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Abstract—Orthogonal Time Frequency Space (OTFS) is a
novel modulation scheme designed in the Doppler-delay domain
to fully exploit time and frequency diversity of general time-
varying channels. In this paper, we present a novel discrete-time
analysis of OFDM-based OTFS transceiver with a concise and
vectorized input-output relationship that clearly characterizes the
contribution of each underlying signal processing block in such
systems. When adopting cyclic prefix in the time domain, our
analysis reveals that the proposed MIMO OTFS and OFDM
systems have the same ergodic capacity despite the well-known
fact that the former has great advantages in low-complexity
receiver design for high Doppler channels. The proposed discrete-
time vectorized formulation is applicable to general fast fading
channels with arbitrary window functions. It also enables prac-
tical low-complexity receiver design for which such a concise
formulation of the input-output relationship is of great benefits.

Index Terms—OTFS, OFDM, MIMO, Ergodic Capacity

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation has

recently been proposed as an effective waveform that takes

advantage of the time diversity (i.e., variation of channel with

time) to improve on the reliability of wireless links [1]. In

OTFS, the transmit data symbols are treated as values of the

grid points in a Doppler-delay space. A transformation step

takes each data symbol and spread it over the entire space

of time-frequency points. The result of this transformation is

then passed to a multicarrier system for modulation and trans-

mission. In this way, all data symbols are equally affected by

the channel frequency selectivity and time diversity and, as a

result, the time-varying channel, within a good approximation,

converts to a unified time-invariant impulse response for all the

data symbols.

To recover the transmitted (Doppler-delay space) data sym-

bols, at the receiver, the respective multicarrier demodulation

followed by a transformation takes the received signal back

to the Doppler-delay space. In [1], it is proposed that an

inverse symplectic finite Fourier transform (SFFT−1) be used

for transformation from the Doppler-delay space to the time-

frequency space, at the transmitter, and the corresponding

symplectic finite Fourier transform (SFFT) be used for the

reverse operation, at the receiver.

In the above set-up, the equivalent channel that connects the

transmitted data symbols and the received signal samples, both

in the Doppler-delay space, is modeled by a time-invariant two

dimensional (2-D) impulse response. Soft detectors/equalizers,

e.g., some extensions to those presented in [2], may thus be

used for near-optimal recovery of the transmitted information.

In order to simplify such detectors, [1] has proposed that

proper windows should be applied to the time-frequency

signals at both the transmitter and receiver sides to improve

on the sparsity of the OTFS channel.

The transformation of data symbols from the Doppler-

delay space to time-frequency at the transmitter and the

corresponding inverse transformation at the receiver, clearly,

leads to full diversity gain across both time and frequency.

In multiple-input multiple-output (MIMO) channels, the space

diversity gain will naturally be present because in a MIMO

setup any signal going out of each antenna reaches all the

receiver antennas with statistically similar gains.

The goal of this paper is to examine the details of OTFS

in terms of the reliability of transmission brought up as a

result of the addition of time diversity in the modulator.

To allow simple derivations, OFDM is used for multicarrier

transmission of time-frequency signals in OTFS. To this end,

we present a novel discrete-time end-to-end formulation of

an OFDM-based OTFS setup. Such a formulation provides a

concise representation of the effect of each signal processing

unit on the input-output relationship of an MIMO OFDM-

based OTFS system. Based on this formulation, we show that

the proposed MIMO OFDM-based OTFS system achieves the

same ergodic capacity as that of an OFDM system, under

the assumption that channel state information is known at

the receiver and most importantly, with the use of cyclic

prefix, a block of OTFS transmission can be implemented as

N consecutive, non-interfering OFDM transmissions. Since

this capacity analysis is derived assuming perfect channel

knowledge, optimal receiver, and an infinite code length, it

does not violate the known fact that in practical systems with

higher Dopplers, OTFS outperforms OFDM and has lower

receiver complexity due to simpler channel estimation and

equalization in the Doppler-delay domain.

This work is inspired by the landmark paper [1], which

was the first to propose a continuous-time formulation of

a single-antenna OTFS modulation. Recently, [3] presents a

discrete-time formulation of a single-antenna OTFS system by

sampling the continuous-time channel for the case when the

transmit and receive window functions are rectangular. In [4],

a matrix-form discrete-time formulation of a single-antenna

transceiver with rectangular windows is presented. However,

this formulation is mostly based on two-dimensional signal

matrices instead of vectors. Moreover, [5] studies a single-
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antenna transceiver when the transmit and receive window

functions are separable. In comparison, our formulation here

uses a general form of window functions in an MIMO OFDM-

based OTFS setup and presents a vectorized formulation of

signals which is amicable to analytical analysis and practical

implementation of MIMO OTFS systems.

The rest of this paper is organized as follows. In Section II,

we summarize basic properties of the Kronecker products for

which most of the derivations in this paper are based upon. In

Sections III and IV, we describe the fundamentals of OTFS

and present a vectorized formulation for the input-output

relationship with general windowing functions for the single

antenna case. Extensions of the derivations to the MIMO case

are presented in Section V. The ergodic capacity analysis of

the OFDM-based OTFS is developed in Section VI. The paper

is concluded in Section VII.

Notations: Matrices, vectors, and scalar quantities are de-

noted by boldface uppercase, boldface lowercase, and normal

letters, respectively. IN and 0
¯
N are the identity and null matri-

ces of size N , respectively, and j is used to denote
√
−1. The

superscripts (·)T, (·)H, and (·)∗ indicate transpose, conjugate

transpose, and conjugate operations, respectively. The N -point

discrete Fourier transform (DFT) matrix is represented by FN

and is assumed to be normalized such that FNFH
N = IN .

A ∈ CM×N denotes a M × N matrix with complex-valued

elements and am,n represents element of matrix A at m-th

row and n-th column.

II. KRONECKER PRODUCT PROPERTIES

In this paper, we make frequent use of the Kronecker

product to arrive at a concise and elegant representation of

the input-output relationship in OTFS systems. Hence, in

this section we first review some of the relevant Kronecker

properties. For an m× n matrix A and a p× q matrix B, the

Kronecker product A⊗B is a mp× nq block matrix

A⊗B =



a11B · · · a1nB

...
. . .

...

am1B · · · amnB


 . (1)

The Kronecker product is an associative but non-commutative

operator

A⊗B 6= B⊗A, (2)

(A⊗B)⊗C = A⊗ (B⊗C) . (3)

The mixed-product property of the Kronecker product is

(A⊗B) (C⊗D) = (AC)⊗ (BD) . (4)

Moreover, under transpose and Hermitian operations, order of

the Kronecker product operands does not change

(A⊗B)H = AH ⊗BH. (5)

Finally, consider a matrix equation AXB = C, where A,

X, B, and C are proper size matrices. We can rewrite this

equation as
(
BT ⊗A

)
vec(X) = vec(C), (6)

where vec(X) denotes the vectorized version of the matrix X

formed by stacking the columns of X into a single column

vector.

III. OTFS WAVEFORM

An OTFS transmitter combines a set of complex-valued data

symbols {dm,n;m = 0, 1, · · · ,M − 1;n = 0, 1, · · ·N − 1}
in the Doppler-delay domain to construct an OTFS signal.

First, the transmitter maps data symbols on the Doppler-delay

lattice, {dm,n}, to a lattice in the time-frequency domain

through an inverse symplectic finite Fourier transform oper-

ation (SFFT−1)

xk,l =
1√
MN

M−1∑

m=0

N−1∑

n=0

dm,ne
−j2π(mk

M
−nl

N
), (7)

where k = 0, 1, · · · ,M − 1 and l = 0, 1, · · ·N − 1. Let

D ∈ CM×N denote the data matrix which contains elements

{dm,n}. A closer look into (7) reveals that the SFFT−1

transform of D can be obtained by applying an M -point

discrete Fourier transform (DFT) and an N -point inverse DFT

(IDFT) to the columns and rows of the matrix D, respectively.

Accordingly, (7) can be written in a compact form as

X = FMDFH
N , (8)

where X ∈ CM×N .

Subsequently, the transmitter applies a transmit window,

ũk,l, to the time-frequency signal as

x̃k,l = xk,lũk,l. (9)

Finally, the transmitter packs the time-frequency signal,

x̃k,l, to the transmitted signal, s[i], using a set of time-

frequency basis functions, gk,l[i],

s[i] =
M−1∑

k=0

N−1∑

l=0

x̃k,lgk,l[i]. (10)

The received signal samples after transmission over a linear

time varying (LTV) channel can be obtained as

r[i] =

L−1∑

l=0

h[i, l]s[i− l] + w[i], (11)

where h[i, l] is the instantaneous channel impulse response

with length L at time instant l, and w[i] is the additive channel

noise.

To obtain an estimate of dm,n from the received signal r[i],
first, we map r[i] to the time-frequency lattice by projecting

it onto another set of time-frequency basis functions fk,l[i] as

ỹk,l =< fk,l[i], r[i] > . (12)

The sets of transmit and receive basis functions are designed

to satisfy the perfect reconstruction criterion

< fk,l[i], gk′,l′ [i] >= δ(k − k′)δ(l − l′). (13)
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Then, the receiver performs the windowing operation through

multiplication of the receive window function coefficients ṽk,l
to the time-frequency samples as

yk,l = ỹk,lṽk,l. (14)

Finally, signals on the time-frequency lattice are trans-

formed back to the Doppler-delay domain by applying SFFT

as

d̂m,n =
1√
MN

M−1∑

k=0

N−1∑

l=0

yk,le
j2π(mk

M
−nl

N
). (15)

Similar to SFFT−1, the SFFT transform can be split into an

M -point IDFT and an N -point DFT on rows and columns of

its operand. Thus, (15) can be rearranged as

D̂ = FH
MYFN , (16)

where Y ∈ CM×N and D̂ ∈ CM×N contain elements {yk,l}
and {d̂m,n}, respectively.

Typically, an OFDM-based OTFS modulation with M sub-

carriers and a cyclic prefix (CP) of length Mcp utilizes the

following transmit and receive time-frequency basis functions

gk,0[i] =
1√
M

ej
2π
M

ki, −Mcp ≤ i < M

gk,l[i] = gk,0[i − (M +Mcp) l] (17)

fk,0[i] =
1√
M

e−j 2π
M

ki, 0 ≤ i < M

fk,l[i] = fk,0[i − (M +Mcp) l]. (18)

IV. OFDM-BASED OTFS: SINGLE ANTENNA

In this section, we present a vectorized formulation for the

OFDM-based OTFS transceiver. The first step of the OTFS

modulation in (8), i.e. the SFFT−1 operation, using (6) can be

rearranged as

x =
(
FH

N ⊗ FM

)
d, (19)

where x = vec(X) and d = vec(D). Then, the vec-

tor x is partitioned into blocks of length M , denoted by

xn, n = 0, 1, · · · , N − 1 and each block is multiplied to

the corresponding transmit window as

x̃n = Unxn, (20)

where the transmit window Un ∈ CM×M is a diagonal matrix

consisting of diagonal elements ũk,n.Stacking the results as x̃,

we have

x̃ = Ux (21)

where U ∈ CMN×MN is a diagonal matrix whose (lM+k)-th
diagonal element is ũk,l.

Each partition of x̃, i.e. x̃n , is fed into an OFDM modulator.

The OFDM modulator multiplies an IDFT matrix FH
M to each

block and then appends a CP to each block as

sn = FH
M x̃n, (22)

s̃n = Acpsn, (23)

where Mcp is the CP length, Acp = [Gcp, IM ]T is the CP

addition matrix and Gcp ∈ CM×Mcp includes the last Mcp

columns of the identity matrix IM . Note that Acp appends last

Mcp samples of each OFDM block to its beginning. Stacking

the results as vectors, (22) and (23) can be written as

s =
(
IN ⊗ FH

M

)
x̃, (24)

s̃ = (IN ⊗Acp) s. (25)

After the signal s̃ is passed though the LTV channel, the

received signal can be written as

r̃ = Hs̃+w, (26)

where H ∈ CN(M+Mcp)×N(M+Mcp) is the channel impulse

response matrix, and w is the channel additive noise vector.

The receiver partitions the received vector into N blocks, r̃n
and removes CP from each received block as

rn = Rcpr̃n, (27)

where Rcp ∈ CM×(M+Mcp) is the CP removal matrix which

can be obtained by removing the first Mcp rows of IM+Mcp
.

Stacking the output vectors rn into a length NM vector r,

(25) to (27) can be written as

r = (IN ⊗Rcp)H (IN ⊗Acp) s+w

= H̃s+w, (28)

where H̃ = (IN ⊗Rcp)H (IN ⊗Acp) is an MN × MN

block diagonal matrix

H̃ =




H̃0 0
¯
M · · · 0

¯
M

0
¯
M H̃1 · · · 0

¯
M

...
...

. . .
...

0
¯
M 0

¯
M · · · H̃N−1


 (29)

and H̃n is the channel impulse response matrix of the n-th

OFDM symbol.

The received signal is fed into an OFDM demodulator and

the output signal is

ỹ = (IN ⊗ FM ) r, (30)



where ỹ is a length MN time-frequency signal vector. Finally,

after performing the receiver windowing operation, the time-

frequency signal is mapped to the Doppler-delay domain and

an estimate of the transmitted vector can be obtained as

d̂ =
(
FN ⊗ FH

M

)
y, (31)

where y = Vỹ, and the receive window V ∈ CMN×MN

is a diagonal matrix defined similarly to that of the transmit

window.

We note that equations (19) to (31) describe the end-to-end

relationship for a general OFDM-based OTFS setup which

is summarized in a compact form shown in (32), at the top

of the next page. It clearly demonstrates the contribution of

each signal processing step of an OFDM-based OTFS setup

from Doppler-delay domain to Doppler-delay domain where

each step corresponds to one section of the transceiver block

diagram shown in Fig. 1. It is clear that this compact form

of (32) will allow simplified analysis and implementation of

OFDM-based OTFS systems. Next, we will present how these

equations simplify for some special setup considered below.

A. Separable Windows

In general, transmit and receive window functions can be

arbitrary functions that are designed for various purposes.

These include, for instance, zero-forcing or minimum mean

squared error equalization, or shortening the channel response

in Doppler-delay domain. For a wide range of applications,

however, one can treat windowing across time axis and across

frequency axis separately because of the independency be-

tween channel delay spread and Doppler spread. This separate

windowing can lead to simplified transmitter and receiver

structures as shown in [5].

Assume that the transmit and receive windows are separable

functions, i.e. ũk,l = albk and ṽk,l = plqk. We can write

transmit and receive window matrices as U = A ⊗ B and

V = P ⊗ Q where A ∈ CN×N , P ∈ CN×N , B ∈ CM×M ,

and Q ∈ CM×M are diagonal matrices with elements {al},

{pl}, {bk} ,and {qk}, respectively. Substituting these window

forms in (21) to (31) and after simplifications we have

d̂ =
(
IN ⊗ FH

MQFM

)
(FN ⊗ IM ) (P⊗ IM ) H̃

(A⊗ IM )
(
FH

N ⊗ IM
) (

IN ⊗ FH
MBFM

)
d+ ŵ, (33)

where ŵ =
(
FN ⊗ FH

M

)
V (IN ⊗ FM )w. We note that (33)

can be used for the simplification of OFDM-based OTFS

transceiver.

B. Rectangular Window

When rectangular windows are used as the transmitter and

receiver window functions, i.e. U = V = IMN , substituting

(21) to (30) in (31), it simplifies to

d̂ = (FN ⊗ IM ) H̃
(
FH

N ⊗ IM
)
d+ ŵ, (34)

where we used the mixed-product property of Kronecker

product (A⊗B) (C⊗D) = (AC)⊗ (BD).

C. Frequency Domain Representation

Let H̃f denote the block diagonal frequency domain

channel impulse response matrix. We see that H̃f =

(IN ⊗ FM ) H̃
(
IN ⊗ FH

M

)
. Solving this for H̃ we obtain

H̃ =
(
IN ⊗ FH

M

)
H̃f (IN ⊗ FM ). Substituting H̃ in (32),

after simplification it boils down to

d̂ =
(
FN ⊗ FH

M

)
VH̃fU

(
FH

N ⊗ FM

)
d+ ŵ, (35)

which shows that transmit and receive windows directly

change the frequency domain channel impulse response ma-

trix. In other words, the effective frequency domain channel

is VH̃fU.

When the LTV channel varies slowly such that it is approx-

imately invariant over each OFDM symbol, then the matrices

{H̃n} become circulant. Accordingly, H̃f is an MN ×MN

diagonal matrix that contains N diagonal channel frequency

response matrices, H̃f,n = FH
MH̃nFM . In this case, (35) is

equivalent to the 2D circular convolution of the transmit data

matrix with the effective 2D channel impulse response matrix.

V. OFDM-BASED OTFS: MIMO

Consider a nt ×nr MIMO setup that utilizes OFDM-based

OTFS modulation. Let us stack transmit data matrices of all

antennas to form an Mnt ×N matrix D as

D =




D0

D1

...

Dnt−1


 , (36)

where Dt is the M×N data matrix of t-th antenna. Applying

SFFT−1 to each sub-matrix Dt, we obtain

X = (Int
⊗ FM )DFH

N , (37)

where FM is repeated as Int
⊗FM to cover all data matrices

of all antennas. Using (6), (37) can be written as

x =
(
FH

N ⊗ Int
⊗ FM

)
d, (38)

where d is the vectorized version of D defined as follows.

d =




d0

d1

...

dN−1


 , dn =




d0
n

d1
n

...

dnt−1
n


 , dt

n =




dt0,n
dt1,n

...

dtM−1,n


 , (39)

and dtm,n; t = 0, 1, · · · , nt − 1 is the data symbol of t-th

transmit antenna.

After partitioning x to N blocks, xn, the window function is

multiplied to each block. Assuming that all transmit antennas

use the same window function, we get

x̆n = Unxn, (40)

where Un = Int
⊗Un. We stack these results to obtain

x̆ = Ux, (41)



d̂ =
(
FN ⊗ FH

M

)
︸ ︷︷ ︸

SFFT

window︷︸︸︷
V (IN ⊗ FM )︸ ︷︷ ︸

OFDM Demod.

Remove CP︷ ︸︸ ︷
(IN ⊗Rcp) H︸︷︷︸

Channel

Add CP︷ ︸︸ ︷
(IN ⊗Acp)

(
IN ⊗ FH

M

)
︸ ︷︷ ︸

OFDM Mod.

Window︷︸︸︷
U

(
FH

N ⊗ FM

)
︸ ︷︷ ︸

Inv. SFFT

d+ ŵ. (32)

where

U =




U0 0
¯
Mnt

· · · 0
¯
Mnt

0
¯
Mnt

U1 · · · 0
¯
Mnt

...
...

. . .
...

0
¯
Mnt

0
¯
Mnt

· · · UN−1


 . (42)

The OFDM modulator transforms the time-frequency do-

main signal of each antenna to the time domain signal as

sn =
(
Int

⊗ FH
M

)
x̆n, (43)

s =
(
INnt

⊗ FH
M

)
x̆. (44)

The transmitter appends the CP to the transmit signal and

sends the result through an LTV channel. At the receiver,

after removing the CP, the received signal can be written in a

compact form as

rn = (Inr
⊗Rcp)Hn (Int

⊗Acp) sn +wn

= Hnsn +wn, (45)

where Hn = (Inr
⊗Rcp)Hn (Int

⊗Acp) can be expanded

as

Hn =




H
0,0

n H
0,1

n · · · H
0,nt−1

n

H
1,0

n H
1,1

n · · · H
1,nt−1

n

...
...

. . .
...

H
nr−1,0

n H
nr−1,1

n · · · H
nr−1,nt−1

n



. (46)

Here, H
r,t

n is the n-th channel impulse response matrix be-

tween t-th transmit and r-th receive antenna.

We stack the output vectors to obtain

r = Hs+w, (47)

where

H =




H0 0
¯
Mnr×Mnt

· · · 0
¯
Mnr×Mnt

0
¯
Mnr×Mnt

H1 · · · 0
¯
Mnr×Mnt

...
...

. . .
...

0
¯
Mnr×Mnt

0
¯
Mnr×Mnt

· · · HN−1


 . (48)

The received signal is fed to an OFDM demodulator and

the output signal is

y̆ = (INnr
⊗ FM ) r, (49)

where y̆ is the length MNnr time-frequency signal vector.

Finally, after multiplying by the receiver window, the time-

frequency signal is mapped to the Doppler-delay domain and

the estimate of the transmitted vector can be obtained as

d̂ =
(
FN ⊗ Inr

⊗ FH
M

)
Vy̆, (50)

where

V =




V0 0
¯
Mnr

· · · 0
¯
Mnr

0
¯
Mnr

V1 · · · 0
¯
Mnr

...
...

. . .
...

0
¯
Mnr

0
¯
Mnr

· · · VN−1


 (51)

and Vn = Inr
⊗Ṽn. Using (38) to (50), it is straightforward to

find a similar end-to-end vectorized relationship for the general

MIMO OFDM-based OTFS setup to that of (32).

VI. CAPACITY ANALYSIS OF

MIMO OFDM-BASED OTFS

In this section, we examine the ergodic capacity of MIMO-

OFDM and MIMO-OFDM-based OTFS systems. While the

analysis here applies to general time-varying channels, it is

important to note that due to the use of cyclic prefix, the

transmission of an OTFS block of symbols consists of N

consecutive transmissions of OFDM blocks, each with a block

length M + Mcp in the time domain. Assuming that the

receiver knows the channel perfectly, one (larger) block of

OTFS transmission is equivalent to N parallel transmissions

of OFDM blocks. Furthermore, we assume that the channel is

independent from one OTFS block to the next and the channel

is ergodic. These form the underlining key assumptions of the

capacity analysis below.

Consider an arbitrary OTFS transmission block. Since there

is a one-to-one mapping between Doppler-delay domain data

symbols d and time-frequency data samples x, the mutual

information between the OTFS received signal vector r and

transmit data vector d, i.e. I(d; r), can be written as

I(d; r) = I(x0,x1, · · · ,xN−1; r0, r1, · · · , rN−1). (52)

Since the received signal rn only depends on xn, i.e. rn =
Hnxn +wn, where Hn represents all signal processing steps

that relates xn to rn including modulation and channel impact.

Then, (52) can be written as

I(d; r) =

N−1∑

n=0

I(xn; rn), (53)

due to the fact that each OTFS transmission is realized by

transmissions over a set of N parallel channels. Furthermore,

each parallel channel is an MIMO channel rn = Hnxn +wn

with known channel state information at the receiver. Since

the capacity-achieving input distribution for such a channel

is the zero-mean circularly symmetric complex Gaussian dis-

tribution CN (0, IM ), [6], we conclude that such distribution

is indeed capacity-achieving for the proposed MIMO-OFDM

based OTFS system and the resulting ergodic capacity equals



to the average sum capacities of individual parallel channels,

which equals with the ergodic capacity of the OFDM system

considered here [6].

In the following, for an OFDM-based OTFS setup we

calculate I(d; r) and show that (53) holds for OFDM-based

OTFS modulation and we proceed to calculate the capacity

of OFDM-based OTFS setup. We recall that the differential

entropy of an n-element complex Gaussian vector q with

covariance matrix Cq is [7]

h(q) = log2 ((2πe)
n|Cq|) (54)

where | · | is the determinant operator. Moreover, the mutual

information between two complex Gaussian vectors q and r

is the difference between the differential entropies h(q) and

h(q|r). This is written as

I(q; r) = h(q)− h(q|r)

= log2
|Cq|
|Cq|r|

. (55)

Substituting (40) and (43) in (45), the received signal of the

n-th OFDM transmission can be obtained as

rn = Hn

(
Int

⊗ FH
M

)
Unxn +wn. (56)

Then, the mutual information between the OFDM received

signal vector rn and the transmit data vector xn is

I(rn;xn) = log2

( |KnIMnt
KH

n + σ2IMnr
|

|σ2IMnr
|

)
(57)

where Kn = Hn

(
Int

⊗ FH
M

)
Un.

Similarly, the received signal of OFDM-based OTFS can be

obtained by substituting (38) and (41) in (47) as

r = H
(
INnt

⊗ FH
M

)
U

(
FH

N ⊗ Int
⊗ FM

)
d+w. (58)

The mutual information between the OFDM-based OTFS

received signal vector r and the transmit data vector d is given

as

I(r;d) = log2

( |KIMNnt
KH + σ2IMNnr

|
|σ2IMNnr

|

)
(59)

where K = H
(
INnt

⊗ FH
M

)
U

(
FH

N ⊗ Int
⊗ FM

)
.

Note that FH
N ⊗ Int

⊗ FM is a unitary matrix and

H
(
INnt

⊗ FH
M

)
U is a block diagonal matrix, thus we have

KKH =




K0K
H
0 · · · 0

¯
Mnr

0
¯
Mnr

K1K
H
1 · · · 0

¯
Mnr

...
...

. . .
...

0
¯
Mnr

0
¯
Mnr

· · · KN−1K
H
N−1


 . (60)

Substituting (60) in (59), we have

I(r;d) =

N−1∑

n=0

log2

( |KnK
H
n + σ2IMnr

|
|σ2IMnr

|

)

=

N−1∑

n=0

I(rn;xn). (61)

Hence, the ergodic capacity can be obtained as

COTFS=COFDM =
1

M +Mcp

E

[
log2

( |KnK
H
n + σ2IMnr

|
|σ2IMnr

|

)]
.

(62)

While in the above analysis we reached the conclusion that

OTFS has the same ergodic capacity as OFDM, it is impor-

tant to note that such analysis assumes perfect knowledge

of the (time-varying) channel, an optimal detector, and an

infinite code length. In a practical receiver design, however,

the sparsity and lower variability of the OTFS channel in

the Doppler- delay domain yield great benefits over OFDM,

especially for higher Doppler channels. In such scenarios,

an OFDM receiver needs to track rapid channel variations

in the time-domain. Here, because of the channel variation

over each OFDM symbol, keeping track of such variations

turns out to be a difficult task. In OTFS, on the other hand,

channel variation in time averages out and translates to a much

slower variation in the Doppler-delay domain. In addition, it

results in a sparse channel which will be easier to estimate.

These benefits of OTFS, clearly, enable a simpler channel

estimation and equalization design and hence reduce overhead

and complexity of the receiver.

VII. CONCLUSION

In this work, we conducted a discrete-time analysis for

MIMO OFDM-based OTFS modulation. Such analysis led to a

concise, vectorized input-output relationship that is applicable

to general time-varying channels with arbitrary Dopplers and

windowing functions. We provided an accurate characteriza-

tion of the ergodic capacity which shows that both OFDM

and OTFS achieve the same ergodic capacity despite great

benefits of the latter in practical receiver design. The analysis

developed here provides a strong theoretical foundation for the

design of practical detectors/equalizers for OTFS systems.
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