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Abstract—Distributional semantic models are strongly depen-
dent on the size and the quality of the reference corpora,
which embeds the commonsense knowledge necessary to build
comprehensive models. While high-quality texts containing large-
scale commonsense information are present in English, such as
Wikipedia, other languages may lack sufficient textual support
to build distributional models. This paper proposes using the
combination of a lightweight (sloppy) machine translation model
and an English Distributional Semantic Model (DSM) to provide
higher quality word vectors for languages other than English. Re-
sults show that the lightweight MT model introduces significant
improvements when compared to language-specific distributional
models. Additionally, the lightweight MT outperforms more
complex MT methods for the task of word-pair translation.

I. INTRODUCTION

Distributional Semantic Models (DSM) are consolidating

themselves as fundamental components for supporting auto-

matic semantic interpretation in different application scenarios

in natural language processing. From question answering
systems, to semantic search and text entailment, distributional

semantic models support a scalable approach for representing

the meaning of words, which can automatically capture com-

prehensive associative commonsense information by analysing

word-context patterns in large-scale corpora in an unsuper-

vised or semi-supervised fashion [1], [2], [3].

However, such DSMs are strongly dependent on the size

and the quality of the reference corpora, which embeds the

commonsense knowledge necessary to build comprehensive

models. While high-quality texts containing large-scale com-

monsense and domain-specific information are present in

English, other languages may lack sufficient textual support

to build comprehensive distributional models.

This paper proposes the combination of a lightweight

machine translation (MT) model and an English DSM as

a mechanism to provide knowledge-rich word vectors for

languages other than English. While the problem of delivering

high-quality sentence MT requires large parallel corpora and

resource-intensive ML models, we claim that the MT for

accessing distributional word vectors can be achieved with a

lightweight model. In the context of this work, a lightweight

MT model is a model which accesses the unigram-level

source-target probabilities which can be directly computed

from the parallel corpora.

This paper aims at addressing the following research ques-

tions:

• Can a lightweight MT model over an English DSM

provide higher quality word vectors compared to native

word vectors?

• How does a lightweight MT model compares with more

complex MT models?

• How parallel corpora size influences the quality of the

distributional vector?

• Are there DSMs which are more/less robust to the quality

of the MT?

Figure 1 depicts a summary of the experimental model

aimed by this paper, where the lightweight MT is compared

against state-of-the-art MT services for different word similar-

ity/relatedness datasets.

Fig. 1. Depiction of the experimental setup of the experiment.

This paper is organised as follows: Section II describes the

related work, Section IV describes the experimental setting,

a lightweight machine translation is proposed at section III;

while Section V analyses the results and provides the compar-

ative analysis from different models and languages. Finally,

Section VI provides the conclusion and future work.

II. RELATED WORK

The majority of related work has concentrated on leveraging

joint multi-lingual information to improve the performance of
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semantic similarity/relatedness models.

Faruqui & Dyer[4] use the distributional invariance across

languages and propose a technique based on canonical cor-

relation analysis (CCA) for merging multi-lingual evidence

into vectors generated in monolingual fashion. The authors

evaluate the resulting word representations on semantic sim-

ilarity/relatedness evaluation tasks, showing the improvement

of multi-lingual over the monolingual scenario.

Utt & Pado[5], develop methods that take advantage of

the availability of annotated corpora in English using a

translation-based approach to transport the word-link-word co-

occurrences to support the creation of syntax-based DSMs.

Navigli & Ponzetto[6] propose an approach to compute se-

mantic relatedness exploiting the joint contribution of different

languages mediated by lexical and semantic knowledge bases.

The proposed model uses a graph-based approach of joint

multi-lingual disambiguated senses which outperforms the

monolingual scenario and achieves competitive results for both

resource-rich and resource-poor languages.

Zou et al.[7] describe an unsupervised semantic embedding

(bilingual embedding) for words across two languages that

represent semantic information of monolingual words, but

also semantic relationships across different languages. The

motivation of their work was on the difficulty of identifying

semantic similarities across languages, especially when word

co-occurrences are rare in the training parallel text. Al-Rfou et

al.[8] produced multi-lingual word embeddings for about 100

languages using Wikipedia as the reference corpora.

Freitas et al.[9] investigate how different distributional se-

mantic models built from corpora in different languages and

with different sizes perform in computing semantic similarity

and relatedness tasks. Additionally, they analysed the role of

heavyweight Google and Bing machine translation approaches

to support the construction of better distributional vectors and

for computing semantic similarity and relatedness measures

for other languages. This is the most similar work to our

model. Comparatively, this work aims at providing an analysis

of the impact of a lightweight machine translation over an

English DSM and answering the question on what is the un-

derlying MT quality necessary to deliver word vector models

with quality comparable to English.

III. LIGHTWEIGHT MACHINE TRANSLATION

The lightweight MT model is built by processing the set

of source—target word alignments within the parallel corpora

and by computing the ω(s|t) word translation table. Given this

alignment, it is quite straight-forward to estimate a maximum

likelihood lexical translation table.

Given a word pair w1,w2 in a language L other than English,

the semantic similarity sim(w1, w2) will be calculated by first

collecting all English translations of w1 and w2 into the sets

T1, T2. For a set which is defined by the cross product of T1,

T2, the word vectors for each element τ i1, τ j2 are produced

(�τ1
i, �τ2

j). The final similarity score is given by getting the

top-most similarity score sim(�τ1
i, �τ2

j).

sim(w1, w2) = argmax
τ i
1,τ

j
2

sim(�τ1
i, �τ2

j)

Algorithm 1 describes the lightweight MT model.

Algorithm 1 The algorithm for computing the semantic sim-

ilarity between two words with the translation

WP : word pair (w1,w2) in a language other than English
τ1 ← Collecting all English translations of w1 from the
Lexical translation table.
τ2 ← Collecting all English translations of w2 from the
Lexical translation table.
CP : Cross product of τ1 and τ2
for all pairs ∈ CP do:

Scores← Calculate sim(�τ1
i, �τ2

j).
end for
Return top-most similarity score in Scores

In many cases, users of distributional semantic models need

to use the word vectors directly instead of the similarity

function (typically the case when using distributional word

vectors as features for a machine learning model). An analo-

gous procedure could be used as a disambiguation mechanism

when looking up single word vectors. In this case, collocated

words in the sentence can serve as a supporting mechanism

for disambiguation.

Algorithm 2 shows the variation of the model for looking

up distributional vectors for a single word.

Algorithm 2 The algorithm for looking up distributional

vectors for a single word as a disambiguation mechanism

SENT : Sentence in a language other than English
for all W ∈ SENT do:

MW← Meaningful words in SENT related to W .

τw ← Collecting all English translations of W from
the Lexical translation table.

for all M ∈MW do:

τm ← Collecting all English translations of M
from the Lexical translation table.

end for
CP : Cross product of τw and τm
for all pairs ∈ CP do:

Scores← Calculate sim( �τw
i, �τm

j).
end for
�τw

i ← Based on the top-most similarity score in Scores
end for

IV. EXPERIMENTAL SETUP

The experimental setup consists of the instantiation of four

distributional semantic models (Explicit Semantic Analysis

(ESA) [10], Latent Semantic Analysis (LSA) [11], Word2Vec

(W2V) [12] and Global Vectors (GloVe) [13]) in 11 different

languages - English, German, French, Italian, Spanish, Por-

tuguese, Dutch, Russian, Swedish, Arabic and Farsi.
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The DSMs were generated from Wikipedia dumps (January

2015), which were preprocessed by lowercasing, stemming

and removing stopwords. For LSA and ESA, the models were

generated using the SSpace Package [14], while W2V and

GloVe were generated using the code shared by the respective

authors. For the experiment, the vector dimensions for LSA,

W2V and GloVe were set to 300 while ESA was defined with

1500 dimensions. The difference of size occurs because ESA is

composed of sparse vectors. All models used in the generation

process the default parameters defined in each implementation.

Each distributional model was evaluated for the task of

computing semantic similarity and relatedness measures using

four human-annotated gold standard datasets: Miller & Charles

(MC) [15], Rubenstein & Goodenough (RG) [16], WordSim-

ilarity 353 (WS-353) [17] and Simlex-999 [18]. As the four

word-pair gold-standards were originally in English, except

for some languages available in previous works [19], [20],

[18], the word pairs were translated and reviewed with the

help of paid professional translators1, skilled in language data

localisation tasks. In the word-pair translation task, in case of

word sense ambiguity, the translators were instructed to select

the senses which are most related to the other word. In order

to support reproducibility and comparability, the datasets are

available on the web2.

As baselines for the lightweight machine translation ap-

proach, we used the Google Translate Service and the Mi-

crosoft Bing Translation Service. The lightweight MT was

generated using three parallel corpora: Europarl, DGT and

OpenSubtitle2016 [21]. Table I shows details of the parallel

corpora size.

The lightweight MT over DSMs was implemented over the

Indra service [22].

V. EVALUATION & RESULTS

A. Lightweight Machine Translation vs. Language-Specific
Models

In the first part of the experiment we evaluate how the

semantic similarity supported by the lightweight MT model

performs in comparison to DSMs built over native language

corpora. The Spearman Correlation (ρ) between human as-

sessments was calculated for all native-language DSMs and

English lookups supported by lightweight MT [9].

The impact of the MT model can be better interpreted by

examining the difference between the lightweight machine

translation and the language-specific models (depicted in Table

III). GLOVE accounts for the largest average percent improve-

ment (78.07%) using the lightweight MT model, while LSA

accounts for the lowest value (12.96%). The remaining models

accounted for substantial improvements (ESA = 13.84%, W2V

= 13.91%).

In terms of improvement per language, Italian achieved the

highest percent gains (98.27%), while German accounts for

1Global Services for Machine Intelligence, Seehttps://www.lionbridge.com/
en-us/global-services-for-machine-intelligence

2https://rebrand.ly/multilingual-wordpairs

TABLE I
DETAILS OF PARALLEL CORPORA SIZE (SCALE OF 106 ).

Parallel Corpora Parameters Europarl DGT OpenSubtitle2016 All

Source=German
Target=English

Sentence Alignments 2 3.2 13.9 19.1
Source Tokens 45.4 48.4 84.7 178.5
Target Tokens 53.1 53.1 88.3 194.5

Source=French
Target=English

Sentence Alignments 2 3 33.8 38.8
Source Tokens 53.6 57.7 214.6 325.9
Target Tokens 51.3 52.8 221.7 325.8

Source=Spanish

Target=English

Sentence Alignments 2 3.2 49.9 55.1
Source Tokens 52.7 60.4 297.4 410.5
Target Tokens 50.2 52.9 320 423.1

Source=Portuguese

Target=English

Sentence Alignments 2 3.2 24.9 30.1
Source Tokens 51 56.5 147.7 255.2
Target Tokens 50.3 52.6 160 262.9

Source=Italian
Target=English

Sentence Alignments 1.9 3.2 26.3 31.4
Source Tokens 49 54.6 161.1 264.7
Target Tokens 50.7 53 172.2 275.9

Source=Swedish
Target=English

Sentence Alignments 1.9 3.2 11.9 17
Source Tokens 42.2 47.1 69.4 158.7
Target Tokens 46.7 53 81.2 180.9

Source=Dutch
Target=English

Sentence Alignments 2 3.2 28.8 34
Source Tokens 51.2 53.4 182.8 287.4
Target Tokens 50.6 52.8 197.4 300.8

lower results (10.41%). The average improvement for the MT

over the language specific model for each word-pair dataset is

consistently significant: MC = 23.53%, RG = 16.66%, WS353

= 7.44% and SIMLEX-999 = 71.15%. The results shows in

overall the results of lightweight MT outperforms the results

of the language-specific models.

Another aspect that we can observe is with regard to which

language benefited more from the application of the MT

model. The comparative analysis between the models (Table

II) indicates that Spanish is the best-performing language

(0.59), followed by Swedish (0.57). The lowest Spearman

correlation was observed in Dutch (0.50). From the tested

DSMs, W2V is consistently the best-performing DSM (0.61).
In terms of impact of the lightweight model for computing

the Spearman correlation for different gold-standards: MC,

RG and Simlex-999 showed higher percentage improvements

when compared to WS-353. The explanation can be found

in the fact that the three former datasets focus on similarity

computations (thus requiring more sensitive and informative

semantic models) while WS-353 targets semantic relatedness.

B. Google and Bing vs. Lightweight Machine Translation
based Semantic Relatedness

This section provides a comparative analysis of the

lightweight MT model and the Google and Bing Services MT

baselines. The Spearman correlation for the lightweight MT

approach and their difference in relation to Google & Bing

are shown in Table II, IV and V respectively.

In the analysis, word pairs were sent to the baseline machine

translation services which translated them to English. The

translated words were then used to compute the semantic

relatedness using the native English DSMs and their Spearman

correlations with the translated pairs were computed.
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TABLE II
SPEARMAN CORRELATION FOR THE LIGHTWEIGHT MACHINE TRANSLATION MODELS OVER THE ENGLISH CORPUS.

GS Model de fr it nl pt sv es Model AVG. GS AVG.

MC

ESA 0.80 0.72 0.70 0.63 0.80 0.72 0.80 0.74

0.76
LSA 0.72 0.71 0.67 0.65 0.67 0.80 0.78 0.72
W2V 0.80 0.86 0.75 0.72 0.82 0.89 0.87 0.82
GLOVE 0.79 0.78 0.70 0.61 0.80 0.78 0.82 0.75

RG

ESA 0.71 0.77 0.68 0.68 0.79 0.73 0.81 0.74

0.72
LSA 0.60 0.60 0.63 0.62 0.66 0.75 0.72 0.66
W2V 0.75 0.78 0.70 0.75 0.78 0.78 0.86 0.77
GLOVE 0.69 0.75 0.70 0.63 0.78 0.76 0.80 0.73

WS353

ESA 0.46 0.41 0.39 0.44 0.44 0.42 0.41 0.42

0.47
LSA 0.52 0.43 0.45 0.47 0.45 0.47 0.45 0.46
W2V 0.66 0.59 0.58 0.61 0.59 0.59 0.60 0.60
GLOVE 0.45 0.39 0.37 0.41 0.42 0.41 0.42 0.41

SIMLEX

ESA 0.21 0.16 0.22 0.19 0.23 0.23 0.24 0.21

0.22
LSA 0.20 0.16 0.20 0.18 0.21 0.23 0.23 0.20
W2V 0.21 0.20 0.23 0.22 0.24 0.27 0.27 0.24
GLOVE 0.25 0.20 0.26 0.23 0.27 0.27 0.29 0.25

Lang AVG. 0.55 0.53 0.51 0.50 0.56 0.57 0.59 0.54

TABLE III
DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE LANGUAGE-SPECIFIC.

GS Model de fr it nl pt sv es Model AVG. GS AVG.

MC

ESA 19.35 33.02 29.18 7.98 3.34 34.04 23.45 21.48

26.90
LSA 2.78 28.21 -3.27 10.03 33.76 15.04 9.49 13.72
W2V 15.70 59.27 14.92 17.32 78.78 55.52 10.72 36.03
GLOVE 23.27 21.41 82.90 57.73 15.72 37.98 15.53 36.36

RG

ESA 5.01 31.75 8.79 6.35 25.71 15.62 17.52 15.82

16.73
LSA -7.72 26.71 3.03 6.93 51.64 16.14 40.81 19.65
W2V -3.79 18.15 -0.48 10.91 42.95 13.70 17.46 14.13
GLOVE 1.07 21.74 21.24 15.24 26.02 23.70 12.39 17.34

WS353

ESA 8.06 12.65 -1.78 -19.20 0.80 -11.18 7.06 -0.51

6.58
LSA 7.82 6.24 17.73 -5.02 14.40 6.61 21.27 9.87
W2V 15.96 10.05 10.70 2.32 10.07 20.19 11.34 11.52
GLOVE 3.71 2.61 -6.86 -4.47 9.68 6.53 26.94 5.45

SIMLEX

ESA 30.30 -14.49 43.77 25.28 18.70 17.78 8.57 18.56

10.26
LSA 25.98 -28.37 47.90 -6.55 4.97 21.53 -5.14 8.62
W2V -9.17 -26.35 -0.58 -4.82 -0.84 7.44 -7.86 -6.03
GLOVE 28.13 -15.10 37.04 31.12 21.10 32.99 3.85 19.88

Lang AVG. 10.41 11.72 19.01 9.45 22.30 19.60 13.34 15.12

The lightweight MT on average performs equivalently or

better than Google and Bing MT (with the exception of WS353

for Google): Google (MC = 6.08%, RG = 0.62%, WS353 =

-1.53% and SIMLEX-999 = 2.93%), Bing(MC = 27.75%, RG

= 13.38%, WS353 = 5.45% and SIMLEX-999 = 2.65% ).

A possible explanation for this observed behaviour is that the

baselines are MT models supported by language models which

target the translation of sentences instead of word pairs.

On average the results show that using lightweight MT is

equivalent or slightly better to more sophisticated services.

However, there were significant individual variations across

languages and the baseline MT services. Portuguese and Ger-

man achieved the highest percent gains (12.88% and 9.65%,

respectively), Google MT outperformed the lightweight MT

for French, Dutch and Italian (−8.87%, −7.66% and −2.93%,

respectively). But compared with the Bing MT, Italian and

German achieved the highest percentage gains (31.72%
and 29.04%, respectively), while Bing MT outperforms the

lightweight MT for French and Dutch (−6.78% and −4.70%,

respectively).

111

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 29,2020 at 09:23:18 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE GOOGLE MACHINE TRANSLATION SERVICE.

GS Model de fr it nl pt sv es Model AVG. GS AVG.

MC

ESA 40.85 4.43 -1.45 -7.64 43.10 7.06 -2.31 12.01

6.08
LSA 5.79 -2.18 -7.26 -5.98 -6.55 8.58 -2.78 -1.48
W2V 10.58 5.11 -7.83 1.69 1.11 8.04 -0.60 2.59
GLOVE 39.72 -0.57 -4.91 -6.56 33.49 20.25 -2.91 11.22

RG

ESA 16.87 2.05 -8.06 -11.24 16.12 9.17 7.54 4.63

0.62
LSA -9.88 -6.85 -14.51 -11.08 -1.21 11.41 11.21 -2.99
W2V 3.95 -4.81 -13.18 -2.51 -0.69 2.99 14.89 0.09
GLOVE 6.78 -4.69 -11.56 -17.35 12.42 11.77 7.89 0.75

WS353

ESA 2.55 -15.69 -12.00 -4.63 41.20 -5.20 -3.48 0.39

-1.53
LSA 3.70 -16.90 -8.72 -10.11 16.04 -7.16 1.72 -3.06
W2V 4.06 -5.39 -3.42 -7.07 6.12 -3.90 3.80 -0.83
GLOVE 3.59 -18.42 -16.70 -10.77 29.65 -5.76 0.10 -2.61

SIMLEX

ESA 10.38 -21.15 35.73 -5.00 5.34 3.30 25.74 7.76

2.93
LSA 8.56 -20.09 12.54 -9.17 4.96 0.51 20.30 2.51
W2V 4.52 -16.82 3.36 -7.40 0.31 5.02 16.02 0.72
GLOVE 2.45 -19.97 11.06 -7.71 4.72 -2.90 17.52 0.74

Lang AVG. 9.65 -8.87 -2.93 -7.66 12.88 3.95 7.17 2.03

TABLE V
DIFFERENCE (%) BETWEEN THE LIGHTWEIGHT MACHINE TRANSLATION MODEL AND THE BING MACHINE TRANSLATION SERVICE.

GS Model de fr it nl pt sv es Model AVG. GS AVG.

MC

ESA 73.62 6.91 82.99 -12.92 68.40 3.49 25.83 35.47

22.75
LSA 20.90 3.39 104.06 -12.21 4.45 10.89 22.03 21.93
W2V 45.04 13.66 63.67 6.42 16.84 12.61 15.27 24.79
GLOVE 65.57 5.81 55.90 -8.95 58.01 9.84 15.37 28.79

RG

ESA 33.29 3.61 29.67 -5.56 35.02 18.10 17.07 18.74

13.38
LSA 6.27 1.58 31.33 -5.83 11.02 19.31 6.69 10.05
W2V 20.05 -1.14 25.17 7.63 9.38 11.20 8.71 11.57
GLOVE 23.92 -2.04 20.84 -8.58 30.83 19.57 7.47 13.14

WS353

ESA 23.22 -8.38 6.09 0.09 19.99 1.57 -1.28 5.90

5.45
LSA 26.40 -8.92 13.83 -5.05 14.80 1.94 5.69 6.96
W2V 14.31 -5.67 5.89 -1.37 4.88 -1.55 8.58 3.58
GLOVE 29.45 -6.35 3.27 -3.79 14.25 -0.17 0.84 5.36

SIMLEX

ESA 14.74 -31.42 30.73 -12.37 2.34 -3.83 18.25 2.63

2.65
LSA 22.53 -32.17 5.93 -3.67 0.90 -5.46 15.10 0.45
W2V 25.55 -20.04 8.06 -3.31 -0.40 -4.06 20.74 3.79
GLOVE 19.84 -27.34 20.14 -5.77 5.76 -4.13 17.66 3.74

Lang AVG. 29.04 -6.78 31.72 -4.70 18.53 5.58 12.75 12.31

C. Word-pair Machine Translation Quality

In order to verify the hypothesis that the translation accuracy

of the lightweight model is equivalent or superior to the

baseline MT models, the quality of the MT was evaluated in

isolation. Tables VI, VII and VIII show the accuracy of all MT

approaches using the translated gold-standard. The accuracy of

the translation of the lightweight MT significantly outperforms

the Bing and Google MT, except for 3 languages, especially

for German (−7.89%).

D. Parallel Corpora Size & MT Quality

Our last analysis focuses on the correlation between the size

of the supporting parallel corpora used to built the lightweight

MT model and the Spearman correlation for each gold stan-

dard, averaged for all models (Figure 2). As the lightweight

MT model works over a word-based lexical table, the model is

more dependent on a parallel corpora with a representative set

of unigram translations instead of a language model which

is able to model phrasal (above bigram) translations. This

shows that the lightweight MT can be potentially transported

to languages with smaller parallel corpora.
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TABLE VI
TRANSLATION ACCURACY FOR THE LIGHTWEIGHT MT.

dataset/lang de fr it nl pt sv es GS AVG.
MC 0.54 0.60 0.61 0.68 0.54 0.66 0.65 0.61
RG 0.48 0.61 0.56 0.61 0.47 0.68 0.64 0.58
WS353 0.83 0.82 0.75 0.86 0.82 0.83 0.80 0.82
SIMLEX 0.74 0.71 0.75 0.78 0.75 0.74 0.76 0.75
Lang AVG 0.65 0.68 0.67 0.73 0.65 0.73 0.71 0.69

TABLE VII
DIFFERENCE (%) IN TRANSLATION ACCURACY BETWEEN LIGHTWEIGHT MT AND GOOGLE MT.

dataset/lang de fr it nl pt sv es GS AVG.
MC -10.77 -2.10 6.12 -12.20 7.69 3.14 1.91 -0.88
RG -12.35 7.59 3.75 6.33 12.65 3.70 3.30 3.57
WS353 -0.94 3.58 7.50 0.90 -7.72 4.43 -2.13 0.80
SIMLEX -7.50 4.87 -0.45 -1.45 -6.06 9.01 -4.93 -0.93
Lang AVG -7.89 3.49 4.23 -1.60 1.64 5.07 -0.46 0.64

TABLE VIII
DIFFERENCE (%) IN TRANSLATION ACCURACY BETWEEN LIGHTWEIGHT MT AND BING MT.

dataset/lang de fr it nl pt sv es GS AVG.
MC 12.07 27.68 47.00 17.14 -9.72 10.42 9.03 16.23
RG 8.19 -7.06 38.21 1.28 -7.20 9.69 8.12 7.32
WS353 3.08 -4.57 -2.74 0.58 0.09 0.17 0.18 -0.46
SIMLEX 2.87 -7.98 -0.15 -0.33 -4.30 -2.94 4.89 -1.13
Lang AVG 6.55 2.02 20.58 4.67 -5.28 4.33 5.55 5.49

Fig. 2. Correlation between the Spearman correlation values evaluated by
lightweight MT over English-DSM and size of parallel corpora that the sloppy
MT is learned over them.

VI. CONCLUSION

This paper proposed the use of a lightweight Machine

Translation (MT) model over an English Distributional Se-

mantic Model (DSM) as an intermediate layer for the creation

of high-quality multi-lingual distributional word vectors. The

results show that the proposed model consistently outperforms

native language DSMs for word pair similarity evaluation

settings: MC (39.12%) , RG (39.59%), WS-353 (14.22%) and

SIMLEX-999 (113.41%). Additionally, the paper shows that

the lightweight MT model is in the worst case equivalent and

in some cases outperforms state-of-the-art MT systems for the

translation of word pairs.

Future work will concentrate on the analysis of the

suitability of lightweight MT approaches for computing

compositional-distributional over phrasal elements.
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