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Abstract

The main focus of this research is in the area of adaptive scheduling for het-

erogeneous distributed systems. Given an unreliable, non-dedicated set of

processing and communication resources, a scheduler is required to allocate

tasks to processors. No information about the state of the system, which

can vary over time, or the tasks to be processed, is known in advance and

thus must be estimated dynamically. Current schedulers do not adequately

address this dynamism. To address this, a property estimation method is

presented, which utilizes a k-Nearest Neighbours algorithm, a smoothed av-

erage and an analytical benchmark. These estimated properties are then

used by two different scheduling techniques, which make less restrictive as-

sumptions than the current state-of-the-art methods. A multi-heuristic evo-

lutionary method utilizes a genetic algorithm and eight simple heuristics to

efficiently allocate tasks to processors. A deterministic method utilizes the

error inherent in estimating the properties of the system and the execution

time of tasks, to allocate tasks to processors. The algorithms have been

implemented on a real-world heterogeneous distributed system with up to

150 processors. A set of real-world problems from the areas of cryptography,

bioinformatics, and biomedical engineering were used as a test set to measure

the effectiveness of the scheduling algorithms. Experiments have shown that

both methods achieve better efficiency than other state-of-the-art heuristic

algorithms. Finally, a low memory distributed reconstruction application for

large digital holograms is presented, which has significantly increased the size

of holograms that can be reconstructed, over the previous state-of-the-art.

XVIII
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Chapter 1

Introduction

Modern scientific research has ever-increasing computational requirements.

Many of the large problems being tackled are ideal candidates for paral-

lelization [19]. Distributed computing can provide a large amount of com-

putational resources by utilizing the spare clock cycles of existing personal

computers (PCs), without the cost of expensive dedicated parallel machines.

Computers with different processor speeds and memory sizes can be brought

together to form a virtual supercomputer. However, the distributed nature

of the underlying resources presents problems not present in closely coupled

systems, such as communication overheads, or heterogeneity of resources. A

poor allocation of tasks to processors could nullify the benefits of using a

distributed system by inefficiently utilizing the systems resources.

We wish to map tasks to processors in a dynamic heterogeneous dis-

tributed system where the resources are constantly varying and no knowl-

edge of the system is available a priori. The task allocation problem (TA)

4



is NP-complete in the general case [100]. With the addition of a single dy-

namic element, which we refer to as the dynamic task allocation problem

(DTA), it appears that a solution to the problem cannot be verified in poly-

nomial time and that the DTA problem is not in NP (shown in Appendix A

and B). Heuristics must be used to generate a solution in a realistic amount of

time. Solutions from existing efficient algorithms (such as [15]) for problems

classified as NP-complete (such as TSP and 3SAT) cannot be polynomially

transformed to solve, in polynomial time, the problem tackled in this thesis.

Many scheduling algorithms (other than the most trivial) utilize knowl-

edge of the available system resources and the tasks to be processed when

deciding to allocate a task to a processor [7, 21, 23, 61, 92, 96, 98, 103]. How

to best generate this knowledge is an open problem [98]. In general cases,

all information used when deciding to allocate tasks to processors must be

estimated. This, of course, is error-prone, with the errors in these estima-

tions introducing inefficiency. The most common forms of estimating task

execution times are by benchmarking a task or set of tasks offline in ad-

vance [7, 21, 92, 96, 98], or requiring a person to supply a directed acyclic

graph with: task, communication information and precedence constraints in

advance [56, 57]. The heterogeneous and non-dedicated nature of the re-

sources in a loosely-coupled distributed system means that these types of

estimation can be detrimental to accuracy and contribute to large margins

of error, between the actual execution time and the estimated execution time

of a set of tasks. One of the contributions of this thesis (explained later) is

the introduction of a new approach to estimation in distributed computing
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scheduling.

One technique used to address DTA problem, when designing scheduling

heuristics, has been to simplify the problem by adding restrictive assump-

tions. For example:

• a priori knowledge of communication times and task processing times [1,

7, 10, 16, 21, 24, 38, 55, 56, 57, 92, 96, 98, 102, 106],

• homogeneous processing or communication resources [16, 34, 38, 52,

54, 91, 96, 102, 107],

• the state of the system does not change during run-time [1, 10, 38, 59,

98, 106],

• all messages are passed instantaneously, [96, 107],

• and resources are dedicated exclusively to the distributed system [1,

38, 45, 90, 98, 105, 106, 107, 108].

An overview of the properties of the schedulers referenced in this section

can be found in Table A.1 and A.2. Schedulers have been classified by a num-

ber of properties, with each property limiting the generality of the scheduling

technique in some way, which in turn limits the usefulness of the technique

to a subset of problems. Next, each of these properties will be discussed.

Static scheduling refers to a schedule which is created before run-time

and cannot change. The opposite is dynamic scheduling where the schedule

can change during run-time, and thus can adapt to variations in available re-

sources. Some schedulers were designed to use only homogeneous resources.
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This restriction, in some cases, fundamentally changes the complexity of

the problem being tackled to the P complexity class. The ability to use

heterogeneous resources may open up a larger pool of resources, and more

accurately models the available resources in loosely coupled distributed com-

puting. Pre-emptive scheduling refers to the ability of the scheduler to move

partially computed tasks from one processor to another. This flexibility may

reduce the overall total execution time allowing for tasks to be moved from

slow processors to idle faster processors as they become available.

A priori knowledge of communication times and task processing times

limits the generality of schedulers, because advanced knowledge is needed

about the state and operation of the system and the tasks to be processed.

Some schedulers are specifically optimized to suit certain architectures, for

example: Kwok and Ahmed [55], and Lee and Zomaya [59] require a fully con-

nected network; Mohapatra [66] requires a hypercube network; Hamidzadeh

et al. [34] assume a common shared memory is available; and Nagar et

al. [68] require a specific characteristic of the Solaris kernel. These require-

ments limit the schedulers to certain operating systems, architectures and

topologies, reducing their generality.

Assuming that the processing and communication resources are com-

pletely dedicated to the distributed system (e.g. a cluster) greatly simplifies

the problem of scheduling, by creating a closed controlled environment. The

behavior of the resources becomes predictable, which can be easily factored

into a scheduling algorithm. The inclusion of non-dedicated resources, such

as using the spare clock cycles of desktop PCs connected by the internet, can
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greatly increase the amount of computational resources available. These non-

dedicated resources are however unpredictable, and their availability can vary

due to external events outside of one’s control. These additional parameters

greatly increase the complexity of the problem.

Kwok and Ahmed surveyed 27 different static scheduling algorithms, and

proposed a taxonomy that classifies these algorithms into different cate-

gories [57]. Kwok and Ahmed also proposed a set of benchmarks to compare

15 different static scheduling algorithms on a homogeneous set of proces-

sors [56]. At the other extreme Maheswaran et al. surveyed 8 different

schedulers for a dynamic heterogeneous distributed system [61].

Some distributed systems (detailed in Table A), such as SETI@home [52],

ignore the resources of the system [52, 54, 91], or treat their heterogeneous

resources as a homogeneous set [6, 22, 52, 54, 74, 91, 101] by ignoring vari-

ation in the available computational resources of the processors. Some of

the assumptions made simplify the problem but fundamentally change the

complexity class. This limits the applicability of the scheduling algorithms to

specific special cases. It is our belief that if a scheduler is to be applicable to

real-world distributed computing environments and problems, then it should

not make any prior assumptions about resource homogeneity or availability.

Research has been done to address some of these restrictive assumptions.

Sinnen et al. [92] look at a processor’s involvement in communication and

show that considering this involvement, when scheduling, leads to more effi-

cient resource utilization in real-world distributed systems. Cohen et al. [13]

focus on scheduling the communication between processors, to minimize the
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data transfer overheads in a distributed system. Theys et al. [98] generate

and store many scheduling solutions before run-time, then select the most

suitable solution during run-time, which allows the scheduler to adapt to a

variable task and resource environment. The dynamic level scheduling al-

gorithm proposed by Dogan and Ozguner [23] addresses the variability of

network and processor resources caused by failures, and attempts to mini-

mize the probability of these failures adversely affecting the overall operation

of the distributed system. Ali et al. [5] create a generalized robustness met-

ric for unreliable parallel and distributed systems where the system resources

may vary or the estimated task execution times may be erroneous.

Another method is to use complex evolutionary scheduling heuristics,

such as genetic algorithms (GAs) [37], simulated annealing (SA) [51], Tabu

[30] and Ant Colony search optimization [14]. This allows for the fast explo-

ration of the search space of possible schedules. Near optimal solutions can be

found quickly and the scheduler can be applied to more general problems [96].

Scheduling algorithms based on GAs have been shown to consistently gener-

ate more efficient solutions than other evolutionary strategies when applied

to scheduling in heterogeneous distributed systems [10].

We have broken up the DTA problem into two parts: 1.) generating

accurate estimates of the system resources and the properties of the tasks to

be processed, and 2.) allocating tasks to processors.

We estimate the system properties and the resource requirements of the

problems to be processed based on historical information. We use a k near-

est neighbours method (k-NN) [17] combined with a smoothed average to
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estimate the value of non-linear properties.

These estimates are then used as inputs into scheduling heuristics. We set

out to create a robust scheduler, which could produce high quality solutions in

unknown resource environments. GAs fulfilled this requirement, having been

shown to work well [10] in dynamic heterogeneous distributed systems. A GA

takes a set of different solutions to a problem, and in successive iterations,

keeps the best solutions and uses them to generate a new set of solutions.

This survival-of-the-fittest method closely models evolution in the natural

world. The evolutionary nature of GAs allows for a fast traversal of the

search space and for efficient solutions to be produced quickly. Eight simple

heuristics are utilized to enhance the initialization of the GA based scheduler.

This means that the GA scheduler is no worse than the best simple heuristic,

allowing for efficient schedules to be produced in polynomial time.

While the GA based scheduler works well in many situations, it does have

a number of disadvantages, notably predictability and verifiability. Since it

contains randomness, the same set of inputs may not give the same output so-

lution. It is not possible to definitively know the output solution in advance.

Likewise, the running time needed to achieve a solution can vary, although

given enough time it may evolve to a very good solution. This makes it un-

suitable for situations with deadlines. Due to the difficultly in verifying the

output, or even understanding why a particular solution has been reached,

GAs are unsuitable for some applications, such as medical applications.

A simpler solution has been developed which addresses these disadvan-

tages. The uncertainty in the estimation of the properties of the system is
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utilized to produce efficient schedules. We seek to schedule either the tasks

with the minimum uncertainty or the tasks with the most uncertainty ear-

liest. When this is combined with different objectives, such as minimizing

makespan (total execution time) and evenly distributing load, it naturally

gives rise to a family of four different scheduling algorithms. It has been

shown to produce solutions which are nearly as good as more complex evo-

lutionary schedulers. It has a constant running time, so is suitable for appli-

cations with deadlines. There is no randomness, thus the same solution will

be given for the same set of inputs. Its predictable and repeatable properties

mean it can be verified, thus allowing for it to be used in situations not suited

to an evolutionary algorithm.

Finally a real-world distributed application is presented. It is a low mem-

ory distributed reconstruction application for large digital holograms [3, 76]

from the optical physics field. It has allowed for the reconstruction of 4.3 gi-

gapixel digital holograms on low powered, desktop PCs; the previous largest

recontructions where of the order of 0.2 gigapixels.

Chapter 2 specifies how to estimate task execution times and system

properties. A heterogeneous distributed system and a set of problems are

presented. These are used in the evaluation of the scheduling algorithms.

Chapter 3 presents a multi-heuristic genetic algorithm scheduler. Chapter 4

uses estimation error to schedule tasks to processors. Chapter 5 describes

a distributed application for reconstructing large digital holograms. Finally

we conclude in Chapter 6.
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Chapter 2

Estimating properties

Parts of this chapter have also been published in the following articles [49,

50, 78, 79, 80]. We will present a technique to estimate task execution times,

and present a set of problems used to test our algorithms. These are then

used in the following chapters.

The properties and availability of heterogeneous computational and com-

munication resources can vary randomly over time, with unknown statistics.

The computational requirements of problems and individual tasks are un-

known a priori. A method is presented for estimating these properties and

requirements, using a k-NN [17] combined with a smoothed average.

2.1 Estimating properties

Many scheduling algorithms, other than the most trivial, utilize knowledge

of the available system resources and the tasks to be processed when deciding

to allocate a task to a processor [7, 21, 23, 61, 92, 96, 98, 103]. How to best
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generate this knowledge is an open problem [98]. In general cases, all infor-

mation used when deciding to allocate tasks to processors must be estimated.

This of course is error-prone, with the errors in these estimations introducing

inefficiency. The most common forms of estimation include benchmarking a

task or set of tasks offline in advance [7, 21, 92, 96, 98], or requiring a di-

rected acyclic graph with task, communication information and precedence

constraints in advance [1, 7, 10, 16, 21, 24, 38, 55, 56, 57, 92, 96, 98, 102, 106].

The heterogeneous and non-dedicated nature of the resources in a loosely-

coupled distributed system means that these types of estimates can be detri-

mental to accuracy and contribute to large margins of error, between the

actual execution time and the estimated execution time of a set of tasks.

Taking a simple average of past task execution times and using it to pre-

dict future task execution times is error prone when presented with a hetero-

geneous set of tasks and processors. An average of past task execution times

can only properly model a uni-modal distribution or a close-to-homogeneous

set of task execution times. Neural networks and support vector machines

can be trained to model complicated task execution time distributions, but

generally require a large set of previously observed data and training [11].

The k-NN algorithm can model complicated task execution time distribu-

tions, and does not require training, although it does require more time to

generate a result [42]. The advantage of k-NN is that it can easily adapt to

sparse or dense regions in the distribution.

Assuming that each previously executed task has a finite running time;

past task execution times can be used to predict future execution times [94].
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One common technique is to use an expected time to compute (ETC) ma-

trix, where the expected execution time of each task on each processor is

contained in a row, gives the estimated execution time in seconds to com-

pute a particular task on each processor. The matrix is populated dynami-

cally as needed. There are many techniques for generating the ETC matrix,

ranging from a simple average of past execution times to more complicated

methods such as model-based methods [29], neural networks, support vector

machines, and k-nearest neighbours (k-NN) [42]. The performance of each

of these techniques degrades, with various degrees of grace, as the statistics

of past execution times becomes more uniform and less stationary.

The scheduling problem we address can be stated as follows: we wish

to schedule a number of problems, where each problem contains a number

of indivisible tasks. The tasks contained within a problem can have differ-

ent heterogeneous processing requirements (time, memory). The scheduler

is required to map these tasks to processors, which can have different hetero-

geneous processing speeds, memory, and interconnection properties, for pro-

cessing. The computational requirements of problems and individual tasks

are unknown a priori. Problems arrive dynamically for scheduling. The prop-

erties and availability of the processors can vary randomly over time, with

unknown statistics.

Our distributed computing system consists of a server processor (that

runs the scheduler) and a collection of processors connected by a communi-

cations link. For the remainder of the chapter, in our terminology, a problem

is defined as a pair of algorithms that is required to be run: a task manager
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algorithm and a task algorithm. The task manager runs on the server.

The task algorithm is sent to each processor. A task is defined as a set

of parameters for the task algorithm, where task i is characterized by the

tuple of parameters Xi = (xi
1, x

i
2, .., x

i
q) and q is the number of parameters.

The restriction Xi ∈ Z
q is placed on the user to allow for the parameters to

be mapped to coordinates in q-dimensional space. This coding is not seen

as restrictive. A string parameter could be coded as an index into a hard-

coded look-up table in the task algorithm, for example. As the degenerate

option, a parameter can be represented by bit strings cast to integers.

The task manager generates tasks and puts them on the schedulers

queue. If all tasks can be executed independently, the task manager puts

them all on the queue at once. If the task manager requires a staged compu-

tation (for example, if there are dependencies between tasks) then the task

manager will put tasks on the queue over time as the results of previous tasks

become available. The task manager switches between different functional-

ity in the task algorithm for different stages in the computation through

the parameter list.

The actual processing time ti of task i can be expressed as

ti = ETC(Xi, j) + ǫi
j , (2.1)

where ETC(Xi, j) is the part of the execution time, in seconds, estimated

with input vector Xi, j is the processor that task i was processed on, and ǫ

is the error of the estimation (in seconds). It is assumed that the previous

n task execution times on each processor j, where they exist, are stored
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along with the input variables in a set U , as a single observation. A set of

observations is denoted by O and defined as

O =
⋃

j

(Un
i=1(ti, ci, Xi)

j), (2.2)

where ci is communications overhead. A separate O is maintained for each

problem and it grows as more execution times become available, up to a

maximum size of n, after which the oldest observations are removed.

Two methods are used in this thesis to generate estimated task execution

times, a k-NN [17] and a smoothed average combined with analytical bench-

marking. Each time a task is returned the following steps are performed. On

receiving results for task i and the computational benchmark results Pj from

processor j:

1. Pass results to task manager.

2. Calculate ti based on recorded start time for task i.

3. Add (ti, ci, Xi) to Uj. (Remove oldest observation if |Uj| > n.)

4. Incorporate tiPj into smoothed task processing requirement for the

problem.

These steps will be explained in the following two subsections.

2.1.1 k-nearest neighbours

The estimated task execution times are calculated using selected observations

from the set O Eq. (2.2), in Alg. 2.1. To decide which observations to include,
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and their weighting, we use the k-NN algorithm. The k nearest observations,

based on Euclidean distance in the space defined by vector X, out of the set

of n observations are selected. In general k should grow in proportion to n

such that both k −→ ∞ and k
n
−→ 0 as n −→ ∞ [20]. We use k = ⌈n4/5⌉

which is shown to perform well in [42], which balances the computation time

to the number of data points used. For example, if n = 100 then k = 40, so

40% of the observations are selected, whilst if n = 10000 then k = 1585, so

15% of the observations are selected for use in generating an estimated task

execution time. L-smoothing [35] is used to make the algorithm more robust

to outliers. A fixed percentage L of the largest and smallest values of ti from

the set of k previously selected observations are deselected, which gives

y = k − 2⌊Lk⌋ (2.3)

observations. Fig. 2.1 illustrates the effect of the k-NN and L-smoothing

algorithms when selecting observations.

Given the input parameters of the next task i to be processed Xi, the

set Uj ∈ O of n previous observations for that problem on processor j,

the number k of nearest observations to select, and a percentage L for L-

smoothing, an estimated execution time ETC(·) for this task on processor j

can be calculated (see Alg. 2.1 for pseudocode of the algorithm).

The algorithm is explained as follows. First we must select the observa-

tions which will be used to generate ETC(·). The k smallest elements of Uj

are selected. L percent of the largest and smallest values of ta from the set of

k previously selected observations, are deselected. The set of y (see Eq. (2.3))
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Figure 2.1: Illustration showing observations removed from consideration by
k-NN and L-smoothing (shaded regions). The origin of the horizontal axis
represents the parameter vector whose execution time is to be estimated.
Each cross represents an observation, with the observations in the non-shaded
region being used to generate an estimated execution time. In this example
only 1 parameter (x1) is used for each observation.
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Input: Uj ∈ O - Set of n past observations on processor j
Xi - Set of input parameters to task i
k - Number of nearest neighbours to select
L - Percentage of observations to deselect
Output: ETC
foreach observation (ta, Xa) ∈ Uj do1

Calculate Euclidean distance da between Xi and Xa (see Eq. (2.4));2

Sort observations by distance;3

Select k observations with smallest distances;4

Deselect L% of observations with largest and smallest ta;5

foreach Selected observation do6

Calculate its influence in generating the estimated time ETC (see7

Eq. (2.5));
Calculate estimated time ETC from Eq. (2.6) ;8

Return ETC;9

Algorithm 2.1: Algorithm to estimate the execution time of task i on
processor j. Individual steps are explained in the text and also shown
in Fig. 2.1

remaining selected observations is called U ′

j . The Euclidean distance d, from

the input parameters Xi and Xa, is defined as

d(Xi, Xa) =

√

√

√

√

q
∑

f=1

(xi
f − X i

f)
2, (2.4)

where q is the number of parameters in X. Uj is then sorted by distance.

For notation reasons, let us order the set of parameters {X : (t, X) ∈ U ′

j}

arbitrarily as {Xj
1 , X

j
2 , . . . , X

j
y}. We define a weighting for each Xj

a that

determines its influence on the estimated execution time of task i as

wj
a(Xi) =







1 : d(Xi, X
j
a) = 0

Py

b=1
d(Xi,X

j

b
)

d(Xi,X
j
a)

: otherwise.
(2.5)
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The set of running times {t : (t, X) ∈ U ′

j} in identical order is expressed

{tj1, t
j
2 . . . , tjy}. Then the estimated execution time for task i on processor j

is defined

ETC(Xi, j) =

y
∑

a=1

tjaw
j
a(Xi). (2.6)

2.1.2 Smoothed average

If Uj = ∅ for a particular processor j an alternative estimation technique must

be employed because the k-NN algorithm requires a minimum of one obser-

vation to generate an estimate. In such cases, a benchmarking metric is used

to produce an estimate, without considering the input parameters, but by

considering the other observations in O (for other processors). Benchmarks

such as Linpack [25] and HPCC [39] can provide quite accurate information

about system resources, in the context of particular types of computation.

Linpack is used in this thesis to measure the execution rate of each processor

in millions of floating point operations per second (MFLOP/s) [25]. This is

a recognized standard used to benchmark systems for inclusion in the list of

Top 500 Supercomputers [99].

The smoothed average algorithm makes use of each task execution time in

each subset of O and which processor it relates to. Rather than estimating the

task execution time, it estimates the computational requirement of the task,

in MFLOP. The Linpack benchmark [25] is run periodically by each processor

in the system which is used to calculate an approximate computation rate

Pj of processor j in MFLOP/s. This benchmark result is sent to the server

by each processor when requesting a task and when returning a processed
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task. The server calculates a representative value Pj = ΓPj, using Eq. (2.7),

that uses the b benchmark results received from processor j up to that point.

An approximate computational requirement, in MFLOP, for task i is then

calculated from tiPj . This value is calculated for each returned task i and

then incorporated into a single smoothed average task processing requirement

Ti = ΓtP for the problem using a smoothing function which will be described

next.

For simplicity, the smoothing function strategy assumes that the gross fea-

tures of the function to be smoothed will vary slowly over time. A smoothing

function finds a single representative value for a sequence of values. As each

new value is added to the sequence, this representative value is updated. For

the first b values of a sequence of values a1, a2, . . ., this representative value

is denoted Γa
b , and defined recursively as

Γa
b = Γa

b−1 + ν(ab − Γa
b−1), (2.7)

where the smoothness of the sequence of representative values is controlled

by ν ∈ [0, 1], and where we let Γa
0 = a1. The function allows one to vary the

influence of more recent sequence values on the representative value, from

no influence (ν = 0) to complete dominance (ν = 1). This method is less

accurate than using k-NN, but can provide an estimate when less data are

available.

Using the smoothed average method ETC is defined as

ETC(i, j) =
Ti

Pj
, (2.8)
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where Ti is the most recent estimated computational requirement of task i

in MFLOP and Pj is the most recent estimated execution rate of processor

j in MFLOP/s.

If there are no observations at all for a particular problem (if each Uj = ∅),

the scheduling mechanism defaults to round robin.

Next we will present an implementation of the task execution time es-

timation algorithm. It is tested on a real-world heterogeneous distributed

system with a number of problems from the fields of bioinformatics, biomed-

ical engineering and cryptography.

2.2 Heterogeneous Distributed System

A general purpose programmable Java distributed system, which utilizes

the free resources of a heterogeneous set of computers linked together by

a network, has been developed Keane et al.. [46] and extended by Page

et al. [74, 75] . The system has been successfully deployed on over 800

computers, which were distributed over a number of locations, and has been

successfully used to process bioinformatics [47, 48, 49, 50, 79], biomedical

engineering [78], and digital holography [76] applications. Live statistics can

be found at http://distributed.cs.nuim.ie.

The distributed system consists of 3 JAR files, a client, a server and a

remote interface (see Fig. 2.2). A problem can be created for the system

simply by extending 2 classes. The Algorithm class is run on the client

and specifies the actual computation to be performed. We use a one-to-one

mapping between a processor and a client in this chapter. The DataManager
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Additional Classes

Problem

Problem Data

DataManager

Algorithm

DataManager DataManager …..

Queue Scheduler

Communications Logs Security

Server

Cache

Client

Problem Processor

Security

Communications

Results

Remote Interface

Communications

Security

Actions

Results

Results

User

Results

Figure 2.2: The major components of the Java Heterogeneous Distributed
System.

class is run on the server and specifies how the problem is broken up into

tasks and how the processed results are recombined.

The distributed system provides a simple scheduling interface, which al-

lows the administrator of the system to select a scheduling algorithm using

the remote interface. To create a new scheduler, a programmer only needs

to extend the SchedulerCommon API and implement a single method called

generateSchedule. This method simply takes in a list of tasks and maps

them to processors. The system defaults to the simplest scheduler, round

robin, although a number of more complicated scheduling mechanisms are

available [75, 80, 82, 83].
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2.3 Set of problems

A representative set of heterogeneous tasks for scheduling on a heterogeneous

distributed system is an open problem [98]. To test Alg. 2.1 we have created

a set of real-world problems from the fields of bioinformatics, biomedical

engineering and cryptography. The problems are all easily parallelizable.

Some problems are staged computations (DSEARCH and ElGamal) which

requires all tasks from the current stage to be processed before processing

can begin on the next stage, while the rest are have only a single stage.

The mean processing-to-communication ratio (P-to-C ratio or CCR) is also

different for each problem (see Table. 2.1), as is the amount of actual input

and output data. Fig. 2.3 shows the P-to-C ratio after all problems have

been processed. It forms a distribution with multiple uneven peaks, which is

a non-trivial set of tasks to schedule. The processing time of the tasks (see

Fig. 2.4) is heterogeneous, with large outliers, up to over 1000 seconds. Most

of these problems can be efficiently executed individually on homogeneous

distributed systems, thus we wish replicate this efficiency level when multiple

problems are simultaneously scheduled on a heterogeneous set of processors.

We will now look at each of the problems used to these the schedulers.

2.3.1 DSEARCH

The first problem is from the field of bioinformatics. Database searching for

similar genomic sequences is one of the fundamental tasks in bioinformatics,

but it is an NP-complete problem [9]. The DSEARCH application [79] per-

forms a deterministic database search and significantly reduces the runtime
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Figure 2.3: Histogram of the processing-to-communication (P-to-C) ratio of
the tasks in the test set of problems. The number of tasks for each problem
is given in Tab. 2.1.
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Figure 2.4: Histogram of the processing time of tasks in the set of problems
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SLTT 12.4 519.81 41.92 143 Chap. 2.3.4
DSEARCH 14.0 731.99 52.05 612 Chap. 2.3.1
MD5 14.4 235.52 16.36 800 Chap. 2.3.2
SHA1 64.5 543.02 8.42 900 Chap. 2.3.2
ElGamal 29.2 419.96 14.34 406 Chap. 2.3.2
TSP 9.5 353.72 37.04 121 Chap. 2.3.3

Table 2.1: Comparison of problem properties.

of large searches by using multiple processors. It requires the transmission of

large amounts of genomic data when performing a search. Figure 2.5 shows

how DSEARCH scales with up to 83 homogeneous of processors. Speedup

refers to how much a parallel algorithm is faster than a corresponding sequen-

tial algorithm, and is the execution time of the sequential algorithm divided

by the execution time of the parallel algorithm. Linear speedup indicates

a 100% efficent parallelisation, with any sub-linear speedup indicating less

than 100% efficiency, which is the normal case.

2.3.2 Cryptography

Three distributed cryptography applications have been developed. These

are all very computationally intensive, each testing the strength of differ-
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Figure 2.5: Speedup achieved by DSEARCH using up to 83 homogeneous
Pentium III 1GHz processors.

ent cryptography algorithms. The first two test the strength of passwords

hashed using the MD5 [65] and SHA1 [89] algorithms by using a brute force

birthday attack [88]. A set of 2000 hashed passwords is sent to each client

processor. Passwords are randomly generated, passed through the hashing

function, and compared to the list of hashed passwords. Any matches are

noted and returned to the server. Hashing passwords using these algorithms

is a common practice in many applications, especially in on-line software.

This method is however vulnerable to attack, due to the human desire for

easy to remember passwords, which are quickly typed. This limits the total

key space to such an extent, that it is computationally feasible to brute force
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passwords.

The final cryptography application tests the strength of keys produced

for the ElGamal [27] encryption scheme using the Pollard Rho method [85].

ElGamal is a public/private key encryption scheme based on the discrete log

problem. We randomly generated public and private keys using the ElGamal

encryption scheme. The public key was then distributed to 90 heterogeneous

processors, where each performed a random walk [97], to attempt to find the

private key. This was repeated 3345 times with a 64-bit ElGamal private

keys. The time taken to find each private key was recorded and a frequency

distribution was created, as can be seen in Fig 2.6. The time to break n-bit

keys forms a Gaussian distribution.

2.3.3 Travelling Salesman Problem

A bruteforce distributed travelling salesman optimization application was

created. It is a classic NP-hard problem. Given a graph of 14 cities, with

weighted edges between cities, the goal was to perform a tour of all cities,

with the shortest total path. Every possible permutation is checked by the

application, to deterministically find the optimal tour. Each task is homo-

geneous, thus even the most trivial schedulers should be able to get near

optimal speedup, when run on a homogeneous set of processing resources.

The average speedup for this application using 86 homogeneous 600MHz

Pentium III processors was 95.6% as shown in Fig. 2.7. This application is

has a high computation to communication ratio.
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Figure 2.6: Histogram of time taken to break 3345 64-bit ElGamal private
keys using 90 homogeneous Pentium III 600MHz processors.

2.3.4 Simulation of Light Transportation in Tissue

We have developed a distributed Monte Carlo simulation which models the

propagation of light through tissue. It will allow for improved calibration

of medical imaging devices for investigating tissue oxygenation in the white

matter of the cerebral cortex. On a single processor these simulations would

take an inordinate amount of time, limiting the potential usefulness of the

model. To address this limitation we have developed a distributed application

which allows for, in theory, an unbounded number of processors to perform
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Figure 2.7: Speedup achieved for a bruteforce travelling salesman optimiza-
tion application, using up to 86 homogeneous processors.

simulations in parallel. The application has been shown to achieve 97%

efficiency when running on 60 homogeneous PCs (see Fig. 2.8).

A model of the different layers of tissue in and around the brain has

been created. Fig. 2.9 shows the results of this simulation. We found that

the source illumination footprint has an effect on the distribution of photons

in the head and that lasers do produce a small, detectable beam in a highly

scattering medium. The ability to model the statistics and distribution of the

photon paths, which reach the white matter tissue of the human brain, allows

for more accurate calibration of the imaging experiments, which previously
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Figure 2.8: Speedup graph, with up to 60 homogeneous Pentium IVs with
512MB RAM, for the distributed Monte Carlo simulation.
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Figure 2.9: Simulated paths taken by photons with layers of human brain
tissue. A near infra red source emits photons, which are detected by a senor
2cm away.

relied on trial and error. This research is part of a Brain Computer Interfacing

(BCI) project. Further details about this application can be found in [78].

2.4 Experiments

We implemented and tested Alg. 2.1 on a real-world heterogeneous dis-

tributed system [46] with 90 PCs (Tab. 2.2). Two sets of processors where

used, with 45 processors in each. The processors computational resources,

measured in MFLOP/s, varied by up to 10%, due to slightly differing hard-
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No. Proc MFLOP/s RAM (MB) Bandwidth (Mb/s) Processor
45 28-31 256 100 P3 600MHz
45 180-200 1024 100 P4 D820

Table 2.2: Client resources of a heterogeneous distributed system with 90
processors.

ware and software configurations. Machines with more RAM have the ability

to store more intermediate data in memory, whereas an insufficient amount

of RAM may lead to data being stored on the hard disk, which attracts a

significant time penalty. All resources were non-dedicated, running Linux,

and were connected by a 100 Mb/s network. The clients are connected to

a dedicated server running Linux on a 3GHz P4 with 1GB of RAM. We

used a single core on the Intel P4 D820 processors running a 32-bit version

of Linux. This setup will be used for the experiments described in the next

section.

2.4.1 Estimating system resources

Estimating the system resources and task execution times is difficult and

error-prone. By accurately predicting the error in the estimation of these

values, we can make better mapping decisions. We can also be more confident

that the predicted makespan more accurately reflects the actual makespan.

The estimation of the systems processing resources is prone to error due

to the dynamic nature of these non-dedicated resources. Fig. 2.10 shows that

the predicted estimation error more closely tracks the actual estimation error

of computational resources, as time progresses. The actual estimation error of

processing resources is low overall. This is measured by periodically running
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Figure 2.10: Predicted computational estimation error and actual computa-
tional estimation error over time

the Linpack benchmark on a 500 × 500 matrix. The processing resources

used for these experiments do not vary greatly, because the processors are idle

for most of the time. Thus the estimation error for the processing resources

of the system never exceeds 1%. The estimation error for the communication

times is also consistantly low, in the region of 1% due to the homogeneous

nature of the communication resources used in this experimental setup, as

detailed in Tab. 2.2.

2.4.2 Estimating task execution times

We look at the effect of estimating the task execution time using the smoothed

estimate and a k-NN, and compare the results to the actual task execution
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Figure 2.11: The absolute percentage error between the actual processing
time of a task and the estimated processing time of a task over time, using
a simple average of past task execution times, a smoothing estimate and a
k-NN estimate. A log scale is used because the absolute values, between each
plot, are quite large. The lowest point on the y-axis is 10−2%.

times. Fig. 2.11 shows that as time progresses the error between the es-

timated execution time and actual execution time decreases for both the

smoothed estimate and the k-NN estimate, but the k-NN estimate is ap-

proximately 10 times less error-prone that the smoothed estimate. As more

observations are available to the k-NN algorithm, the error decreases, as can

be seen in Fig. 2.12, which explains the continuous decrease in error from

Fig. 2.11. Taking a simple average of all past task execution times to estimate

future task execution times results in a high estimation error.
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Figure 2.12: Absolute percentage error between estimated task execution
time and k-NN estimate versus the number of observations used to generate
the estimate. Each observation corresponds to a previously processed task.
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Figure 2.13: Predicted task estimation error and actual task estimation error
over time, with absolute values shown.

In Fig. 2.13 the predicted and actual estimated task execution time error

both approximately linearly decrease over time, with the prediction improv-

ing consistently over time. The error is still large, in the region of 50%, but

this allows us to place a reasonable bound on the estimation error present

in our estimations of the task execution times. This information aids the

scheduling algorithm, providing an average upper bounds on the accuracy of

the estimated task execution times.

An estimated communication to computation ratio (CCR) error can be

generated for a task, once an estimation error is available for the task exe-

cution time and the processing resources. Fig. 2.14 shows that the average
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Figure 2.14: Absolute error between estimated CCR and the actual CCR of
the tasks over time

estimated error of the CCR reduces over time.

2.5 Conclusion

In this chapter we have shown that non-linear task execution time distri-

butions can be modelled using a k-NN algorithm combined with analytical

benchmarking. The algorithm has been tested in a real-world, non-dedicated

heterogeneous distributed system, with a diverse set of real-world problems

from the fields of bioinformatics, biomedical engineering and cryptography.

The estimates from the algorithm improve over time. This gives more accu-
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rate information to use with a scheduling algorithm.

In the next 2 chapters we present 2 new scheduling heuristics which can

adapt to the dynamic nature of a real-world heterogeneous distributed sys-

tem, building on the work presented in this chapter. When there is an

unknown amount of dynamism, a task allocation problem is not contained in

NP (see Appendix B). In real-world heterogeneous distributed systems, the

amount of dynamism is unknown, thus we cannot linearly transform efficient

NP solvers.
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Chapter 3

Task allocation using Genetic

Algorithms

Parts of this chapter have also been published in the following articles [82, 83].

In this chapter we present a multi-heuristic evolutionary task allocation

algorithm to dynamically map tasks to processors in a heterogeneous dis-

tributed system. It utilizes a genetic algorithm, combined with eight com-

mon heuristics, in an effort to minimize the total execution time. It operates

on batches of unmapped tasks and can pre-emptively remap tasks to pro-

cessors. The algorithm has been implemented on a Java distributed system

and evaluated with a set of six problems from the areas of bioinformatics,

biomedical engineering, computer science and cryptography. Experiments

using up to 150 heterogeneous processors show that the algorithm achieves

better efficiency than other state-of-the-art heuristic algorithms.
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3.1 Introduction

Many heuristic algorithms exist for the task allocation problem, but most

are limited to specific cases [45]. The use of evolutionary algorithms in

scheduling, that apply evolutionary strategies from nature, allows for the

fast exploration of the search space of possible schedules. This allows for

good solutions to be found quickly and for the scheduler to be applied to

more general problems. The genetic algorithm (GA) [37] evolutionary strat-

egy has been shown to consistently generate more efficient solutions than

other evolutionary strategies when applied to scheduling in heterogeneous

distributed systems [10].

Many researchers have investigated the use of GAs to schedule tasks in

homogeneous [38, 107] and heterogeneous [1, 10, 61, 98, 106] multi-processor

systems with some success. However, the generality of these solutions are

often reduced because of the assumptions made; i) calculating schedules off-

line in advance [1, 10, 38, 98, 106], ii) a priori knowledge of communication

times and task processing times [1, 10, 38, 98, 106], iii) instantaneous message

passing [107], iv.) all processors are homogeneous [38, 107], and are dedicated

to the distributed system [1, 38, 45, 90, 98, 105, 106, 107, 108]. All of these

assumptions limit the applicability of a scheduler in a real-world distributed

system. It is our belief that if a scheduler is to be made applicable to real-

world distributed computing environments and problems, then it should not

make any prior assumptions about resource homogeneity or availability.

In this chapter a scheduling strategy is presented that uses a GA to sched-

ule a set of heterogeneous tasks on to a set of heterogeneous processors in an
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effort to minimize the total execution time. It operates dynamically, allowing

for tasks to arrive for processing continuously, and considers variable system

resources, which has not been considered by other dynamic GA schedulers.

To allow for efficient schedules to be produced quickly, the scheduler utilizes

8 heuristics, reducing the probability of processors becoming idle while wait-

ing for a schedule to be generated. The scheduler has been implemented on

a real-world distributed system and tested on 150 non-dedicated heteroge-

neous processors, with a variety of real-world problems from bioinformatics,

biomedical engineering, computer science and cryptography.

3.2 Genetic Algorithm

We have created an algorithm which can adapt to varying resource environ-

ments utilizing a multi-heuristic GA (see Alg. 3.1), based on the homogeneous

dynamic load-balancing algorithm in [107]. We wish to schedule an unknown

number of tasks for processing on a distributed system with a minimal total

execution time, otherwise known as makespan.

43



Input: Set of tasks and processors

Output: Mapping of tasks to processors

foreach heuristic do1

generate schedule ;2

3

while population not full do4

copy and mutate heuristic schedules ;5

6

repeat7

cycle crossover ;8

random mutations ;9

rebalance ;10

roulette wheel selection ;11

save best schedule (elitism) ;12

update mutation rate ;13

until stopping conditions met ;14

return schedule with shortest makespan15

Algorithm 3.1: Pseudocode for genetic algorithm. We refer to this

algorithm as PN in the text.

The set of processors of the distributed system is heterogeneous. The

available network resources between processors in the distributed system can

vary over time. The availability of each processor can vary over time (proces-

sors are non-dedicated). Tasks are indivisible, independent of all other tasks,

arrive randomly, and can be processed by any processor in the distributed
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system.

When tasks arrive they are placed in a queue of unscheduled tasks.

Batches of tasks from this queue are scheduled on processors during each

invocation of the scheduler. The queue of unscheduled tasks can contain a

large number of tasks. If all of these tasks where to be scheduled at once, the

scheduler could take a long time to find an efficient schedule. To reduce the

execution time of the scheduler and reduce the chance of processors becom-

ing idle, we only consider a subset of the unscheduled tasks, which we call a

batch. A larger batch will usually result in a more efficient schedule [107], but

will incur a longer running time. To do this we dynamically set the batch size

according to the estimated amount of time until the first processor becomes

idle.

Each idle processor in the system requests a task to process from the

scheduler, which it processes and returns. The scheduler contains a queue

of future tasks for each processor, and when a request for work is received

the task at the head of the corresponding queue is sent for processing. A

processor does not contain a queue of tasks; because network resources are

limited and processing resources are not dedicated. We also wish to avoid

repeatedly issuing the same task multiple times, e.g., when a machine is

switched off.

3.2.1 Encoding

Each schedule is encoded as a string of characters, using the same analogy as

the encoding of DNA in nature. A single solution is referred to as a chromo-
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Figure 3.1: Encoding of a schedule within the GA, with −1 delimiting pro-
cessors queues. Each number corresponds to a unique task ID, thus allowing
for a mapping of tasks to processors.

some, and a set of multiple possible solutions is referred to as a population.

Fig. 3.1 shows the encoding used within the GA. Each number represents

a unique task identifier, with −1 being used to delimit different processor

queues. This encoding allows for the execution order of tasks to be defined

on each processor, which allows for precedence constraints (not covered in

this research). If the execution order of tasks was not required to be de-

fined, a simpler encoding can be used, where the index of each character

corresponds to a task, and the character itself corresponds to a processor.

3.2.2 Fitness Function

A fitness function attaches a value to each chromosome in the population,

which indicates the quality of the schedule. It comes from the evolutionary

principle of ‘survival of the fittest’, where the organisms with the best char-

acteristics for their environment have a better chance of surviving to the next

generation than weaker organisms, which are less adapted to their environ-

ment. We use a localized makespan to delineate fitness. Simply taking the

makespan of a solution only considers the total execution time, however a well

balanced load distribution is also a desirable property, which will also lead to

a lower makespan. Thus we have developed a fitness function which utilizes

both. The localized makespan looks at when each processor will become idle
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next, and adds on the time to process each task in the proposed schedule.

The processors with the largest and smallest processing times are then iden-

tified. If these times are the same, it indicates a perfectly balanced schedule.

As the difference becomes greater, so does the load imbalance, which also ef-

fects the efficiency of the resource utilization. The localized makespan of the

y-th batch of tasks is Lx = maxm
j=1(

∑ny

i=1 Aj
i + Bj

i ) − minm
j=1(

∑ny

i=1 Aj
i + Bj

i )

where ny is all of the tasks, up to and including the y-th batch of tasks, A

is the processing time of a task, B is the communication overhead of the

task, and x is a schedule from the population. All of the other variables are

previously defined in Chap. 2.1. The fitness value of chromosome x is

Fx =







1 : Lx = 0

1/Lx : otherwise,

and Fx = [0, 1]. A larger value indicates a better or fitter schedule.

3.2.3 Multiple heuristics

We use eight simple heuristics to create an initial population within the

GA scheduler. The remainder of the population is generated using random

permutations of these heuristics. The use of multiple heuristics in our initial

population provides the GA with reasonable starting solutions, compared

to starting with a completely randomly generated initial population. By

employing elitism, the GA will always produce a solution which is equal to,

or better than, the best heuristic solution in the initial population, because

the best/fittest solution is always brought forward to the next generation.
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The eight heuristics operate on batches of tasks, and each is presented

with the same set of tasks. They are also all presented with estimated task

execution times, estimated communication overheads, and execution rates of

the processors in MFLOP. We will now present each of these heuristics.

The max-min (MX) heuristic begins with a set of unmapped tasks. The

execution time of each task on each processor is added to an ETC matrix.

For each task, the processor which will compute it with the minimum amount

of time is selected and added to a set. The task-processor mapping with the

largest completion time in this set is selected. This task is then assigned to

the processors queue, and removed from the set of unmapped tasks. This

process is repeated until all tasks are mapped to a processor. The MX

heuristic attempts to schedule the longest running tasks as early as possible,

to processors which will process the tasks as fast as possible. Tasks with

shorter execution times can then be mixed with the longer running tasks

resulting in an overall move evenly balanced load across the processors and

a better makespan. The complexity is Θ(N2), where N is the number of

unmapped tasks and M is the number of processors.

The min-min (MM) scheduler [40] is similar to the MX heuristic, except

that after the set of minimum completion times is found, the task with the

overall minimum completion time is assigned to the corresponding processor.

MM increases the probability that more tasks will get to execute on their first

preference processor than with MX [61].

The max lightest loaded (LLX) heuristic scheduler considers the exist-

ing load on processors and the estimated MFLOP of the tasks. The set of
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unmapped tasks is sorted in descending order according to their estimated

size. The task with the largest computational requirement (in MFLOP) is

then assigned to the lightest loaded processor. This is repeated until all tasks

have been mapped to processors. LLX does not consider the time a task will

take to execute on a given processor. It instead aims to put large tasks on

lightly loaded processors, and small tasks on heavily loaded processors. If

the estimated processing time of tasks has a high error, this heuristic will

still provide a reasonably distributed load compared to MX and MM.

The min lightest loaded (LLM) heuristic scheduler operates in the same

way as LLX, except the computational requirements of the tasks are sorted

in ascending order. It attempts to schedule the smallest tasks first to increase

the throughput of tasks.

Each of the heuristics above, MX, MM, LLX, and LLM assume there is no

network overhead for scheduling a task on a processor. Where the processing

to communication (P-to-C) ratio is very high, the network overhead may be

negligible, but when it is low, or when their is limited network resources,

the communications overhead must be considered for scheduling a task on a

processor.

A variant of each of the above heuristics, MXC, MMC, LLXC and LLMC

estimates the communication cost of mapping tasks to processors. Com-

munication costs are estimated using the k-NN algorithm as described in

Chap. 2.1.

Each heuristic is suited to different situations. MX performs well when

there are more large tasks than small tasks, with MM performing better in
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the opposite situation [61]. LLX and LLM are ideal heuristics for the situa-

tion where the size of tasks to be processed is not known, or the estimated

processing time has high error. The variations of all the heuristics, which

estimate communication costs, allows for efficient schedules to be produced

in systems with high communications costs, such as massively distributed

systems.

3.2.4 Crossover

The evolutionary phase of the GA is governed by the cycle crossover method

[72]. Two parent (A and B) strings are randomly selected from the popula-

tion. Index x1 is randomly chosen. Ax1
and Bx1

are marked as having been

visited. The value contained in Bx1
is noted. This value is then searched

for in A and the index of this value is denoted as x2. Ax2
and Bx2

are then

marked as having been visited, and the value in Bx2
is searched for in A. This

continues until an index in A is visited twice. A cycle has now been found.

All indices visited are then crossed over to produce 2 new child strings. This

ensures that the child strings generated are valid, e.g. only 1 task may be

scheduled to 1 processor at any time. Since both parents contain the exact

same character, just in a different order, a cycle will always be found.

3.2.5 Mutation

Two types of mutation are employed by the GA, one randomly swaps el-

ements of chromosomes in the population, and the other is a rebalancing

heuristic. Random mutations are an essential part of a GA, perturbing the
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population to allow for new areas in the solution space to be searched. Every

generation a percentage of elements in the population is randomly mutated.

If the improvement in the makespan has not improved after 10 generations,

the mutation rate is increased. Once the makespan begins to improve again

the mutation rate is reduced. This reduces the probability of the GA getting

stuck in a local minimum.

The other mutation operation utilizes a rebalancing heuristic to reduce

the makespan. It achieves this by attempting to more evenly distribute the

load on processors, by swapping tasks from heavily loaded processors on to

lightly loaded processors. It has an average case complexity of Θ(M + N),

where M is the number of processors, and N is the number of tasks. The

solution generated by the heuristic will be discarded if it is worse than the

starting solution, thus ensuring that the heuristic will only have a positive

effect on the makespan.

3.2.6 Selection

The selection technique is based on the roulette wheel method [38, 90, 107].

The probability of a string going forward to the next generation is represented

as a proportional sized slot on the roulette wheel, with a range from 0 to

1. Random numbers from 0 to 1 are then generated. The string which

corresponds to the randomly selected slot is brought forward to the next

generation. Since fitter strings have larger slots, they are more likely to

be brought forward to the next generation. This process continues until a

sufficient number of strings are selected.
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3.2.7 Stopping conditions

When the stopping conditions are met, the evolution of the population will

halt. This is to prevent the GA from running forever. Since this scheduler is

intended for use in an on-line distributed system, it must produce schedules in

a reasonable amount of time. Thus we use two stopping conditions: 1.) there

is an upper bound on the maximum number of generations, to guarantee

evolution will halt and 2.) if the makespan of the best solution has not

changed after a set number of generations, then the GA will stop.

The GA algorithm described in this chapter contains research which was

done over an extended period of time. Thus there are 2 slightly different

algorithms used, which corresponds to different paper submissions over time.

The first GA algorithm is enhanced by a single list scheduling heuristic (EF).

This is evaluated with simulated sets of tasks and simulated configurations of

distributed systems. The GA algorithm was then extended to utilize multiple

scheduling heuristics, and is evaluated with a real-world set of problems on a

real distributed system. We will present both sets of results in the following

sections.

3.3 GA simulations

We have performed simulations using a GA scheduler, with a single list

scheduling heuristic, presented in this chapter with simulated task distri-

butions. A single heuristic was used to generate the initial population with

up to 50 heterogeneous processors, and up to 10,000 randomly generated
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heterogeneous tasks. Each experiment was repeated 50 times and an average

result was calculated for each point on the resulting graphs.

A number of different experiments have been performed to demonstrate

the effectiveness of the scheduling algorithm with varying communicating

costs. We compare our scheduler to six other schedulers, and evaluate the

results using two different, but related metrics, makespan and efficiency. An

alternative method of evaluating evolutionary schedulers is to generate all

possible solutions in advance and compare them to the solutions produced

by the evolutionary algorithm [70]. The computationally intensive nature of

this method makes it infeasible for the problem described in this chapter.

Determining a representative set of heterogeneous computing task bench-

marks is an open problem as noted by Theys et al. [98]. Thus the task sizes

are randomly generated using, uniform, normal, and Poisson distributions.

By using different random distributions, which are commonly found in the

real world, we can demonstrate the flexibility of our scheduling algorithm.

For these experiments we will vary the communication costs and the task

sizes.

3.3.1 Other scheduling algorithms

The performance of the PN scheduler has been compared to the performance

of a number of different schedulers. Theses schedulers are the most com-

monly used schedulers in distributed computing (see Table 3.1). The earliest

first (EF) scheduler [58] is an immediate mode heuristic scheduler. It sched-

ules tasks on the processor which will finish processing earliest. The light-
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Type Key Name Ref.

Immediate
RR Round Robin
EF Earliest First [58]
LL Lightest Loaded

Batch
MM Min-Min [40]
MX Max-Min [40]

Evolutionary

SA Simulated Annealing [51]
ZO Genetic Algorithm [107]
TA Tabu search [30]
PN This chapter Alg. 3.1

Table 3.1: Taxonomy of schedulers.

est loaded (LL) scheduler is also an immediate mode scheduler, scheduling

tasks on the most lightly loaded processors, without regard for the process-

ing time of the task. MX is a batch scheduler which attempts to schedule

the largest tasks first, and MM is the opposite, scheduling the smallest tasks

first. We compare PN to three other evolutionary schedulers. A simulated

annealing (SA) [51] based scheduler was created using the open source li-

brary Jannealer [43]. A tabu search (TA) based scheduler was created using

OpenTS [73]. A GA scheduler (ZO) developed by Zomaya et al. [107] is used

for comparison purposes.

The scheduling algorithms are of varying complexity (see Table 3.7), from

the least complex, round robin (RR), to the most complex evolutionary algo-

rithms. These schedulers represent the most commonly used heuristics and

the state-of-the-art evolutionary schedulers.

54



3.3.2 Setup

We simulated the performance of our scheduler against the performance of

six other schedulers EF, LL, RR, MX, MM, and ZO for these experiments.

All of the tasks arrived for scheduling at the beginning of the simulation.

We mapped up to 10,000 heterogeneous tasks on to 50 heterogeneous

processors. For these experiments each processor was assumed to have a

fixed execution rate, measured in MFLOP/s. The aim of these experiments

is to show that predicting the communication costs in advance will improve

the overall efficiency and reduce the makespan, compared to heuristics which

adapt to communication costs after they have occurred. All schedulers were

presented with the same set of tasks for scheduling and all schedulers have

the same information available to them.

We have decided to use a population size of 20, which is known as a

micro GA [12] and used in [33, 107, 108], which speeds up computation time

without impacting greatly on the final result.

3.3.3 Rebalancing heuristic

Fig. 3.2 shows the average percentage decrease in makespan after each gen-

eration of the GA, with points taken after every generation (1000 points

in total). Each point on the graph is an average of 50 simulations, when

scheduling 10,000 tasks which are normally distributed with a mean of 1000

MFLOP and a batch size of 500. The tasks are scheduled onto 50 heteroge-

neous processors with processing rates of between 30 and 150 MFLOP/s Each

simulation used a different set of tasks. The largest reductions in makespan
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Figure 3.2: Average of 50 simulations of the reduction in makespan after
each generation of the GA, where the initial makespan is 1. A set of 10,000
normally distributed tasks was used.
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Figure 3.3: Time taken to schedule 10,000 tasks with varying numbers of
rebalances in every generation of the GA.
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occur in the first 100 generations, after that the reductions begin to level

out, requiring larger numbers of generations, with little improvement. The

rebalancing heuristic minimizes the makespan further than a pure GA, with

50 rebalances per chromosome in the population per generation, resulting

in the makespan being reduced to only 65% of its original value after 1000

generations. A single rebalance reduces the makespan to approximately 70%

whilst no rebalancing (pure GA) reduces to 75%.

These rebalances do have an associated additional cost in terms of time.

Fig. 3.3 shows the time taken to run a GA for 1000 generations with varying

numbers of rebalances, when run on a 1.4 MHz P4. Once again we randomly

generate sets of tasks 10,000 tasks, normally distributed with a mean of

10,000 MFLOP and a batch size of 500. It increases the time taken by

approximately a constant factor. We have decided to only perform a single

rebalancing at each generation to enable the algorithm to run quickly, but

this combination of heuristic and evolutionary techniques gives rise to a more

efficient scheduler.

3.3.4 Normal distribution of tasks

Fig. 3.4 shows the efficiency of the seven different scheduling algorithms when

the task sizes are normally distributed, with varying communication over-

heads. We used a batch size of 200 with 1000 tasks to be scheduled which

were randomly generated at the beginning of each scheduling simulation with

each point on the graph consisting of an average of 20 complete schedules.

Fig. 3.4 consists of the efficiency of 2000 complete schedules with varying
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Figure 3.4: Efficiency of schedulers with a normal distribution of task sizes
and varying communication costs, where PN is the scheduler presented in this
chapter. An efficiency of 1 indicates 100% utilization of processing resources.
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communications costs, and all other variables kept fixed. The task sizes

were generated with a standard deviation of 1000 MFLOP and a variance of

9×105 MFLOP. The horizontal axis in Figs. 3.4 is the mean communication

cost for all communication links between all clients and the scheduler. Its

is an inverse of the mean communication cost for all links. Each communi-

cations link has its own randomly generated mean cost, which is normally

distributed. Beginning with a very high communication overhead, all sched-

ulers perform poorly, which is to be expect. As the communication overhead

reduces, the ability of the different schedulers to efficiently manage the com-

munication costs becomes apparent. The simple RR algorithm performs very

poorly, because it makes no effort to balance the load on different processors,

or to consider the communication links. The ZO algorithm is best suited to

homogeneous sets of processors. The list scheduling heuristics, EF and LL,

have the next best efficiencies, but since they only consider a single task at a

time when scheduling, they cannot look far enough forward to better utilize

the processing resources. The batch scheduling heuristics and PN perform

the best overall. They can take a set of tasks, and have the versatility to

choose schedule any task from that set, resulting in a more efficient schedule.

Fig. 3.4 shows that our scheduler (PN) gives the best processor efficiency

overall. It is best able to manage the communication overhead. Table 3.2

contains the makespan for the algorithm, with a varying batch size and shows

that PN out performs all the other schedulers in terms of total execution time

with a makespan of 4083 seconds.
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Poisson Uniform Normal
Schedulers 10 100 [10:100] [10:10000] 1000
EF 6145 10993 2316 5607 4946
LL 7282 10820 2588 8194 6049
RR 9497 12773 2990 9760 9812
ZO 6152 9361 1869 6679 7189
PN 3784 6884 1565 4318 4083
MM 5275 7425 1576 5451 5102
MX 7123 7826 1795 4875 4906

Table 3.2: Makespan when task sizes have: 1.) a Poisson distribution with
a mean of 10 and 100 MFLOP, 2.) a uniform distribution of [10:100] and
[10:10000] and 3.) a normal distribution with a standard deviation of 1000
MFLOP and a variance of 9 × 105 MFLOP.

3.3.5 Uniform distribution of tasks

Fig. 3.5 shows the efficiency of the seven different schedulers with varying

communication costs. The task sizes were uniformly distributed between 10

and 1000 MFLOP. The two meta-heuristic schedulers (PN and ZO) clearly

provide more efficient schedules compared to the more simple heuristic sched-

ulers. This occurs because the meta-heuristic schedulers have the ability to

explore a wider search space than the other heuristic schedulers. We have

also varied the range of task sizes noting the makespan in each case. When

the task sizes vary from 10 to 100 MFLOP/s (as shown in Table 3.2) many of

the schedulers provide similarly efficient schedules. This is because the ratio

of the smallest to the largest task is only 1:10. As the set of tasks becomes

more equal, the efficiency of most of the schedulers should improve. We see

that the task sizes are distributed over a wider rang of 10 to 10000 MFLOP/s,

the differences between the various schedulers become more accentuated, as
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Figure 3.5: Efficiency of schedulers where task sizes are uniformly distributed
between 10 and 1000 MFLOP, and varying communication costs, where PN
is the scheduler presented in this chapter. An efficiency of 1 indicates 100%
utilization of processing resources.

can be seen in Table 3.2.

3.3.6 Poisson distribution of tasks

We have randomly generated sets of tasks using a Poisson distribution and

varied the mean. In Table 3.2 where the mean is 10 MFLOP, we can see that

PN performs the best followed by MM, whilst MX performs quite badly, when

the mean is small. When the mean is increased to 100 MFLOP (see Table 3.2)

the batch schedulers all perform well, whilst the immediate mode schedulers
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Figure 3.6: Efficiency of schedulers with a Poisson distribution of task sizes
and varying communication costs, where PN is the scheduler presented in this
chapter. An efficiency of 1 indicates 100% utilization of processing resources.

do not perform as well. Fig. 3.6 shows the efficiency of all of the schedulers.

The PN scheduler most efficiently schedules tasks for different communication

overheads, with EF, LL, MM, and MX performing reasonably efficiently.

This is due to the more homogeneous nature of the task size distribution,

in comparison to the other distributions, e.g. the Poisson distribution has a

high initial peak and a long tail.
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3.3.7 Analysis

The scheduler works very well with simulated sets of tasks with the 3 most

common distributions. It consistently produces low makespans and high

levels of efficiency, compared to other schedulers. The simplest scheduler

RR, which is very commonly used in practice, performs the worst in all

cases, because it makes no attempt to utilize any available information about

the state of the system or the size of the tasks, when mapping tasks to

processors. The batch schedulers perform reasonably well in some cases, due

to their ability to choose from a set of of tasks when making a scheduling

decision. The list scheduling heuristics have variable performance, which

entirely depends on the distribution of the task sizes, but can perform well

if in certain cases. The ability of the ZO algorithm to adapt to different

task size distributions leads to a more consistent and predictable level of

performance, and thus is more reliable for an unknown task size distribution

than the simple heuristics.

Simulations do not contain the complexities found in real-world systems.

Thus, the performance of schedulers in sterile simulations does not directly

translate to real-world systems. We address this deficit by using a real-world

distributed system for performance evaluation.

3.4 Experiments

For the experiments described in this section, we primarily used the 3 ex-

perimental setups in Table 3.3, run on a heterogeneous Java distributed sys-
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A High

91 28-31 256 Linux P3 600MHz
50 190-229 512 Linux P4 2.4GHz
4 15 192 Linux P2 266MHz
1 154 1024 Windows Centrino 1.4GHz
1 25 512 Linux P3 500 MHz
1 37 256 Linux P3 1GHz
1 72 256 Linux P4 1.7GHz
1 91 1024 FreeBSD AMD 2400+XP

B Low
45 28-31 256 Linux P3 600MHz
45 180-200 1024 Linux P4 D820

C Homogeneous 45 180-200 1024 Linux P4 D820

Table 3.3: Client resources of different experimental setups.

tem [46]. The first and simplest setup is a homogeneous set of processors,

which we use as a base case for our experiments. This allows schedulers

which favour a homogeneous set of processors to excel. The next setup is

a set of processors with 2 homogeneous sets of processors. Both of theses

setups used a 100Mbps network. Finally, we used a set of processor with

high heterogeneity and with a heterogeneous network which was spread over

3 different LANs and ranged from 10-100Mbps. We had non-dedicated usage

of these processors, and the actual available processing and network resources

varied stochastically over time. All experiments were performed at off-peak

times to minimize the effect of these variations. All the clients connected to

a dedicated server running Linux (Fedora Core 4) on a 3GHz P4 with 1GB

of RAM.
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3.4.1 GA experiments

Parameters used within a GA, such as the number of generations, mutation

rate and chromosome length, can effect the running time and quality of

results generated by the GA. We will investigate the effect varying these can

have on the scheduling algorithm.

The execution time of the scheduler increases approximately linearly with

an increase in the number of chromosomes. This can be seen in Fig. 3.7, where

we varied the chromosome length and measured the execution time of the

GA. We fixed the number of generations at 500 and ignored all other stopping

conditions. The execution time of a given chromosome length varies, due to

the stochastic nature of overheads in a real-world distributed system, but

the majority of times fall into a tight linear range. The tasks used in the

experiment are described in Table 2.1. The scheduler produces schedules for

large numbers of tasks and processors quickly, for example, the GA scheduler

can schedule a batch of 170 tasks in under 1 second.

We then repeated the experiment allowing variable numbers of genera-

tions and a variable mutation rate, where the stopping conditions dictate

the number of generations to be run. Fig. 3.8 shows that when we vary the

chromosome length, the execution time does not increase linearly. The mean

chromosome length is 98.42, with a fixed number of processors and a vari-

able number of tasks, and the standard deviation is 9.6. The mean running

time, is 18 seconds with a standard deviation of 11 seconds. The total exe-

cution time with a fixed mutation rate and fixed number of generations was

7208 seconds versus 7053 seconds for a variable mutation rate and variable
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Figure 3.7: Execution time (ms) of PN scheduler with a fixed number of
generations and a fixed mutation rate. The chromosome length corresponds
to the number of tasks to be scheduled.

a dynamic number of generations.

However, the scheduler uses a variable number of generations, depending

on whether the stopping conditions are met. If there in no improvement

after 10 generations, the algorithm stops. The histogram in Fig. 3.9 shows

the number of generations performed before this stopping condition halts

evolution. It forms a Poisson distribution, which indicates that the scheduler

finds either a local minimum or the global minimum makespan within a

relatively low number of generations.

When the quality of the solution produced is considered, we found that
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Figure 3.8: Execution time (ms) of PN scheduler with a dynamic number of
generations and a variable mutation rate
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Figure 3.9: Number of generations run before stopping conditions terminate
evolution of the GA

the greatest average reduction in makespan occurs within the first 200 gen-

erations. Fig. 3.10 shows this with a large reduction in makespan at the

beginning, but the returns diminish quickly. Since the execution time of a

generation is a constant factor, reducing the number of generations allows

for a lower execution time of the scheduler. In a real-time system a client

might be lying idle whilst waiting for a schedule to be produced, nullifying

the effects of a more efficient schedule, thus a lower scheduler execution time

is desirable.

We then looked at the effect the population size on the makespan achieved

when scheduling on a real-world distributed system with 124 processors (see
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Figure 3.10: Average makespan achieved with varying numbers of generations
in the GA scheduler
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47 180-200 1024 100 P4 D820
45 190-229 512 100 P4 2.4 GHz
32 28-31 256 10 P3 600 MHz

Table 3.4: Client resources used in the distributed system for the experiment
shown in Table. 3.5. The operating system on all clients was Linux.

Table 3.4). Table 3.5 shows that when a larger population size is used,

the effect on the overall makespan is negligible compared to using a small

population size. This is due to the stopping condition which halts evolution

if there is no improvement in makespan after 10 generations. The greater

diversity in a large population allows for a minimum to be found in less

generations, which offsets the longer execution time for a single generation.

A smaller population requires more generations to achieve the same effect,

however the execution time for each generation is less. The only difference

between using a small and large population size is the spacial requirement.

Thus to reduce the overall memory consumption of the algorithm we use a

small population size (a micro GA [12]).

3.4.2 Multiple heuristics performance

We wish to show that using multiple heuristics to generate schedules for the

initial population of the GA provides more efficient schedules than using each
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10 4653 24.0 0.31 80.4 0.407
20 4720 23.1 0.30 78.1 0.405
30 4701 26.3 0.30 86.4 0.444
40 4672 22.6 0.28 86.9 0.436
50 4649 29.7 0.33 83.3 0.436
60 4846 32.1 0.34 84.3 0.437

100 4686 25.7 0.31 80.9 0.463
1000 4855 32.3 0.34 86.3 0.541
5000 4720 24.8 0.31 83.1 0.418

10000 4711 21.5 0.28 82.7 0.415

Table 3.5: Varying population size of the scheduling algorithm where the GA
terminates if there is no improvement in makespan after 10 generations.
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Figure 3.11: Performance of each heuristic when used on its own to initialize
the GA

individual heuristic on its own, or using a purely random initial population.

In Fig. 3.11 we use each heuristic individually to initialize the population of

the GA. Each bar is an average 10 simulations, and we scheduled 600 tasks

with normally distributed execution times on 30 heterogeneous processors.

The black bar shows the average initial makespan produced by the heuris-

tic, and the gray bar corresponds to the average final makespan produced

by the GA from that initial population. The population consists of only one

heuristic and random variations of the schedule produced by the heuristic. A

randomly chosen initial population (RM) presented for comparison purposes.

The algorithm presented in this chapter (PN) utilizes all of the heuristics to
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generate an initial population. The initial makespan for PN is an average of

the best solutions generated by the heuristics. As can be seen in Fig. 3.11

using multiple heuristics provides, on average, a lower makespan.

In Fig. 3.12 we compared each heuristics initial solution to the final

evolved solution (PN), with PN utilizing all of the heuristics. A set of 6 real-

world problems (see Chapter. 2.3) where used for this experiment, processed

by 25 non-dedicated heterogeneous processors (see Table 3.6). Fig. 3.12 shows

the average initial solutions (normalized makespan) found by each heuristic

after scheduling 60 different batches of tasks. The final evolved solution pro-

vides more efficient solutions on average than the solutions produced initially

by the individual heuristics. The errorbars also show that the schedules pro-

duced by PN vary over a smaller range than the schedules produced by the

other heuristics.

3.4.3 Performance evaluation

Each scheduler was presented with the same set of problems (see Sect. 2.3)

and the same set of processors (see Table 3.3). The makespan is measured as

the time from when the first task is requested from the distributed system,

to the time when the final task is returned to the system. Table 3.7 shows

that there is a huge difference in makespan (lower is better) with PN process-

ing all tasks much faster than the next best scheduler when using a highly

heterogeneous set of processors and networking resources. The variation in

makespans can be accounted for by inefficient mappings of tasks to proces-

sors, such as slow processors being given computationally intensive tasks or
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Figure 3.12: Performance of heuristics compared to our algorithm (PN) with
real problems on a real heterogeneous distributed system, with normalized
makespan.

75



N
o.

P
ro

c

M
F
L
O

P
/s

R
A

M
av

ai
la

b
le

(M
B

)

O
/S

N
et

w
or

k
li
n
k

(M
b
/s

)

9 214 257-296 Windows 10
7 244 100 Windows 100
3 255 261-265 Windows 10
2 223 257-267 Windows 10
2 255 100 Windows 100
1 32 100 Windows 10
1 221 64 Linux 100

Table 3.6: Client resources used in the distributed system for the experiment
shown in Fig. 3.12.

processors with high communication overheads being given tasks with a low

P-to-C ratio. The experiment was repeated with with a set of resources that

displayed low heterogeneity (see Table 3.8.B). With less heterogeneity the

difference in makespan is only 13% between the best (PN) and the worst

(SA). With high heterogeneity this difference was 132%, with PN generating

the lowest makespan.

When the experiment is repeated on a homogeneous set of processors

the differences in makespan between the schedulers becomes negliable (see

Table 3.9) with most schedulers utilizing the processing resources efficiently

with up to 97% efficiency. PN, ZO and TA generate schedules which are

within 1% of each other in this case and can adapt well to this homogeneous

resource environment, which is to be expected. The simple heuristic sched-
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PN 9144 138.2 2.239 53.01 2.84 0
ZO 14278 276.1 1.904 33.94 2.24 56
TA 16378 322.8 4.818 33.66 2.34 79
SA 21260 4605.4 47.478 30.07 5.95 132
MX 15486 0.5 0.006 34.94 1.84 69
MM 18321 0.4 0.005 32.21 2.30 100
LL 19645 0.1 0.001 25.05 1.82 114
EF 14492 0.4 0.004 46.88 10.96 58
RR 20314 0.1 0.001 31.90 9.10 122

Table 3.7: Comparison of schedulers with a set of highly heterogeneous pro-
cessors and a heterogeneous set of networking resources.

ulers generate solutions which have makespans which are 20-38% longer than

the evolutionary algorithms.

Fig. 3.13 shows the number of idle clients while the set of problems is

being processed using the PN scheduler in a highly heterogeneous resource

environment. The initial assignment of tasks to processors does not hap-

pen instantaneously because the client machines only contact the server at

set intervals (1 minute in this case). Near the end when the steep slope

shows that all of the clients stop processing tasks within a short interval. If

this was a shallow slope it would indicate processing resources are idle and

underutilized.
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PN 8437 60.2 0.506 92.5 1.1 0
ZO 8593 39.4 0.210 90.6 0.9 2
TA 8767 39.5 0.376 88.4 1.4 4
SA 9564 3938.3 17.27 84.1 7.4 13
MX 9065 0.091 0.0008 87.3 1.1 7
MM 8860 0.166 0.0013 87.0 1.3 5
LL 9053 0.021 0.0002 87.0 0.9 7
EF 8602 0.089 0.0007 90.9 1.1 2
RR 8812 0.096 0.0006 88.4 0.9 4

Table 3.8: Comparison of schedulers with a set of 2 types of homogeneous
processors and a heterogeneous set of networking resources.

78



S
ch

ed
u
le

r

M
ak

es
p
an

(s
)

S
ch

ed
u
li
n
g

T
im

e(
s)

M
ea

n
S
ch

ed
u
li
n
g

T
im

e
(s

)

%
E

ffi
ci

en
cy

%
C

om
m

u
n
ic

at
io

n
s

%
In

effi
ci

en
cy

PN 10408 50.4 0.49 96.9 1.3 1
ZO 9969 21.7 0.17 97.6 1.2 0
TA 10126 22.3 0.23 97.5 1.3 1
SA 10351 1530.5 12.24 95.2 3.2 1
MX 12034 0.05 0.01 81.8 1.1 20
MM 13788 0.04 0.01 69.9 0.8 38
LL 13841 0.01 0.01 69.9 0.8 38
EF 13836 0.03 0.01 69.7 0.8 38

Table 3.9: Comparison of schedulers with a homogeneous set of processors.
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Figure 3.13: The number of idle clients in the system while the set of problems
is being processed with the authors scheduling algorithm (PN)
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3.5 Conclusion

A scheduler was developed for the task allocation problem in a dynamic het-

erogeneous distributed system. It is a multi-heuristic evolutionary algorithm,

which utilizes a GA, to allocate tasks to processors in polynomial time. The

use of eight heuristics to initialize the GA allowed for more efficient schedules

to be created than would have been with a purely random initial population.

If at any stage a processor becomes idle the scheduler returns the current best

solution, which will always be at least as efficient as the best heuristic solu-

tion. The GA was implemented in Java and incorporated into a distributed

system. A set of real-world problems from bioinformatics, bio-medical engi-

neering and cryptography was used to test the scheduler. Experiments were

performed up to 150 heterogeneous processors, and show that the scheduler

presented in this chapter outperforms the most commonly used heterogeneous

distributed computing scheduling heuristics. The more heterogeneous the re-

sources of a system become, the harder it is to generate an efficient mapping

of tasks to processors. We have presented an algorithm which achieves better

efficiency than other schedulers as the resources become more heterogeneous.

For future work, the next logical step would be to distribute the scheduling

algorithm to take full advantage of the available computational resources [4].

The GA based scheduler works well in many situations, however it does

have a number of disadvantages, notably with predictability and verifiabil-

ity. If the algorithm is given the same set of inputs multiple times, the same

output solution is not guaranteed, due to the stochastic nature of this evolu-

tionary algorithm. The running time needed to achieve a solution equal to,
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or better than, a given makepsan, can also vary. This makes it unsuitable for

situations with deadlines. Since GAs cannot be verified they are unsuitable

for some applications, such as medical applications, due to the difficultly in

verifying the output, or even understanding why a particular solution has

been reached.

A simpler solution has been developed which addresses these disadvan-

tages, whilst not making any additional restrictive assumptions. The uncer-

tainty in the properties of the system is utilized to produce efficient sched-

ules. It has been shown to produce solutions which are nearly as good as

more complex evolutionary schedulers. It has a constant running time, so is

suitable for applications with deadlines. There is no randomness, thus the

same solution will be given for the same set of inputs. Its predictable and

repeatable properties mean it can be verified, thus allowing for it to be used

in situations not suited to an evolutionary algorithm.
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Chapter 4

Task allocation using

estimation error

This chapter is based on work presented in [80, 75].

In real-world dynamic heterogeneous distributed systems, allocating tasks

to processors can be an inefficient process, due to the dynamic nature of the

resources and the tasks to be processed. The information about these tasks

and resources is not known a priori, and thus must be estimated online. In

this chapter we utilize the accuracy of these estimates, and when combined

with different objectives, such as minimizing makespan and evenly distribut-

ing load, naturally gives rise to a family of four different scheduling algo-

rithms. The algorithms have been implemented in the a distributed system,

evaluated with the set of problems described in Chapter 2. We have found

that considering estimation error when allocating tasks to processors can pro-

vide more efficient solutions, than when estimation error is not considered.
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We have found that using a simple heuristic, combined with estimation error,

can in some cases provide solutions approaching the efficiency of complicated

well-known evolutionary algorithms.

4.1 Introduction

The problem of estimating both the execution time of the tasks to be pro-

cessed and the resources of the system has been tackled in a number of

ways [5]. Some distributed systems, such as SETI@home [52], ignore the

resources of the system [52, 54, 91], or treat their heterogeneous resources

as a homogeneous set [6, 22, 52, 54, 74, 91, 101] by ignoring variation in

the available computational resources of the processors. Some distributed

systems restrict themselves to homogeneous tasks [52, 54, 91] which reduces

the complexity of the scheduling problem.

Other algorithms require the user to define the length of time that a

problem is expected to take [7, 21, 92, 96, 98]. Many require a directed acyclic

graph with task and communication information, and precedence constraints

given in advance [7, 21, 55, 57, 56, 92, 96, 98]. Communication costs are also

not properly considered by many algorithms, for example all communication

links are assumed to be homogeneous [102], it is assumed communication

and computation can take place simultaneously [21], or it is assumed that

there is instantaneous message passing [107]. The restrictive assumptions

placed on the type of tasks that can be processed, and the processing and

communication resources of the system simplifies the scheduling problem,

but reduces the generality and usefulness of the solutions.
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Some research has been done to address these restrictive assumptions.

Sinnen et al. [92] look at a processor’s involvement in communication and

show that considering this involvement, when scheduling, leads to more effi-

cient resource utilization in real-world distributed systems. Cohen et al. [13]

focus on scheduling the communication between processors, to minimize the

communication overhead in a distributed system. Theys et al. [98] generate

and store many scheduling solutions before run-time, then select the most

suitable schedules during run-time, which allows the scheduler to adapt to

a variable task and resource environment. The dynamic level scheduling al-

gorithm proposed by Dogan and Ozguner [23] addresses the variability of

network and processor resources caused by failures, and attempts to mini-

mize the probability of these failures adversely effecting the overall operation

of the distributed system. Ali et al. [5] create a generalized robustness met-

ric for unreliable parallel and distributed systems where the system resources

may vary or the estimated task execution times may be erroneous.

In this chapter we present a scheduling algorithm which addresses these

restrictive assumptions. In contrast to the techniques of the previous para-

graph, the scheduler assumes that no knowledge is available a priori about

the tasks to be processed, or the communication and computational resources

of the distributed system. This information is dynamically estimated online.

We utilize the error in these estimates, seeking to schedule the tasks with

the minimum estimated error earliest, or schedule the tasks with the most

estimated error earliest. When this is combined with different objectives,

such as minimizing makespan (total execution time) and evenly distributing
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load, it naturally gives rise to a family of four different scheduling algorithms.

4.2 Task Scheduling

In a real-world online distributed system, the dynamic nature of the underly-

ing resources of the system can limit the ability of traditional scheduling al-

gorithms to function efficiently. We have created four scheduling algorithms,

out of a possible family of 8 algorithms, which incorporate multiple different

objectives and consider the error in the estimation of system resources and

error in the estimation of task execution time (2 maximizing the error and

2 minimizing the error). These objectives are 1.) minimizing makespan, 2.)

minimizing load imbalance and 3.) managing uncertainty.

For the remainder of this chapter we will define the percentage efficiency

as

efficiency = (
M

∑

j=1

time processor j has spent processing)/(γ × M), (4.1)

where M is the number of processors, and γ is the number of seconds since

the scheduler instantiation.

In this section we will introduce a number of scheduling algorithms based

on these objectives.

4.2.1 Estimation error

We must estimate the execution time of a task because it is undecidable to

calculate exactly [93]. Problems consisting of homogeneous tasks will have
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the least estimation error, while problems with complicated task execution

time distributions will have a greater estimation error due to the increased

complexity involved in modeling complicated distributions [11]. The percent-

age error in the ETC of task i on processor j is

ET(i, j) =

∣

∣

∣

∣

∣

ETC(i, j) − tji
tji

∣

∣

∣

∣

∣

, (4.2)

where tji is the actual time to compute task i on processor j.

The estimated computation to communication ratio (CCR) is defined as,

CCR(i, j) =
ETC(i, j)

C(i, j)
, (4.3)

where C(i, j) is calculated from Alg. 2.1 by substituting ti for ci.

A combined error weight value (EW) for a given task-processor mapping

is defined as

EW(i, j) =
ET(i, j)

CCR(i, j)
. (4.4)

Eq. (4.4) produces a small value when the task error (ET) is small and the

CCR is large. A small value is preferable to a large value in this instance.

This allows for processors with the least communication costs, and least error

to be differentiated from processors with less desirable properties. A large

value of EW indicates a mapping which is possibly more erroneous.

We use two different strategies when handling the estimated task execu-

tion times and the predicted error. See Fig. 4.1 for an example gannt chart.

The first is to ignore the predicted estimation error in the estimated task
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Figure 4.1: A gannt chart showing the best case (A) and worst case (B)
estimated task execution times, with the error bars indicating predicted error.

execution time. We call this the best case scenario. The next strategy is

to assume the worst case and to apply the maximum amount of predicted

estimation error to the estimated task execution time.

4.2.2 Algorithm structure

Each of the algorithms described in this section can be described using the

scheduling algorithm structure in Alg. 4.1, with different functions X affect-

ing the different scheduling algorithms. The input to Alg. 4.1 is a set of tasks

to be processed, the system’s communication and processing resources, and a

function X which is used to decide the task-processor mappings. This algo-

rithm uses a greedy strategy and at each iteration selects the task-processor

allocation which minimizes X.
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Input: Set of unscheduled tasks, set of processors, load on each
processor, an objective function X

Output: Mapping from tasks to processors, Q
Mapping is initialized to ∅;1

while unscheduled tasks remaining do2

foreach Unscheduled task i do3

minval := MAX INT;4

foreach Processor j do5

currval := X(i, j, load);6

if currval ≤ minval then7

a := i;8

b := j;9

minval := currval;10

11

12

Add (a, b) to the mapping Q;13

Update current load on Processor b;14

Remove Task a from list of unscheduled tasks;15

16

Algorithm 4.1: The scheduling algorithm template, parametrized by
objective function X
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4.2.3 Minimizing Makespan

In this section we will describe three algorithms which seek to minimize the

makespan, two of which use estimation error.

We wish to allocate tasks to processors, whilst minimizing the overall

total execution time. The estimated makespan of a task i, allocated to a

processor j, is

FA(i, j) = ETC(i, j) + C(i, j) + ST(Qj), (4.5)

where ST(Qj) is the start time of processor j in seconds since the arrival of

the first task for processing, defined as

ST(j) =
∑

ETC(Qj , j), (4.6)

and Qj contains all tasks that have been mapped to, or currently being

processed by, processor j. FA is a cost function based on the Max-Min

heuristic [40]. When used as the objective function, in place of X in Alg. 4.1,

it will allocate a task to the processor which will finish processing it earliest.

Eq. (4.5) is combined with the estimation error value from Eq. (4.4) to

produce two scheduling algorithms. The first is characterized by the cost

function

FE(i, j) = FA(i, j)EW(i, j)β, (4.7)

where β controls the exponential multiplier of EW and β > 0.

The FE heuristic aims to locally minimize the amount of estimation error
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and maximize the CCR. By delaying the processing of more error-prone tasks,

it gives the scheduler time to gather more observations about past estimations

and can possibly be used to generate less error-prone estimates, which is then

used to pre-emptively reschedule previously allocated tasks. Thus the tasks

that are processed earliest are the tasks with the most accurate estimates.

The effect of EW is controlled by β, with a proportionally large β reducing

the effect of FA on the value of FE.

Fig. 4.2 is a simple example of the algorithm in operation with 2 proces-

sors and 4 tasks. At time 0, T3 and T4 are scheduled last due to the large

estimation error, and FE attempts to minimize the overall makespan. At time

2 more information has become available, which improves the estimation of

the task execution times for T3 and T4. The tasks are pre-emptively resched-

uled and T3 is reassigned to P2 and T4 is reassigned to P1. The reduction in

task execution time estimation error and the pre-emptive rescheduling leads

to an overall reduced makespan at time 2, compared to the initial schedule.

The FZ cost function is defined as

FZ(i, j) =
FA(i, j)

EW(i, j)β
, (4.8)

and it schedules tasks with the most estimation error earliest. It is not

efficient at the beginning, but by processing the most error-prone tasks first,

it allows for the tasks with the least amount of error to be scheduled last. This

allows for greater confidence in the accuracy of the predicted makespan as

the computation progresses, allowing for a more efficient global minimization

of the total makespan.
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Figure 4.2: An example of the FE algorithm at time 0 and 2, with the error
bars illustrating the bounds of the estimation error of the task execution
time.
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EW → 0 EW → ∞
FA → 0 0 ∞
FA → ∞ ∞ ∞

Table 4.1: The FE scheduler favors a low execution time and low error. The
limit of FE is shown where EW and FA tend towards 0 and ∞.

If β is static a problem can emerge where EW(i,j) drowns out FE and

FZ. For example, if the makespan reduces over time, but the estimation

error stays the same, the EW value increases its influence over the final

scheduling decision over time. Thus in a system with very little difference in

processor makespans, the scheduling decisions will be primarily influenced by

the estimation error in the system, resulting in an inefficient solution. This

can be rectified by controlling the influence exerted by EW by setting,

FEd(i, j) = FA(i, j)EW(i,j)EW(i, j)FA(i,j), (4.9)

thus as the variation in makespans on processors decreases, so does the in-

fluence exerted by EW over the final total makespan. Similarly a dynamic

version of FZ is defined as follows,

FZd(i, j) =
FA(i, j)EW(i,j)

EW(i, j)FA(i,j)
. (4.10)

We tried each combination of EW and FA, where the resulting value

is minimized. Tables 4.1-4.4 show the characteristics favored in each case

(underlined), when the values tend towards zero and ∞. FE and FZ aim for

low execution times. The two other combinations were unfeasible because

they favour high execution times.
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EW → 0 EW → ∞
FA → 0 1 0
FA → ∞ ∞ 1

Table 4.2: The FZ scheduler favors a low execution time and high error. The
limit of FZ is shown where EW and FA tend towards 0 and ∞.

EW → 0 EW → ∞
FA → 0 1 ∞
FA → ∞ 0 1

Table 4.3: A scheduler with EW/FA favors a high execution time and low
error making it unfeasible. The limit is shown where EW and FA tend
towards 0 and ∞.

EW → 0 EW → ∞
FA → 0 ∞ 0
FA → ∞ 0 0

Table 4.4: The 1/(FA*EW) scheduler favors a high execution time and high
error making it unfeasible. . The limit is shown where EW and FA tend
towards 0 and ∞.
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4.2.4 Load-balancing

Evenly distributing the load on each processor in the distributed system is

a common goal in a real-world distributed system. This aims to maximize

the utilization (or efficiency) of the processing resources. A load-balancing

weighting,

LA(i, j) =
∑M

y=1

[

(max
{

maxM
x=1[ST(x)], FA(i, j)

}

(4.11)

−ST(y)) − {ETC(i, j) + C(i, j)}]

×
[

∑M
y=1 maxM

x=1{ST(x) − ST(y)}
]

−1

,

considers the current inefficiency of the resource utilization, and calculates

the effect allocating task i to processor j will have on the overall efficiency

of the system. A low value of LA corresponds to a well balanced system,

whereas a high value indicates an inefficient utilization of resources.

LA is combined with EW to create two scheduling algorithms,

LE(i, j) = LA(i, j)EW(i, j)β (4.12)

and

LZ(i, j) =
LA(i, j)

EW(i, j)β
(4.13)

which consider the estimation error along with the load of the system. In the

LE algorithm the task-processor mappings which reduce the load imbalance

the most, and have the lowest estimation error, are allocated first. The most
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error-prone tasks will have the least effect on the overall load of the system.

The LZ scheduler aims to schedule tasks with the most estimation error

earliest whilst also seeking to minimizing the load imbalance (see Eq. (4.13)).

Over a number of batches of tasks LZ allocate the most error-prone tasks first,

allowing for the least error-prone tasks to be load balanced at the end. LE

and LZ reduce to each other (as with FE and FZ), and they also both reduce

to LA.

4.2.5 Suitability matching

Matching attempts to match the computational requirements of a task to an

appropriate processor, whilst also considering the communication resources

available. The suitability of a task-processor mapping is generated by con-

sidering all processing and communication resources in the system, all pre-

viously processed tasks, and all un-mapped tasks. In a dynamic system the

resource environment will vary over time, giving rise to error in our estimates

of system resources, thus leading to inefficient task-processor mappings. If

all tasks are suitably matched to processors, the amount of error due to inef-

ficient matching can be minimized. For example, the most suitable processor

for tasks with large amounts of data, would be a processor with a high band-

width network link to the scheduler. A task which requires a large amount

of computation would be most suited to a powerful processor. By matching

tasks to a more suitable processor, it leaves the possibility of a previously

unseen future task to be processed on a more suitably matched processor.

96



The suitability,

PS(i, j) = 1 −

∣

∣

∣

∣

∣

(Ti − min(T ))
∑N

x=1(Tx − min(T ))
×

∑M
y=1(Py − min(P ))

(Pj − min(P ))

∣

∣

∣

∣

∣

, (4.14)

of mapping a task i to a processor j. All tasks T , measured in MFLOP, and

all processors P , measured in MFLOP/s, are considered when generating the

suitability value for a mapping. Only the processing resources are considered

in this equation. The suitability of the communication resources is considered

by,

CS(i, j) = 1 −

∣

∣

∣

∣

∣

(Ai − min(A))
∑N

x=1(Ax − min(A))
×

∑M
y=1(By − min(B))

(Bj − min(B))

∣

∣

∣

∣

∣

. (4.15)

Ai gives the size of task i in bytes and Bj gives the bandwidth of the com-

munication resources from the scheduler to processor j in bytes per second.

Eq. (4.14) and Eq. (4.15) are brought together to produce an overall suit-

ability measure,

SB(i, j) = PS(i, j) +
CS(i, j)

CCR(i, j)
, (4.16)

for a given task-processor mapping which weights the importance of the

computation and communication resources using the estimated CCR from

Eq. (4.3).

A heuristic,

SE(i, j) = SB(i, j)EW (i, j)β, (4.17)

which minimizes error and considers the suitability of task-processor map-

pings has been developed. This allows for the most accurate matching of
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tasks to suitable processors. By matching suitable tasks to processors and

communication resources, it is hoped that overall when more unseen tasks are

presented for scheduling, that adequate suitable resources will be available

to process the tasks. Modifying Eq. (4.17) gives

SZ(i, j) =
SB(i, j)

EW (i, j)β
, (4.18)

which maximize the error whilst attempting to match tasks to suitable pro-

cessing and communication resources.

The use of SB on its own is not sufficient to generate an efficient mapping

of tasks on processors. The task requirement space would need to map per-

fectly on to the system resource space for an efficient solution to be found,

which is an unrealistic restrictive assumption. To more efficiently utilize

SB to we need to combine it with another objective, such as FA or LA. A

taxonomy of all the schedulers presented in this section is given in Table. 4.5.

4.3 Experiments

For the experiments described in this section we used two distributed sys-

tem configurations, one with 90 PCs (Table. 4.6.A) and one with 74 PCs

(Table. 4.6.B). The processor speeds varied by up to 10%, due to slightly

differing hardware and software configurations. All experiments were car-

ried out on system A with the exception of the experiments in Section 4.3.2

which were carried out on system B. All resources were non-dedicated, run-

ning Linux, and were connected by a 100 Mb/s network. The clients were

98



Symbol β Description Equation
FA(i,j) 0 Makespan Eq. (4.5)
FE(i,j) + Min makespan, Min error Eq. (4.7)
FZ(i,j) - Min makespan, Max error Eq. (4.8)
FEd(i,j) + Min makespan, Min error Eq. (4.9)
FZd(i,j) - Min makespan, Max error Eq. (4.10)
LA(i,j) 0 Min load-imbalance Eq. (4.11)
LE(i,j) + Min load-imbalance, min error Eq. (4.12)
LZ(i,j) - Min load-imbalance, max error Eq. (4.13)
SB(i,j) 0 Min unsuitability Eq. (4.16)
SE(i,j) + Min unsuitability, Min error Eq. (4.17)
SZ(i,j) - Min unsuitability, Max error Eq. (4.18)

Table 4.5: Taxonomy of schedulers, where + indicates any positive number,
and - indicates any negative number.

System No. Proc MFLOP/s RAM (MB) Processor

A
45 28-31 256 P3 600MHz
45 180-200 1024 P4 D820

B
38 28-31 256 P3 600MHz
36 180-200 1024 P4 D820

Table 4.6: Client resources of two heterogeneous distributed systems (A and
B)

connected to a dedicated server running Linux on a 3GHz P4 with 1GB of

RAM. We used a single core on the P4 D820 processors running a 32-bit

version of Linux. The set of tasks to test the schedulers are described in

Chapter 2.3, from the fields of bioinformatics, biomedical engineering and

cryptography.
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Scheduler Makespan (s) Sched. time (s) % Efficiency % Comms
FA 3505 28 51 0.6
FE 6202 547 33 0.8
FZ 2408 108 66 1.6
LA 4114 344 55 0.7
LE 17013 1850 21 0.3
LZ 12138 426 33 0.3
SB 24188 1229 14 0.2
SE 12553 1956 22 0.3
SZ 13349 1741 23 0.3

Table 4.7: Comparison of schedulers.

4.3.1 Scheduler Performance

Two different metrics are used to evaluate the performance of the schedulers

given in this chapter: 1.) makespan, which is the total execution time, and 2.)

efficiency, which is defined as the percentage of time the processing resources

are in use. Each set of algorithms has been grouped together based on their

on their common objective, comparing each algorithm with estimation error

and without estimation error. A trace of the efficiency is given over time in

Figs. 4.3-4.5, comparing each family of algorithm.

The load-based schedulers (LA, LE, LZ) provide approximately 21-55%

efficiency overall, with LA providing the most efficient solution, as shown in

Fig. 4.3. Using estimation error along with load provides poor efficiency and

makespan when a static β is used. The makespan of LE is more than 4 times

greater than LA, so using estimation error with the load-balancing objective

results in very large total execution times.

The suitability-based schedulers (SB, SE, SZ) provide the worst overall

efficiency. This is because the suitability objective does not consider any
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Figure 4.3: The efficiency of 3 load-based schedulers over time
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property related to minimizing efficiency or makespan. While SB more effi-

ciently utilizes the processing resources (see Fig. 4.4), this does not translate

into a low total execution time. For example, if there is a low powered pro-

cessor in the system, a lower makespan may be achieveable by leaving the

processor idle. This however would negatively impact on the efficiency of

the resource utilization. The makespan of SE and SZ is nearly half that of

SB (see Table 4.7). The difference is greatest with these schedulers because

the suitability objective relies solely on the accuracy of the estimation of

the task execution times, and the processor and communication resources.

Thus utilizing the estimation error has greatly improved the accuracy of this

scheduling objective in a real-world distributed system.

The makespan-based schedulers (FA, FE, FZ) provide the best overall

efficiency achieving above 80% at some points, as shown in Fig. 4.5. It is

interesting to note that FA provides the most efficient utilization of resources

but the makespan of FZ is the lowest of the schedulers described in this

chapter at 2408 seconds. So although FA utilizes the processing resources for

a higher % of time, the heterogeneous nature of these resources means that

the makespan does not follow suit. Overall FA only achieves an efficiency

of 51% compared to FZ which achieves an overall efficiency of 66% (see

Table 4.7). The makespan of FA is also 45% higher than that of FZ. FZ

achieves this reduced makespan by utilising estimation error. FA is a simple

heuristic, and with the addition of estimation error, this heuristic can provide

a low makespan, without the added complexity of other algorithms which

achieve similar results.
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Figure 4.4: The efficiency of 3 suitability-based schedulers over time
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Figure 4.5: The efficiency of 3 makespan-based schedulers over time
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Scheduler Makespan (s) Sched. time (s) % Efficiency % Comms
FZ 2408 108.0 66 1.6
TA 2351 11.1 76 1.1
SA 9252 836.1 35 1.7
LL 3066 0.1 62 0.7
EF 3096 0.1 55 0.7
RR 6176 0.1 38 0.4

Table 4.8: Comparison of common schedulers which do not use estimation
error to FZ, the best performing scheduler, which uses estimation error.

In nearly all cases (the exception being the load-based schedulers) the

error based schedulers provide better efficiency than their non-error based

counterparts. Thus the addition of estimation error can improve upon simple

heuristics.

Only the schedulers which try to minimize makespan provide a high level

of efficiency. We have compared the most efficient algorithm FZ to a number

of commonly used algorithms (see Table 4.8). Tabu search optimization (TA)

is an evolutionary based scheduler based on OpenTS [73].

A simulated annealing (SA) based scheduler was created using the Jan-

nealer API [43]. These are complicated meta-heuristic algorithms, which use

evolutionary techniques to generate solutions. With the Tabu and simulated

annealing algorithms, the value of the parameters can have a huge impact on

the end result. We fine tuned the implementations of TA and SA to the data,

to ensure a good comparison was available. With TA, we recursively broke

down the problem to be solved into a tree like structure of depth logN and

optimized each piece. This resulted in a fast convergence to a solution, but

is less useful for a generalized data-set. The parameters of the SA scheduling
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Figure 4.6: The efficiency of FZ over time compared to evolutionary and
heuristic schedulers which do not use estimation error.
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algorithm were calculated using another SA instance.

Two immediate mode schedulers have been implemented, lightest-loaded

(LL) which assigns tasks to the lightest loaded processors, and earliest first

[58] (EF) which assigns tasks to the processors which will finish process-

ing them earliest. Round robin (RR), is the simplest and one of the most

commonly used schedulers. All of these schedulers used the same input pa-

rameters such as, estimated task execution times, estimated processor speeds

and estimated communication resources.

It is interesting to note that although FZ does not achieve the best effi-

ciency overall, it does achieve one of the lowest makespans. This is because

in a heterogeneous distributed system, maximizing resource utilization does

not correspond to minimizing makespan.

As can be seen in Table 4.8, FZ has a makespan of 2408 seconds, which

is between 27% and 284% better than the other schedulers with the excep-

tion of TA, which has a makespan of 2351 seconds. FZ is based on a very

simple heuristic combined with estimation error, whereas TA is a compli-

cated stochastic evolutionary algorithm, which has been fine tuned to suit

the dataset. By considering estimation error, a simple heuristic can achieve

nearly the same makespan as a state-of-the-art evolutionary technique.

4.3.2 Varying the Error Weight

We varied β to change the effect EW has in FE and FZ. We used 1, 0.5, and

0.1 as well as a dynamically (d) varying β. Each experiment was performed

using 74 heterogeneous processors as described in Table 4.6.B. Table 4.9
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FA
b - 3203 89 65 1.1
w - 3130 117 66 1.2

FE

b 1.0 9279 587 26 0.5
w 1.0 8142 354 36 0.5
b 0.5 5498 276 48 0.7
w 0.5 6029 354 43 0.8
b 0.1 7094 240 42 0.5
w 0.1 6889 257 40 0.6
b d 5602 442 43 1.5
w d 9136 167 34 0.4

FZ

b 1.0 3100 2.2 63 1.5
w 1.0 3270 1.2 59 0.8
b 0.5 2968 85 65 1.1
w 0.5 2793 1.1 73 1.0
b 0.1 2510 1.3 83 1.2
w 0.1 2762 35 64 0.8
b d 3026 0.5 67 0.8
w d 2814 2.2 72 1.7

Table 4.9: Experiments with 74 processors (see Table 4.6.B) varying the
value of β, where d is a dynamic value of β (see Eq. (4.9)). b and w are the
best and worst case strategies respectively.
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describes the results of these experiments. Each experiment was repeated

twice, and the average is given.

FA which does not consider estimation error is used as a benchmark. We

also investigated using best and worst case values for task execution times.

With the best case (b) we take the mean estimated task execution times as

given by the k-NN algorithm, when scheduling. With the worst case (w), we

add the maximum amount of estimated error to the estimated task execution

times. The algorithm is however quite robust to using both b and w.

Overall FZ performed best providing a makespan which was 20% lower

than FA, when using a best case task execution time and β = 0.1. FE did not

perform well when compared to FZ or FA, consistently producing schedules

with large makespans. The makespan produced by using the worst case task

execution times is variable, whereas the makespan produced when using the

best case is more stable and predictable.

Fig. 4.7 shows the efficiency of using FZ with best case task execution

times, whilst varying the value of β. With β = 0.1 the efficiency is better

than the other values of β. While they all begin with similar efficiency,

as time goes on, the effect of the estimation error on the overall efficiency

becomes apparent, with each becoming clearly delineated.

Fig. 4.8 shows the efficiency when using FZ with worst case task execu-

tion times, whilst varying the value of β. Once again the efficiency of each

begins very similarly, but becomes more delineated with time. There is very

little difference between a β value of 0.1 or 0.5 in terms of makespan, but it

is interesting to note the difference in efficiency. A β value of 0.1 achieves
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Figure 4.7: Efficiency of using FZ with varying values of β with best case
task execution times.
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Figure 4.8: Efficiency of using FZ with varying values of β with worst case
task execution times.
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Figure 4.9: Efficiency of multiple schedulers with best case task execution
times.

an efficiency of only 65% whilst a β value of 0.5 achieves an efficiency of

73%. This huge difference is due to the types of processors in the distributed

system, where the slowest processor has only approximately 15% of the com-

putational resources of the fastest processor. Thus a schedule which utilizes

the faster processors more of the time over the slower processors can have a

lower makespan but also a lower overall efficiency.

Figs. 4.9 and 4.10 compare the efficiency of FA, FE, and FZ using best and

worst case task execution times respectively. The best performing β value for

FE and FZ is used in each Fig (see Table 4.9). FE is clearly far less efficient

than FA or FZ. This is consistent in all experiments (see Table 4.9), where
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Figure 4.10: Efficiency of multiple schedulers with worst case task execution
times.
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Figure 4.11: Histogram of the error between the estimated and the actual
task execution times, with outliers outside [-100,100] removed.

FE schedules tasks on the slowest processors in the system near the end of

the overall schedule, resulting in a large makespan. FZ in both cases trails

off, which indicates that computationally large tasks have been allocated to

slow processors.

The error between the actual and the estimated task execution times

forms a normal distribution. The outliers (representing 1% of the total num-

ber of tasks) have been removed, as have results with no estimated execution

time, generated at the beginning of the experiement. The best case task

execution time strategy performs well because the mean is centered around

0.
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Figure 4.12: Number of idle processors over time when using FZ with β = 0.1
and best case task execution times.
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Figure 4.13: Number of idle processors over time when using FE with β = 1.0
and best case task execution times.

Fig. 4.12 shows the number of idle processors at a given point in time for

FZ, using β = 0.1 and a best case task execution time. The number of idle

processors increase throughout the computation as the scheduler decides not

to schedule tasks on the slowest processors which have a lower computational

capacity. The steep slope at the end of Fig. 4.12 indicates all processors

finished processing within a short time frame. The large increase in the

number of idle processors at time 1400 is due to the staged nature of some

of the problems in the problem set (described in Chap. 2.3).

Compare this to the worst performing schedule in Fig. 4.13, using FE with

β = 1.0, using best case task execution times. The slope at the end is slowly
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increasing, indicating that tasks where allocated to the slowest processor in

the system, leading to a high number of idle processors.

4.4 Conclusion

Processing problems efficiently and quickly, using a distributed system which

utilizes the spare clock cycles of donated PCs, is very problematic. The avail-

able processing and network resources can vary without warning, greatly im-

pacting on the makespan of problems being processed. The problems them-

selves can contain vastly different task distributions, adding more complexity

to the scheduling problem. Assumptions generally used about the resources,

and the tasks to be processed, restrict the usefulness of many schedulers, to

the point where they can only perform well in simulated sterile setups, and are

less useful for real-world distributed systems. These real-world complexities

have been successfully addressed with the use of complicated evolutionary

scheduling heuristics.

We have shown that it is possible to manage these real-world complex-

ities with a simple scheduler, and achieve nearly the same makespan and

efficiency as a complex evolutionary scheduler. We focused on managing the

uncertainty of the state of the system and of the estimation of the tasks com-

putational requirements, to reduce total execution time and to improve the

efficiency of resource utilization. Less erroneous property estimation is essen-

tial to producing an accurate schedule. Otherwise, the actual execution time

will overrun the planned processing time. By accepting that errors will be

inherent in these estimations, we can factor this into scheduling algorithms,
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thus leading to a more accurate, and lower, total execution times.

The FZ algorithm is shown to be robust to a variety of different conditions

and input parameters, and consistently produces schedules which have a low

makespan. With both the best and worst task execution times, the FZ

scheduler is consistent in the low makespans produced. It performs nearly as

well as a complex evolutionary heuristic, which has been finely tuned to suit

the input data.

A preliminary investigation has been done on combining the different

objectives listed in this chapter to further improve the overall efficiency of

the scheduler. Multi-objective optimization algorithms, such as AbYSS [71],

NSGA-II [18] and SPEA2 [104], have shown that this is a fruitful research

path. Early results show that this strategy holds much promise as the next

step in this research.
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Chapter 5

Low memory distributed

reconstruction of large digital

holograms

Parts of this chapter have also been published in the following articles [3,

76]. This chapter describes a distributed application, which provides the

impetus for the scheduling research, presented in this thesis, by providing

computationally intensive real-world problems which need to be processed

as quickly as possible.

We present a parallel implementation of the Fresnel transform suitable

for reconstructing large digital holograms. Our method has a small memory

footprint and utilizes the spare resources of a distributed set of desktop PCs

connected by a network. We show how we parallelize the Fresnel transform

and discuss how it is constrained by computer and communication resources.
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Finally, we demonstrate how a 4.3 gigapixel digital hologram can be recon-

structed and how the efficiency of the method changes for different memory

and processor configurations.

5.1 Introduction

In digital holography, optically captured digital holograms are usually recon-

structed by algorithmic means using a computer. However, with continuing

advances in CCD technology, novel methods are required to keep pace with

the growing volume of data [69], and the associated increased computational

requirements. In processor technology, the number of computations a single

processor can perform per second has stagnated and recent developments

have focused on adding multiple cores to a CPU. Thus, using a single pow-

erful processor may no longer keep pace with the increased computational

requirements for digital holography. In this chapter we address this prob-

lem by implementing a parallel algorithm for digital hologram reconstruction

suitable for distributed computing systems as well as multi-core processors.

While some effort has gone into accelerating computer generated holo-

grams using algorithmic means [67], graphics processing units [2, 64, 86] and

specialized hardware [41, 63], digital reconstruction of optically captured

holograms has received little attention. A discussion on algorithmic opti-

mization to Fresnel-like transforms has been presented [36], however due to

the fact that the Fresnel transform is very efficiently implemented using the

fast Fourier transform (FFT) there has been little need for special-purpose

methods. It can be expected that the computational cost and memory re-
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quirements for hologram reconstruction will increase at a higher rate than

computer technology improvements in the future. To address this we have

constructed a Fresnel method that uses the spare processing and memory

resources of a distributed set of desktop PCs to reconstruct large holograms.

To our knowledge this is the first time the Fresnel transform has been

parallelized on a distributed system. While parallel versions of the FFT

have been proposed [44, 84], none of them have been used to implement

hologram reconstruction in a distributed system.

5.2 Methods for hologram reconstruction

Given a hologram distribution, U , we can reconstruct the object image in a

plane parallel to the hologram plane and at distance, d, by modeling the light

propagation. The operation is depicted in Fig. 5.1. Light propagation be-

tween parallel planes can be mathematically describe by the Fresnel-Kirchhoff

integral

W (u, v) =
i

λ

∫∫

∞

−∞

U(x, y) exp

[

−2πi

λ
r(x, y, u, v)

]

dxdy, (5.1)

where r(x, y, u, v) = [(x − u)2 + (y − v)2 + d2]
1

2 and λ is the wavelength of

the light source.

If the reconstruction distance, d, is large compared to the hologram size,

the Fresnel or paraxial, where r is substituted by the linear and quadratic
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Figure 5.1: Hologram and Reconstruction planes at a distance d. The dis-
tance r is measured between each data point pair of U and W .

terms of its Taylor expansion, is valid [31, 87]. This leads to the expression

W (u, v) =
i

λ
exp

(

−2πi

λ
d

)

exp

[

−iπ

λd

(

u2 + v2
)

]

×

∫∫

∞

−∞

U(x, y) exp

[

−iπ

λd

(

x2 + y2
)

]

× exp

[

2πi

λd
(xu + yv)

]

dxdy. (5.2)

W (u, v) is called the Fresnel Transform of U(x, y)

In digital holography the hologram, U(x, y), will be represented as a real

or complex valued array of size N × M elements. Discrete numerical recon-

struction methods could be based on Eq. (5.1) or Eq. (5.2). However, these

would yield O(n2) complexity for a full image reconstruction of n samples.
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Instead it has been shown in literature that both equations can be expressed

using the Fourier Transform [53, 87]. This allows for implementation using

the Fast Fourier Transform (FFT) with complexity O(n log n), resulting in

better numerical efficiency.

We are concerned with numerically calculating Eq. (5.2) for some known

U(x, y). It has been shown that Eq. (5.2) can be rewritten in terms of the

continuous Fourier transform [31]. By employing a discrete Fourier transform

operator (which can be implemented using the FFT), denoted as F below,

one may easily derive the two algorithms below [36, 53, 87].

The convolution approach is described by the following equation

Wd(m, n) = F−1

{

F {U} exp

{

2πid

λ

}

× exp

{

−πiλd

[

(

m

Mδm

)2

+

(

n

Nδn

)2
]}}

, (5.3)

where m ∈ [−M
2
, M

2
) and n ∈ [−N

2
, N

2
) are discrete coordinates and F de-

notes the discrete Fourier transform. The convolution method is based on

the observation that the original problem can be formulated as a convolution

between the hologram function and a phase function. Thus the convolu-

tion theorem may be applied to express the operation as a multiplication in

frequency space.

The direct method is derived from Eq. (5.2) by rewriting it as a Fourier
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transform of the hologram times a phase factor. It is expressed by

Wd(m, n) = F

{

U exp

{

πi

λd

[

(mδm)2 + (nδn)2]
}}

× exp

{

2πid

λ
− πiλd

[

(

m

Mδm

)2

+

(

n

Nδn

)2
]}

. (5.4)

While the direct method requires only one Fourier transform and thus is

less computationally expensive than the convolution approach, it effectively

changes the size of the reconstructed image. In other words, the output pixel

size is linearly proportional to the distance parameter, d. The larger d, the

larger the pixel size of the reconstruction and therefore the larger the spatial

area of the the reconstruction. This property is sometimes undesirable. The

convolution method on the other hand will keep the size of each sample

constant and thus is more suited for hologram analysis approaches where

object sizes must be comparable. We have decided to focus on parallelizing

the convolution method because we wish to keep the resolution constant and

generate more accurate results for comparison purposes.

A hologram encodes both phase and amplitude and thus represents the

full light-field at the sensor. This allows us to reconstruct different views of

the captured scene. By only considering a sub-area of the total hologram, we

are effectively creating a camera with a smaller aperture and a consequent

decrease in the resolution of the reconstruction. However, not only will this

procedure lead to an increased depth of field, it will effectively reconstruct an

image based on light coming from only certain directions of the scene. Thus,

the location of the aperture relative to the optical axis will dictate the view
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imaged through it. Therefore, by choosing size and location in the hologram

plane different perspectives can be reconstructed.

The aperture procedure can be written as

UA = Tk,l

{

UAs,t
k,l

}

exp

{

2πi

λd

(

kmδ2
m + lnδ2

m

)

}

, (5.5)

where As,t
k,l is a binary valued box aperture function of dimensions s× t, with

its center located at the discrete coordinates (k, l) in the hologram plane. It

is defined as follows:

As,t
k,l(m, n) =







1 if (m − k, n − l) ∈ [ −s
2

, s
2
[ , ) −t

2
, t

2
)

0 else.
(5.6)

Tk,l is an operator that translates the origin of the box aperture by (−k,−l)

to the optical axis of the hologram. This yields a common image center in the

reconstructions. This operation will however introduce a phase shift in the

holographic data, which in turn will act as a translation of the reconstructed

object. This is counteracted by the exponential in Eq. (5.5).

5.2.1 Parallelized Fresnel transform

The 2D Fourier transform is linearly separable into two orthogonal 1D Fourier

transforms. As depicted in Fig. 5.2, the algorithm consists of three stages.

Each stage must be fully completed before the next stage can proceed. In

stage 1, a 1D FFT is performed on each row of the hologram. In stage 2, a

1D FFT is performed on each column, the quadratic phase factor of Eq. (5.3)
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Figure 5.2: Three stage parallelized reconstruction algorithm based on
Eq. (5.3). The text shows the computations performed, where QPT de-
notes multiplication by the quadratic phase term of Eq. (5.3). The cubes
represent processors operating on rows or columns individually.

is applied, and a 1D inverse FFT is performed on each column. Finally, in

stage 3, an inverse 1D FFT on each row reveals the reconstructed hologram.

5.3 Limits on holographic parallization

In this section, we discuss how our parallel algorithm is affected by the avail-

able computer resources. An introduction and general discussion on parallel

computing can be found in [8]. In practical terms, parallelizing Eq. (5.3) is

constrained by a number of factors which limit the efficiency of the paralliza-

tion achievable speedup. These limits are: 1) available memory, 2) available

processing resources, and 3) a finite communications channel.

The limits on the applicability of parallization of this algorithm are: the

size of the reconstruction, the memory requirement of the reconstruction,

the number of processors, the granularity of parallization and the rate of

transmission of data. We will define these limits, to allow for a more efficient

implementation and execution of the algorithm. We will only consider sets

of homogeneous processors in this analysis.
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5.3.1 Granularity of parallization

The coarsest granularity of parallization is achieved by using a hologram row

or column as an atomic unit and grouping these together to achieve the de-

sired granularity. In the following section we assume a reconstruction with

dimensions N×N pixels, and we have a parallel computing system consisting

of P processors. The maximum degree of parallization is N , thus the max-

imum possible speedup of the parallelized reconstruction will be achieved

by using P = N processors. Ignoring communication time (assuming in-

stantaneous communication), there would be no idle time, resulting in 100%

processor efficiency.

From Fig. 5.2, the amount of data to be transmitted is 6N2 pixels where

there is N2 pixels transmitted in each direction at each of the three stages

of the computation. When P < N the optimal number of rows to group

together is ⌈N/P ⌉. This, however, may not be realistically achievable due to

memory limitations, necessitating smaller row groups.

Breaking down the algorithm further where each hologram row is paral-

lelized requires breaking up the FFT computation. This results in increased

communication costs of 6N2 log2 N pixels where there is an additional log2 N

transmission overhead from additional intermediate calculations. Most parts

of the parallelized FFT are dependent on previously calculated data and the

maximum degree of parallization is N2/2. If there is instantaneous commu-

nication, only N processors would be processing 100% of the time, with all

other processors lying idle for significant periods of time. The efficiency at
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the maximum degree of parallelisation (P = N2/2), is calculated as

ξmax = log2 N/(N − 1) . (5.7)

There is no reduction in execution time when P > N2/2. For example, if

N = 32 and P = 512, then the processor efficiency is 16% using Eq. (5.7).

These upper bounds on speedup are not realistically achievable because

communication costs are never instantaneous and it is rarely feasible to use

large amounts of computing resources inefficiently. Thus we recommend that,

firstly, whole rows and whole columns are used as the smallest granularity

of parallization to minimize communication costs and increase processor effi-

ciency, and secondly, no more than P = N processors be employed (achieving

simultaneously high speedup and high efficiency).

5.3.2 Reconstruction size

For a given set of processing and communication resources, we find the bound

on hologram size for which a reconstruction takes the same length of time

on a parallel system as it does on a single machine. We assume a dedicated

client-server architecture with a single shared communications channel, with

100% processor efficiency and the granularity of parallelization is at the row

level.

A holographic pixel can be represented in many different formats, so we

abstract away from implementation specific details, viewing a pixel as a sin-

gle unit. The number of holographic pixels to transmit is 6N2. The speed of

the communications channel, B, is defined in terms of the number of holo-
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gram pixels transmitted per second, which is independent of implementation

specific issues, such as compression. Thus, the total transmission time is

6N2/B.

The algorithm requires mN2 + fN2 log2 N + N calculations, where m is

the number of calculations to generate the quadratic phase term of Eq. (5.3)

and f is a constant factor based on the implementation of the FFT. The point

at which a parallel system takes the same length of time as a single machine is

thus when mN2 +fN2 log2 N +N = {(mN2 +fN2 log2 N +N)/P}+6N2/B

is satisfied, where P is the number of processors used. Ignoring constants,

this relationship has the simplified interpretation of

N = 21/P+1/B, (5.8)

which describes the dependency of the minimum reconstruction size required

to benefit from parallization. As B or P increases, N asymptotically de-

creases towards a lower bound. This equation can be reworked to cal-

culate other parameters such as the minimum transmission rate and the

minimum number of processors. Speedup, S, can be calculated by setting

S = (mN2 + 8fN2 log2 N)/[(mN2 + 8fN2 log2 N)/P + 6N2/B], which is an

upper bound on the speedup possible for a given setup and problem instance.

As the size of the reconstruction required increases, so does the efficiency of

the resource utilization.
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5.4 Experimental results

We have implemented the reconstruction algorithm on a Java based dis-

tributed system, which uses the spare clock cycles of idle PCs in a university

teaching laboratory [50]. Based on this implementation we have evaluated

the parallelism of our method as well as the efficiency of memory constraints

as described below.

In order to test the performance for large holograms we reconstructed

a 216 × 216 (4.3 gigapixel) digital hologram. This is, to our knowledge, the

largest ever digital hologram reconstructed. Since no real digital holograms

of this size have been captured, we padded out a 2032×2048 hologram in the

hologram plane. We used a computer with a single 2.2GHz Xeon processor

and 1GB of memory, running GNU/Linux. The total reconstruction time on

our system was 30 hours. In Fig. 5.3(a) a zoomed in view of the centre of the

reconstruction plane can be seen. Figure 5.3(b) shows the relative size of the

object within the full field. Next we will show the benefit of using multiple

processors to reduce the total execution time.

5.4.1 Distributed reconstruction time

Using multiple processors can decrease the total reconstruction time of a

large digital hologram reconstruction. Figure 5.4 shows the reduction in re-

construction time achieved when using multiple processors. We used a homo-

geneous set of 26 desktop PCs running GNU/Linux, each with 2.0GHz Intel

Processors, 1GB of memory and connected by a non-dedicated 100Mb/s

Ethernet network. The total processing time is reduced by utilizing more
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Figure 5.3: Animation of the 216 × 216 reconstruction, from (a) zoomed-in
view to (b) full field (MPEG2 - doi:10.1364/OE.16.001990).

processors, however only to a certain point, which varies depending on the

computation rate of the processors, the speedup of the network and the size

of the reconstruction. In Fig. 5.4 we see large reductions in the reconstruc-

tion time when up to 8 processors are added. After that there is no benefit

gained by using more processors (as explained in Sect. 5.3), because the

network connection is being fully utilized by the system.

5.4.2 Low memory reconstruction

Reconstruction computations have a large space requirement. As the size of

a reconstruction increases, it quickly becomes infeasible to process the whole

reconstruction in memory on a standard PC. We utilize the high capacity of

low cost commodity hard disks in lieu of increased memory. We only keep the

portion of the reconstruction which is currently being processed in memory,
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Figure 5.4: Reconstruction time for 214 × 214 digital hologram using varying
numbers of processors.
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with the rest of the data stored to hard disk. There is an additional overhead

to read and write data on a hard disk, but since we have advanced knowledge

of how the data needs to be accessed, we can minimize this factor. The

overhead varies depending on the hardware and the amount of data stored

in memory at any one time.

If more memory is available, it is more efficient to read in and process

multiple rows at once, with this grouping of rows referred to as a unit of

work. Figure 5.5 shows the variation in processing times with different unit

sizes when reconstructing a 212 × 212 hologram, using a single 2.2GHz Xeon

processor with 2GB of memory. We performed the reconstructions with and

without (i.e. using memory only) using the hard disk as intermediate stor-

age. Using the hard disk, we found that increasing the unit size reduces the

reconstruction time by more efficiently reading and writing to the hard disk.

Keeping the whole computation in memory provides a consistant reconstruc-

tion time, which is faster than using the hard disk as intermediate storage,

but only up to a point. When the available physical memory is expended,

non-optimized hard disk based swap space is used by the operating system,

increasing the reconstruction time eight-fold.

With a unit size of one row, the hard disk based reconstruction algorithm

requires 16MB of memory compared to 800MB when storing the whole holo-

gram in memory. This memory limitation prevents the memory-only based

algorithm from working at all for large holograms. However, with the hard

disk based reconstruction algorithm, simply choosing a unit size which falls

within the available memory of the machine makes it possible to reconstruct
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very large holograms on standard commodity hardware.

5.4.3 Comparison to other implementations

We have compared the algorithm presented in this chapter to a number of

other reconstruction methods A graphics processing unit (GPU) based re-

construction implementation has been developed [3]. It exploits the fast and

highly parallel architecture of the GPU to reconstruct digital hologram views

at video frame rate speeds. Two different GPU methods were developed, one

which processes the whole 2D reconstruction in one step, and another which

breaks up the problem into 1D FFTs as shown in Fig. 5.2, which has a lower

memory requirement. Two other implementations which perform reconstruc-

tions using the CPU were written for comparison purposes. The first was

written for Matlab, a widely used maths interpreter, which uses highly opti-

mized algorithms for numerical processing. The second was written in C++

and utilizes the fast FFTW library [28] (v. 3.1.2, single threaded).

Table 5.1 show a comparison table of average reconstruction times for

both the direct and convolution approaches and hologram sizes up to 4096 ×

4096. The results for the GPU implementation were run on a Linux PC with

2 Gigabytes system RAM, AMD Athlon Dual Core 64 bit processor and

a GeForce 8800GTX graphics card with 768 Mbytes on board RAM. The

Matlab implementation was executed on a dedicated server equipped with a

Dual Core Xeon 1.6GHz CPU and 4 Gigabytes of RAM. The native C++

based method was executed on an AMD Athlon 64 X2, 2.3 GHz equipped

with 2 GB of RAM. The algorithm described in this chapter was run on
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Reconstruction Time (ms)
GPU CPU Java

Resolution 2D 1D C++ Matlab RAM Hard Disk
512×512 2 3 251 502 6219 21046
1024×1204 7 19 1060 1845 25360 77856
2048×2048 47 106 4550 7438 104462 311276
4096×4096 204 598 23530 29731 367838 1179478

Table 5.1: Reconstruction times in milliseconds for the convolution method
using 6 different methods. The GPU and CPU times were averaged over
1000 runs [3].

the same dedicated server, using 1 CPU. One approach used RAM as the

intermediate storage mechanism, and the other approach used the hard disk

as the intermediate storage mechanism. The 2D GPU method out performs

the C++, Matlab and Java implementations by between 125 and 10523 times

for a 512×512 reconstruction. For a reconstruction of size 4096×4096 it out

performs them by between 115 and 5781 times. All of the methods, with

the exception of the Java hard disk based implementation, quickly reach the

limits of the available RAM, making larger reconstructions impossible.

The Java based method is unsuitable for small reconstructions, but by

using the hard disk as intermediate storage, it can reconstruct very large

holograms, which is not possible with the other reconstruction methods. A

significant limiting factor is that the speed of data transfer with hard disks

is very slow compared to RAM.
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5.5 Conclusions

We created a parallel Fresnel hologram reconstruction method that can re-

construct large holograms on standard desktop PCs. We have shown how it

is possible to reduce the reconstruction time for large holograms by using a

distributed system. The method also has a small memory footprint, allow-

ing for the possibility of performing holographic reconstructions on resource

constrained devices. This could open up possibilities for shared distributed

computing on, for example, mobile devices in the future.

In our future work we will look at the effect of using a heterogeneous

web computing system for reconstructions, as well as robust parallel recon-

structions with quality of service guarantees for holographic video. Other

interesting possibilities include implementing other computationally expen-

sive methods in digital holography, for example advanced speckle reduction

and hologram image processing techniques.
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Chapter 6

Conclusion

In this thesis we presented two scheduling methods for allocating tasks to

processors in an unreliable heterogeneous distributed system. No restrictive

assumptions are made about: the heterogeneity of the processing or commu-

nication resources, the availability of the resources, the architecture of the

communications network, the task execution time distributions of the prob-

lems to be processed, or the communication distribution requirements of the

problems to be processed. They begin with zero initial knowledge about

the state of the system or the problems to be processed and generate all

required information on-line. It dynamically adapts to any set of processing

and communication resources, whilst utilizing these resources as efficiently

as possible. We showed that they can efficiently allocate tasks to processors

on a real-world heterogeneous distributed system. Next we will summarizes

the work presented in this thesis.
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6.1 Dynamically estimating properties

Given an unreliable, non-dedicated set of processing and communication re-

sources, a scheduler is required to allocate tasks to processors. No informa-

tion about the state of the system, which can vary over time, or the tasks to be

processed is known in advance, and thus must be estimated dynamically. A

property estimation method is presented in Chapter 2, which utilizes a kNN

algorithm, a smoothed average and an analytical benchmark. These esti-

mated properties are then used by two different scheduling techniques, which

make less restrictive assumptions than the current state-of-the-art methods.

For future work, it is envisaged that the next step will be to investigate

different methods for weighting the different inputs to the kNN or possibly

to replace the whole estimation algorithm with a more advanced learning

technique such as a neural network.

6.2 Task allocation using GAs

A multi-heuristic evolutionary scheduling algorithm is presented in Chap-

ter 3. Multiple simple heuristics are combined to enhance a genetic algo-

rithm to schedule tasks in a fast and efficient manner. The evolutionary

nature of a GA allows for near optimal solutions to be found quickly, even

in a dynamic distributed system with constantly changing resources. Real-

world experiments using up to 150 heterogeneous processors have shown that

the algorithm achieves better efficiency than other state-of-the-art heuristic

algorithms.
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The novelty in this work is with the lack of restrictive assumptions, that

other schedulers make. This scheduler can be used with any set of processing

or communication resources, to process any problems. It requires no inputs

from the user, and can be treated as a black box, yet it will model the state

of the system and the task execution time distributions online and generate

efficient scheduling solutions. The evolutionary nature of the hybrid GA

scheduler allows it to adapt to any set of input parameters allowing for very

efficient solutions to be found within a short space of time. This makes it

more generalizable than the current state-of-the-art schedulers for distributed

computing.

The next step in this work will be to parallelize the algorithm across the

distributed system, to make best use of any idle resources. This chapter sets

out a framework which can easily be used with other evolutionary algorithms,

and scheduling heuristics.

6.3 Task allocation using estimation error

A deterministic method utilizes the error inherent in estimating the prop-

erties of the system and the execution time of tasks to allocate tasks to

processors in Chapter 4. It is predictable and can be verified, due to the

absense of randomness. This makes it more suitable for certain applications

where predictability is required, such as real-time applications or medical ap-

plications. It uses the error inherent in estimating properties as inputs to a

scheduler. A family of schedulers are presented which use this method, each

seeking to maximize or minimize the uncertainty of the values of the prop-
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erties (such as task execution time) when making task allocations. These

are then combined with a number of objectives, minimizing makespan, load

balancing, and matching the properties of tasks to suitable processors. It

has been evaluated on a number of non-dedicated real-world heterogeneous

distributed system configurations. The efficiency achieved is nearly the same

performance as more complicated evolutionary scheduler, but without the

complexity of an evolutionary algorithm.

The main contributions that this work makes is with the lack of restric-

tive assumptions it makes, and its ability to adapt to the variability of a

real-world distributed system. This work is the first to utilize the inherent

error in estimating the properties of a distributed system and to use it to

enhance the allocation of tasks to processors. It can achieve nearly the same

performance as a more complicated meta-heuristic. It has been shown to

work very effectively on a real-world distributed system.

A preliminary investigation has been done on combining the multiple dif-

ferent objectives, from this chapter, to further improve the overall efficiency

of the scheduler. Early results indicate this strategy holds much promise as

the next step in this research.

6.4 Distributed Applications

The scheduling research presented in this thesis is intended to more efficiently

utilizing the resources of a heterogeneous distributed system to reduce the

overall execution time of computationally intensive problems. A computa-

tionally intensive problem has been parallelized and is described in Chap-
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ter 5. It is a low memory distributed reconstruction application for large

digital holograms [3, 76].

A parallel implementation of the Fresnel transform, suitable for recon-

structing large digital holograms, has been developed. It has a small mem-

ory footprint and utilizes the spare resources of a heterogeneous distributed

system to reduce the overall execution time. We demonstrated how a 4.3 gi-

gapixel digital hologram can be reconstructed, which is 16 times larger than

previously reconstructed holograms, in the literature. We also show the ef-

fect of different memory and processor configurations on the efficiency of the

algorithm.

The digital holography research presented in Chapter 5 feeds into a longer

term goal of 3-dimensional television. We focused on the open problems with

holographic view reconstruction: size of reconstruction, speed of reconstruc-

tion, and memory footprint required. This work has since fed into 3 differ-

ent on-going research topics: 1.) reconstruction using commodity graphics

cards [3], 2.) reconstruction on resource constrained mobile devices, and 3.)

distributed reconstruction of streaming video [77].

6.5 Final words

The initial impetus for this research was to allow for a non-technical user

(such as a biologist) to setup a distributed system with any available pro-

cessing resources at their disposal, so that they could efficiently process their

computationally intensive problems, whilst treating the internal workings of

the distributed system as a black box. We have addressed this problem by
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creating two methods complementary scheduling methods, and shown their

effectiveness in a real-world distributed system, efficiently processing compu-

tationally intensive problems from a number of different fields. This is still

an open problem, but the methods presented in this thesis go some way to

advancing the area.
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Appendix A

Taxonomy
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[6] - - x x 2003
[22] - - x x -

[101] - - x x 2003
[52] x x x x 2001
[54] - x x x x 2002
[91] - x - x x 2003
[74] x 2003

Table A.1: Taxonomy of scheduling within web computing platforms. Dash
(-) indicates unknown or inapplicable.
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[38] x x x x x x 1994
[90] x x x x x 1996
[32] x x x x x 1999
[96] x x x x x 2006
[16] x x x x x x 1999
[59] x x x x x x 2008
[98] x x x x x 2001
[21] x x x x x 2002
[1] x x x x x 2001

[60] x x x x 2002
[62] x x x x 2003
[92] x x x x 2006
[10] x x x x x 2001

[102] x x x x x 1997
[108] x x x x x 2001
[107] x x x x x 2001
[105] x x x x 1998
[33] x x x x 2001
[81] x x 2004

Chap. 3 x 2008

Table A.2: Taxonomy of evolutionary schedulers. Dash (-) indicates unknown
or inapplicable.
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[55] x x x x x x x 1996
[7] x x x x x 2004

[24] x x x x x 2002
[34] x x x x x x 2000
[66] x x x x x 1997
[45] x x x x x x 1984
[61] x x x x 1999
[68] x 1999
[26] x 1997
[80] x 2008

Table A.3: Taxonomy of non-evolutionary schedulers. Dash (-) indicates
unknown or inapplicable.
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Symbol Description Location
Xi Task input parameters Sect. 2.1
xi

2 A single input parameter Sect. 2.1
q No. input params Sect. 2.1
ti Actual processing time of task Sect. 2.1
j Processor index
i Task index
ǫ Task processing time not estimated Sect. 2.1
O Set of observations Eq. (2.2)
n No. prev task execution times Sect. 2.1
k k nearest neighbours Sect. 2.1.1
Uj Set of task result input parameters
L % of obervationss deselected Alg. 2.1 & Fig. 2.1
ETC Estimated time to compute Eq. (2.6) & Eq. (2.8)
d Euclidean distance Eq. (2.4)
y No. of obervations used in kNN Eq. (2.3)
f Index variable
w Weighting value in kNN Eq. (2.5)
Pj Computational rate in MFLOP/s Sect. 2.1.2
Γ Smoothing function Sect. 2.1.2
Ti Estimated task MFLOPs Sect. 2.1.2
M No. of processors Sect. 4.2
N Total No. of Tasks to schedule
TIME Start of scheduling time Sect. 4.2
ET(i,j) Task error value Eq. (4.2)
C(i,j) Estimated communications cost Sect. 4.2.1
CCR(i,j) Computation to Communication Ratio Eq. (4.3)
EW(i,j) Error weight Eq. (4.4)
ST() Next idle time of processor Eq. (4.6)
Qj Queue of scheduled tasks Alg. 4.1

Table A.4: Taxonomy of variables used
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Symbol Description Location
ci communications overhead Sect. 2.1
α, β Control variables Sect. 4.2
PS(i,j) Task processor suitability Eq. (4.14)
CS(i,j) Communications suitability Eq. (4.15)
Ai Size of task in bytes Sect. 4.2.5
Bj Bandwidth to processor j Sect. 4.2.5
ξmax Efficiency at maximum degree of parallization Eq. (5.7)

Table A.5: Taxonomy of variables used
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Appendix B

Task Allocation Problem

We wish to map tasks to processors in a dynamic heterogeneous distributed

system. The TA problem is NP-complete in the general case [100]. However,

the general TA problem does not accurately model a real-world dynamic

distributed system [95]. We will show that if we introduce a small amount

of unknown dynamism, then the problem is not contained in NP. Thus we

cannot linearly transform efficient solutions from problems contained in NP

and must create new heuristics.

B.1 Task allocation problem

In this section we will explore the TA problem and its complexity. We begin

with the standard TA problem, which we know is in NP [100]. We then

introduce a dynamic element to the problem. We will show that if the amount

of dynamism is known, the problem is in NP, however, if the amount of

dynamism is unknown, the problem is not contained in NP. If the problem
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is in NP, solutions from existing efficient algorithms, such as TSP [15] and

3SAT, can be linearly transformed to solve the TA problem. However this is

not possible if the problem is not contained in NP, assuming NP 6= PSPACE.

B.1.1 TA problem is in NP

The problem is defined as follows: given a set of task identifiers

T = {0, 1, . . . , N − 1}, a set of processor identifiers P = {0, 1, . . . , M − 1},

a matrix A : N × M 7→ N which contains the execution time in seconds of

each task on each processor, and a value k ∈ N, is there a mapping of tasks

to processors which has a makespan (total execution time) of less than or

equal to k seconds? Note this definition allows for heterogeneous tasks and

processors.

We will first prove that the TA problem is in NP. We do this by proving

that each instance of the problem can be verified in polynomial time. Given

an instance of the problem, and the solution “yes”, we define an algorithm

that verifies this solution in all cases. The witness (or certificate) we choose

is the mapping S : T 7→ P from tasks to processors. Our algorithm is shown

in Alg. B.1.

Correctness analysis

The cost of each task is added to an accumulator for each processor. After

all tasks have been added each accumulator is checked to see that its value

is not greater than k.
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Input: T, P, A, k, S, N, M
Output: Yes or No
P : M 7→ R;1

P = 0;2

foreach Task i = 0..(N − 1) do3

P [S[i]]+ = A[S[i]][i];4

5

foreach Processor j = 0..(M − 1) do6

if P [j] > k then7

return No;8

9

return Yes;10

Algorithm B.1: Algorithm to verify a given solution in polynomial
time.

Complexity analysis

The first FOR loop requires N iterations, each of which consists of one addition

operation. The second FOR loop requires at most M iterations, each of which

requires one comparison. The total complexity is θ(N + M), which means

it is a polynomial algorithm. Therefore if the TA problem can be verified in

polynomial time then it is in NP.

B.1.2 TA problem with dynamism

We will show in this subsection that if a known amount of dynamism is

introduced to the TA problem a solution can be verified in polynomial time,

but when the amount of dynamism is unknown the solution cannot be verified

in polynomial time. At time step t, δ changes occur in matrix A. These

changed elements could change to any R but for simplicity we limit them to

a binary set, they either change or they stay the same.
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The problem inputs are as follows: a constant value δ, a value k ∈ N, and

the inputs defined in Sect. B.1.1. Is there a mapping of tasks to processors

which has a makespan of less than or equal to k seconds after time step t?

The problem definition has two additions. We will now assume that at

some point in time the matrix A changes to matrix A′, but we restrict the

values to simplify the problem. δ corresponds to the number of elements that

change at time step t, controlling the dynamism. At time step t all elements

in A are copied to A′. During this copy, δ elements of A′ are doubled in value.

Simplification by limiting the numbers allows for the use of a binary mask,

however this could easily be substituted for a mask of different numbers, thus

retaining the generality of the method.

In the verification algorithm, to generate matrix A′ we create a binary

mask Z ∈ {1, 2}N×M , and multiply every element of A by the corresponding

mask element to generate the A′. Thus some tasks will take twice as long

to process while others will remain unchanged. Of course, as we don’t know

which Z is correct we must try each possibility to verify the solution to this

problem. Our algorithm is presented in Alg. B.2.

Correctness analysis

First we generate all possible combinations of A and the mask to produce

2N matrices of A′ using a binary shifting algorithm. As in Alg. B.1 the cost

of each task is added to an accumulator for each processor, with a separate

set of accumulators for each instance of A′. Before time t all task execution

times are calculated using A, and after time t all task execution times are
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Input: T, P, A, t, k, S, N, M
Output: Yes or No
P : M 7→ R;1

A′ : M × N 7→ R;2

dispMask 7→ N;3

X = 0, 1;4

P, A′, X, dispMask = 0;5

foreach r = 0..(2δ − 1) do6

foreach f = 0..(N − 1) do7

d = r ;8

if (d&dispMask) == dispMask then9

A′[S[f ]][f ] = 2 × A[S[f ]][f ];10

else11

A′[S[f ]][f ] = A[S[f ]][f ];12

d ≪= 1;13

foreach Task i = 0..N − 1 do14

if P [S[i]] < t then15

if P [S[i]] + A[S[i]][i] > t then16

v = (t − P [S[i]])/A[S[i]][i];17

P [S[i]]+ = v × A[S[i]][i];18

P [S[i]]+ = (1 − v) × A′[S[i]][i];19

else20

P [S[i]]+ = A[S[i]][i];21

22

else23

P [S[i]]+ = A′[S[i]][i];24

25

X = 0;26

foreach Processor j = 0..(M − 1) do27

if P [j] > k then28

X = 1;29

30

if X == 0 then31

return Yes;32

33

34

return No;35

Algorithm B.2: Algorithm to check a schedule where the task execu-
tion times change at a given time t and A′ is dynamically created.154



calculated using each instance of A′. After all tasks have been added, each

of the accumulators are checked to see that its value is not greater than k.

Complexity analysis

The first FOR loop requires 2δ iterations.. The second FOR loop requires N

iterations, each of which consists of four operations. The third FOR loop

requires at N iterations. For tasks that are executing at time t, three oper-

ations are required, and this occurs at most M × 2N times. The fourth FOR

loop requires at M iterations with one comparison.

The total complexity is O((N + M)2δ), so when δ is a constant value

the solution can be verified in polynomial time, but when δ is unknown it

is δ = N . Thus with a complexity of O((N + M)2N ) the problem is not

polynomial time verifiable and is thus not contained in NP (in this instance

it is in PSPACE, assuming NP 6= PSPACE).

Discussion

Different masks can give radically different makespans. Every possible per-

mutation of Z must be checked to see if it gives rise to a makespan of less

than or equal to k. When dynamism introduces a known number of changes,

the problem is in NP, but when the number of changes is unknown, the

problem is not contained in NP. If δ is unknown, it will always require all

possible masks to be checked to verify a solution, thus it is not contained in

NP. It is thus not possible to linearly transform any NP-complete solvers to

our dynamic scheduling problem. The DTA problem tackled in this thesis
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contains multiple dynamic elements. Adapting Alg. B.2 to verify a problem

with these elements would involve additional masks, which still place the

problem outside NP if an unknown number of changes occur. Subramani has

has also shown this to be the case in [95].

The problem which we tackle is defined as follows: given a set of task iden-

tifiers T = {0, 1, . . . , N −1}, a set of processor identifiers P = {0, 1, . . . , M −

1}, a set of communication link identifiers C = {0, 1, . . . , M − 1}, a matrix

A : N ×M 7→ R which contains the execution time in seconds of each task on

each processor, a matrix D : N ×M 7→ R which contains the communication

time in seconds of transmitting a task to a processor using a communication

link, and a value k ∈ N. Is there a mapping of tasks to processors which has

a makespan of less than or equal to k seconds? The matrix A transforms to

a new matrix using a mask Z at each time step, and the values of the mask

are ∈ R.
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