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Abstract— CNNs are the state-of-the-art for many computer 

vision problems, including object detection. However, reducing the 

computational complexity of a CNN is a key prerequisite to 

deploying state-of-the-art deep learning networks in many low 

power embedded real-time robotic applications. Pruning has been 

shown to be an effective method to reduce the computational 

complexity of a Convolutional Neural Network (CNN) while 

maintaining accuracy. In the literature, accuracy lost through 

pruning is recovered with extended fine-tuning of the pruned 

network at the end of the pruning procedure, but further pruning 

is not conducted after extended fine-tuning. In this work we modify 

the pruning procedure to incorporate extended fine-tuning at 

intervals during the procedure to maintain network accuracy 

while pruning further than would otherwise be possible. We 

evaluate this procedure on a small scale custom object detection 

dataset and the more challenging standard PASCAL VOC dataset. 

On the former the new procedure achieves a 19.6× reduction in 

FLOPS for a drop of only 0.4% mean Average Precision (mAP) 

while the latter achieves only a 1.8× reduction in FLOPS for a drop 

of 0.8% mAP. The results indicate differing levels of parameter 

redundancy in the initial networks. 

Keywords—Convolutional Neural Networks, pruning, real time, 

embedded, multi-class object detection 

I. INTRODUCTION 

For many applications including autonomous driving, 
pedestrian detection, and service robots, multiclass object 
detection needs to be performed accurately in real-time, on 
platforms that may have low computational power. State-of-the-
art deep learning object detection methods [1, 2] currently 
require significant computing power and memory to run in real 
time. These methods utilise large Convolutional Neural 
Networks (CNNs) which require GPUs to achieve real time 
performance. To deploy deep learning methods to embedded 
devices, CNNs need to be smaller and faster. Smaller networks 
require less memory to store the network parameters which is 
valuable because embedded devices may not have enough 
memory to store larger networks [3]. Faster networks require 
fewer floating point operations, which may allow them to run in 
real time. Pruning is one method that has been shown to be 
effective at making CNNs smaller and faster [4]. 

CNNs have been shown to have a lot of redundancy [5]. 
Pruning takes advantage of this redundancy by removing 
weights and connections in a network. In CNNs, pruning may be 
used to remove entire kernels from the network. By removing 
entire kernels what remains is still a standard CNN and no 
specialised computational techniques are needed. This 

effectively reduces the computational load of the network. To 
maintain network accuracy the network requires further training 
after pruning, known as fine-tuning. Running fine-tuning for an 
extended period of time (extended fine-tuning) after a single 
pruning phase can recover significant amounts, if not all, of a 
network’s lost accuracy. 

In standard pruning, extended fine-tuning to recover lost 
network accuracy is typically performed only at the end after a 
single pruning phase [6] as it is time consuming to constantly 
train pruned networks. In this work, we propose a new Extended 
Pruning procedure in which there are multiple pruning phases 
and extended fine-tuning is performed at intervals to maintain 
network accuracy for longer. The motivation for our procedure 
is that a single long pruning phase may reduce network accuracy 
more than can be recovered by extended fine-tuning just once at 
the end [7], whereas by pruning with multiple extended fine-
tuning phases to recover lost accuracy we can prune networks to 
a greater extent than would otherwise be feasible. 

 Standard pruning has typically been performed on 
classification networks only and has only been evaluated by us 
on the potentially more challenging case of an object detection 
network [7]. Therefore in this work we evaluate our new 
Extended Pruning procedure on two object detection networks: 
a network trained for a small custom dataset and a network 
trained on the more challenging PASCAL VOC dataset [8] 
which we expect might not have as much redundancy. 

The remainder of this paper will cover existing work in the 
literature in Section II. We outline the proposed approach in 
Section III. Section IV details our experimental results and 
Section V presents our conclusions. 

II. RELATED WORK 

Object detection networks are evaluated with the mean 
Average Precision (mAP) metric which consists of the mean of 
Average Precision (AP) of each class in the dataset. AP 
summarises the shape of the precision/recall curve for a given 
class. Correct detections only occur if the object label is correct 
and the predicted bounding box of the detected object overlaps 
sufficiently with the corresponding ground truth box. Each 
ground truth box can only be assigned to one detection, with 
multiple overlapping detections counting as false positives. The 
overlap metric is the intersection over union (IOU) and it is the 
ratio of the intersection area to the union area of the two 
bounding boxes. An IOU of 0.5 is the expected metric for the 
PASCAL VOC object detection challenge [8] although more 
challenging datasets like the COCO dataset calculate the mAP at 
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steps of 0.05 between 0.5 and 0.95. In this work we focus on an 
IOU of 0.5. 

Convolutional Neural Networks (CNNs) are considered to be 
state-of-the-art for many computer vision tasks, including object 
detection. Regions with CNN features (R-CNN) [9] was one of 
the first methods to use CNNs for object detection and scored 
66% mAP on the VOC 2007 dataset. Fast R-CNN [10] improved 
the mAP to 66.9% while reducing both inference time and 
training time (by 146× and 9× respectively). Selective Search 
[11] was the computational bottleneck for Fast R-CNN. For this 
reason, Faster R-CNN [12] replaced Selective Search with the 
Region Proposal Network, and with this change Faster R-CNN 
increased mAP to 73.2% on VOC 2007 and could run at 5 fps on 
an Nvidia Tesla K40 GPU. 

Many approaches based on R-CNN use pipeline 
architectures which consist of a region proposal step followed by 
a classification step and fine-grained localization. Instead of a 
separate region or object proposal step, alternative approaches 
have focused on performing object detection in one single CNN. 
The first network to perform object detection in a single CNN 
was the YOLO network [13]. Although YOLO only scored 
63.4% mAP it runs at 45 fps on an Nvidia Titan X GPU. 
YOLOv2 [1] improved on YOLO. It achieved 78.6% mAP at 40 
fps and a faster version of YOLOv2 scored 76.8% at 67 fps. The 
Single Shot Multibox (SSD) [2] network is another single CNN 
that performs object detection and scored 74.3% mAP at 46 fps. 

Pruning has been shown to be effective at reducing the size 
and increasing the speed of deep neural networks. Initial pruning 
methods include Optimal Brain Damage [14] and Optimal Brain 
Surgeon [15] which identify the least significant connections 
through a second-order Taylor expansion approximation of the 
change in the loss function resulting from the removal of a 
particular parameter in the network. Although pruning in CNNs 
can be carried out such that individual weights are pruned [3], 
this creates sparse matrices in the network which often requires 
sparse BLAS (Basic Linear Algebra Subprograms) libraries or 
even specialized hardware for efficient inference [16]. As an 
alternative to pruning individual weights, pruning entire kernels 
from a network has been shown as an efficient method of 
pruning without introducing any sparsity in the network [6], 
[17], [18]. The general approach is to prune the least important 
kernels from the network where importance is assessed by 
techniques such as absolute weight sum [17], mean activation, 
Taylor expansion [6], and sparse shrink [18]. 

Among the pruning methods, pruning by absolute weight 
sum is one of the easiest to implement in practice. It is a data 
independent method that can rank the kernels for pruning 
without access to a dataset (although a dataset is required for 
fine-tuning as described shortly). The absolute weight sum 
technique was successful in reducing the computational cost for 
VGG-16 [19] by up to 34% and ResNet-110 [20] by up to 38% 
with no significant loss in accuracy [17]. We have previously 
shown that pruning methods based on Taylor expansion did not 
outperform an approach based on the absolute weight sum [7]. 

Fine-tuning is a recognised part of every pruning procedure 
[6], [17], [18] and involves training the network either after each 
pruning iteration [6] or at the end of pruning [17] to recover lost 
accuracy. Molchanov et al. [6] fine-tuned for 100 training 

iterations between pruning iterations. Li et al. [17] performed 
fine-tuning for 20 epochs on CIFAR-10 after the complete 
pruning procedure.  Molchanov et al [6] used extended fine-
tuning at the end of the pruning phase to improve the post-
pruning accuracy from 83% to 87% on VGG-16 which had an 
accuracy of 89.3% before pruning. However, they did not 
perform any further pruning after the extended fine-tuning. This 
raises the question, therefore, of whether or not further pruning 
could be performed after extended fine-tuning to obtain a 
smaller, faster network. Moreover, could additional phases of 
extended fine-tuning followed by further pruning be performed 
for further gain? 

In the literature, pruning has been evaluated for image 
classification problems but not for object detection (as far as the 
authors are aware) except for our own work [7]. There is reason 
to suspect object detection networks might be less amenable to 
pruning as more information is carried through the network to 
the output layer. We have shown that a standard pruning 
procedure could be effectively applied to an object detection 
network trained on a small dataset [7] but it is not yet clear 
whether pruning can be applied with equal success to an object 
detection network trained on a more challenging dataset such as 
PASCAL VOC.  

III. PROPOSED APPROACH 

Our approach starts with the tiny-YOLO network, which is a 
smaller version of the YOLOv2 network and is state-of-the-art 
among networks of equivalent computational load [1]. The 
network consists of nine convolutional layers and six pooling 
layers and is detailed in Table 1. 

TABLE I. Tiny-YOLO Network Architecture 

Layer 

Type 

Kernel Size 

/ Stride 
Kernels Input Size FLOPS 

Conv 3×3 / 1 16 416×416×3 155 M 

Pool 2×2 / 2  416×416×16  

Conv 3×3 / 1 32 208×208×16 401 M 

Pool 2×2 / 2  208×208×32  

Conv 3×3 / 1 64 104×104×32 400 M 

Pool 2×2 / 2  104×104×64  

Conv 3×3 / 1 128 52×52×64 399 M 

Pool 2×2 / 2  52×52×128  

Conv 3×3 / 1 256 26×26×128 399 M 

Pool 2×2 / 2  26×26×256  

Conv 3×3 / 1 512 13×13×256 399 M 

Pool 2×2 / 1  13×13×512  

Conv 3×3 / 1 1024 13×13×512 1,595 M 

Conv 3×3 / 1 1024 13×13×1024 3,190 M 

Conv 1×1 / 1 45 13×13×1024 16 M 
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The number of floating point operations (FLOPS) in a given 
convolutional layer excluding pooling is given by: 

 𝐹𝐿𝑂𝑃𝑆 =  2𝐻𝑊(𝐶𝑖𝑛𝐾2 + 1)𝐶𝑜𝑢𝑡 (1) 

where 𝐻, 𝑊, and 𝐶𝑖𝑛 are height, width and number of channels 
of the input feature map, 𝐾 is the kernel size (assumed to be 
symmetric), and 𝐶𝑜𝑢𝑡 is the number of output channels.  

The number of FLOPS can be reduced by decreasing feature 
map height and width, decreasing the size of the kernels, or 
reducing the number of filter kernels. Decreasing the image 
input size, reduces the number of FLOPS in each layer, but 
makes smaller objects more difficult to detect. The tiny-YOLO 
network uses the smallest kernel size that can be used for feature 
detection (kernel sizes of 1×1 exist in the literature but are not 
used for feature detection on single feature maps). Each filter 
kernel in one layer produces one output feature map (channel) in 
the following layer so reducing the number of kernels reduces 
the channels in the output. Pruning reduces the FLOPS required 
by a network by reducing the number of filter kernels it uses. 

A. Pruning Proceedure 

Pruning can be applied to individual weights within kernels 
or to entire kernels. Pruning entire kernels does not require any 
specialized sparse libraries or hardware and for this reason it is 
the approach we use. In a CNN one filter kernel in one layer 
produces one output feature map in the following layer. Each 
kernel contains 𝐶𝑖𝑛𝐾2 weights where 𝐶𝑖𝑛 is the channels in the 
input to the layer and 𝐾 is the kernel size. Pruning one kernel in 
one layer not only reduces the number of FLOPS in that layer 
but also reduces the number of FLOPS in the following layer. 
The number of FLOPS saved by pruning one kernel is given by: 

 𝐹𝐿𝑂𝑃𝑆 = 2𝐻𝑖𝑊𝑖(𝐶𝑖𝑛
𝑖 𝐾2 + 1) 

 +2𝐻𝑖+1𝑊𝑖+1(𝐾2 + 1)𝐶𝑜𝑢𝑡
𝑖+1 (2) 

where 𝐻, 𝐼, 𝐶𝑖𝑛, and 𝐶𝑜𝑢𝑡 are the height, width, input channels, 
and output channels for layer 𝑖 and 𝑖 + 1. 

Our Extended Pruning approach, which incorporates 
multiple pruning and extended fine-tuning phases is as follows: 

1. Evaluate the importance of a set of kernels based on some 
metric. 

2. Remove the least significant 𝑘 kernels. 

3. Fine-tune the pruned network for 𝑛𝐹𝑇 tuning iterations. 

4. Evaluate the network after every m iterations of pruning 
(steps 1-3). If accuracy is p% below the original mAP, 
run extended fine-tuning for up to 𝑛𝐸𝐹𝑇  tuning iterations 
to recover lost accuracy. 

Our Extended Pruning method targets a specific layer to 
perform pruning on but can also be applied across all kernels in 
the network once normalization is preformed to account for 
kernels of different sizes [6]. We use the term pruning iteration 
to refer to steps 1-3 in our procedure. 

Multiple methods exist for determining the importance of 
kernels. The absolute weight sum method was first proposed by 
[17] and we use a variant of this method to determine which 

kernels to prune in a network. The motivation behind this 
technique is that kernels with the smallest weights tend to 
produce feature maps with the weakest activations relative to the 
other kernels in the same layer. For each filter kernel, 𝐹 , the 
absolute weight sum, 𝑠𝑘, of kernel 𝑘 is given by: 

 𝑠𝑘 = ∑ |𝐹𝑛
(𝑘)

|𝑁
𝑛=1  (3) 

where 𝑁 is the vectorised length of kernel 𝐹. Thereafter pruning 
removes 𝑚  kernels with the smallest absolute weight sum 
values. Each kernel removed from a given layer also removes 
the corresponding weights from the following layer. The 
absolute weight sum has the advantage of being a data 
independent technique and this enables ranking the kernels 
without looking at the data, which saves time in the pruning 
procedure. 

In this work, we always use the most-FLOPS absolute weight 
sum method [7] which we found better than the alternative of 
selecting the layer with the most kernels [17]. By targeting the 
layer with the most FLOPS, the computational load of the 
network can be more effectively reduced as in some cases layers 
with large numbers of kernels contribute relatively little to the 
computational load of the network. Using the most-FLOPS 
absolute weight sum method, the importance of a set of kernels 
is evaluated by first selecting the layer with most FLOPS and 
then using the absolute weight sum to identify the least important 
kernels in the selected layer.  

The number of kernels pruned at each iteration determines 
how quickly we can reduce the computational load of the 
network. Pruning too aggressively, however, can reduce the 
accuracy of the network too much to be recoverable [7]. 
Therefore we prune only one kernel per iteration. 

B. Networks 

We evaluate pruning on two different networks based on the 
tiny-YOLO architecture in Table 1: the SPL network, trained on 
data from the RoboCup Standard Platform League (SPL) robot 
soccer domain, and the VOC network, trained on the commonly 
used PASCAL VOC dataset. 

1) SPL Network 

The SPL network is based on tiny-YOLO and trained on a 
custom dataset taken from the robot soccer problem domain 
[21]. The dataset consists of four distinct classes, ball, robot, goal 
post, and penalty spot. The dataset is less diverse than the 
PASCAL VOC dataset, on which tiny-YOLO was trained, so 
before pruning we make some basic modifications to the tiny-
YOLO network to reduce the computational load. Specifically 
we reduce the input image size from 416 to 288 and the number 
of kernels in the second last and last convolutional layer from 
1024 to 512, and 45 to 27 respectively. These modifications 
reduced the computational load from 7 GFLOPS to 2.56 
GFLOPS [7]. The tiny-YOLO network architecture uses the 
Darknet reference network1 for the first 13 layers of the network. 
The Darknet reference network is trained on the ImageNet 
dataset for classification and we use these pre-trained weights 
for transfer learning during training. 

The SPL network was trained with a batch size of 32, 
momentum of 0.9, and a decay of 0.0005. During training we 

1 https://pjreddie.com/darknet/imagenet/ 

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore.  Restrictions apply. 



used the same standard data augmentation techniques and multi-
scale training used in YOLOv2. The network was trained for 250 
epochs and scored 64.5% mAP. In previous work [7] we initially 
performed pruning without extended fine-tuning on this network 
for a 4.5× reduction in FLOPS and with extended fine-tuning at 
the end of the pruning process we improved accuracy from 61% 
to 64.6% mAP. We use this network as the starting point for 
extended pruning in this work. 

2) VOC Network 

The VOC network is trained on the PASCAL VOC dataset. 
The PASCAL VOC dataset [8] was an open competition for 
object detection from 2007 to 2012, and has since been replaced 
by the more challenging COCO dataset [22] for competitions. 
However, the PASCAL VOC dataset is still widely used as a 
relevant benchmark in the literature. The PASCAL VOC dataset 
contains 11,530 images consisting of 20 classes. These classes 
are divided into six animals (bird, cat, cow, dog, horse, sheep), 
seven vehicles (aeroplane, bicycle, boat, bus, car, motorbike, 
train), six household objects (bottle, chair, dining table, potted 
plant, sofa, TV monitor) and one person class. Only the test data 
from the 2007 challenge is available to download with later 
versions of the test data hosted at an online server with a limit 
number of submissions for evaluation. As our approach requires 
multiple network evaluations, we use the test 2007 dataset for 
our network evaluations. 

The architecture for the pre-trained VOC network1 is 
unmodified from tiny-YOLO in Table I. The VOC network 
scored 52.9% mAP on the PASCAL VOC 2007 dataset. 

 EXPERIMENTS AND RESULTS 

We use the Darknet deep learning framework for all 
experiments [23]. First we applied extended pruning to the SPL 
network. We use the following parameterisation of the extended 
pruning procedure: 𝑘 = 1, 𝑛𝐹𝑇 = 50 , 𝑚 = 1, 𝑝 = 2.5% , and 
𝑛𝐸𝐹𝑇 = 10,000. All fine-tuning training uses a batch size of 32. 

We choose to only remove 𝑘 = 1 kernels per iteration as 
fine-tuning struggles to recover lost accuracy the more kernels 
are pruned. We fine-tuned for the same number of iterations, 
𝑛𝐹𝑇 = 50, as [6] after each pruning iteration and we evaluate the 
network after every pruning iteration, 𝑚 = 1, to prevent losing 
accuracy. Choosing a 𝑝 = 2.5% drop in mAP as the threshold to 
initiate extended fine-tuning is conservative, but it has been 
shown that the smaller the network gets, the less able the network 
is to recover lost accuracy due to pruning [6]. In practice this 
conservative restriction increases the time taken to prune the 
network but is somewhat offset by the reduction in 
computational load already achieved by the pruning process. 

Fig. 1 shows the performance of the extended pruning 
procedure on the SPL network. The figure also shows the initial 
standard pruning conducted as part of prior work [7] and for this 
reason indicates that no extended fine tuning was performed 
during the initial pruning phase, after which the network had 
been reduced by 4.5×. Thereafter, the figure indicates that 
frequent phases of extended fine tuning were required to recover 
lost accuracy. Each data point represents the network after 10 
iterations of pruning where each pruning iteration generates a 
new network. We mark a network as extended fine-tuning if 

extended fine-tuning was required to recover lost accuracy 
during any of the previous 10 iterations. It is clear from the figure 
that extended fine-tuning was required more frequently as the 
network got smaller, being required at least once every 10 
iterations after a 10× reduction in FLOPS is achieved. Through 
the extended pruning procedure, we achieved a total 19× 
reduction in FLOPS which is significantly better than the 4.5× 
reduction achieved previously with standard pruning. 

 

Figure 1: Accuracy of pruned SPL network. The dashed line shows 

standard pruning, the solid line indicates extended pruning, and the 

dotted line indicates original network accuracy. 

We did not use a strict stopping criterion when pruning the 
SPL network. A simple stopping criterion for extended pruning 
could be to stop when extended fine-tuning cannot make the 
pruned network recover to less than a 𝑝% drop from original 
mAP. However this simple criterion would have stopped 
pruning the SPL network at a 9× reduction in FLOPS. As can be 
seen in Fig. 1, the mAP drops significantly during at this point, 
but continuing to run extended pruning recovered lost accuracy. 
A more robust stopping criterion would be if the network failed 
to recover after multiple extended pruning iterations. 

To evaluate how well the extended pruning technique 
generalizes to more challenging networks and datasets, we 
applied it to the VOC network. The pruning procedure for the 
VOC network is broadly similar to the procedure for SPL 
network, with the following changed parameters: 𝑚 = 10 for 
the first 500 pruning iterations and 𝑚 = 1 thereafter; 𝑛𝐸𝐹𝑇 =
50,000  (due to the larger dataset). During the early pruning 
iterations we chose to evaluate the network only once every 𝑚 =
10 pruning iterations as we have shown that there is redundancy 
in the early stages of pruning and evaluating at each pruning 
iteration is time consuming [7]. After 500 pruning iterations, we 
evaluate the network after every pruning iteration. We increased 
the maximum number of iterations for extended fine-tuning to 
50,000 to account for the PASCAL VOC being both a larger and 
more complex dataset. 

Fig. 2 shows the effect of extended pruning applied to the 
VOC network. As in Fig. 1, each data point represents a network 
after 10 iterations of pruning (where each pruning iterations 

1 Available at https://pjreddie.com/media/files/tiny-yolo-voc.weights  
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generates a new network) and a network is marked as extended 
fine-tuning if extended fine-tuning was required during any of 
the previous 10 pruning iterations. As with the SPL network, 
extended fine-tuning was required more frequently at latter 
stages of the pruning process. The VOC network (tiny-YOLO) 
is already a much smaller network than YOLOv2 and has 
slightly worse accuracy so it is likely that it initially has much 
less redundancy than the SPL network relative to its dataset. 
Nevertheless, the pruning procedure still managed a 1.8× 
reduction in FLOPS for a 0.8% drop in mAP. 

 

Figure 2: Accuracy of pruned networks on the PASCAL VOC dataset. 

The dotted line indicates original network accuracy. 

Network size is also a significant concern for many 
applications, as for embedded applications smaller networks can 
be stored entirely on-chip allowing for fast access and reducing 
processing latency [3]. In both networks evaluated, the network 
size was reduced by a greater factor than the FLOPS reduction. 
The SPL network achieved a 30.5× reduction in network size, 
while the VOC network achieved nearly a 2.5× reduction in 
network size. 

The results also show that mAP performance does not 
consistently decrease for the SPL network as kernels are pruned. 
In some pruning iterations, the pruned networks actually 
performed better than the initial network. This is not uncommon 
as the pruning process has been found to help the network 
generalize to unseen data [24]. Improved network generalization 
after pruning indicates that the network was originally 
overfitting the training data [15]. Overfitting can occur when the 
network is too large for the problem on which it is being trained. 
In our evaluation we see the network accuracy for the SPL 
network occasionally outperforms the initial network whereas 
the VOC network accuracy never exceeds the initial network 
accuracy. This indicates that the SPL network was overfitting 
our training data whereas the VOC network was not.  

When training on smaller or custom datasets it is common 
practice to transfer learn from networks trained on the ImageNet 
dataset as these convolutional features have been shown to 
generalize well to many image processing tasks [13]. However 
our results indicate that when working with a smaller dataset, 

pruning the network might further improve network accuracy by 
dealing with overfitting problems. 

IV. CONCLUSIONS 

In this work we evaluated the efficacy of our extended 

pruning method both in terms of reducing the computational 

load associated with a network trained on a small data set and 

exploring its effectiveness when applied to a network trained on 

the more complex PASCAL VOC data set.  Our pruning focus 

was to reduce the computational load of object detection 

networks while maintaining mAP performance. 

We found that the gain associated with pruning in general, 

and our extended pruning method in particular, is related to the 

potential redundancy in the network. Both the SPL network and 

VOC network start with the same architecture. Transfer 

learning is used to train the SPL network on the relatively small 

SPL dataset, starting from the modified tiny-YOLO network, 

but it is likely that this results in a network that has unnecessary 

computational capacity. Extended pruning can remove the 

redundancy in that unnecessary capacity. After extended 

pruning, the SPL network achieved a 94.9% reduction in 

computational load for a 0.4% drop in mAP. While extended 

pruning was successfully applied to the VOC network, the 45% 

reduction in computational load was much more modest and the 

extended pruning procedure takes longer due to the larger 

training dataset. Consequently we conclude that pruning in 

general, and extended pruning in particular, is most applicable 

to networks that are likely to have substantial redundancy. This 

makes it particularly applicable when transfer learning is used 

to adapt an established network architecture designed for a 

complex dataset to a simpler dataset as can often be the case in 

embedded system applications. 
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