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QUADRATIC PRINCIPAL INDECOMPOSABLE MODULES AND

STRONGLY REAL ELEMENTS OF FINITE GROUPS

ROD GOW AND JOHN C. MURRAY

Abstract. Let P be a principal indecomposable module of a finite group G in charac-
teristic 2 and let ϕ be the Brauer character of the corresponding simple G-module. We
show that P affords a non-degenerate G-invariant quadratic form if and only if there are
involutions s, t ∈ G such that st has odd order and ϕ(st)/2 is not an algebraic integer.

We then show that the number of isomorphism classes of quadratic principal inde-
composable G-modules is equal to the number of strongly real conjugacy classes of odd
order elements of G.

1. Introduction

Let G be a finite group and let p be a prime. Let A be the ring of algebraic integers
in C and let M be a maximal ideal of A containing p. Set R as the localisation of A
at M. So R is a complete discrete valuation ring with unique maximal ideal J = RM,
F := Frac(R) is the field of algebraic numbers and k := R/J is the algebraic closure of
GF(p). Then (F,R, k) is a so-called p-modular system for G. Note that F and k are
splitting fields for all subgroups of G. We say that an RG-module has quadratic type if
it affords a nondegenerate G-invariant quadratic form.

Let P be a principal indecomposable RG-module. The principal indecomposable char-
acter of P is the ordinary character of the FG-module P ⊗R F . Now P has a unique
maximal submodule Soc(P ) containing J(R)G. The irreducible Brauer character corre-
sponding to P is the Brauer character of the kG-module P/ Soc(P ).

Recall that g ∈ G is p-regular if its order is prime to p and p-singular if its order is
divisible by p. Also an element of G is real if it is conjugate to its inverse, strongly real
if it is inverted by an involution and weakly real if it is real but not strongly real. In
particular the elements which square to the identity are strongly real.

Our main result is to give an efficient way of determining in characteristic 2 if a self-dual
principal indecomposable module has quadratic type:

Theorem 1. Let p = 2 and let P be a self-dual principal indecomposable RG-module with
principal indecomposable character Φ and corresponding irreducible Brauer character ϕ.
Then the following are equivalent:

(i) P has quadratic type.
(ii) ϕ(g) 6∈ 2R, for some strongly real 2-regular g ∈ G.
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(iii) Φ(g)
|CG(g)|

∈ 2R, for all weakly real 2-regular g ∈ G.

As a consequence, we obtain:

Corollary 2. If p = 2 then the number of quadratic type principal indecomposable RG-
modules equals the number of strongly real 2-regular conjugacy classes of G.

Equivalently the number of non-quadratic type self-dual principal indecomposable RG-
modules equals the number of weakly real 2-regular conjugacy classes of G.

For p odd, each principal indecomposable RG-module affords a non-degenerate G-
invariant quadratic form or symplectic bilinear form. We do not know how to determine
the number of each using the p-regular conjugacy classes of G.

2. The type of principal indecomposable modules

Prior work has classified the type of principal indecomposable kG-modules using char-
acter theory or ring theory, as we outline in this section. Let (F,R, k) be as in the
introduction. Then the group of units U(R) of R consists of all p′-roots of unity in C. So
the projection R → k induces an isomorphism U(R) ∼= k× of multiplicative groups (which
of course depends on the choice M of maximal ideal).

LetM be an RG-module (kG-module) which is finitely generated and free as R-module.
We say thatM has quadratic or symplectic type ifM affords a non-degenerate G-invariant
R-valued (k-valued) quadratic form or symplectic bilinear form, respectively. It is known
that when p 6= 2 each indecomposable kG-module is either of quadratic type or of sym-
plectic type. When p = 2, each quadratic type kG-module is of symplectic type, but not
conversely.

The ring multiplication in RG makes it into a module over itself, called the regular RG-
module. The direct summands of this module are called principal indecomposable RG-
modules. We say that a principal indecomposable RG-module P is trivial if P/Rad(P ) is
the trivial kG-module. As was shown by R. Brauer, the number of principal indecompos-
able RG-modules equals the number of p-regular (elements of order prime to p) conjugacy
classes of G and the number of self-dual principal indecomposable RG-modules equals the
number of real p-regular conjugacy classes of G.

Each self-dual irreducible FG-module is orthogonal or symplectic as it affords a non-
degenerate G-invariant F -valued symmetric bilinear form or symplectic bilinear form,
respectively. We say that the corresponding irreducible character of G has orthogonal
or symplectic type, respectively. The type can be detected by computing the Frobenius-
Schur (F-S) indicator of the character; symmetric type irreducible characters have F-S
indicator +1 and symplectic type irreducible characters have F-S indicator −1.

Suppose that P is a self-dual principal indecomposable RG-module and let Φ be the
principal indecomposable character of P . Then Φ is real-valued. Suppose first that p is
odd. Then by [Wi76] and [Th84] some real-valued irreducible character of G occurs with
odd multiplicity in Φ. Moreover P has quadratic or symplectic type, as this character has
orthogonal or symplectic type, respectively.
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Suppose then that p = 2. Then by [GW93], some orthogonal irreducible character
of G occurs with odd multiplicity in Φ. As a consequence, P may have quadratic type
but it cannot have symplectic type. If some symplectic irreducible character of G occurs
with odd multiplicity in Φ, then P cannot have quadratic type. However P may be of
non-quadratic type without the occurrence of such a character.

Reduction mod J induces a bijection between the principal indecomposable RG-modules
and the principal indecomposable kG-modules. Under this bijection a principal indecom-
posable RG-module has quadratic type if and only if the corresponding principal inde-
composable kG-module has quadratic type. So for convenience we can and do work with
principal indecomposable kG-modules.

Write 1G = e1+ · · ·+ em where the ei are pairwise orthogonal primitive idempotents in
kG (i.e. eiej = δijei, for 1 ≤ i, j ≤ m and m ≥ 1 is as large as possible). Then each kGei
is a principal indecomposable kG-module, and all principal indecomposable kG-modules
have this form. Now the map g → g−1, for g ∈ G, extends to an involutary k-algebra anti-
automorphism o of kG, called the contragredient map. Each eoi is a primitive idempotent
in kG and kGeoi is isomorphic to the dual module (kGei)

∗ := Hom(kGei, k) of kGei.
We must distinguish between p odd and p = 2:

Lemma 3 (Landrock-Manz). Let p be an odd prime and let e be a primitive idempotent
in kG. Then kGe has quadratic type if and only if there is a primitive idempotent f ∈ kG,
with kGf = kGe, such that f = f o.

In contrast, if p = 2, Gow and Willems showed that there is a primitive idempotent
f ∈ kG, with kGf = kGe, such that f = f o if and only if kGe is the projective cover of
the trivial kG-module. Moreover, they proved the following analogue of Lemma 3:

Lemma 4 (Gow-Willems). Let p = 2 and let e be a primitive idempotent in kG. Then kGe
has quadratic type if and only if there is an involution t ∈ G and a primitive idempotent
f ∈ kG, with kGf = kGe, such that t−1ft = f o.

Outline Proof. We may assume that kGe is not the projective cover of the trivial kG-
module. Then it is known that each G-invariant symmetric bilinear form on kGe is
symplectic and is the polarization of a G-invariant quadratic form on kGe (see [GW93,
Proposition 2.2]).

Let B1 be the symmetric bilinear form on kG with respect to which the elements of
G form an orthonormal basis of kG. Then B1 is non-degenerate and G-invariant. Its
adjoint is the contragredient map. Next recall that EndkG(kG) can be identified with the
opposite ring kGop. Here x ∈ kGop defines the kG-homomorphism y → yx, for all y ∈ kG.
So if we define Bx(y, z) := B1(yx, z), for all y, z ∈ kG, then Bx is a G-invariant bilinear
form on kG and {Bx | x ∈ kG} give all G-invariant bilinear forms on kG. Moreover, Bx

is non-degenerate, symmetric or symplectic as x is a unit in kG, x = xo or x = xo and
x1 = 0, respectively.

Next (kGe)∗ ∼= kGeo. So the space ofG-invariant bilinear forms on kGe can be identified
with ekGeo. As a consequence, each G-invariant bilinear form on kGe is the restriction
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from kG to kGe of a G-invariant bilinear form Bexeo , for some unique exeo ∈ ekGeo.
Now suppose that Bexeo is a non-degenerate symplectic bilinear form on kGe. Write
exeo =

∑

g∈G xgg. Then x1 = 0k and xg = xg−1 , for all g ∈ G. As kGe is indecomposable,
Bxg(g+g−1) is degenerate on kGe. So there is an involution t ∈ G such that Bxtt restricts
to a non-degenerate (symplectic) bilinear form on kGe. Thus xt 6= 0k and Bt restricts to
a non-degenerate bilinear form on kGe. Let f ∈ kGop be the projection onto kGe, with
kernel the complement of kGe with respect to Bt. Now Bt has adjoint x 7→ txot on kGop.
So f is a primitive idempotent in kG with kGe = kGf such that tf ot = f .

Conversely, given an involution t ∈ G and an idempotent f ∈ kG as in the statement,
it is easy to see that Bt restricts to a non-degenerate symplectic bilinear form on kGe. �

If kGe has quadratic type and t is as in the conclusion of the Lemma, we say that t
inverts e or kGe, or the projective indecomposable character of kGe.

Fong’s Lemma states that when char(k) = 2 every non-trivial self-dual irreducible kG-
module affords a non-degenerate G-invariant symplectic form. It is clear that this form
is unique up to a non-zero scalar. In [M16, Proposition 5.8] the second author showed:

Lemma 5. Suppose that p = 2 and that M is a non-trivial self-dual irreducible kG-
module, with Fong form B. Then the projective cover of M has quadratic type if and only
if B(tm,m) 6= 0 for some m ∈ M and involution t ∈ G.

Outline Proof. The annihilator of M in kG is a maximal 2-sided ideal Ann(M) of kG with
kG/Ann(M) ∼= Endk(M). Suppose first that the principal indecomposable module of M
is orthogonal. Then by Lemma 4 there is an involution t ∈ G and a primitive idempotent
f ∈ kG, such that kGf/Rad(kGf) ∼= M and t−1ft = f o. Set xot := txot, for all x ∈ kG.
Then ot is an involutary k-algebra anti-automorphism of kG. Now Ann(M) is invariant
under ot. So ot induces an involutary k-algebra anti-automorphism on Endk(M). It is
readily established that got = g−t, for all g ∈ G in Endk(M).

Next define Bt(x, y) := B(tx, y), for all x, y ∈ Endk(M). Then Bt is a non-degenerate
CG(t)-invariant symmetric bilinear form on M . Its adjoint coincides with ot on Endk(M),
as by irreducibility of M , the image of G spans Endk(M). Now f+Ann(M) is a primitive
idempotent in Endk(M) which is ot-invariant. It follows that Bt is non-degenerate on the
1-dimensional subspace fM of M i.e. there is m ∈ fM such that B(tm,m) 6= 0k.

Conversely, suppose that B(tm,m) 6= 0 for some involution t ∈ G and some m ∈ M .

Let f̂ be orthogonal projection onto km with respect to the non-degenerate symmetric
form Bt on M . By idempotent lifting (c.f. [LM, Proposition 1.4]) there is a primitive

idempotent f ∈ kG such that f ot = f and f +Ann(M) = f̂ . Now kGf/Rad(kGf) ∼= M .
So kGf is orthogonal, according to Lemma 4. �

3. Type of principal indecomposable modules of R-elementary subgroups

Recall that a group is elementary if it has the form C × P , where P is a p-group, for
some prime p and C is a cyclic p′-group. Brauer’s induction theorem states that every
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C-character of G is an integer combination of characters induced from linear characters
of elementary subgroups of G. For the rest of this section p = 2.

Now an R-elementary group has the form C ⋊ P , where C is cyclic of odd order and
P is a 2-group such that every element of P centralizes or inverts C. The real version of
Brauer’s induction theorem (which is a special case of the Witt-Berman theorem) is that
every R-character of G is an integer combination of characters induced from R-characters
of R-elementary subgroups of G. In this section we determine the type of the principal
indecomposable modules of R-elementary groups.

As usual the centralizer CG(g) or extended centralizer C∗
G(g) of g ∈ G is the normalizer

of {g} or {g, g−1} in G, respectively. Then CG(g) ⊆ C∗
G(g) and |C∗

G(g) : CG(g)| ≤ 2.
Moreover g is strongly real if g = g−1 or C∗

G(g)\CG(g) contains an involution and weakly
real if C∗

G(g) does not split over CG(g).
Our main result here is a special case of a result on the principal indecomposable

modules of solvable groups which is due to G. Navarro and the second author [MN16,
Theorem 15]:

Proposition 6. Let g ∈ G and let E ∈ Syl2(C
∗
G(g)). Then a non-trivial principal inde-

composable R(〈g〉⋊ E)-module has quadratic type if and only if g is strongly real.

Proof. We may assume that g is real in G. Set C := 〈g〉 and H := C⋊E. Let P be a non-
trivial principal indecomposable RH-module, and let Φ be the principal indecomposable
character of P . Then P ∼= M↑H , for some non-trivial 1-dimensional kC-module M .

Suppose first that g is strongly real. Let t be an involution in E which inverts g. Then
M↑〈g,t〉 is a self-dual irreducible k(〈g, t〉)-module. Fong’s Lemma implies that M↑〈g,t〉

affords a symplectic geometry. Then the induced module P ∼= (M↑〈g,t〉)↑H affords the
induced form. So P has symplectic, hence quadratic type.

Conversely suppose that P has quadratic type. SetD = CE(g) and M̂ := (InfC×D
C×D/D M)↑H .

Then M̂ is a self-dual irreducible kH-module which is isomorphic to P/Rad(P ). Let B

be a Fong form on M̂ . According to Lemma 5, B(tm,m) 6= 0k, for some involution t ∈ H

and some m ∈ M̂ . Now M̂↓C×D = M1⊕M2, where M1 is an irreducible k(C×D)-module
and M2

∼= M∗
1 6∼= M1. Write m = m1 +m2, where m1 ∈ M1 and m2 ∈ M2. Then

B(tm,m) = B(tm1, m1) +B(tm1, m2) +B(tm2, m1) +B(tm2, m2)

= B(tm1, m1) +B(tm2, m2), as B(tm1, m2) = B(tm2, m1).

So we may assume without loss of generality that B(tm1, m1) 6= 0k. As M1 6∼= M∗
1 , B is

identically zero on M1. So tm1 6∈ M1, which forces t ∈ H\(C ×D). Then gt = g−1. So g
is strongly real. �

4. Values of principal indecomposable and Brauer characters

In this section p = 2. We use Proposition 6 to clarify the relationship between the
strongly and weakly real 2-regular conjugacy classes of G and the quadratic and non-
quadratic self-dual principal indecomposable RG-modules.
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Each kG-module M has a Brauer character ϕM ; if g ∈ G has odd order then M has a
basis of eigenvectors of g. Each eigenvalue of g on M is a 2′-roots of unity in k. So they
can be lifted to 2′-roots of unity in R, via the isomorphism U(R) ∼= k×. Then ϕM(g) is
defined to be the sum of these roots of unity. In particular ϕM is an A-valued function
defined on the 2-regular elements of G. As is standard, we use IBr(G) to denote the
Brauer characters of the irreducible kG-modules.

The restriction χ∗ of an ordinary character χ of G to the p-regular elements of G is
a Brauer character. So χ∗ =

∑

ϕ∈IBr(G) dχϕϕ, where the dχϕ are non-negative integers,

called decomposition numbers. For ϕ ∈ IBr(G) set Φϕ :=
∑

χ∈Irr(G) dχϕχ. Then Φϕ is the
principal indecomposable character of G corresponding to ϕ. It is easy to see that Φϕ

vanishes on all p-singular elements of G.
Recall that a vertex of an indecomposable kG-module M is a subgroup V of G which

is minimal subject to M being a direct summand of a module induced from V to G.
J. A. Green showed that V is a p-subgroup of G, and moreover V is uniquely determined
up to G-conjugacy. The next result and its corollary are due to Green.

Lemma 7. Let M be an indecomposable kG-module, let g ∈ G be p-regular and let

D ∈ Sylp(CG(g)). Then M has a vertex V such that ϕM (g)
|D:V ∩D|

is an algebraic integer.

In particular if ϕM(g) 6∈ 2A then D is contained in some vertex of M .

Corollary 8. Let Φ be a principal indecomposable character of G and let g ∈ G. Then
Φ(g)

|CG(g)|p
is an algebraic integer.

Proof. As Φ is zero on p-singular elements, we may assume that g is p-regular. Now Φ∗

is the Brauer character of a principal indecomposable kG-module and the trivial group is
a vertex of this module. So |CG(g)|p divides Φ(g) in A. �

Let Φ1 be the trivial principal indecomposable character of G i.e. Φ1 corresponds to

the trivial 2-Brauer character ϕ1 of G. In [GW93] Gow and Willems proved that Φ1(1)
|G|2

is

odd. We complement this result with:

Theorem 9. If g ∈ G is real and non-trivial then Φ1(g)
|CG(g)|2

is twice an algebraic integer.

Proof. By the second orthogonality relation 0 =
∑

χ∈Irr(G)

χ(1)χ(g) =
∑

ϕ∈IBr(G)

ϕ(1)Φϕ(g). So

Φ1(g)

|CG(g)|2
= −

∑

ϕ∈IBr(G)
ϕ6=ϕ1

ϕ(1)
Φϕ(g)

|CG(g)|2
.

For ϕ 6= ϕ we get two equal summands. So their sum cancels mod 2. If ϕ = ϕ and ϕ 6= ϕ1,
Fong’s Lemma implies that ϕ(1) is even. The conclusion follows from these facts. �

Lemma 10. Let g be a weakly real element of G and let Φ be a quadratic type principal

indecomposable character of G. Then Φ(g)
|CG(g)|2

∈ 2A.
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Proof. We may assume that g is 2-regular. Suppose for the sake of contradiction that
Φ(g)

|CG(g)|2
6∈ 2A. Let E ∈ Syl2(C

∗
G(g)) and set H := 〈g〉⋊E. Write Φ↓H =

∑

αΛΛ, where Λ

ranges over the principal indecomposable characters of H . Lemma 9 implies that there is

a non-trivial principal indecomposable character Λ such that αΛ is odd and Λ(g)
|CE(g)|

6∈ 2A.

Let P be the projective indecomposable kG-module corresponding to Φ and let Q be the
principal indecomposable kH-module corresponding to Λ. Then Q is a self-dual module
which occurs with odd multiplicity αΛ as a direct summand of P↓H . As P is orthogonal,
so too is Q. So g is strongly real, according to Proposition 6. This contradiction completes
the proof. �

We can refine this result, using the techniques developed in [M16]:

Lemma 11. Let g be a real element of G and let Φ be a quadratic principal indecomposable

character of G such that Φ(g)
|CG(g)|2

6∈ 2A. Suppose that t ∈ G is an involution which inverts

Φ (c.f. the comment after Lemma 4). Then some conjugate of t inverts g.

Sketch Proof. By Lemma 4 there is a primitive idempotent f in kG such that kGf is
the principal indecomposable kG-module corresponding to Φ and Bt restricts to a non-
degenerate symplectic form on kGf . Let H = 〈g〉⋊ E and Q be as in Lemma 10; so Q
is a projective indecomposable kH-module which occurs with odd multiplicity in kGf↓H.
Then Q is a non-degenerate component of the symplectic module (kGf,Bt)↓H . Now
(kG,Bt) = (k〈t〉, Bt)↑

G. So Q is a non-degenerate component of

(1) (k〈t〉, Bt)↑
G↓H = ⊥

〈t〉aH⊆G
(k〈ta〉, Bta)↓〈ta〉∩H↑

H .

Let a ∈ G. First suppose that 〈ta〉 ⊆ H . Then the right hand side has a summand

(2) (k〈ta〉, Bta)↑
H∼=(kH,Bta).

The other possibility is that ta 6∈ H . Then 〈ta〉 ∩H = 1 and (k〈ta〉, Bta)↓1 ∼= (k2, B̂1) is
a symplectic plane. Let 1 = e1 + · · ·+ eu be a decomposition of 1 as a sum of pairwise
orthogonal primitive idempotents in kH . For each i, the bilinear form B1 on kG defines
a perfect G-pairing kGei × kGeoi → k. We set (kGei ⊕ kGeoi , B̂1) as the correspond-
ing symplectic paired module. It is important to note that this module has no proper
non-degenerate component. Then the summand on the right hand side of (1) has the
orthogonal decomposition

(3) (k2, B̂1)↑
H =

u

⊥
i=1

(kHei ⊕ kHeoi , B̂1).

Now Q is an indecomposable non-degenerate submodule of an orthogonal sum of modules
of the form (2) and (3). As the modules in (3) have no such submodules, we deduce that
there is a ∈ G such that s := ta ∈ H and Q is a non-degenerate submodule of (kH,Bs).
Equivalently there is a primitive idempotent e ∈ kHop such that kHe ∼= Q and eos = e.
Now k(C × D)e is a projective indecomposable k(C ×D)-module which is not self-dual
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(as it is not the projective cover of the trivial k(C × D)-module). So s 6∈ (C × D). We
conclude that gs = g−1. �

Complementing Lemma 10, we have:

Lemma 12. Let g be a strongly real 2-regular element of G and let P be a non-quadratic
self-dual principal indecomposableRG-module with associated ϕ ∈ IBr(G). Then ϕ(g) ∈ 2A.

Proof. We note that ϕ(1) is even by Fong’s Lemma. So we may assume that g 6= 1. As
before let E ∈ Syl2(C

∗
G(g)) and set H := 〈g〉⋊ E.

Suppose for the sake of contradiction that ϕ(g) 6∈ 2A. Write ϕ↓H =
∑

βλλ, where λ
ranges over the irreducible Brauer characters of H . So by hypothesis there is λ ∈ IBr(H)
such that βλ is odd and λ(g) 6∈ 2A.

LetQ be the projective indecomposable kH-module corresponding to λ. As g is strongly
real, it follows from Proposition 6 thatQ has quadratic type. Now by Frobenius-Nakayama
reciprocity P occurs with odd multiplicity βλ in Q↑G. As P ∼= P ∗, we conclude that P
has quadratic type. This contradiction completes the proof. �

Let M be the irreducible kG-module whose Brauer character is ϕ. In [M16] the second
author assigned a symplectic vertex T to M ; T is a minimal subgroup of G such that M
is an orthogonal direct summand of a symplectic kT -module induced up to G. Just as
with Green vertices, T is uniquely determined up to G-conjugacy. In view of Lemma 11
we hazard the following, which would complement Lemma 11 and strengthen Lemma 12:

Conjecture 13. Let M be the irreducible kG-module, let ϕ be the Brauer character of M
and let g be a real 2-regular element of G such that ϕ(g) 6∈ 2A. Then M has an extended
defect group which contains an extended defect group of g but which is not contained in
CG(g).

5. Type of principal indecomposable RG-modules

Recall that R is the localisation of the ring of algebraic integers at a maximal ideal
containing 2. In particular R has a unique maximal ideal J . Suppose that G has ℓ 2-
regular conjugacy classes, r real 2-regular conjugacy classes and s strongly real 2-regular
conjugacy classes. So G has ℓ irreducible 2-Brauer characters and r real irreducible 2-
Brauer characters. Suppose also that G has σ quadratic type principal indecomposable
RG-modules.

List the irreducible 2-Brauer characters of G as ϕ1, . . . , ϕℓ and let g1, . . . , gℓ be a set of
representatives for the 2-regular conjugacy classes of G. Set Φk as the principal indecom-
posable character of G corresponding to ϕk, for k = 1, . . . , ℓ.

The second orthogonality relation (see Theorem 9) give equations in R:

ℓ
∑

k=1

Φk(g
−1
i )

|CG(gi)|
ϕk(gj) = δij , for 1 ≤ i, j ≤ ℓ.
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Suppose that gi and gj are real in G. Then
Φk(g

−1
i )

|CG(gi)|
ϕk(gj) =

Φk(g
−1
i )

|CG(gi)|
ϕk(gj). So the contri-

bution of the non-real ϕk to the above displayed sum is zero, modulo J .
We may choose our notation so that ϕ1, . . . , ϕr are the real irreducible 2-Brauer char-

acters of G and g1, . . . , gr are in the real 2-regular conjugacy classes of G. Define the
r × r-matrices:

A =

[

Φj(g
−1
i )

|CG(gi)|

]

, B = [ϕi(gj)] .

They involve only the real principal indecomposable characters, the real irreducible Brauer
characters and the real 2-regular elements of G. By the work above AB ≡ I (mod J).

We further refine our notation so that ϕ1, . . . , ϕσ are the Brauer characters of the
quadratic principal indecomposable RG-modules and g1, . . . , gs are in the strongly real
2-regular conjugacy classes of G. Thus ϕσ+1, . . . , ϕr are the Brauer characters of the non-
quadratic principal indecomposable RG-modules and gs+1, . . . , gr are in the weakly real
2-regular conjugacy classes of G. The matrices A and B have corresponding block forms:

A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

.

So A11 is the s × σ submatrix of A with rows and columns indexed by the strongly
real classes and quadratic type principal indecomposable characters. Likewise B11 is the
σ × s submatrix of B with rows and columns indexed by Brauer characters of quadratic
principal indecomposable RG-modules and strongly real classes, respectively.

Now each term in A21 has the form
Φk(g

−1
i )

|CG(gi)|
where gi is weakly real and Φk has quadratic

type. Likewise each term in B21 has the form ϕk(gj) where ϕk is the Brauer character of a
non-quadratic principal indecomposable RG-module and gj is strongly real. So according
to Lemmas 10 and 12, all these terms belong to J . Thus

A21 ≡ 0 (mod J) and B21 ≡ 0 (mod J).

It follows from this that A11B11 ≡ I (mod J) and A22B22 ≡ I (mod J). In particular
A11 and A22 have full row rank (mod J). So s ≤ σ and r − s ≤ r − σ. We conclude that
s = σ. This proves our main theorem, which we restate here for the convenience of the
reader:

Theorem 14. The number of strongly real 2-regular conjugacy classes of G equals the
number of quadratic type principal indecomposable RG-modules and the number of weakly
real 2-regular conjugacy classes of G equals the number of non-quadratic type self-dual
principal indecomposable RG-modules.

The analysis above translates into the following criteria for strong and weak reality,
which proves Theorem 1:

Proposition 15. Let p = 2 and let P be a self-dual principal indecomposable RG-module
with principal indecomposable character Φ and corresponding irreducible Brauer character
ϕ. Then:
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(i) P has quadratic type if and only if ϕ(g) 6∈ 2R, for some strongly real 2-regular
g ∈ G.

(ii) P has non-quadratic type if and only if Φ(g)
|CG(g)|

6∈ 2R, for some weakly real g ∈ G.

6. Strong and weak projective indecomposable modules

In this section we give examples of strong and weak principal indecomposable charac-
ters, many of which involve quasisimple finite groups. In addition to [Atlas], we use the
notation and decomposition matrices provided by the Modular Atlas homepage [MOC].

Let g ∈ G be 2-regular. If g is strongly real, tgt = g−1, for some involution t ∈ G. Then
s := gt is an involution which is conjugate to t in the dihedral group 〈g, t〉 and g = st.
Conversely, if g = uv where u, v ∈ G are involutions, then v inverts g and so g is strongly
real. So by the class multiplication formula, g is strongly real if and only if

∑

χ∈Irr(G)

χ(t)2χ(g)

χ(1)
6= 0,

for some involution t ∈ G. We note that the character table of G determines the prime
divisors of the orders of the elements of G. In particular the character table determines
the 2-regular conjugacy classes of G. However the character table of a group does not
generally determine which conjugacy classes of 2-elements are involutions e.g. D8 and Q8

have the ‘same’ character tables.

Example 16. G = 2.A5. All three non-trivial 2-regular classes of G are weakly real, for
example because G has a unique involution. So all three non-trivial 2-principal indecom-
posable characters Φ2,Φ3 and Φ4 of 2.A5 are of non-quadratic type. This also follows from
the fact that Φ2 contains the symplectic irreducible characters χ6 and χ9 with odd multi-
plicity 1, Φ3 contains the symplectic irreducible characters χ7 and χ9 with odd multiplicity
1 and Φ4 contains the symplectic irreducible character χ8 with odd multiplicity 1.

Example 17. G = Sp(4, 5), or 2. S4(5) in [Atlas] notation. Then G has 60 irreducible
C-characters, 26 of which are faithful. All non-faithful characters are orthogonal and all
faithful characters are symplectic. Now G has fifteen 2-regular classes, all of whom are
real. By examination of the 2-decomposition matrix, each of the 2-principal indecompos-
able characters Φi, for i ∈ {2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14} contain at least one symplectic
irreducible constituent with odd multiplicity. So these twelve principal indecomposable
characters are non-quadratic. By computing the square of the involution class 2B, we see
that 1A, 3A and 5D are the strongly real 2-regular classes of G. Now ϕ5 = χ∗

6 − χ∗
1 and

χ6(5D) = 0. So ϕ5(5D) = −1 is odd. Similarly ϕ7 = χ∗
11 and χ11(3A) = 5 is odd. So

Φ1,Φ5 and Φ7 are the quadratic principal indecomposable characters of G.

Example 18. G = McL has 24 irreducible C-characters, of whom two, χ11 and χ13, are
symplectic and 10 are orthogonal. Also G has 11 2-regular conjugacy classes, 5 of whom
are real. Examination of the square of the involution class 2A shows that 1A, 3B and 5B
are the strongly real 2-regular classes of G. So the real 2-regular classes 3A and 5A are
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weakly real. Now ϕ3 = χ∗
3 and χ3(5B) = 1 is odd. Also ϕ11 is the unique real irreducible

Brauer character which occurs with odd multiplicity in χ∗
15 and χ15(3B) = 9 is odd. So

Φ1,Φ3 and Φ11 are the quadratic indecomposable characters of G.
Next ϕ2 and ϕ10 are the remaining real irreducible Brauer characters of G. The sym-

plectic character χ11 occurs with odd multiplicity 1 in Φ10. This confirms that Φ10 is
a non-quadratic principal indecomposable character. There is a unique symplectic irre-
ducible constituent of Φ2, namely χ13, and this occurs with even multiplicity 2. So we
cannot use its presence to verify that Φ2 is not quadratic. On the other hand φ2 = χ∗

2 and
the values χ2(1) = 22, χ2(3B) = 4 and χ2(5B) = 2 on the strongly real 2-regular classes
are all even. This confirms that Φ2 is not quadratic.

Example 19. G = 2.Ru has 61 irreducible C-characters, 25 of which are faithful. Of
the faithful characters, 7 are symplectic and the remaining 18 are non-real. Of the 36
characters of Ru, two are non-real and the remaining 34 are orthogonal. Also G has 9
classes of elements of odd order, all of whom are real. By examining the square of the
two classes of non-central involutions, we see that the weakly real 2-regular classes are
15A, 29A and 29B.

Now the symplectic character χ53 has odd multiplicity 1 in Φ4. So Φ4 is not quadratic.
Alternatively, ϕ4 is the unique Brauer character which occurs with odd multiplicity in χ∗

53

and χ53(15A) = 1. Next ϕ6 = χ∗
49 and χ49(15A) = −1 is odd. Similarly ϕ7 = χ∗

50 and
χ50(15A) = −1. This confirms that Φ6 and Φ7 are not quadratic.

We take the opportunity to correct Example 2.12 in [GW93]. This erroneously claims
that a certain principal indecomposable module of a group of order 288 is weakly real. In
fact the assertion, on the first line of p268, that a certain form c is B-invariant, is false.

Example 20. Let H be the non-abelian group C3⋊C4 of order 12. Let σ be the switching
automorphism of H × H: (x, y)σ = (y, x), for all x, y ∈ H. Set G = (H × H)〈σ〉.
Now G is a 2-nilpotent group with normal Hall 2′-subgroup N ∼= C3 × C3. Let ω be one
of the two non-trivial linear characters of C3. Then G has three orbits on Irr(N), with
representatives 1× 1, 1× ω and ω × ω, respectively. Set Φ1 = (1× 1)↑G, Φ2 = (1× ω)↑G

and Φ3 = (ω × ω)↑G. Let Φi belong to the 2-block Bi of G. Then B1, B2 and B3 are
distinct, real and nilpotent.

The principal 2-block B1 consists of the 8 linear characters and 6 irreducible characters
of degree 2 in Irr(G/N). Then Φ1 is strongly real, as it is the trivial principal indecom-
posable character of G.

The block B2 consists of the 8 irreducible characters in Irr(G | 1×ω), each of which has
degree 4. Four of these are orthogonal and four are symplectic. Now 1× ω has stabilizer
H × C6 and extended stablizer H × H in G. As H × H does not split over H × C6, it
follows that B2 is a weakly real 2-block of G. So Φ2 is weakly real.

Finally B3 consists of the 5 irreducible characters in Irr(G | ω × ω). Four of these
are orthogonal and of degree 4. The remaining character is symplectic and of degree 8.
Now the stabilizer of ω × ω in G is C6 ≀ C2. As (b−1, b)σ is an involution in G which
inverts ω × ω, the extended stablizer of ω × ω splits over its stabilizer. As a consequence
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Irr(G | ω × ω) is a strongly real 2-block of G. So Φ3 is strongly real. This means that the
corresponding principal indecomposable kG module has a quadratic geometry, contrary to
the conclusion of [GW93, 2.12].

We note that the involution module of B3 can be constructed as follows. We have Irr(H |
ω) = {χ1, χ−1}, where χǫ has degree 2 and F-S indicator ǫ. Clearly CG(σ) = ∆H × 〈σ〉
in G. So CCG(σ) ↑G is isomorphic to CH, as a module for CH ≀ C2. In particular the
involution module of B3 has ordinary character χ̂1 + χ̂−1, where χ̂ǫ is an extension of
χǫ × χǫ from H × H to G. It is easy to check that both of these characters has F-S
indicator +1.

In view of the above examples, we venture the following:

Conjecture 21. ǫ(Φ) is even if Φ is a weakly real principal indecomposable character.

7. Odd Cartan Invariants

We keep our notation ϕi,Φi and gi for the irreducible 2-Brauer characters, the princi-
pal indecomposable characters and the elements of the 2-regular conjugacy classes of G,
respectively. List the irreducible characters of G as χ1, . . . , χk. Then

χ∗
i =

ℓ
∑

j=1

dijϕj , Φi =

k
∑

j=1

dijχj, Φi =

ℓ
∑

j=1

cijϕj ,

where the Cartan invariants are given by cij =
∑k

u=1 duiduj.
Recall that g ∈ G is said to have 2-defect zero if CG(g) has odd order. In particular g

has odd order. Now suppose that g is real and of 2-defect zero. Then a Sylow 2-subgroup
of C∗

G(g) has order 2. So g is inverted by an involution, whence g is strongly real in G.
Now the ℓ × ℓ Cartan matrix [cij ] of G is a symmetric integer matrix whose invariant

factors are |CG(g1)|2, . . . , |CG(gℓ)|2. In particular its rank modulo 2 coincides with the
number of 2-regular conjugacy classes of G which have 2-defect zero. So we get one
strongly real 2-Brauer character for each real class of 2-defect zero. Our final Theorem
refines this observation:

Theorem 22. Suppose that cij is odd, where ϕi and ϕj are real-valued. Then there exists
w such that ciw is odd and ϕw is strongly real.
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Proof. We compute

r
∑

u=1

Φi(gu)
Φj(g

−1
u )

|CG(gu)|
≡

r
∑

u=1

ℓ
∑

v=1

civϕv(gu)
Φj(g

−1
u )

|CG(gu)|
, definition of civ

≡
r

∑

u=1

r
∑

v=1

civϕv(gu)
Φj(g

−1
u )

|CG(gu)|
, as civϕv(gu) = civϕv(gu)

≡

r
∑

v=1

civ

ℓ
∑

u=1

ϕv(gu)
Φj(g

−1
u )

|CG(gu)|
, as ϕv(gu)Φj(g

−1
u ) = ϕv(g

−1
u )Φj(gu)

≡ cij mod J, by the second orthogonality relation.

It follows that Φi(gu)
Φj(g

−1
u )

|CG(gu)|
6∈ J , for some real gu. But |CG(gu)|2 | Φi(gu). So gu

must have 2-defect zero, and hence gu is strongly real. Now Φi(gu) =
∑ℓ

w=1 ciwϕw(gu) ≡
∑r

w=1 ciwϕw(gu). So there exists w such that ϕv = ϕv, ciw is odd and ϕw(gu) is coprime
to 2. Then ϕw is strongly real, according to Lemma 12. This completes the proof.

Remarks: Let t be an involution inverting a primitive idempotent corresponding to
Φw. Then t inverts gu, by Lemma 11. So t is uniquely determined up to conjugacy, as gu
has defect 0. Now ciw =

∑k
x=1 dixdwx. So there exists x such that χx = χx and dix and

dwx are odd. As ϕw is strongly real, χx is an orthogonal irreducible character of G. �
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