18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

Evaluating Pruned Object Detection Networks for
Real-Time Robot Vision

Simon O’Keeffe
Department of Electronic Engineering
Maynooth University
Maynooth, Ireland
simon.okeeffe.2010@mumail.ie

Abstract—Convolutional Neural Networks are the state of the
art for computer vision problems such as classification and
detection. Networks like YOLO and SSD have demonstrated
excellent results on benchmark datasets such as the PASCAL
VOC and COCO datasets. However these networks only run at
real time with the support of powerful GPUs and are infeasible for
use in low power embedded real-time robotic applications.
Pruning has been shown to be an efficient technique for reducing
the runtime computational cost of a neural network while
maintaining performance in image classification tasks. In this
work we evaluate the efficacy of pruning on the problem of object
detection using a modified tiny-YOLO network. The network was
trained on a custom object detection task and three pruning
techniques were evaluated, including our contribution which
specifically targets reducing the FLOPS in the network. The
results show that pruning with our method followed by extended
fine-tuning achieved a 4.5x reduction in FLOPS and a 7x
reduction in parameters with no drop in accuracy.

Keywords—Convolutional Neural Networks, object detection,
real-time, pruning

[. INTRODUCTION

Multiclass object detection is a key component of
applications including autonomous driving, pedestrian
detection, and home robots. Unlike image classification, where
an entire image is associated with a single label, object detection
associates an image with both labels and locations for every
detected class within the image. In many applications, such as
autonomous driving, object detection needs to be performed
accurately in real-time, on platforms that may have low
computational power. State-of-the-art object detection methods,
however, currently require significant computing power to run
in real time.

Convolutional Neural Networks (CNNs) have achieved
state-of-the-art results on object detection datasets [1], [2].
These networks can achieve real-time performance on GPUs but
are not yet feasible to implement on low-power devices without
reducing the computational complexity or increasing the
efficiency of the implementation. There are multiple techniques
for reducing the computational complexity of a CNN including
quantization [3], binarization [4],and depth-wise separable
convolutions [5] but this work will focus in particular on
network pruning [6].

CNNs have been shown to have a lot of redundancy [7].
Pruning can take advantage of this to reduce the computational

978-1-5386-5346-6/18/$31.00 ©2018 IEEE

978-1-5386-5346-6/18/$31.00 ©2018 IEEE

Rudi Villing
Department of Electronic Engineering
Maynooth University
Maynooth, Ireland
rudi.villing@mu.ie

cost of the network by removing weights and connections such
that the network size and runtime computational load are
reduced.

In this work we examine the efficacy of pruning at reducing
the size of a network while maintaining object detection
performance. Unlike previous work which has primarily
evaluated pruning in the context of image classification, we also
wish to evaluate if there are any additional considerations when
applying this technique to multi-class object detection networks.
Although state-of-the-art multi-class object detection networks
are trained for a moderately large number of classes (for
example, 80 classes for the COCO dataset), there is a demand
for specialized applications that handle fewer classes [8]. Our
work ultimately targets the Softbank Nao robot, an embedded
platform which uses an Intel Atom Z530 CPU and no GPU, and
focuses on four object classes drawn from the robot soccer
problem domain. These are ball, robot, goal post and penalty
spot.

In the remainder of this paper we first outline existing
solutions to object detection and pruning in Section II. We
outline our proposed approach in section III. Section IV details
the experiments performed and the corresponding results.
Section V presents our conclusions.

II. RELATED WORK

Performance in object detection is measured with the mean
Average Precision (mAP) which is the Average Precision (AP)
averaged over all classes in the dataset. AP summarises the
shape of the precision/recall curve for detections of a given class
where detections are deemed correct only if the predicted
bounding box of the detected object overlaps sufficiently with
the corresponding ground truth box. The overlap metric is the
intersection over union (IOU) and is the ratio of the intersection
area to the union area of the two bounding boxes. An IOU of
0.5 is the excepted metric for the PASCAL VOC object
detection challenge [9] although more challenging datasets like
COCO calculate the mAP at steps of 0.05 between 0.5 and 0.95.
In this work we will focus on an IOU of 0.5.

Before CNNs reached state-of-the-art performance for
object detection, the best performing approach was Deformable
Part Models (DPM) [10]. DPMs are HOG-based graphical
models and scored 33% mAP on the VOC 2007 dataset. When
CNNs were applied to the object detection problem they
exhibited large improvements over DPMs. R-CNN [11] scored

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

66% mAP on the VOC 2007 dataset. Speed and accuracy
improvements over R-CNN were made with Fast R-CNN [12],
improving mAP to 66.9% while reducing inference time by
146x and with a 9% reduction in training time. Faster R-CNN
[13] further improved on Fast R-CNN with the introduction of a
Region Proposal Network instead of selective search [14] which
was the computational bottleneck for Fast R-CNN. Faster R-
CNN increased mAP to 73.2% on VOC 2007 and could run at 5
fps on an Nvidia Tesla K40 GPU.

R-CNN networks in general use a pipeline architecture
which consists of a region proposal step followed by a
classification step and fine-grained localization. Alternative
approaches have focused on performing object detection in one
single network with no separate region or object proposal step.
The YOLO network [15] was the first network to perform object
detection in a single CNN. YOLO was shown to run at 45 fps on
an Nvidia Titan X GPU but scored a lower 63.4% mAP than
Faster R-CNN. YOLOv2 [1] subsequently improved the
accuracy with respect to the runtime. It achieved 78.6% mAP at
40 fps and a faster version of YOLOV2 scored 76.8% at 67 fps.
The Single Shot MultiBox Detector (SSD) [2] network takes a
similar approach to YOLO achieving 74.3 % mAP at 46 fps.

Pruning has been shown to be effective at removing
redundancy in large neural networks. Early pruning efforts
included Optimal Brain Damage [16] and Optimal Brain
Surgeon [17]. Both these methods identify the least significant
connections through a second-order Taylor Expansion
approximation of the change in loss function from removing a
particular parameter. Pruning in CNNs can be carried out such
that either individual weights [18] or entire kernels are pruned.
Pruning individual weights creates sparsity in the network which
often requires sparse BLAS libraries or even specialized
hardware for efficient inference [19]. As an alternative to
pruning individual weights, pruning entire kernels from a
network has been shown as an efficient method of pruning
without introducing any sparsity in the network [6], [20], [21].
The general approach is to prune the least important kernels
from the network where importance is assessed by techniques
such as absolute weight sum [20], mean activation, Taylor
expansion [6], and sparse shrink [21].

Pruning by absolute weight sum is a data independent
technique that can rank the kernels for pruning without access to
a dataset. This simple technique was successful in reducing the
computational costs for VGG-16 [22] by up to 34% and ResNet-
110 [23] by up to 38% with no significant loss in accuracy [20].
In contrast, data dependent methods, such as the Taylor
expansion method require access to the dataset and can be more
complicated to calculate, requiring the gradient of cost function
with respect to the activation. The Taylor expansion method
reduced computational costs on VGG-16 by 37% [6]. The
sparse shrink pruning method tries to find representative data
points, such that each point in the dataset can be described as a
linear combination of a set of representative data points. The
sparse shrink method was applied to Network-in-Network
architecture [24], reducing the number of parameters and
multiplications by approximately 57% and 74% respectively.

To date it appears that pruning techniques have been
evaluated on classification problems. It is therefore an open

92

question if pruning would present any additional issues when
applied to object detection networks. In particular, more
information is carried through to the output of object detection
networks and it might be the case that object localisation is more
affected by pruning than classification would be. Indeed some
preliminary work we did suggested just such an effect and, for
this reason it is important to evaluate if object detection
networks can be pruned to the same extent as classification
networks. In addition, pruning methods have typically been
evaluated on very large networks such as VGG-16 Net.
Therefore it is worth examining if pruning techniques can be
similarly successful on smaller networks, such as the tiny-
YOLO network.

III. PROPOSED APPROACH

Our overall approach involves modifying the tiny-YOLO
network, training this network via transfer learning on a custom
dataset, and finally evaluating a number of pruning techniques
on this network. We used the Darknet! deep learning framework
for our experiments [25] as this is the framework used by the
tiny-YOLO network.

A. Dataset

Benchmark datasets for image -classification typically
contain a very large number of images (for example, 1 million
in ImageNet [26]). Current datasets for object detection are
much smaller with 11,530 images in PASCAL VOC [9], and
200,000 in COCO [27]. Networks trained for PASCAL VOC are
generally pre-trained on ImageNet to learn rich features in the
initial convolutional layers. We follow a similar approach in this
work with our dataset consisting of 4,140 images containing
12,048 object instances (3973 ball, 3944 robot, 2534 goal post,
and 1597 penalty spot) [28]. The dataset was gathered from a
range of Nao robot camera image logs in various locations and
lighting conditions including our lab, RoboCup 2016 indoor and
outdoor, and RoboCup 2017. The dataset is divided into
training, validation, and testing datasets with a 70:15:15 split.

B. Network

The initial network examined for this work was the tiny-
YOLO network. This is a smaller version of the YOLOv2
network and uses the first 13 layers of the Darknet Reference
network!. As we are interested in reducing the computational
load we first examine the computation associated with the tiny-
YOLO network.

The number of floating point operations in a given
convolutional layer excluding pooling is given by:

FLOPS = 2HW (C;K? + 1)Cyyyy (1)

where H, W, Cy,, are height, width and number of channels of
the input feature map, K is the kernel width, and C,,; is the
number of output channels. Therefore the unmodified tiny-
YOLO network requires of approximately 7 GFLOPS for one
forward pass of the network.

To reduce the computational load of the tiny-YOLO network
before pruning we modify the network in three distinct ways.
The first, already proposed as part of YOLOV2, is to reduce the

Uhttps://pjreddie.com/darknet/imagenet/

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

input image size (from 416 to 288). This effectively halves the
number of multiplications in each layer. The second step is to
reduce the number of kernels in the second last convolutional
layer (from 1024 to 512). This layer had the largest number of
FLOPS in the whole network and this reduction combined with
the input image size reduction reduced the FLOPS in this layer
by a quarter. The third and final step was to reduce the number
of dimension priors from 5 to 3. (YOLOvV2 uses dimension
priors, which are similar to anchor boxes, to specify an initial
prior width and height for an object relative to the size of an
output grid cell.) Reducing the dimension priors has a relatively
small effect, removing 40% of the FLOPS from the final layer
of the network, which is already the smallest. However, the
change has little effect on the accuracy of the network because
dimension priors are based on k-means clustering of the
bounding boxes in the dataset and the size and shape of
bounding boxes for objects in our dataset is not as diverse as
those within the PASCAL VOC dataset. The modified network
that results from these three changes can still be trained using
transfer learning from the Darknet Reference network as none
of the corresponding kernels were changed. The architecture of
this modified tiny-YOLO network is detailed in Table I. It
requires 2.56 GFLOPS for a forward pass through the network.

TABLE I. Modified Tiny-YOLO Network Architecture

Iif;?:: Kil;izgize Kernels Input Size FLOPS
Conv 3x3/1 16 288x288x%3 74M

Pool 2x2/2 288x288x16

Conv 3x3/1 32 144x144x16 192M
Pool 2x2/2 144x144x32

Conv 3x3/1 64 72x72x32 192M
Pool 2x2/2 72x72x64

Conv 3x3/1 128 36x36x64 191 M
Pool 2x2/2 36x36x128

Conv 3x3/1 256 18x18x128 191 M
Pool 2x2/2 18x18%256

Conv 3x3/1 512 9%x9x256 191 M
Pool 2x2/1 9%x9x512

Conv 3x3/1 1024 9%x9x512 765 M
Conv 3x3/1 512 9%x9x1024 764 M
Conv 1x1/1 27 9%x9x512 2M

The modified tiny-YOLO network was trained with a batch
size of 32, momentum of 0.9, and a decay of 0.0005. During
training we used the same standard data augmentation
techniques and multi-scale training used in YOLOV2 including
random crops, rotations, and hue, saturation and exposure shifts.
The network was trained for 250 epochs after which it achieves
64.5% mAP on our dataset. This result is in line with the 51%

93

mAP measured in an evaluation of tiny-YOLO on the PASCAL
VOC dataset [29].

C. Pruning Techniques

Pruning can be applied to individual weights within kernels
or to entire kernels. Pruning entire kernels does not require any
specialized sparse libraries or hardware and for this reason it is
the approach we use. In a CNN one filter kernel in one layer
produces one output feature map in the following layer. Each
kernel contains C;,K* weights where Cj, is the channels in the
input to the layer and K is the kernel size. Pruning one kernel in
one layer not only reduces the number of FLOPS in that layer
but also reduces the number of FLOPS in the following layer.
The number of FLOPS saved by pruning one kernel is given by:

FLOPS = 2H'W'(CL,K?* + 1)

+2HTTW (K2 + 1)CLE 2
where H, I, C;;,, and C,,; are the height, width, input channels,
and output channels for layer i and i + 1.

Modern pruning methods have found that an iterative
process of pruning and fine tuning keeps the network resilient to
pruning [6], [20]. The general approach is as follows:

1. Evaluate the importance of a set of kernels based on some
metric.

Remove the least significant m kernels.

3. Fine-tune this pruned network for a fixed number of
iterations.

4. Repeat steps 1-3 until some criterion is met.

We evaluated two different approaches to pruning our
modified tiny-YOLO network. The first approach was proposed
by [20] and measures the importance of each kernel in a given
layer by its absolute weight sum. The motivation for this
approach is that kernels with smallest weights tend to produce
feature maps with weakest activations relative to other kernels
in the same layer. For each filter kernel, F, the absolute weight
sum, sy, of kernel k is given by:

s = IV |EX] 3)

where N is the vectorised length of kernel F. Thereafter pruning
removes m kernels with the smallest absolute weight sum
values in a given layer and the corresponding weights from the
kernels of the following layer.

An important aspect of the general absolute weight sum
approach is how to select the layer from which to prune. We
evaluated two absolute weight sum methods which we refer to
as most-kernels and most-FLOPS. The most-kernels method
always selects the layer with most kernels to prune as [20] found
that layers with more kernels are less sensitive to pruning.
Preliminary testing, however, indicated that in some cases layers
with the most kernels contribute relatively little to the
computational load of the network. For this reason we created
the new most-FLOPS method. This method always selects the
layer with the largest number of FLOPS to prune, calculated
using (1), and ignores the number of kernels in the layer.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

All absolute weight sum methods are data independent and
can therefore rank the kernels without requiring the time
consuming process of running the data through the network.
Data dependent techniques such as Taylor expansion pruning [6]
have also been shown to be effective at pruning networks. The
Taylor expansion method approximates change in the loss
function that results from removing a specific kernel. The
importance of each kernel is determined by:

w0y _ |1 5C (k)
QT(Zz) = EZm 5200 Zim “4)
Lm
where Zl(g is activation at position m in the k" feature map in

layer / and M is the length of the vectorised feature map. Every

feature map zl(k) is the output from one kernel, F®), convolved
with the input in the previous layer. For a minibatch with 7> 1
images, the importance is calculated separately for each image
example and averaged over 7. This approach requires the
accumulation of the product of the activation and the gradient of
the cost function with respect to the activation, which is already
computed as part of the backpropagation step. However, seeing
as this method is a data dependant technique it is more
computationally expensive than data independent techniques to
rank the kernels.

Rather than operating on one layer at a time, the Taylor
expansion method evaluates the importance of every kernel in
the network. Since kernels from different layers of the network
have different scales, we perform /-normalization to rescale
across the layers:

o(z")

. 2
zj(o(z{’)))
where the sum is computed over all kernels, j, in the layer [. The
authors in [6] also introduce a FLOPS regularization technique
which reduces the importance of kernels in layers with large

computation requirements. The regularization technique they
introduce is as follows:

(4) = 6(+) - 207107

8(z®) = (5)

(6)

where A controls the amount of regularization and ;9% is

calculated for each layer using (1). The authors in [6] use A =
1072 and we use the same value in this work.

IV. EXPERIMENTS AND RESULTS

First we evaluated the most-kernels absolute weight sum
method. This was applied iteratively to the layer with the most
remaining kernels and each pruning iteration had the following
steps:

1. Determine which layer in the network has the most

kernels.

2. Calculate the importance of each kernel using the
absolute weight sum from (3).

3. Rank the kernels by importance and prune the lowest

ranked m kernels from the network.

94

4. Fine-tune for 50 iterations with a batch size of 32.

Steps 1-4 are repeated for 300 iterations. The number of
kernels, m, was chosen to be 5% of the total number of kernels
within the layer. This technique (Abs 5K) was effective at
pruning the model size of the network but tended not to affect
early layers of the network which contained a small number of
kernels but required a large number of FLOPs at runtime.

Therefore we evaluated our new most-FLOPS absolute
weight sum method. The procedure followed the same steps as
the most-kernels variant except that step 1 selected the layer with
the most FLOPS to prune. Once again 5% of the kernels in the
selected layer were pruned on each iteration (Abs 5F).

Since the new most-FLOPS method proved to be the more
effective than the most-kernels method, we then repeated most-
FLOPS but removed just 1 kernel per iteration for 1500
iterations (Abs 1F). This approach was consistent with the final
method to be tested, the Taylor Expansion method with
normalization and FLOPS regularization, which also pruned just
one kernel per iteration (Taylor). The steps for Taylor were
identical to those of Abs 1F except that the importance in step 2
was calculated according to (4) instead of absolute weight sum.

Fig.1 shows the effect of pruning using all the methods
evaluated. To simplify the figure, each data point represents the
best performing network from a block of 10 pruning iterations
(where each pruning iteration generates a new network). All
methods were reasonably robust to pruning for initially but
methods which pruned multiple kernels per pruning iteration
tended to be less stable. In particular the mAP of the Abs 5K
technique degraded early on in the pruning procedure suggesting
that pruning cannot target only deeper layers of the network (that
happen to have the most kernels). The Abs SF method
maintained reasonable mAP performance for more pruning
iterations while the Abs 1F and Taylor methods which only
pruned one kernel per iteration were much more robust to
pruning. The best performing network after pruning, Abs 1F,
exhibited an mAP degradation of 5.2% while achieving a nearly
4.5x reduction in FLOPS.

0.70 —

% 0.55
i % /
Al
[
®
0.50 %
e s Abs 5K "
&--a Abs 5F ‘-‘
045 » Abs 1F
< < Taylor
0.40 L . " s
25 2.0 15 1.0 0.5

FLOPs le9

Figure 1: Network accuracy for various methods of pruning. Each data
point shows a pruned network.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

Perhaps surprisingly, the results showed that our most-
FLOPS absolute weight sum method (Abs 1F) outperformed the
Taylor series expansion method, achieving better mAP with
fewer FLOPS. One possible reason for this is that the Taylor
expansion method requires looking at the data, even before fine-
tuning to rank the weights. In this evaluation we rank the kernels
using just T images per pruning iteration as using the whole
dataset on each pruning iteration to get an accurate
representation is too computationally expensive. T = 500
images was found to be a reasonable number of images for
ranking the kernels and is in line with the previous work [6]. In
contrast, the absolute weight methods are data independent and
the weights themselves become representative of the data that
they have been trained on.

It is worth noting that the mAP performance of the evaluated
networks does not consistently decrease with decreasing
FLOPS. In some pruning iterations, the pruned networks
performed even better than the initial network. In general, the
increase in mAP is a result of better generalization to unseen test
data [30]. Pruning is known to help with overfitting problems
[17] which can occur when a trained network has too many
weights. Considering that our dataset is smaller than the
PASCAL VOC on which tiny-YOLO was originally trained, we
expect that the initial network could be overfitting our dataset
and this explains why some pruned networks had better accuracy
than the initial network.

A. Pruning effect on Network size

Pruning to reduce FLOPS also reduces the network size as
shown by Fig. 2. For the initial pruning iterations, all techniques
show a linear relationship between FLOPS and network size.
This is a result of all techniques initially targeting the largest
layer, which has both the most FLOPS and the most kernels (and
hence parameters), for pruning. However once this layer has
been sufficiently pruned, only the Abs 5K technique continues
to target layers with of the most kernels (and hence the most
parameters) for pruning, even if these kernels are not associated
with a large number of FLOPS. The other methods evaluated all

le9

25F
2.0
wn
o
QS 15¢
w ~
<
.\
*e
sl] = Abs 5K s
& -4 Abs 5F s,
—+ Abs 1F
< < Taylor
05 1 1 Il L Il L L |
40 35 30 25 20 15 10 05

Network Size (Bytes) le7

Figure 2: FLOPS of pruned networks for different network sizes.
Each data point shows a pruned network.

95

target layers with the most FLOPS, whose kernels might not be
large (and hence not have so many parameters) but are applied
to a larger feature map in earlier layers in the network. The end
result is that network size is reduced more slowly by methods
which focus on reducing FLOPS.

B. Extended Fine-tuning

Pruned networks can be further improved by training for a
longer period of time. We trained networks pruned with each of
the techniques for a further 75 epochs. Fig. 3 shows the results
of this extended fine-tuning. It is clear that fine-tuning can
restore some of the mAP performance lost by pruning. However,
the more aggressive pruning methods which prune more than 1
kernel per iteration are only able to recover up to a point or, in
the case of Abs 5F, not recover at all. Of particular note,
extended fine tuning of the pruned Abs 1F network restored the
mAP performance of the initial network. This suggests that
further pruning could have been attempted with this network,
but this has not yet been evaluated.

70 : ‘
EEl Pruned mAP
Bl Fine-tuned MAP | |

1]

Abs 5F Taylor

65 -

60 -

mA
(%))
w

50

as|

40

Abs 5K Abs 1F

Figure 3: Accuracy improvement of networks under extended fine-tuning.
The dashed line shows initial network accuracy

C. Class Accuracy

The robot soccer dataset has fewer classes than PASCAL
VOC and COCO but has some interesting characteristics and
unique challenges. Unlike the PASCAL VOC dataset, where the
objects of interest are typically the main object in the dataset
images, the objects of interest in the robot soccer dataset can
appear anywhere in the image and might be very small in the
image.

TABLE II. Class Average Precision for pruned and fine-tuned networks

Goal Post Pen Spot
Network Ball AP Robot AP AP AP
Initial 81.3 80.4 52 443
Pruned 81.2 78.6 38 39.3
Fine-Tuned 81.5 80.6 45 51.5

Table II shows a breakdown of the average precision across
classes for the initial trained network, the Abs 1F pruned
network, and the Abs 1F network after extended fine-tuning.
Average Precision for easy classes such as the ball and robot are
least effected by pruning. More difficult classes like the goal

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

18™ IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 25-27 2018, Torres Vedras, Portugal

post and penalty spot suffer more from pruning but extended
fine-tuning can restore lost accuracy.

V. CONCLUSIONS

In this work we evaluated the efficacy of different pruning
methods to reduce the computational load associated with an
object detection network while maintaining mAP performance.
We found that pruning, which had been shown to be successful
reducing the computational cost of large image classification
networks, can be successfully applied to our slightly modified
tiny-YOLO network, which is itself a good deal smaller than the
state of the art YOLOV2 object detection network. Our new
most-FLOPS absolute weight sum method (specifically, Abs
1F) achieved the same mAP as the initial network after extended
fine tuning while achieving a 77.5% (almost 4.5%) reduction in
computational load. Our results also show that the more
complex and time consuming data dependent pruning technique
evaluated (Taylor) shows no advantage over our new method.
We conclude that this technique may be the most efficient way
to prune similar networks in the future. In forthcoming work, we
hope to evaluate whether extended fine tuning at the end of the
pruning process (as examined here) or periodically throughout
the pruning process could permit even greater computational
load savings to be achieved. Finally, we note that combining
pruning techniques with other methods to reduce computational
complexity such as quantization might lead to further
improvements in computational load permitting object detection
networks to run more easily on embedded processors.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge funding
provided by the Irish Research Council under their Government
of Ireland Postgraduate Scholarship 2013.

REFERENCES
[1] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”
IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6517-6525, Jul.
2017.
2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg, “SSD: Single Shot MultiBox Detector,” in Computer
Vision -- ECCV 2016, 2016, pp. 21-37.

[3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” CoRR, vol. abs/1609.0, 2016.

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural
Networks,” Eccv, pp. 1-17, 2016.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
CoRR, vol. abs/1704.0, 2017.

[6] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
Convolutional Neural Networks for Resource Efficient Transfer
Learning,” in /CLR, 2017, no. 2015, pp. 1-17.

[7] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 2755-2763.

[8] K. Lu, X. An, J. Li, and H. He, “Efficient deep network for vision-

96

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

based object detection in robotic applications,” Neurocomputing, vol.
245, pp. 31-45, Jul. 2017.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303-338, Jun. 2010.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part-Based
Models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp.
1627-1645, Sep. 2010.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2014, pp. 580-587.

R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 1440-1448.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” Nips,
pp. 1-10, 2015.

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders, “Selective Search for Object Recognition,” Int. J.
Comput. Vis., vol. 104, no. 2, pp. 154-171, Sep. 2013.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 779-788.

Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,”
in Advances in Neural Information Processing Systems (NIPS), 1990.
B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain surgeon and
general network pruning,” in [EEE International Conference on
Neural Networks - Conference Proceedings, 1993, vol. 1993—Janua,
pp. 293-299.

G. Manek, J. Lin, V. Chandrasekhar, L. Duan, S. Giduthuri, X. Li,
and T. A. Poggio, “Pruning Convolutional Neural Networks for
Image Instance Retrieval,” CoRR, Jul. 2017.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W.
J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016, vol. 16, pp.
243-254.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” in /CLR, 2017, no. 2017, pp. 1-10.
X. Li and C. Liu, “Prune the Convolutional Neural Networks with
Sparse Shrink,” Electron. Imaging, pp. 97-101, Aug. 2017.

K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” Int. Conf. Learn.
Represent., pp. 1-14, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770-778.

M. Lin, Q. Chen, and S. Yan, “Network In Network,” CoRR, vol.
abs/1312.4,2013.

J. Redmon, “Darknet: Open Source Neural Networks in C.” [Online].
Auvailable: http://pjreddie.com/darknet/.

Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition,
2009, pp. 248-255.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” Springer, Cham, 2014, pp. 740-755.

S. O’Keeffe and R. Villing, “A Benchmark Data Set and Evaluation
of Deep Learning Architectures for Ball Detection in the RoboCup
SPL,” in RoboCup International Symposium, 2017.

M. Apte, S. Mangat, and P. Sekhar, “YOLO Net on i0S.”

S. Anwar, K. Hwang, and W. Sung, “Structured Pruning of Deep
Convolutional Neural Networks,” ACM J. Emerg. Technol. Comput.
Syst., vol. 13, no. 3, p. 32, Feb. 2017.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:14:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

