
978-1-5386-6046-1/18/$31.00 ©2018 IEEE

Evaluating Extended Pruning on Object Detection

Neural Networks
Simon O’Keeffe

Department of Electronic Engineering

Maynooth University

Maynooth, Ireland
simon.okeeffe.2010@mumail.ie

Rudi Villing

Department of Electronic Engineering

Maynooth University

Maynooth, Ireland
rudi.villing@mu.ie

Abstract— CNNs are the state-of-the-art for many computer

vision problems, including object detection. However, reducing the

computational complexity of a CNN is a key prerequisite to

deploying state-of-the-art deep learning networks in many low

power embedded real-time robotic applications. Pruning has been

shown to be an effective method to reduce the computational

complexity of a Convolutional Neural Network (CNN) while

maintaining accuracy. In the literature, accuracy lost through

pruning is recovered with extended fine-tuning of the pruned

network at the end of the pruning procedure, but further pruning

is not conducted after extended fine-tuning. In this work we modify

the pruning procedure to incorporate extended fine-tuning at

intervals during the procedure to maintain network accuracy

while pruning further than would otherwise be possible. We

evaluate this procedure on a small scale custom object detection

dataset and the more challenging standard PASCAL VOC dataset.

On the former the new procedure achieves a 19.6× reduction in

FLOPS for a drop of only 0.4% mean Average Precision (mAP)

while the latter achieves only a 1.8× reduction in FLOPS for a drop

of 0.8% mAP. The results indicate differing levels of parameter

redundancy in the initial networks.

Keywords—Convolutional Neural Networks, pruning, real time,

embedded, multi-class object detection

I. INTRODUCTION

For many applications including autonomous driving,
pedestrian detection, and service robots, multiclass object
detection needs to be performed accurately in real-time, on
platforms that may have low computational power. State-of-the-
art deep learning object detection methods [1, 2] currently
require significant computing power and memory to run in real
time. These methods utilise large Convolutional Neural
Networks (CNNs) which require GPUs to achieve real time
performance. To deploy deep learning methods to embedded
devices, CNNs need to be smaller and faster. Smaller networks
require less memory to store the network parameters which is
valuable because embedded devices may not have enough
memory to store larger networks [3]. Faster networks require
fewer floating point operations, which may allow them to run in
real time. Pruning is one method that has been shown to be
effective at making CNNs smaller and faster [4].

CNNs have been shown to have a lot of redundancy [5].
Pruning takes advantage of this redundancy by removing
weights and connections in a network. In CNNs, pruning may be
used to remove entire kernels from the network. By removing
entire kernels what remains is still a standard CNN and no
specialised computational techniques are needed. This

effectively reduces the computational load of the network. To
maintain network accuracy the network requires further training
after pruning, known as fine-tuning. Running fine-tuning for an
extended period of time (extended fine-tuning) after a single
pruning phase can recover significant amounts, if not all, of a
network’s lost accuracy.

In standard pruning, extended fine-tuning to recover lost
network accuracy is typically performed only at the end after a
single pruning phase [6] as it is time consuming to constantly
train pruned networks. In this work, we propose a new Extended
Pruning procedure in which there are multiple pruning phases
and extended fine-tuning is performed at intervals to maintain
network accuracy for longer. The motivation for our procedure
is that a single long pruning phase may reduce network accuracy
more than can be recovered by extended fine-tuning just once at
the end [7], whereas by pruning with multiple extended fine-
tuning phases to recover lost accuracy we can prune networks to
a greater extent than would otherwise be feasible.

 Standard pruning has typically been performed on
classification networks only and has only been evaluated by us
on the potentially more challenging case of an object detection
network [7]. Therefore in this work we evaluate our new
Extended Pruning procedure on two object detection networks:
a network trained for a small custom dataset and a network
trained on the more challenging PASCAL VOC dataset [8]
which we expect might not have as much redundancy.

The remainder of this paper will cover existing work in the
literature in Section II. We outline the proposed approach in
Section III. Section IV details our experimental results and
Section V presents our conclusions.

II. RELATED WORK

Object detection networks are evaluated with the mean
Average Precision (mAP) metric which consists of the mean of
Average Precision (AP) of each class in the dataset. AP
summarises the shape of the precision/recall curve for a given
class. Correct detections only occur if the object label is correct
and the predicted bounding box of the detected object overlaps
sufficiently with the corresponding ground truth box. Each
ground truth box can only be assigned to one detection, with
multiple overlapping detections counting as false positives. The
overlap metric is the intersection over union (IOU) and it is the
ratio of the intersection area to the union area of the two
bounding boxes. An IOU of 0.5 is the expected metric for the
PASCAL VOC object detection challenge [8] although more
challenging datasets like the COCO dataset calculate the mAP at

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

steps of 0.05 between 0.5 and 0.95. In this work we focus on an
IOU of 0.5.

Convolutional Neural Networks (CNNs) are considered to be
state-of-the-art for many computer vision tasks, including object
detection. Regions with CNN features (R-CNN) [9] was one of
the first methods to use CNNs for object detection and scored
66% mAP on the VOC 2007 dataset. Fast R-CNN [10] improved
the mAP to 66.9% while reducing both inference time and
training time (by 146× and 9× respectively). Selective Search
[11] was the computational bottleneck for Fast R-CNN. For this
reason, Faster R-CNN [12] replaced Selective Search with the
Region Proposal Network, and with this change Faster R-CNN
increased mAP to 73.2% on VOC 2007 and could run at 5 fps on
an Nvidia Tesla K40 GPU.

Many approaches based on R-CNN use pipeline
architectures which consist of a region proposal step followed by
a classification step and fine-grained localization. Instead of a
separate region or object proposal step, alternative approaches
have focused on performing object detection in one single CNN.
The first network to perform object detection in a single CNN
was the YOLO network [13]. Although YOLO only scored
63.4% mAP it runs at 45 fps on an Nvidia Titan X GPU.
YOLOv2 [1] improved on YOLO. It achieved 78.6% mAP at 40
fps and a faster version of YOLOv2 scored 76.8% at 67 fps. The
Single Shot Multibox (SSD) [2] network is another single CNN
that performs object detection and scored 74.3% mAP at 46 fps.

Pruning has been shown to be effective at reducing the size
and increasing the speed of deep neural networks. Initial pruning
methods include Optimal Brain Damage [14] and Optimal Brain
Surgeon [15] which identify the least significant connections
through a second-order Taylor expansion approximation of the
change in the loss function resulting from the removal of a
particular parameter in the network. Although pruning in CNNs
can be carried out such that individual weights are pruned [3],
this creates sparse matrices in the network which often requires
sparse BLAS (Basic Linear Algebra Subprograms) libraries or
even specialized hardware for efficient inference [16]. As an
alternative to pruning individual weights, pruning entire kernels
from a network has been shown as an efficient method of
pruning without introducing any sparsity in the network [6],
[17], [18]. The general approach is to prune the least important
kernels from the network where importance is assessed by
techniques such as absolute weight sum [17], mean activation,
Taylor expansion [6], and sparse shrink [18].

Among the pruning methods, pruning by absolute weight
sum is one of the easiest to implement in practice. It is a data
independent method that can rank the kernels for pruning
without access to a dataset (although a dataset is required for
fine-tuning as described shortly). The absolute weight sum
technique was successful in reducing the computational cost for
VGG-16 [19] by up to 34% and ResNet-110 [20] by up to 38%
with no significant loss in accuracy [17]. We have previously
shown that pruning methods based on Taylor expansion did not
outperform an approach based on the absolute weight sum [7].

Fine-tuning is a recognised part of every pruning procedure
[6], [17], [18] and involves training the network either after each
pruning iteration [6] or at the end of pruning [17] to recover lost
accuracy. Molchanov et al. [6] fine-tuned for 100 training

iterations between pruning iterations. Li et al. [17] performed
fine-tuning for 20 epochs on CIFAR-10 after the complete
pruning procedure. Molchanov et al [6] used extended fine-
tuning at the end of the pruning phase to improve the post-
pruning accuracy from 83% to 87% on VGG-16 which had an
accuracy of 89.3% before pruning. However, they did not
perform any further pruning after the extended fine-tuning. This
raises the question, therefore, of whether or not further pruning
could be performed after extended fine-tuning to obtain a
smaller, faster network. Moreover, could additional phases of
extended fine-tuning followed by further pruning be performed
for further gain?

In the literature, pruning has been evaluated for image
classification problems but not for object detection (as far as the
authors are aware) except for our own work [7]. There is reason
to suspect object detection networks might be less amenable to
pruning as more information is carried through the network to
the output layer. We have shown that a standard pruning
procedure could be effectively applied to an object detection
network trained on a small dataset [7] but it is not yet clear
whether pruning can be applied with equal success to an object
detection network trained on a more challenging dataset such as
PASCAL VOC.

III. PROPOSED APPROACH

Our approach starts with the tiny-YOLO network, which is a
smaller version of the YOLOv2 network and is state-of-the-art
among networks of equivalent computational load [1]. The
network consists of nine convolutional layers and six pooling
layers and is detailed in Table 1.

TABLE I. Tiny-YOLO Network Architecture

Layer

Type

Kernel Size

/ Stride
Kernels Input Size FLOPS

Conv 3×3 / 1 16 416×416×3 155 M

Pool 2×2 / 2 416×416×16

Conv 3×3 / 1 32 208×208×16 401 M

Pool 2×2 / 2 208×208×32

Conv 3×3 / 1 64 104×104×32 400 M

Pool 2×2 / 2 104×104×64

Conv 3×3 / 1 128 52×52×64 399 M

Pool 2×2 / 2 52×52×128

Conv 3×3 / 1 256 26×26×128 399 M

Pool 2×2 / 2 26×26×256

Conv 3×3 / 1 512 13×13×256 399 M

Pool 2×2 / 1 13×13×512

Conv 3×3 / 1 1024 13×13×512 1,595 M

Conv 3×3 / 1 1024 13×13×1024 3,190 M

Conv 1×1 / 1 45 13×13×1024 16 M

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

The number of floating point operations (FLOPS) in a given
convolutional layer excluding pooling is given by:

 𝐹𝐿𝑂𝑃𝑆 = 2𝐻𝑊(𝐶𝑖𝑛𝐾2 + 1)𝐶𝑜𝑢𝑡 (1)

where 𝐻, 𝑊, and 𝐶𝑖𝑛 are height, width and number of channels
of the input feature map, 𝐾 is the kernel size (assumed to be
symmetric), and 𝐶𝑜𝑢𝑡 is the number of output channels.

The number of FLOPS can be reduced by decreasing feature
map height and width, decreasing the size of the kernels, or
reducing the number of filter kernels. Decreasing the image
input size, reduces the number of FLOPS in each layer, but
makes smaller objects more difficult to detect. The tiny-YOLO
network uses the smallest kernel size that can be used for feature
detection (kernel sizes of 1×1 exist in the literature but are not
used for feature detection on single feature maps). Each filter
kernel in one layer produces one output feature map (channel) in
the following layer so reducing the number of kernels reduces
the channels in the output. Pruning reduces the FLOPS required
by a network by reducing the number of filter kernels it uses.

A. Pruning Proceedure

Pruning can be applied to individual weights within kernels
or to entire kernels. Pruning entire kernels does not require any
specialized sparse libraries or hardware and for this reason it is
the approach we use. In a CNN one filter kernel in one layer
produces one output feature map in the following layer. Each
kernel contains 𝐶𝑖𝑛𝐾2 weights where 𝐶𝑖𝑛 is the channels in the
input to the layer and 𝐾 is the kernel size. Pruning one kernel in
one layer not only reduces the number of FLOPS in that layer
but also reduces the number of FLOPS in the following layer.
The number of FLOPS saved by pruning one kernel is given by:

 𝐹𝐿𝑂𝑃𝑆 = 2𝐻𝑖𝑊𝑖(𝐶𝑖𝑛
𝑖 𝐾2 + 1)

 +2𝐻𝑖+1𝑊𝑖+1(𝐾2 + 1)𝐶𝑜𝑢𝑡
𝑖+1 (2)

where 𝐻, 𝐼, 𝐶𝑖𝑛, and 𝐶𝑜𝑢𝑡 are the height, width, input channels,
and output channels for layer 𝑖 and 𝑖 + 1.

Our Extended Pruning approach, which incorporates
multiple pruning and extended fine-tuning phases is as follows:

1. Evaluate the importance of a set of kernels based on some
metric.

2. Remove the least significant 𝑘 kernels.

3. Fine-tune the pruned network for 𝑛𝐹𝑇 tuning iterations.

4. Evaluate the network after every m iterations of pruning
(steps 1-3). If accuracy is p% below the original mAP,
run extended fine-tuning for up to 𝑛𝐸𝐹𝑇 tuning iterations
to recover lost accuracy.

Our Extended Pruning method targets a specific layer to
perform pruning on but can also be applied across all kernels in
the network once normalization is preformed to account for
kernels of different sizes [6]. We use the term pruning iteration
to refer to steps 1-3 in our procedure.

Multiple methods exist for determining the importance of
kernels. The absolute weight sum method was first proposed by
[17] and we use a variant of this method to determine which

kernels to prune in a network. The motivation behind this
technique is that kernels with the smallest weights tend to
produce feature maps with the weakest activations relative to the
other kernels in the same layer. For each filter kernel, 𝐹 , the
absolute weight sum, 𝑠𝑘, of kernel 𝑘 is given by:

 𝑠𝑘 = ∑ |𝐹𝑛
(𝑘)

|𝑁
𝑛=1 (3)

where 𝑁 is the vectorised length of kernel 𝐹. Thereafter pruning
removes 𝑚 kernels with the smallest absolute weight sum
values. Each kernel removed from a given layer also removes
the corresponding weights from the following layer. The
absolute weight sum has the advantage of being a data
independent technique and this enables ranking the kernels
without looking at the data, which saves time in the pruning
procedure.

In this work, we always use the most-FLOPS absolute weight
sum method [7] which we found better than the alternative of
selecting the layer with the most kernels [17]. By targeting the
layer with the most FLOPS, the computational load of the
network can be more effectively reduced as in some cases layers
with large numbers of kernels contribute relatively little to the
computational load of the network. Using the most-FLOPS
absolute weight sum method, the importance of a set of kernels
is evaluated by first selecting the layer with most FLOPS and
then using the absolute weight sum to identify the least important
kernels in the selected layer.

The number of kernels pruned at each iteration determines
how quickly we can reduce the computational load of the
network. Pruning too aggressively, however, can reduce the
accuracy of the network too much to be recoverable [7].
Therefore we prune only one kernel per iteration.

B. Networks

We evaluate pruning on two different networks based on the
tiny-YOLO architecture in Table 1: the SPL network, trained on
data from the RoboCup Standard Platform League (SPL) robot
soccer domain, and the VOC network, trained on the commonly
used PASCAL VOC dataset.

1) SPL Network

The SPL network is based on tiny-YOLO and trained on a
custom dataset taken from the robot soccer problem domain
[21]. The dataset consists of four distinct classes, ball, robot, goal
post, and penalty spot. The dataset is less diverse than the
PASCAL VOC dataset, on which tiny-YOLO was trained, so
before pruning we make some basic modifications to the tiny-
YOLO network to reduce the computational load. Specifically
we reduce the input image size from 416 to 288 and the number
of kernels in the second last and last convolutional layer from
1024 to 512, and 45 to 27 respectively. These modifications
reduced the computational load from 7 GFLOPS to 2.56
GFLOPS [7]. The tiny-YOLO network architecture uses the
Darknet reference network1 for the first 13 layers of the network.
The Darknet reference network is trained on the ImageNet
dataset for classification and we use these pre-trained weights
for transfer learning during training.

The SPL network was trained with a batch size of 32,
momentum of 0.9, and a decay of 0.0005. During training we

1 https://pjreddie.com/darknet/imagenet/

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

used the same standard data augmentation techniques and multi-
scale training used in YOLOv2. The network was trained for 250
epochs and scored 64.5% mAP. In previous work [7] we initially
performed pruning without extended fine-tuning on this network
for a 4.5× reduction in FLOPS and with extended fine-tuning at
the end of the pruning process we improved accuracy from 61%
to 64.6% mAP. We use this network as the starting point for
extended pruning in this work.

2) VOC Network

The VOC network is trained on the PASCAL VOC dataset.
The PASCAL VOC dataset [8] was an open competition for
object detection from 2007 to 2012, and has since been replaced
by the more challenging COCO dataset [22] for competitions.
However, the PASCAL VOC dataset is still widely used as a
relevant benchmark in the literature. The PASCAL VOC dataset
contains 11,530 images consisting of 20 classes. These classes
are divided into six animals (bird, cat, cow, dog, horse, sheep),
seven vehicles (aeroplane, bicycle, boat, bus, car, motorbike,
train), six household objects (bottle, chair, dining table, potted
plant, sofa, TV monitor) and one person class. Only the test data
from the 2007 challenge is available to download with later
versions of the test data hosted at an online server with a limit
number of submissions for evaluation. As our approach requires
multiple network evaluations, we use the test 2007 dataset for
our network evaluations.

The architecture for the pre-trained VOC network1 is
unmodified from tiny-YOLO in Table I. The VOC network
scored 52.9% mAP on the PASCAL VOC 2007 dataset.

 EXPERIMENTS AND RESULTS

We use the Darknet deep learning framework for all
experiments [23]. First we applied extended pruning to the SPL
network. We use the following parameterisation of the extended
pruning procedure: 𝑘 = 1, 𝑛𝐹𝑇 = 50 , 𝑚 = 1, 𝑝 = 2.5% , and
𝑛𝐸𝐹𝑇 = 10,000. All fine-tuning training uses a batch size of 32.

We choose to only remove 𝑘 = 1 kernels per iteration as
fine-tuning struggles to recover lost accuracy the more kernels
are pruned. We fine-tuned for the same number of iterations,
𝑛𝐹𝑇 = 50, as [6] after each pruning iteration and we evaluate the
network after every pruning iteration, 𝑚 = 1, to prevent losing
accuracy. Choosing a 𝑝 = 2.5% drop in mAP as the threshold to
initiate extended fine-tuning is conservative, but it has been
shown that the smaller the network gets, the less able the network
is to recover lost accuracy due to pruning [6]. In practice this
conservative restriction increases the time taken to prune the
network but is somewhat offset by the reduction in
computational load already achieved by the pruning process.

Fig. 1 shows the performance of the extended pruning
procedure on the SPL network. The figure also shows the initial
standard pruning conducted as part of prior work [7] and for this
reason indicates that no extended fine tuning was performed
during the initial pruning phase, after which the network had
been reduced by 4.5×. Thereafter, the figure indicates that
frequent phases of extended fine tuning were required to recover
lost accuracy. Each data point represents the network after 10
iterations of pruning where each pruning iteration generates a
new network. We mark a network as extended fine-tuning if

extended fine-tuning was required to recover lost accuracy
during any of the previous 10 iterations. It is clear from the figure
that extended fine-tuning was required more frequently as the
network got smaller, being required at least once every 10
iterations after a 10× reduction in FLOPS is achieved. Through
the extended pruning procedure, we achieved a total 19×
reduction in FLOPS which is significantly better than the 4.5×
reduction achieved previously with standard pruning.

Figure 1: Accuracy of pruned SPL network. The dashed line shows

standard pruning, the solid line indicates extended pruning, and the

dotted line indicates original network accuracy.

We did not use a strict stopping criterion when pruning the
SPL network. A simple stopping criterion for extended pruning
could be to stop when extended fine-tuning cannot make the
pruned network recover to less than a 𝑝% drop from original
mAP. However this simple criterion would have stopped
pruning the SPL network at a 9× reduction in FLOPS. As can be
seen in Fig. 1, the mAP drops significantly during at this point,
but continuing to run extended pruning recovered lost accuracy.
A more robust stopping criterion would be if the network failed
to recover after multiple extended pruning iterations.

To evaluate how well the extended pruning technique
generalizes to more challenging networks and datasets, we
applied it to the VOC network. The pruning procedure for the
VOC network is broadly similar to the procedure for SPL
network, with the following changed parameters: 𝑚 = 10 for
the first 500 pruning iterations and 𝑚 = 1 thereafter; 𝑛𝐸𝐹𝑇 =
50,000 (due to the larger dataset). During the early pruning
iterations we chose to evaluate the network only once every 𝑚 =
10 pruning iterations as we have shown that there is redundancy
in the early stages of pruning and evaluating at each pruning
iteration is time consuming [7]. After 500 pruning iterations, we
evaluate the network after every pruning iteration. We increased
the maximum number of iterations for extended fine-tuning to
50,000 to account for the PASCAL VOC being both a larger and
more complex dataset.

Fig. 2 shows the effect of extended pruning applied to the
VOC network. As in Fig. 1, each data point represents a network
after 10 iterations of pruning (where each pruning iterations

1 Available at https://pjreddie.com/media/files/tiny-yolo-voc.weights

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

generates a new network) and a network is marked as extended
fine-tuning if extended fine-tuning was required during any of
the previous 10 pruning iterations. As with the SPL network,
extended fine-tuning was required more frequently at latter
stages of the pruning process. The VOC network (tiny-YOLO)
is already a much smaller network than YOLOv2 and has
slightly worse accuracy so it is likely that it initially has much
less redundancy than the SPL network relative to its dataset.
Nevertheless, the pruning procedure still managed a 1.8×
reduction in FLOPS for a 0.8% drop in mAP.

Figure 2: Accuracy of pruned networks on the PASCAL VOC dataset.

The dotted line indicates original network accuracy.

Network size is also a significant concern for many
applications, as for embedded applications smaller networks can
be stored entirely on-chip allowing for fast access and reducing
processing latency [3]. In both networks evaluated, the network
size was reduced by a greater factor than the FLOPS reduction.
The SPL network achieved a 30.5× reduction in network size,
while the VOC network achieved nearly a 2.5× reduction in
network size.

The results also show that mAP performance does not
consistently decrease for the SPL network as kernels are pruned.
In some pruning iterations, the pruned networks actually
performed better than the initial network. This is not uncommon
as the pruning process has been found to help the network
generalize to unseen data [24]. Improved network generalization
after pruning indicates that the network was originally
overfitting the training data [15]. Overfitting can occur when the
network is too large for the problem on which it is being trained.
In our evaluation we see the network accuracy for the SPL
network occasionally outperforms the initial network whereas
the VOC network accuracy never exceeds the initial network
accuracy. This indicates that the SPL network was overfitting
our training data whereas the VOC network was not.

When training on smaller or custom datasets it is common
practice to transfer learn from networks trained on the ImageNet
dataset as these convolutional features have been shown to
generalize well to many image processing tasks [13]. However
our results indicate that when working with a smaller dataset,

pruning the network might further improve network accuracy by
dealing with overfitting problems.

IV. CONCLUSIONS

In this work we evaluated the efficacy of our extended

pruning method both in terms of reducing the computational

load associated with a network trained on a small data set and

exploring its effectiveness when applied to a network trained on

the more complex PASCAL VOC data set. Our pruning focus

was to reduce the computational load of object detection

networks while maintaining mAP performance.

We found that the gain associated with pruning in general,

and our extended pruning method in particular, is related to the

potential redundancy in the network. Both the SPL network and

VOC network start with the same architecture. Transfer

learning is used to train the SPL network on the relatively small

SPL dataset, starting from the modified tiny-YOLO network,

but it is likely that this results in a network that has unnecessary

computational capacity. Extended pruning can remove the

redundancy in that unnecessary capacity. After extended

pruning, the SPL network achieved a 94.9% reduction in

computational load for a 0.4% drop in mAP. While extended

pruning was successfully applied to the VOC network, the 45%

reduction in computational load was much more modest and the

extended pruning procedure takes longer due to the larger

training dataset. Consequently we conclude that pruning in

general, and extended pruning in particular, is most applicable

to networks that are likely to have substantial redundancy. This

makes it particularly applicable when transfer learning is used

to adapt an established network architecture designed for a

complex dataset to a simpler dataset as can often be the case in

embedded system applications.

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge funding
provided by the Irish Research Council under their Government
of Ireland Postgraduate Scholarship 2013.

REFERENCES

[1] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster,

Stronger,” IEEE Conf. Comput. Vis. Pattern Recognit.,

pp. 6517–6525, Jul. 2017.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,

C. Y. Fu, and A. C. Berg, “SSD: Single shot multibox

detector,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics),

2016, vol. 9905 LNCS, pp. 21–37.

[3] G. Manek, J. Lin, V. Chandrasekhar, L. Duan, S.

Giduthuri, X. Li, and T. A. Poggio, “Pruning

Convolutional Neural Networks for Image Instance

Retrieval,” CoRR, Jul. 2017.

[4] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,

“Learning Efficient Convolutional Networks through

Network Slimming,” 2017.

[5] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

“Learning efficient convolutional networks through

network slimming,” in 2017 IEEE International

Conference on Computer Vision (ICCV), 2017, pp.

2755–2763.

[6] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J.

Kautz, “Pruning Convolutional Neural Networks for

Resource Efficient Transfer Learning,” in ICLR, 2017,

no. 2015, pp. 1–17.

[7] S. O’Keeffe and R. Villing, “Evaluating Pruned Object

Detection Networks for Real-Time Robot Vision,” in

2018 International Conference on Autonomous Robot

Systems and Competitions (ICARSC) (Accepted), 2018.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J.

Winn, and A. Zisserman, “The Pascal Visual Object

Classes (VOC) Challenge,” Int. J. Comput. Vis., vol. 88,

no. 2, pp. 303–338, Jun. 2010.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich

feature hierarchies for accurate object detection and

semantic segmentation,” in Proceedings of the IEEE

conference on computer vision and pattern recognition,

2014, pp. 580–587.

[10] R. Girshick, “Fast R-CNN,” in 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp.

1440–1448.

[11] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and

A. W. M. Smeulders, “Selective Search for Object

Recognition,” Int. J. Comput. Vis., vol. 104, no. 2, pp.

154–171, Sep. 2013.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:

Towards Real-Time Object Detection with Region

Proposal Networks,” Nips, pp. 1–10, 2015.

[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp.

779–788.

[14] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal

Brain Damage,” in Advances in Neural Information

Processing Systems (NIPS), 1990.

[15] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal brain

surgeon and general network pruning,” in IEEE

International Conference on Neural Networks -

Conference Proceedings, 1993, vol. 1993–Janua, pp.

293–299.

[16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.

Horowitz, and W. J. Dally, “EIE: Efficient Inference

Engine on Compressed Deep Neural Network,” in 2016

ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), 2016, vol. 16, pp. 243–

254.

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.

Graf, “Pruning Filters for Efficient ConvNets,” in

ICLR, 2017, no. 2017, pp. 1–10.

[18] X. Li and C. Liu, “Prune the Convolutional Neural

Networks with Sparse Shrink,” Electron. Imaging, pp.

97–101, Aug. 2017.

[19] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition,” Int. Conf. Learn. Represent., pp. 1–14,

2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770–778.

[21] S. O’Keeffe and R. Villing, “A Benchmark Data Set

and Evaluation of Deep Learning Architectures for Ball

Detection in the RoboCup SPL,” in RoboCup

International Symposium, 2017.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft

COCO: Common Objects in Context,” Springer, Cham,

2014, pp. 740–755.

[23] J. Redmon, “Darknet: Open Source Neural Networks in

C.” [Online]. Available: http://pjreddie.com/darknet/.

[24] S. Anwar, K. Hwang, and W. Sung, “Structured

Pruning of Deep Convolutional Neural Networks,”

ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 3,

p. 32, Feb. 2017.

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 28,2020 at 10:25:21 UTC from IEEE Xplore. Restrictions apply.

