted in this
section in bold.

1 https://protege.stanford.edu/.

https://protege.stanford.edu/

376 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

Fig. 2. Top level classes of CL-Ontology.

3.1. The TopLevel class (⟨owl : Thing⟩)

Fig. 2 depicts the top level of the CL-Ontology. It consists of:
a Language class identifying languages used for API implemen-
tations; a DeploymentModel class, which describes concepts of
public, private or hybrid clouds; an EssentialCharacteristics class,
which captures features of Cloud systems that users can exploit;
a Framework class supporting programming frameworks; an Actor
class specifying modes of interaction with the Cloud system; a
Property class describing the characteristics of the elements of the
Cloud; a ComponentState class identifying concepts for establishing
the states of diverse Cloud components and resources; a Protocol
class describing communication protocols used in Cloud environ-
ments; a Layers class containing individuals describing firmware,
hardware, and software associated to the cloud infrastructure;
a ServiceModels class supporting diversity of services offered in
the Cloud; a CloudSystemVisibility class defining the deployment
models of the cloud computing system; a Component describing
resources, services, and elements part of the Cloud; a Resource-
AbstractionMethods class, previously the Technology class in the
mOSAIC ontology to describe virtualization, and that is extended
to reflect current evolution of cloud ecosystems, supporting also
containerization as technique to partition resources and used by
customers to deploy services; a SLATemplate class describing the
SLA specification templates; a SLARequirement class defining the
SLA requirements for resources for negotiating with Cloud author-
ities; a Policy class grouping policieswhen SLAs are negotiated; and
finally,Metrics andMeasures classes used for evaluating properties
of physical and abstracted resources.

The Provider class usage, which is a subclass of Actor, has
been updated from the offersVirtualMachine to offersResource-
Abstraction, having as subproperties: offerDedicatedResource,
offerVirtualMachine, and offerDockerContainer.

3.2. The Property class

The Property class has FunctionalProperty and NonFunctional-
Property subclasses. TheNonFunctionalProperties class describes es-
sential characteristics or attributes of cloud components, in which
following subclasses remain unchanged from the mOSAIC ontol-
ogy: Autonomy, Availability, Performance, QoS, Reliability, Scalability
and Security. The CommunicationNonFunctionalProperty, Comput-
ingNonFunctional, and PropertyDataNonFunctionalProperty classes,
subclasses of NonFunctionalProperties, describe physical features
of processors, communications and storage of resources. How-
ever, the lack of detail for describing hardware accelerators has
driven the CL-Ontology to incorporate a CoprocessorNonFunc-
tional class for supporting co-processors and specialized hard-
ware, and hence recognizing heterogeneity in the cloud resource
fabric. Fig. 3 depicts an exploded view of the CoprocessorNon-
Functional class.

3.2.1. The non functional properties class
GPUs, Many Integrated Cores (MICs) architectures, and FPGAs

co-processors, have been chosen as co-processors included into
the CL-Ontology as they represent the most part of the market
for HPC in Cloud, however, the CL-Ontology is not limited to
these and can be extended with different existing and future co-
processors using the subclasses of the CoprocessorNonFunctional
class, in which a broad set of specific hardware accelerators can be
uniquely characterized in one of these categories, independently of
the manufacturer and model. It captures heterogeneous hardware
resources being added to the cloud resource fabric in a generalized
fashion (Section 4.2), enabling a resources discovery process for
finding a suitable host for each heterogeneous resource requested
by cloud customers (Section 4.1).

To generalize these hardware types, specialized hardware data-
sheets have been investigated and key (model, architecture and
manufacture independent) properties associated to each acceler-
ator have been extracted. Thus, GPUs are characterized by the sub-
classes of the GPUNonFunctionalProperties class: the GPUCom-
putingProperty subclass identifies properties of GPU processors
such as the clock frequency, Flops at single and double precision,
and numbers of streams; and the GPUMemoryProperty subclass
is used to describe the memory system of GPUs, in which memory
bandwidth and memory size are included as subclasses.

The subclasses of the MICNonFunctionalProperty class are
used to characterize MIC accelerators. TheMICSerieProperty sub-
class includes XeonPhi3110, XeonPhi5120, XeonPhi7110, Xeon-
Phi7120 individuals; the MICComputing subclass describes com-
pute capabilities of MIC hardware, such as architecture, number of
cores, and frequency of the cores; and the MICMemory subclass
allows to describememory cache size, memory type, memory size,
and memory controller features into its subclasses.

The subclasses of the FPGANonFunctionalProperties class are
used to categorize FPGAs: the FPGAArchitecture subclass with Ar-
ria, Cyclone, MAX, Stratix, and Virtex individuals; the FPGAGen-
eration subclass distinguishes between possible incompatibilities
arising between FPGAs generations; the FPGARoutingArchitec-
ture subclass with HFPGA, HRSA, and APEX routing schemes de-
scribe different configurations of FPGAs; the FPGAClock subclass
identifies properties related to the maximum frequency and num-
ber of clocks described by its nested subclasses; the FPGAComput-
ingBlock subclass contains the FPGAComputingBlockDSP sub-
class to describe DSPs architecture and the number of DSPs in-
tegrated in the FPGA, and the FPGAComputingLogicBlocks sub-
class to identify connection type, number of lookup tables, and
number of flip-flops available in the computing block properties
class; I/O specifications of the accelerator are described in the
FPGAIOBlock subclass, and this is composed of the FPGANum-
berIOBlocks, and FPGARoutingChannels classes, describing the

G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384 377

Fig. 3. Non-functional properties.

number of horizontal and vertical routing channels; finally, the
FPGAIOBlockConnectionBox subclass identifies communication
specifications of FPGAs, such as connection type, with bidirectional
and unidirectional elements as individuals, number of connections
per box, and number of connection boxes.

3.2.2. The Functional Properties class
The FunctionalProperties class has been extended from the mO-

SAIC ontology to include multiple resource abstraction methods.
Thus, this class consists of: Accounting, BackupAndRecovery, Con-
sistency, Encryption, Identification, Replication,Monitoring,Manage-
ment, and ResourceAbstractionDescription subclasses.

Fig. 4 depicts the subclasses of FunctionalProperties. The Moni-
toring subclass was extended with physical and resource abstrac-
tions monitoring processes. Previously, in the mOSAIC ontology,
this subclass focused only on resources offered to the customers.
Two subclasses have been added: the AbstractedResourceMoni-
toring subclass, identifyingmetrics associatedwith heterogeneous
resource abstraction methods offered by vendors, and the Phys-
icalResourceMonitoring subclass, to describe metrics of physical
resources. Themetrics associated to theAbstractedResourceMon-
itoring subclass are composed of: BandwidthUsage inwhichDown-
loadUsage and UploadUsage are subclasses; StorageUsage; Mem-
oryUsage in with GeneralMemoryUsage and SpecificHardware-
MemoryUsage are subclasses to providemetrics on thememory of
heterogeneous systems; and, in the same manner, the Processin-
gUsage class provides metrics on the CPUProcessingUsage sub-
class and the SpecificHardwareProcessingUsage subclass. In ad-
dition to the metrics described in the subclasses for th Abstracte-
dResourceMonitoring class, the PowerConsumptionUsage class
was included as subclass into the PhysicalResourceMonitoring
class to describe the monitoring process of the energy consumed
by physical resources.

The VMDescription class has been replaced with a ResourceAb-
stractionDescription class, to capture properties associated with
containers and dedicated servers, currently offered as resource
abstraction methods by cloud vendors.

The last FunctionalProperties subclass modified to incorporate
heterogeneity in cloud environments is theManagement class. The
mOSAIC ontology associated subclasses are: ImageManagement,
NetworkManagement, StorageManagment. In addition to these, the
InfrastructureMonitoringManagement subclass has been incor-
porated into the CL-Ontology to specify management frameworks
for collecting metrics from heterogeneous hardware, including as

individuals: OpenStackCeilometer, AmazonCloudWatch, AppDy-
namics, and SNAP. The ServicesManagement subclass has added
to the Management class for supporting service oriented architec-
tures, inwhich services configurations and properties are specified
by users but managed by vendors. A group of individuals has
been added to the Management class, currently used in Public
and Private Clouds, such as OpenStack, AWSElasticBeans, Mesos,
Slurm, AWSCloudformation, and Rocks individuals.

3.3. The Layer class

The Layer class, Fig. 5, is defined based on OCCI, NIST, and
IBMCloud Computing Reference Architecture to identify firmware,
hardware, and software of the Cloud. New subclasses have been in-
corporated into the Application, FirmwareAndSoftware,Operational-
Layer, ServiceLayer, and SoftwareKernel classes. TheApplication class
describing services defined by users by using the UserComponents
subclass, does not support current service oriented architectures
where users define their applications using a Service Description
Language (SDL) in which components and topology are defined
as part of the specification of services. To support users appli-
cations and requests based on SOAs, the SequencingComponent
subclass has been added to the Application class, describing com-
munications between user components. This supports OpenStack
Solum [46] and Apache Brooklyn [47] as individuals, enabling
service oriented architectures in PaaS services; and theOpenStack
Heat [48] individual representing service oriented architectures
orchestration in IaaS services.

The FirmwareAndHardware class describes the firmware and
hardware of cloud infrastructures. The Hardware subclass, the
classes representing physical resources Cache, CPU and Memory;
have been nested into the CommodityHardware class, where
traditional cloud hardware is included. In addition, Network has
been incorporated as a subclass of CommodityHardware to de-
scribe available network connections between physical hardware
with Ethernet, FastEthernet, GigabitEthernet and 10GbEthernet
subclasses to incorporate IEEE-802.3 — 10 Mbps, IEEE-802.3u —
100 Mbps, IEEE-802.3z — 1000 Mbps, and IEEE-802.3ae — 10
Gbps protocols. Moreover, to decouple specialized hardware from
commodity hardware, the SpecificHardware subclasswithCopro-
cessor and SpecializedNetwork children have been added to the
Hardware class. The Coprocessor class contains FPGA, GPU and
DFE subclasses to define specific hardware accelerators that can
be attached to the Cloud, while the SpecializedNetwork class is

378 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

Fig. 4. Functional properties of CL-Ontology.

Fig. 5. Layer class of CL-Ontology.

included with 100GbEthernet as a subclass to describe the IEEE-
802.3bj protocol and Infiniband connections. However, as spe-
cific services might require specialized libraries only supported by
concrete hardware, an object property requiresLibrary has been
added to describe this relationship between the Coprocessor and
Library classes .

The OperationalLayer class was incorporated into the mOSAIC
ontology based on the IBM Cloud Computing Reference Archi-
tecture to describe the operational infrastructure layer of cloud
computing systems. However, it does not contain nested classes as
themOSAIC ontology focuses on interoperability in the Cloud from
the user’s perspective. To describe the different resourcemanagers
that can be currently deployed in Cloud systems, theBaremetalRe-
sourceManager, ContainerResourceManager, and VMResource-
Manager classes have been incorporated into this class, having
as individuals: OpenStack, Mesos, ROCKS, and SLURM; and with
the object properties: offersVirtualMachines in the VMResource-
Manager domain, offersContainers in ContainerResourceMan-
agers domain, and offersDedicatedServers in BaremetalReso
urceManager domain.

In the mOSAIC ontology, the VirtualMachine class was nested
within the ServiceLayer class. The CL-Ontologymoves this class into
the ResourceAbstraction class, which is placed as a subclass of the
ServiceLayer class together with the DedicatedServer and Dock-
erContainer subclasses. The ResourceAbstraction class describes

current resource abstraction methods in the cloud being used for
deploying user applications – containers, virtual machines, and
dedicated servers – these are a main cause of Cloud management
fragmentation. All classes and subclasses using containerization
techniques has been named with the prefix Docker, to differenti-
ate them from mOSAIC ontology concept of ‘‘CloudletContainers’’,
used as entities to negotiate user SLAs with the ‘‘Cloud Negotiator’’
and ‘‘Cloud Mediator’’.

The SoftwareKernel class describes the software internals of
servers that virtualize resources offered to users. The Hypervisor,
Middleware, Monitor, and OperatingSystem subclasses have been
extended with the DockersEngine subclass to describe a software
kernel supporting containers, instead of traditional virtual ma-
chines supported by theHypervisor class. Moreover, the Resource-
ManagerClient subclass has been added to the SoftwareKernel class
to describe the software clients installed in compute and storage
servers and used by resource managers to govern resources. The
Monitor class has been extended to represent a broader concept
of monitoring resources with the ResourceAbstractionMonitor
subclass being amodification of the VirtualMachineMonitor class of
themOSAIC ontology and representing themonitoring of resources
abstractions. The PhysicalResourcesMonitor subclass has been
added to support the monitoring of physical hardware resources.

Fig. 5 depicts new individuals incorporated into the CL-Ontol
ogy: Hyper-V and Citrix into the Hypervisor class, Mesos into the

G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384 379

Fig. 6. Components class and subclasses in CL-Ontology.

DockersEngine class; and OpenStackClient, MesosClient, Open-
NebulaClient, RocksClient, and SlurmClient into the Resource-
ManagerClient class.

The Technology class, has been extended with the Resource-
AbstractionMethods class. The VirtualizationTechnology class has
been nested into this class. In addition, the DockerTechnology
class has been incorporated to support containerization technolo-
gies, and the BareMetalTechnology class is used to represent
direct access to dedicated resources without the use of virtualiza-
tion/containerization techniques. The object properties have been
completed with the addition of the hasAbstractionMethod prop-
erty, and nested subproperties: hasDockerTechnology and has-
BaremetalTechnology, with the hasVirtualizationTechnology class,
being reused from the mOSAIC ontology.

3.4. The Component, Runtime and Stateless classes

The Component class is the main class of the CL-Ontology and
it contains all the cloud elements. Foremost among these are re-
sources, services, and elements of the infrastructure. Fig. 6 depicts
the subclasses of the Component class. These are the Infrastructure
subclass, the Environment subclass, the Resources subclass, the Tool
subclass, the StatefullComponent subclass, the StatelessComponent
subclass, the RuntimeComponent subclass, and the Programming-
Component subclass.

Most of classes and subclasses contained in the Component are
subclasses of other classes described above. For brevity, only the
modified classes and those appended to the mOSAIC ontology are
described.

The RuntimeComponent class, Fig. 7(a), contains software ele-
ments performing management, selection, and evaluation tasks in
cloud environments. The ResourceIncorporationEvaluator sub-
class is nested within the Evaluator subclass of the RuntimeCom-
ponent class and describesresources incorporated into the cloud
resource fabric. TheResourceSelector class describes the selection
of possible implementations and resource abstraction methods
associated with users requests. TheManager subclass contains the
ResourceIncorporationManager subclass, describing the actions
performed in incorporating a newly added resource into the cloud
fabric, the ResourceDiscoveryManager class describes the selec-
tion of resources that is used for deploying a service, and the
ResourceDeploymentManager class describes the management
of composition of services in a unified manner and it describes
communicating single deployments of each service to the Local-
ResourceManager subclass, in which individuals are OpenStack,
Kubernetes, and Marathon.

The Stateless class is depicted in Fig. 7(b). It describes elements
of the services that do not have persistent state. It is contained
within the Interfaces subclass and the Services subclass. The Ad-
minServices subclass has been extended from the mOSAIC ontol-
ogy to incorporate resource abstraction methods and resources

(a) RuntimeComponent.

(b) Stateless component.

Fig. 7. Stateless and Runtime component.

deployment process support. Therefore, the AbstractedResource-
Monitoring class, described above as it is also a subclass of Func-
tionalProperties, replaces the ResourceMonitoring class. Moreover,
theResourceDeployment class describes the actions for deploying
resource abstractions in physical resources. It represents the inter-
ests of cloud providers who express their objectives in a resource
deployment policymanner— e.g., improving the energy consumed
by servers, or maximizing servers utilization, a DeploymentPol-
icy class and a GlobalGoal class have been incorporated into the
ontology, representing efficiency objectives of providers, both are
subclasses of the ResourceDeployment class.

380 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

Finally, the Statefull class in which the modifications over
the mOSAIC ontology have been described in this section within
the Layer, FirmwareAndHardware, and OperationalLayer classes, as
Statefull subclasses are also subclasses supporting these entities.

4. Proposed architecture

A Service Oriented Architecture (SOA) allow end users to de-
scribe their cloud applications as service delivery work-flows de-
scriptions or blueprints. These blueprints are compositions of func-
tional components, associated resources, configurations, and se-
quencing constraints of those components. SOAs are suggestive of
an organization inwhich components assume control over specific
roles in an effort to isolate the cloud customer from the internal
functioning of the Cloud and to recognize the benefits of allowing
the cloud provider to have full control over their resources, a sep-
aration of concerns detailing how customers can focus on applica-
tion life cyclemanagementwhile allowing cloud providers to focus
on the underlying resource life cycle management would create
opportunities for significant optimizations in both domains. Exam-
ple frameworks employing the SOA philosophy include OpenStack
Solum [46] and Apache Brooklyn [47] in PaaS environments, and
OpenStack Heat [48] in IaaS environments, however, none of these
offer the separation of concerns as expressed above.

The architecture proposed in this paper is an SOA, introducing
separation of concerns [49] as described above. This separation
augments the traditional service oriented architectures by allow-
ing users to concentrate ondescribing functional components, con-
figurations, and service level agreement constraints and by allow-
ing the cloud provider to concentrate on providing the appropriate
resources to satisfy those requirements. In a cloud environment
consisting of an heterogeneous resource fabric, theremay bemany
different types of resource that fulfill the user’s requirements. In
that situation, the separation of concerns principle would allow
the cloud service provider to make a final choice, and in doing
so to optimize efficiency objectives such as improving resource
utilization and reducing energy consumption.

Fig. 8 depicts a heterogeneous cloud infrastructure where the
cloud management domains are separated into logical partitions
each of which is in principle managed by dedicated resource man-
ager. In practice these domains may be created dynamically by
a Resource Coordinator as novel hardware types are incorporated
into the resource fabric. The Resource Coordinator consists on sev-
eral functional blocks that can be deployed as agents or services,
several information storage components, and a Semantic Engine.
This engine is the interface between the Cloud and its users, and
the Cloud and candidate resources applying for incorporation into
the resource fabric.

4.1. Resource coordinator service delivery work flow

The Resource Selection component of the Semantic Engine re-
ceives blueprints submitted by users (Label (1) in Fig. 8). Next
to receive a blueprint, the Resource Selection component analyses
the blueprint using the CL-Ontology. In this process, the Service
Catalog is queried to obtain information on available implemen-
tations associated with the services requested by the blueprint.
The Service Catalog stores available implementations offered by
the cloud provider, supported by diverse resource abstractions on
the heterogeneous hardware. For example, a matrix multiplication
service may be recorded in the catalog as having implementations
based on diverse physical and abstracted resources such as CPU,
GPU, FPGA, containers and virtual machines.

The Resource Selection component uses the list of possible im-
plementations and consults the CL-Ontology to construct a seman
tic-based resource blueprint, exploiting the semantic and syntactic

structure of the CL-Ontology. This is forwarded to the Resource
Discovery component (Label (2) in Fig. 8).

The URDs Storage contains a description of all resources that
are part of the infrastructure, such as endpoints for deploying and
monitoring resources, available abstraction methods, and man-
agers information.

The Resource Discovery selects a hardware type and abstrac-
tion method associated with an existing resource in the cloud
infrastructure. Accessing the URDs Storage, the Resource Discovery
component retrieve information on concrete resources and tech-
nologies to support each service described in the resource blueprint.
This information, andmetrics provided bymonitoring frameworks
deployed in the infrastructure, act as inputs to heuristics that
decide the efficiency objectives defined by providers.

As a result of this process, a specific implementation is chosen
and captured in a resourced blueprint specification, embodying
resources in a particular logical partition of the Cloud. If no appro-
priate resource is found, the request is rejected and this outcome
is communicated to the end user. Alternatively, if an appropriate
resource is found, the Resource Deployment component (Label (3)
in Fig. 8) interfaces with the appropriate logical partition via its
logical resource manager to deploy the service as per user require-
ments.

4.2. Incorporating heterogeneous resources into the resource fabric

The process of incorporating heterogeneous resources into the
cloud management domain is transparently executed using a Plug
& Play mechanism [50]. The Resource Incorporation plugin (RI-
plugin) deployed on each resource registers/deregisters the phys-
ical hardware with the Resource Coordinator. The information col-
lected for registering a resource includes a description of the phys-
ical features, a mechanism for accessing the resource, a framework
description associated with the management of the resource, and
a telemetry endpoint with which the resource is registered and
from which utilization information can be retrieved. As part of
the registration process, the Semantic Engine receives the resource
description and from it a semantic-based Unified Resource De-
scription (URD) is created, referencing the semantic and syntactic
structure of the CL-Ontology. The URD enables the management of
multiple heterogeneous resources in a uniformed manner. URDs
can thus describe bare metal, virtual machines, containers, net-
worked hardware being treated as a group to preserve connectivity
information, and software resource managers, hiding locally man-
aged subsystems. Servers with attached accelerators such as GPUs,
MICs and DFEs typically cannot be virtualized due to the specific
nature of the accelerators. To incorporate these resources into the
Cloud, these server–accelerator pairs can also be represented as
a URDs. In some cases, it may be possible to virtualize the server
and to associate a partition of its accelerator with that virtualized
component. In that case, the virtual component and the accelerator
partition are seen as a single URD. The granularity of an URD is thus
dependent on what aspect of the resource is being exposed to the
cloud.

Finally, as result, the URD is stored into the URDs Storage and, in
this manner, can be accessed from Resource Discovery component
to schedule deployments and, therefore, from Resource Deployment
component to deploy services.

5. CloudLightning — realization of proposed architecture

The CloudLightning (CL) project is based on the principles of
self-organization and self-management (SOSM). It addresses the
complexity introduced by heterogeneous resources in large scale
cloud computing infrastructures. Fig. 9 depicts the high level

G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384 381

Fig. 8. CL-Ontology proposed architecture overview.

Fig. 9. High level overview of CloudLightning system.

overview of the components that build the CloudLightning archi-
tecture and the interactions between users and the system.

The CL project focuses on: (1) creating a heterogeneous cloud by
exploring how specialized hardware, including high-performance
computing machines, can be seamlessly integrated into the cloud
resource fabric; (2) creating an SOA augmented with a separation
of concerns approach to application and resource management;
(3) moving the resource abstraction selection to the management
of the cloud, allowing cloud providers to incorporate efficiency
objectives on the resource fabric; and (4) addressing interoperabil-
ity problems arising from using multiple heterogeneous resource
managers at scale.

The CL system consists of a number of self-contained, loosely-
coupled components.

• The Gateway Server component processes user requests
in the form of blueprints. Each request is decomposed in
multiple services and given to the Self Organising Self Man-
agement system (SOSM). Appropriate resources are located
in infrastructure, the Gateway server then deploys services
of the blueprint on to those resources using the deployment
manifest associated with each service.

• The SOSM system component to interact with multiple
resource management domains to identify appropriate re-
sources that satisfy service level agreements and the effi-
ciency objectives of the CSP.

• The CL-Plug and Play component to dynamically incorpo-
rate, remove, and configure new hardware resources and
resource managers, existing or envisaged — including sub-
systems, such as HPC systems.

• A Telemetry component to interface with multiple teleme-
try endpoints and provides a uniform interface between
those end points and SOSM system.

Fig. 10 shows detailed view of the CL architecture as realization
of the proposed architecture depicted in Fig. 8. On the left hand
side, two interaction points with the CL system are shown: a new
resource incorporation process into the cloud resource fabric, and
the arrival of a blueprint.

When a Resource Incorporation (RI) plugin attempts to register
a resourcewith the Cloud, the Plug and Play Server (PnP server). The
role of the resource incorporation in the CloudLightning system is
performed by the Plug and Play Server (PnP server), and it behaves
at it is described in Section 4.

382 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

Therefore, each request received for registering/deregistering
resources with the SOSM system is analyzed in the context of
the CL-Ontology component, which checks the correctness of each
request. Afterwards, a semantic-based CL-Resource (corresponding
to URD in Fig. 8) is created in which the most significant infor-
mation of the resource is represented, providing access to the
physical resource via a unique identifier. The newly created CL-
Resource is stored in a CL-Resource Storage (URDs Storage in Fig. 8),
which is realized CL system by using a mongoDB database for
high availability. This database holds information on the resources
which can be used by the SOSMwhen processing resource requests
to satisfy blueprint descriptions.

Users requests, in the formal blueprints (Label 1 at Fig. 10),
are processed by the Gateway Server component. There, requests
are decomposed and, depending on the services required by the
blueprint and on the available implementations for each service
within the services catalog, appropriate resources are identified and
recorded in a in the blueprint. These are forwarded to the SOSM
system, specifically to the Cell Manager (Label 2 at Fig. 10).

The internal structure of the SOSM system [51] acts as the
ResourceDiscovery component as described in Fig. 8. Its hierarchical
structure orchestrates multiple user requests targeting properly at
the underlying logic partitions. The Cell Manager component, on
top of the SOSM hierarchy, implements the semantic engine func-
tionality provided by the Resource Selection component in Fig. 8.
By using the CL-Ontology, semantic-based services requests are
issuedwhich result in a resourced blueprints. In such a blueprint, the
identity of specific physical resources and resource abstractions are
recorded and into which the appropriate service implementation
will subsequently be deployed.

Requests are sent from the Cell Manager to one of the pRouters
identifying the logical partition of the Cloud inwhich establish het-
erogeneous resources reside. pSwitches, situated under the pRou
ters, further partition the resource space into smaller and more
efficiently manage domains. The lowest logical level in the SOSM
hierarchy is occupied by virtual Rack Managers (vRMs). These
resource managers directly control and, where appropriate, virtu-
alize a subset of the physical resource fabric whose hardware type
is reflected in on the type of is parent pRouter. While navigating
through the SOSM hierarchy, resource requests are directed along
a path which automately results in them being satisfied by the
‘‘most suitable’’ underlying physical resource. This suitability is
determined by the upward propagation of the status of the physical
resources and associatedmetrics are combined, in each level of the
hierarchy, into a measure known as Suitability Index (SI) [51]. In
effect, requests follow the path determined by the highest value
of the SI at each level in the hierarchy. Moreover, the efficiency
objectives of the cloud provider can be captured as a vector of
weights that is propagated downwards through the hierarchy,
becomes part of the SI calculation and thus is used bias the resource
selection, reflecting the relative importance dynamically placed by
the provider on each objective.

The process of deploying multiple resource abstraction meth-
ods — virtual machines and containers and of having them coop-
erate, would require different resource managers to collaborate
to deliver a composition of service hosted across these different
resource types. From the users perspective, all services supported
by heterogeneous resources should interact seamlessly as if they
were in the same resource pool. Therefore, an integration strategy
is used in CloudLightning to create a unified virtual network infras-
tructuremanagement across all platforms horizontally [52]. Open-
Stack Neutron is used to connect physical resources to the same
networking infrastructure but each is managed by an appropriate,
and possibly distinct, resource manager.

When a service component resource blueprint is received at the
vRM level, a resource abstraction method is initialized in order to

support it. As result, associated to each service described in the
original blueprint, an homologous service is created in a resourced
template filled with resource abstraction type, endpoint, accessing
method, and implementation chosen.

Once the resourced template is adequately filled with the in-
formation required to access the resource abstractions, it is re-
turned to theGateway Server (label 4 at Fig. 10), where information
contained is used for deploying implementations associated to
services [53] (label 5 at Fig. 10). By implementing this functionality,
the Gateway Server realizes the Resource Deployment component
described in the proposed architecture.

Finally, the control of the application is given back from the
Gateway Server to the end user.

6. Conclusions and future work

This work was motivated by the desire to simplify the de-
ployment of collaborating services across heterogeneous resources
in a manner that automated resource interoperability. Prior to
this work, expert users were required to manually configure this
collaborative environments. By creating a formal ontology captur-
ing heterogeneity across resource abstraction methods, physical
resources, and resource managers, it became possible to express
HPC-like environments within the Cloud. Thus, the Cloud and HPC
machines, traditionally considered to be incompatible, could be
profitably combined within the same design space.

Designing an ontology from scratch for such complex systems
is an enormous undertaken. To make the task tractable and to in-
crease end user acceptance, the CL-Ontology leverage the mOSAIC
ontology, which is part of the SIIF-IEEE 2302 Standard, and extend
it appropriately to capture the emerging heterogeneous cloud. This
work is currently proposed as basis of the IEEE-2303, Standard
for Adaptive Management of Cloud Computing Environments [54],
with the hope of being supported and updated periodically.

The Ontology described in this work attempt to guide cloud
architects in production of the next generation of cloud systems
by:

• creating a central knowledge repository in which a com-
mon understanding of the information can be shared and
improved.

• alleviating current interoperability and lock-in vendor is-
sues between resource managers, resource abstractions,
physical resources, and public and private cloud software
stacks in inter/intra cloud environments.

• showing that to construct a system in which multiple het-
erogeneous resources can coexist in the same cloud envi-
ronment is possible.

• proposing an ontology as part of a semantic engine to
address the complexity of building HPC environments in
Cloud.

In addition to the creation of the CL-Ontolgy, this paper pro-
poses a conceptual architecture for supporting the processes of
dynamic incorporation of hardware accelerators into the cloud re-
source fabric, and ontology-based resource management. An real-
ization of this conceptual architecture is presented into the Cloud-
Lightning system to illustrate how the CL-Ontology can be applied
for autonomous resourcemanagement. Although this work is at an
early stage of development, it has been used as an initial use case to
illustrate the effectiveness of the semantic engine as an Ontology-
based resource management for decision making processes.

Supporting dynamic expanding/contracting of resources into
the cloud resource fabric, and increasing diversity in resource
management/resource abstractionmethods, focus future efforts on
taking care of this aspects since the interaction points with the
proposed architecture do not handle security and fault tolerance

G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384 383

Fig. 10. Exploded view of CloudLightning architecture.

aspects. Therefore, additional work is needed to ensure an incre-
mental design approach to incorporate to the CL-Ontology (1) fault
tolerance in HPC in cloud environments; (2) security components
and elements to avoid inadvertent requests or bogus resource
incorporation actions that will result in corruption of the cloud
information.

Finally, once the ontology-based resource management archi-
tecture will be integrated, future efforts will be placed on the
evaluation of the performance, resources utilization, and energy
consumption within the CloudLightning system, comparing the
obtained resultswith other traditional resourcemanagement tech-
niques.

Acknowledgment

This work is funded by the European Unions Horizon 2020
Research and Innovation Programme through the CloudLightning
project under Grant Agreement Number 643946.

References

[1] C.V.N. Index, Forecast and methodology, 2014–2019 white paper, 2015. Re-
trieved 23rd September.

[2] S.R. Group, 2016 Review Shows $148 billion Cloud Market Growing at 25%
Annually, Tech. Rep., Synergy Research Group, Reno, NV, United States, 2017.

[3] Garner, Gartner Says Worldwide IT Spending Forecast to Grow 2.7 Percent in
2017, Tech. Rep., Garner, STAMFORD, Conn, United States, 2017.

[4] J. Fowers, G. Brown, P. Cooke, G. Stitt, A performance and energy comparison of
FPGAs, GPUs, andmulticores for sliding-window applications, in: Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’12, ACM, New York, NY, USA, 2012, pp. 47–56. http://dx.doi.org/
10.1145/2145694.2145704. http://doi.acm.org/10.1145/2145694.2145704.

[5] J.P. Walters, A.J. Younge, D.I. Kang, K.T. Yao, M. Kang, S.P. Crago, G.C. Fox, GPU
passthrough performance: A comparison of KVM, Xen, VMWare ESXi, and LXC
for CUDA and OpenCL applications, in: 2014 IEEE 7th International Conference
on Cloud Computing, CLOUD, IEEE, 2014, pp. 636–643.

[6] S.P.T. Krishnan, S.P.T. Krishnan, B. Veeravalli, V.H. Krishna, W.C. Sheng, Per-
formance characterisation and evaluation of WRF model on cloud and HPC
architectures, in: 2014 IEEE Intl. Con.f on High Performance Computing and
Communications, 2014 IEEE 6th Intl. Symp. on Cyberspace Safety and Security,
2014 IEEE 11th Intl. Conf. on Embedded Software and Syst, HPCC, CSS, ICESS,
2014, pp. 1280–1287. http://dx.doi.org/10.1109/HPCC.2014.218.

[7] E. Serrano, G. Bermejo, J.G. Blas, J. Carretero, Evaluation of the feasibility of
making large-scale X-Ray tomography reconstructions on clouds, in: 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing, 2014, pp. 748–754. http://dx.doi.org/10.1109/CCGrid.2014.106.

[8] P. Zaspel, M. Griebel, Massively parallel fluid simulations on Amazon’s HPC
cloud, in: 2011 First International Symposium on Network Cloud Computing
and Applications, 2011, pp. 73–78. http://dx.doi.org/10.1109/NCCA.2011.19.

[9] AWS announces seven new compute services and capabilities to support an
even wider range of workloads. http://www.businesswire.com/news/home/2
0161130006132/en/AWS-Announces-Compute-Services-Capabilities-Suppor
t-Wider. (Accessed 10 December 2017).

[10] EC2 instances (F1) with programmable hardware. https://aws.amazon.com/
blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardwa
re/. (Accessed 17 December 2017).

[11] OpenStack Nova. http://docs.openstack.org/developer/nova/. (Accessed 17
December 2017).

[12] Open Nebula. https://opennebula.org/ (Accessed 17 December 2017).
[13] Kubernetes. http://kubernetes.io/ (Accessed 16 December 2017).
[14] Apache Mesos. http://mesos.apache.org/documentation/latest/. (Accessed 11

December 2017).
[15] Docker Swarm. https://github.com/docker/swarm. (Accessed 16 December

2017).
[16] OpenStack Magnum. https://github.com/openstack/magnum. (Accessed 12

December 2017).
[17] OpenStack Ironic. http://docs.openstack.org/developer/ironic/deploy/user-gu

ide.html. (Accessed 10 December 2017).
[18] OpenStack Heat. https://slurm.schedmd.com/. (Accessed 10 December 2017).
[19] OpenStack Heat. http://www.rocksclusters.org/wordpress/. (Accessed 13 De-

cember 2017).
[20] Amazon EC2 Instance types. https://aws.amazon.com/ec2/instance-types/.

(Accessed 29 May 2017).
[21] F.T. Imam, Application of ontologies in cloud computing: The state-of-the-art,

2016. arXiv preprint arXiv:1610.02333.
[22] IEEE P2302 — Standard for Intercloud Interoperability and Federation (SIIF).

https://standards.ieee.org/develop/project/2302.html. (Accessed 10 Decem-
ber 2017).

[23] IEEE P2301 — Guide for Cloud Portability and Interoperability Profiles (CPIP).
https://standards.ieee.org/develop/project/2301.html. (Accessed 13 Decem-
ber 2017).

[24] H2020 EU CloudLightning project, self-organising, self-managing heteroge-
neous cloud. http://cordis.europa.eu/project/rcn/194118_en.html. (Accessed
13 December 2017).

[25] T. Lynn, H. Xiong, D. Dong, B. Momani, G. Gravvanis, C. Filelis-Papadopoulos,
A. Elster, M.M.Z.M. Khan, D. Tzovaras, K. Giannoutakis, D. Petcu, M. Neagul, I.
Dragon, P. Kuppudayar, S. Natarajan, M. McGrath, G. Gaydadjiev, T. Becker, A.
Gourinovitch, D. Kenny, J. Morrison, Cloudlightning: A framework for a self-
organising and self-managing heterogeneous cloud, in: Proceedings of the 6th
International Conference on Cloud Computing and Services Science, 2016, pp.
333–338.

[26] O.C. Manifesto, Open cloud manifesto, vol. 20, 2009. Availabe online: www.
opencloudmanifesto.org/Open.

[27] Unified cloud interface project. https://code.google.com/archive/p/unifiedclo
ud/. (Accessed 12 December 2017).

[28] A. Parameswaran, A. Chaddha, Cloud interoperability and standardization,
SETlabs Brief. 7 (7) (2009) 19–26.

[29] O.-W.A. Edmonds, A. Papaspyrou, T. Metsch, Open cloud computing interface-
core, Update, 2016, p. 6.

[30] W.O.W. Group, et al. {OWL} 2 web ontology language document overview,
2009.

[31] Y. Zhao, C. Liao, X. Shen, Poster: An infrastructure for HPC knowledge sharing
and reuse, in: Proceedings of the 22ndACMSIGPLAN Symposiumon Principles
and Practice of Parallel Programming, ACM, 2017, pp. 461–462.

http://refhub.elsevier.com/S0167-739X(17)33046-7/sb2
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb2
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb2
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb3
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb3
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb3
http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1145/2145694.2145704
http://doi.acm.org/10.1145/2145694.2145704
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb5
http://dx.doi.org/10.1109/HPCC.2014.218
http://dx.doi.org/10.1109/CCGrid.2014.106
http://dx.doi.org/10.1109/NCCA.2011.19
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
http://www.businesswire.com/news/home/20161130006132/en/AWS-Announces-Compute-Services-Capabilities-Support-Wider
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/
http://docs.openstack.org/developer/nova/
https://opennebula.org/
http://kubernetes.io/
http://mesos.apache.org/documentation/latest/
https://github.com/docker/swarm
https://github.com/openstack/magnum
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
https://slurm.schedmd.com/
http://www.rocksclusters.org/wordpress/
https://aws.amazon.com/ec2/instance-types/
http://arxiv.org/1610.02333
https://standards.ieee.org/develop/project/2302.html
https://standards.ieee.org/develop/project/2301.html
http://cordis.europa.eu/project/rcn/194118%5Fen.html
http://www.opencloudmanifesto.org/Open
http://www.opencloudmanifesto.org/Open
http://www.opencloudmanifesto.org/Open
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
https://code.google.com/archive/p/unifiedcloud/
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb28
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb28
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb28
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb31
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb31
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb31
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb31
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb31

384 G.G. Castañé et al. / Future Generation Computer Systems 88 (2018) 373–384

[32] A. Tenschert, Ontology matching in a distributed environment, 2016.
[33] T. Takahashi, Y. Kadobayashi, H. Fujiwara, Ontological approach toward cyber-

security in cloud computing, in: Proceedings of the 3rd International Confer-
ence on Security of Information and Networks, ACM, 2010, pp. 100–109.

[34] M.Á. Rodríguez-García, R. Valencia-García, F. García-Sánchez, J.J. Samper-
Zapater, Ontology-based annotation and retrieval of services in the cloud,
Knowl.-Based Syst. 56 (2014) 15–25.

[35] A. Tahamtan, S.A. Beheshti, A. Anjomshoaa, A.M. Tjoa, A cloud repository and
discovery framework based on a unified business and cloud service ontol-
ogy, in: 2012 IEEE Eighth World Congress on Services, SERVICES, IEEE, 2012,
pp. 203–210.

[36] F. Moscato, R. Aversa, B.D. Martino, T.F. Forti, V. Munteanu, An analysis of mO-
SAIC ontology for Cloud resources annotation, in: 2011 Federated Conference
on Computer Science and Information Systems, FedCSIS, 2011, pp. 973–980.

[37] ISO/IEC JTC1— Standard for Cloud computing and distributed platforms. https:
//www.iso.org/isoiec_jtc1sc38.html. (Accessed 14 December 2017).

[38] ISO/IEC 18384-3:2016 — Information technology – Reference Architecture for
Service Oriented Architecture (SOA RA). https://www.iso.org/obp/ui/#iso:std:
iso-iec:18384:-3:ed-1:v1:en. (Accessed 14 December 2017).

[39] A.J. Ferrer, D.G. Pérez, R.S. González, Multi-cloud platform-as-a-service model,
functionalities and approaches, Procedia Comput. Sci. 97 (2016) 63–72.

[40] N. Bassiliades, M. Symeonidis, G. Meditskos, E. Kontopoulos, P. Gouvas, I.
Vlahavas, A semantic recommendation algorithm for the PaaSport platform-
as-a-service marketplace, Expert Syst. Appl. 67 (2017) 203–227.

[41] K.U. Sri, M.B. Prakash, J. Deepthi, A frame work to dropping cost in passage of
CDN into hybrid cloud, Int. J. Innov. Technol. Res. 5 (2) (2017) 5829–5831.

[42] A. Rossini, Cloud Application Modelling and Execution Language (CAMEL)
and the PaaSageWorkflow, Tech. Rep. ESOCC-EU Projects Track, Springer,
Taormina, Italy, 2015.

[43] E. Di Nitto, G. Casale, D. Petcu, On MODAClouds toolkit support for DevOps,
in: Advances in Service-Oriented and Cloud Computing: Workshops of ESOCC
2015, in: Revised selected papers, vol. 567, Springer, Taormina, Italy, Septem-
ber 15–17, 2015, 2016, p. 430.

[44] B. Koller, N. Struckmann, J. Buchholz, M. Gienger, Towards an environment
to deliver high performance computing to small and medium enterprises,
in: Sustained Simulation Performance 2015, Springer, 2015, pp. 41–50.

[45] Open semantic framework — adding ontology concept. http://wiki.opense
manticframework.org/index.php/Adding_an_Ontology_Concept_using_Prot%
C3%A9g%C3%A9. (Accessed 21 March 2018).

[46] Solum. https://github.com/openstack/solum. (Accessed 12 December 2017).
[47] Apache Brooklin. https://brooklyn.apache.org. (Accessed 11 December 2017).
[48] OpenStack Heat. https://github.com/openstack/heat. (Accessed 15 December

2017).
[49] D. Dong, H. Xiong, J.P.Morrison, Separation of concerns in heterogeneous cloud

environments workshop on tools for an energy efficient cloud, in: Workshop
on Tools for an Energy Efficient Cloud, TEEC 2017, IEEE, 2017.

[50] G.G. Castañe, D. Dong, H. Xiong, J.P. Morrison, A plug-and-play mechanism for
incorporatingheterogeneous resources into cloud environments, J. Syst. Softw.
(in press).

[51] C. Filelis-Papadopoulos, H. Xiong, A. Spătaru, G.G. Castañé, D. Dong, G.A.
Gravvnis, J.P. Morrison, A generic framework supporting self-organisation and
self-management in hierarchical systems, in: Parallel and Distributed Com-
puting (ISPDC), 2017 16th International Symposium on, IEEE, 2017, pp. 149–
156.

[52] D. Dong, P. Stack, H. Xiong, J.P. Morrison, Managing and unifying heteroge-
neous resources in cloud environments, in: IEEE 7th International Conference
on Cloud Computing and Services Science, CLOSER 2017, IEEE, 2017.

[53] T. Selea, I. Drăgan, T.-F. Fortiş, The cloudlightning approach to cloud-user inter-
action, in: Proceedings of the 1st International Workshop on Next generation
of Cloud Architectures, ACM, 2017, p. 4.

[54] IEEE P2303 — standard for adaptive management of cloud computing en-
vironments. https://standards.ieee.org/develop/project/2303.html. (Accessed
08 December 2017).

Gabriel González Castañé is a Postdoctoral Researcher
in University College of Cork. He holds a Ph.D. in Com-
puter science from University Carlos III of Madrid on the
topic of energy aware Cloud Computing simulations and
a Masters in Distributed Systems. He has participated in
several Spanish National Projects and he led a simulation
workpackage in CACTOS FP7 project. Currently he is the
technical coordinator of CloudLightning – self organiza-
tion and self management clouds – H2020 project. His
interests are discrete event simulation, cloud computing,
autonomic computing and distributed systems.

Dr. Huanhuan Xiong is a Senior PostDoctoral Researcher
in University College Cork. She received a B.Sc. in Eco-
nomics from Wuhan University of Technology (Wuhan,
China) in 2004, and a M.Sc. in Software Engineering and a
Ph.D. inGeographic Information System (GIS) fromWuhan
University (Wuhan, China) in 2006 and 2012. She worked
in IC4 (Irish Centre for Cloud Computing & Commerce)
for three years, and she has expertise in cloud migration,
cloud architecture, cloud interoperability and scalability.
Her research Interests include cloud architecture, game
theory, self-organized and self-optimized systems.

Dapeng Dong is a senior Postdoctoral Researcher at the
Boole Centre for Research in Informatics of University
College Cork, Ireland. He received his Ph.D. in computer
science andM.Sc. in Software and Systems forMobile Net-
works from University College Cork, Ireland. His research
interests include self-organizing and self-managing cloud
architecture, cloud resource optimization, and big data
analytics.

Professor John P. Morrison (Male) B.Sc., M.Sc, Ph.D., Dip.
TLHE, Senior MACM, Senior MIEEE.

JohnMorrison is the founder and director of the Centre
for Unified Computing. He is a co-founder and co-director
of the Boole Centre for Research in Informatics and a co-
founder and co-director of Grid-Ireland. Prof.Morrison has
held a Science Foundation of Ireland Investigator award.
Currently, he is a Principle Investigator in the Irish Centre
for Could Computing and Commerce and is the coordina-
tor of the European H2020 funded CloudLightning project,
which seeks to create a self-organizing, self-managing,

heterogeneous cloud architecture. Prof Morrison has published widely in the field
of Parallel Distributed and Grid Computing and has been the guest editor on many
journals including the Journal of Super Computing and the Journal of Scientific
Computing. He is on the Editorial Board of Multi-Agent and Grid Systems. He is
a senior member of the ACM and a senior member of the IEEE. Prof Morrison is
a member of the I2Lab Advisory Board in the University of Central Florida. He has
served on dozens of international conference programme committees and is a co-
founder of the International Symposium on Parallel and Distributed Computing.

http://refhub.elsevier.com/S0167-739X(17)33046-7/sb33
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb33
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb33
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb33
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb33
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb34
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb34
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb34
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb34
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb34
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb35
https://www.iso.org/isoiec%5Fjtc1sc38.html
https://www.iso.org/isoiec%5Fjtc1sc38.html
https://www.iso.org/isoiec%5Fjtc1sc38.html
https://www.iso.org/obp/ui/%23iso:std:iso-iec:18384:-3:ed-1:v1:en
https://www.iso.org/obp/ui/%23iso:std:iso-iec:18384:-3:ed-1:v1:en
https://www.iso.org/obp/ui/%23iso:std:iso-iec:18384:-3:ed-1:v1:en
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb39
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb39
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb39
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb40
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb40
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb40
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb40
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb40
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb41
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb41
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb41
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb42
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb42
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb42
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb42
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb42
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb43
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb44
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb44
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb44
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb44
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb44
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
http://wiki.opensemanticframework.org/index.php/Adding%5Fan%5FOntology%5FConcept%5Fusing%5FProt%25C3%25A9g%25C3%25A9
https://github.com/openstack/solum
https://brooklyn.apache.org
https://github.com/openstack/heat
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb49
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb49
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb49
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb49
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb49
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb51
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb52
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb52
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb52
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb52
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb52
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb53
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb53
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb53
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb53
http://refhub.elsevier.com/S0167-739X(17)33046-7/sb53
https://standards.ieee.org/develop/project/2303.html

	An ontology for heterogeneous resources management interoperability and HPC in the cloud
	Introduction
	Related work
	CL-Ontology
	The TopLevel class (〈owl:Thing〉)
	The Property class
	The non functional properties class
	The Functional Properties class

	The Layer class
	The Component, Runtime and Stateless classes

	Proposed architecture
	Resource coordinator service delivery work flow
	Incorporating heterogeneous resources into the resource fabric

	CloudLightning — realization of proposed architecture
	Conclusions and future work
	Acknowledgment
	References

