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FROBENIUS-SCHUR INDICATORS OF CHARACTERS IN BLOCKS
WITH CYCLIC DEFECT

JOHN C. MURRAY

ABSTRACT. Let p be an odd prime and let B be a p-block of a finite group which
has cyclic defect groups. We show that all exceptional characters in B have the same
Frobenius-Schur indicators. Moreover the common indicator can be computed, using
the canonical character of B. We also investigate the Frobenius-Schur indicators of the
non-exceptional characters in B.

For a finite group which has cyclic Sylow p-subgroups, we show that the number of
irreducible characters with Frobenius-Schur indicator —1 is greater than or equal to the
number of conjugacy classes of weakly real p-elements in G.

1. INTRODUCTION AND PRELIMINARY RESULTS

The Frobenius-Schur (F-S) indicator of an ordinary character y of a finite group G is

]‘ 2
0 =15 > x(g?)

geG

If x is irreducible then €(x) = 0,£1. Moreover €(x) # 0 if and only if y is real-valued.

R. Brauer showed how to partition the irreducible characters of GG into p-blocks, for
each prime p. Each p-block has an associated defect group, which is a p-subgroup of G,
unique up to G-conjugacy, which determines much of the structure of the block. If the
defect group is trivial, the block contains a unique irreducible character. In the next most
complicated case, E. Dade [D] determined the structure of a block which has a cyclic
defect group and defined the Brauer tree of the block.

Recall that a p-block is said to be real if it contains the complex conjugates of its
characters. We wish to determine the F-S indicators of the irreducible characters in a
real p-block which has a cyclic defect group. In [M2, Theorem 1.6] we dealt with the case
p = 2; there are six possible indicator patterns, and the extended defect group of the block
determines which occurs. In this paper we consider the case p # 2.

R. Gow showed [Gl 5.1] that a real p-block has a real irreducible character, if p = 2.
This is false for p # 2, as was first noticed by H. Blau in the early 1980’s, in response to
a question posed by Gow. His example was for p = 5 and G = 6.5 (Atlas notation). G.
Navarro has recently found a solvable example with p = 3 and G = SmallGroup(144, 131)
(GAP notation). We give examples for blocks with cyclic defect below.
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Now let B be a real p-block which has a cyclic defect group D. The inertial index of
B is a certain divisor e of p — 1. Dade showed that B has e irreducible Brauer characters
and e + MT_I ordinary irreducible characters. The latter he divided into MT_I exceptional
characters and e non-exceptional characters.

Suppose that ‘D‘T_l = 1 (which can only occur when |D| = p). Then the choice of
exceptional character is arbitrary, and the convention in [E] is to regard B as having no
exceptional characters. However, we will see that in this event B has real irreducible
characters, all of which have the same F-S indicators. So our convention is to assume that
B has a real exceptional character.

The Brauer tree of B is a planar graph which describes the decomposition matrix of
B. There is one exceptional vertex, representating all the exceptional characters, and one
vertex for each of the non-exceptional characters. Two vertices are connected by an edge
if their characters share a modular constituent.

J. Green [Gr] showed that all real objects in the Brauer tree lie on a line segment, now
called the real-stem of B. The exceptional vertex belongs to the real-stem (see Lemma
below). So it divides the real non-exceptional vertices into two, possibly empty, subsets.
We find it convenient to refer to the corresponding real non-exceptional characters as
being on the left or the right of the exceptional vertex. Here is our main theorem:

Theorem 1. Let p be an odd prime and let B be a real p-block which has a cyclic defect
group. Then

(i) All exceptional characters in B have the same F-S indicators.

(ii) On each side of the exceptional vertex, the real non-exceptional characters have
the same F-S indicators.

(iii) If B has a real exceptional character then all real irreducible characters in B have
the same F-S indicators.

(iv) Suppose that B has no real exceptional characters, and that there are an odd num-
ber of non-exceptional vertices on each side of the exceptional vertex. Then the real
non-exceptional characters have F-S indicator +1 on one side of the exceptional
vertex and —1 on the the other side.

Note that (i) is not a consequence of Galois conjugacy, as there are at least two Galois
conjugacy classes of exceptional characters, when |D| > p.

In Proposition [I5] we show that the F-S indicators of the exceptional characters in B
agree with those of the Brauer corresponding block in the normalizer of a defect group.
In Theorem [I6 we compute this common indicator using the ‘canonical character’ of B.

Next recall that an element of G is said to be weakly real if it is conjugate to its inverse
in G, but it is not inverted by any involution in GG. Here is an application of Theorem [II
whose statement does not refer to blocks or to modular representation theory:

Theorem 2. Let p be an odd prime and let G be a finite group which has cyclic Sylow
p-subgroups. Then the number of irreducible characters of G with F-S indicator —1 is
greater than or equal to the number of conjugacy classes of weakly real p-elements in G.
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We use the notation and results of [NT] for group representation theory, and use [D]
and [E, VII] for notation specific to blocks with cyclic defect. When referring to the
character tables of a finite simple group we use the conventions of the ATLAS [A]. For
other character tables, we use the notation of the computer algebra system GAP [GAP].

2. EXAMPLES

We begin with a number of examples which illustrate the possible patterns of F-S
indicators in a block which has a cyclic defect group. Throughout G is a finite group and
B is a real p-block of G which has a cyclic defect group D. Also Ny is the normalizer in
G of the unique order p subgroup of D and By is the Brauer correspondent of B in V.

Example 1: There are many blocks with cyclic defect group whose irreducible char-
acters all have the same F-S indicators. For blocks with all indicators +1, choose n > 2,
a prime p with n/2 < p < n and any p-block of the symmetric group S,,. There are nu-
merous blocks with all indicators —1 among the faithful p-blocks of the double cover 2.4,
of an alternating group, with n/2 < p < n e.g. the four faithful irreducible characters of
2.As5 have F-S indicator —1 and constitute a 5-block with a cyclic defect group.

Example 2: If e is odd then B has a real non-exceptional character. Now it follows
from [D, Part 2 of Theorem 1 & Corollary 1.9] that B has a Galois conjugacy class
consisting of p%l exceptional characters. So B has a real exceptional character if ;%1 is
odd. Thus B always has a real irreducible character if p =3 (mod 4).

When e is even and p = 1 (mod 4), B may have no real irreducible characters. For
example SmallGroup(80,29) = (a,b | a®°, a'® = b*, a® = a”) has such a block, for p = 5. It
consists of the four irreducible characters lying over the non-trivial irreducible character
of (a'®). Here is its character table. The first two rows indicate the 2 and 5 parts of the
class centralizers. The third row labels the classes by their element orders:

2 4 4 3 3 4 4 2 3 3 3 3 2 2 2
511 . v . . 1r . . . . 1 1 1

la 2a 2b 4a 4b 4c b5a 8a 8 8¢ 8d 10a 20a 20b

X9 2 -2 . . 2% =2 2 . . . . =2

X.10 2 -2 . . =2 2% 2 . . . . =2 : :
X.13 4 -4 . . . . =1 . . . . 1 =5 =/
X.14 4 -4 . . . . =1 . . . . 1 =/=5 =5

Note that SmallGroup(80, 29) has Sylow 2-subgroups isomorphic to SmallGroup(16,6) =
(s,t| 8%t st = s°). This 2-group is sometimes denoted M, (2).

Example 3: B may have a real non-exceptional character but no real exceptional
characters. For example SmallGroup(60,7) = (a,b | a'®,b* a® = a?) has such a block, for
p = 5. It consists of the four irreducible characters lying over a non-trivial irreducible
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character of (a°). This is also an example of part (iv) of Theorem [T} the non-exceptional
characters X.5 and X.6 have F-S indicators —1 and +1, respectively. Here is the table of
character values, with a = (1 ++/—15)/2:

2 2 2 1 2 2 o1 . .
31 1 1 . . 1 1 1 1
o 1 R | . 1 1

la 2a¢ 3a 4a 4b 5a 6a 15a 15b

X.5 2 -2 -1 . . 2 1 -1 -1
X.6 2 2 -1 . . 2 -1 -1 -1
X8 4 -2 . . -1 .a o
X9 4 -2 . . -1 .o«

Example 4: There is no apparent relationship between the F-S indicators of the non-
exceptional characters in B and in By. For example, let B be the 5-block 2.Ag with
Irr(B) = {x15, X19, X21, X22}. Then the two non-exceptional characters yi5 and yi9 have
F-S indicator +1 and —1, respectively. However By is a real block which has no real
irreducible characters.

The character table of B can be found on p22 of The Atlas. Now Ny is isomorphic to
SmallGroup(120,7) = {(a,b | a'®, 1%, a® = a?). Here is the table of character values of its
5-block By. Again o = (14 +/—15)/2. In order to save space, we have omitted 4 columns
of zero values for the four classes of elements of order 8:

2 3 3 2 3 3 1 2 1 2 2 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 . .11 1 . . 1 1 1 1

la 2a¢ 3a¢ 4a 4b 5a 6a 10a 12a 12b 15a 156 30a 30b

X.11 2 =2 -1 20 =20 2 1 =2 —= . —1 -1 1 1
X.12 2 =2 -1 =20 20 2 1 =2 . —1 —1 -1 1 1
X.15 4 —4 =2 . =1 2 1 . . a a —a —a
X.16 4 —4 =2 . e 1 . .a a —a —«

We note that B has 2 irreducible modules and 2 weights, in conformity with Alperin’s
weight conjecture [All. However the irreducible modules are self-dual and the weights
are duals of each other. This shows that there is no obvious ‘real’ version of the weight
conjecture for p-blocks, when p # 2.

Consider the inclusion of groups Ny < PSLy(11) < Mj;, where Ny = 11:5. The
principal 11-blocks each have 5 non-exceptional characters. It is somewhat surprising that
the number of real non-exceptional characters in these blocks is 1, 5 and 3, respectively.
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Example 5: Finally B may have a real exceptional character but no real non-exceptional
characters. For example let B be the 5-block containing the four faithful irreducible char-
acters of SmallGroup(20,1) = {(a,b | a®,b*,a® = a™'). The two exceptional characters
have F-S indicators —1, but neither of the two non-exceptional characters is real. Here is
the character table of B, with 3 = (=1 ++/5)/2 and *8 = (—1 — /5)/2:

2 2 2 2 2 1 1 1 1
5 1.1 . . 1 1 1 1

la 2a 4a 4b 5a 5b 10a 10b

X.3 1 -1 i — 1 1 -1 -1
X4 1 -1 — 4 1 1 -1 -1
X5 2 2 . . B %8 —B —xB
X.6 2 -2 . . %8 B —x8 -8

3. MISCELLANEOUS RESULTS

We need general results from representation theory, some of which are not so well-
known. So in this section p is a prime and B is a p-block of a finite group G.

Let x be an irreducible character in B, let x be a p-element of G and let y be a p-regular
element of Cg(x). Then

X(zy) = dllo(y),

where ¢ ranges over the irreducible Brauer characters in blocks of Cg(z) which Brauer
induce to B, and each d% is an algebraic integer, called a generalized decomposition
number; if x = 1, ¢ is an irreducible Brauer character in B and d% is simplified to d, .
It is an integer called an ordinary decomposition number of B.

Brauer |[B, Theorem (4A)] used his Second Main Theorem to prove the following re-
markable ‘local-to-global” formula for F-S indicators:

(1) > e00d, = eW)dy),

X (4
where y ranges over the irreducible characters in B and 1 ranges over the irreducible
characters in blocks of Cg(x) which Brauer induce to B. We have previously used this
formula to determine the F-S indicators of the irreducible characters in 2-blocks with a
cyclic, Klein-four or dihedral defect group.

Our next result relies on Clifford theory. However it was inspired by (and can be proved
using) the notion of a weakly real 2-block, as introduced in [M1]. Suppose that N is a
normal subgroup of G and ¢ € Irr(N), with stabilizer G4 in G. If G4 C H C @G, the
Clifford correspondence is a bijection Irr(G | ¢) <> Irr(H | ¢) such that x <> ¢ if and only
if (xl&, @) #0or x = 1% The stabilizer of {¢, ¢} in G is called the extended stabilizer
of ¢, here denoted by G7. So |G} : Gy| < 2, with equality if and only if ¢ # ¢ but ¢
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is G-conjugate to ¢. If Gy, C H it is easy to see that x is real if and only if ¢ is real.
Moreover in this case €(x) = ().

We need one other idea. Suppose that T is a degree 2 extension of G. Then the Gow
indicator |Gl 2.1] of a character x of G with respect to T is defined to be

erya(X) ‘ Z ().

teT\G

Clearly e(x17) = e(x) + erjc(x). Just like the F-S indicator, er/q(x) = 0,=£1, for each
x € Irr(G). Moreover e, (x) # 0 if and only if x is T-conjugate to X.

Lemma 3. Let N be a normal odd order subgroup of G and let ¢ € Irr(N). Suppose that
G, does not split over Gy. Then there exists x € Irr(G | ¢) such that e(x) = —1.

Proof. We first show that there exists ¢ € Irr(G | ¢) such that €(¢p) = +1. For let S
be a Sylow 2-subgroup of G. As ¢1¢ vanishes on the 2-singular elements of G, we have

(¢TG)¢S (z"](\}"‘s" ps, where pg is the regular character of S. Now (TS‘)"?" is an odd integer.

So ((¢1%)1s, 1s) is odd. Moreover ¢1¢ is a real character of G. So {(¢1),¥) = ((¢1¢),%),
for each ¢ € Irr(G). Pairing each irreducible character of G with its complex conjugate,
we see that there exists a real-valued ¢ € Irr(G | ¢) such that (g, 1g) is odd. Then
€(Y) = €e(lg) = +1.

Following the discussion before the lemma, we may assume that G = G7. So |G : Gy| =
2. Next suppose that ¢ € G and ¢194(g?) # 0. Write g = 2y = yx, where z is a 2-element
and y is a 2-regular element. Then ¢? = 22y?. As ¢1% vanishes off N, we have 22 = 1
and y> € N. So @ € Gy, as G, contains all involutions in G. Moreover y € N, as y has
odd order. Thus g € G4, whence

eG/%(w%:ﬁ S 1% (%) =0

¢ gEG\Gy

Now Irr(Gy4 | ¢) contains no real characters, as ¢ # ¢. So €(¢19) = egja,(919) +
e(¢p1%) = 0. Equivalently

> (#19x)e(y) = 0.

x€lrr(G)
Together with the fact that (¢1,¢)e(y)) > 0, this implies that (¢1¢, x)e(x) < 0, for some
X € Irr(G). Thus x € Irr(G | ¢) and €(x) = —1, which completes the proof. O

It is well-known that each G-invariant irreducible character of a normal subgroup of G
extends to GG, when the quotient group is cyclic.

Lemma 4. Suppose that N is a normal subgroup of G such that G/N is cyclic and of
even order. Let ¢ € Irr(N) be real and G-invariant. Then ¢ has a real extension to G if
and only if ¢ has a real extension to T, where N CT C G and T'/N has order 2.
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Proof. The ‘only if” part is obvious. So assume that ¢ has a real extension to 7. Then
both extensions of ¢ to T are real. Let w be a generator of the abelian group Irr(G/N)
and let x be any extension of ¢ to G. Then w'y, i > 0 give all extensions of ¢ to G. Here
w' = w’ if and only if i = j (mod |G/N]).

As Y lies over ¢, we have ¥ = w'y, for some i > 0. Now ylr is an extension of ¢ to
T and Ylr = (w'd7r)(xd1). As xlr is real, it follows that w'|r is trivial. So T' C ker(w?),
whence i = 25 (mod |G/N|), for some j > 0. Now wiy = w7y = w/x. So w'y is a real
extension of ¢ to G. U

Notice that in this context ¢ has a real extension to 7" if and only if €(¢) = er/n ().
When G/N has even order, but is not cyclic, and ¢ is a real irreducible character of N
which extends to G, it is not clear whether there is a sensible sufficient criteria for ¢ to
have a real extension to G.

Finally we need the following consequence of the first orthogonality relation:

Lemma 5. Let W C X CY be finite abelian groups. Then for A € Irr(Y') we have

IX|—|W|, if X Cker()).
> Aax) = —|W|,  if W Cker(\) but X Z ker()).
2EX\W 0, if W& ker(\).

4. THE BRAUER TREE AND ITS REAL-STEM

From now on G is a finite group, p is an odd prime and B is a real p-block of G
which has a cyclic defect group. To avoid trivialities we assume that the defect group is
non-trivial.

Dade asserts [D, Theorem 1, Part 2] that each decomposition number in B is either
0 or 1. The Brauer tree of B is a planar graph with edges labelled by the irreducible
Brauer character in B and with vertices labelled by the irreducible characters in B (the
exceptional characters in B label a single ‘exceptional’ vertex). The edge labelled by an
irreducible Brauer character # meets the vertex labelled by an irreducible character y if
and only if the decomposition number d, g is not 0.

When B is real, complex conjugation acts on the Brauer tree of B, and in particular
fixes the exceptional vertex. However, as we have seen in Examples 2,3 and 4 above, B
may have no real exceptional characters. So we restate [E, VII,9.2] in the following more
precise fashion:

Lemma 6. The subgraph of the Brauer tree of B consisting of the exceptional vertex and
those vertices and edges which correspond to real characters and Brauer characters is a
straight line segment.

Feit calls this line segment the real-stem of B. An easy consequence is:

Corollary 7. The number of real non-exceptional characters in B equals the number of
real irreducible Brauer characters in B.
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Proof. Suppose that B has r real irreducible Brauer characters. Then the real-stem of
the Brauer tree has r edges and r + 1 vertices. One of these is the exceptional vertex. So
B has r real non-exceptional characters. O]

Let 6 be a real irreducible p-Brauer character of a finite group G. As p is odd, the
G-representation space of # affords a non-degenerate G-invariant bilinear form which is
either symmetric or skew-symmetric. Given the symmetry groups of such forms, we
refer to 0 as being of orthogonal or symplectic type. Thompson and Willems [W] 2.8]
proved that there is a real irreducible character x of G such that d, s is odd. Moreover
0 has orthogonal type if e(y) = +1 or symplectic type if €(x) = —1. This implies that
(1)) = €(x), for all real irreducible characters ¢ such that dy g is odd.

Proof of part (ii) of Theorem[1. Let X and Y be real non-exceptional characters which
lie on the same side of the exceptional vertex in the real-stem of B. Then by Lemma

there is a sequence X = Xy, X1,...,X,, =Y of real non-exceptional characters and a
sequence 01, ..., 0, of real irreducible Brauer characters such that dx, , 9, =1 = dx, ¢,, for
i=1,...,n. The Thompson-Willems result implies that e(X;_1) = €(X;), fori =1,...,n.
So €(X) = €(Y). This gives part (ii) of Theorem [II O

A similar argument gives the following weak form of parts (i) and (iii) of Theorem [

Lemma 8. If B has a real exceptional character and a real non-exceptional character,
then all real irreducible characters in B have the same F-S indicators.

Notice that if B is the principal p-block of a group with a cyclic Sylow p-subgroup,
and B has an irreducible character with F-S indicator —1 (e.g. the principal 7-block of
U(3,3)) then the lemma implies that B has no real exceptional characters.

5. THE EXCEPTIONAL CHARACTERS

We outline some results from [D] using the language of subpairs. See [N'T), Chapter 5.9]
for a full description of the theory. We then prove results about the local blocks in B, in
Proposition [I0, and the exceptional characters in B, in Proposition [[1l This allows us to
prove parts (i), (iii) and (iv) of Theorem [II

Recall that B is a p-block with a non-trivial cyclic defect group D. Write |D| = p®,
where @ > 0, and let 1 C D,y C Dy_o C --- C Dy C Dy = D be the complete list of
subgroups of D. So [D : D;] = p', fori =0,...,a—1. Set C; = Cg(D;) and N; = Ng(D;).
So Cogcl c ... QCa_l, and N(] QNl c ... QNa_l.

As pis odd, Aut(D;) is a cyclic group of order p®~*~*(p—1). So N;/C; is a cyclic group
whose order divides p®~*~!(p —1). Moroever the centralizer of D; in Aut(D) has order p'.
So C; N Ny/Cy is a cyclic p-group. We note that the unique involution in Aut(D) inverts
every element of D.

Fix a Sylow B-subpair (D, by). So by is a p-block of Cy such that b5 = B and the pair

(D, by) is uniquely determined up to G-conjugacy. Set b; := boci, fori=1,...,a—1. Then
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by [NT)], 5.9.3] the lattice of B-subpairs contained in (D, by) is
(2) (1,B) C (Dg—1,b4—1) C -+ C (D1,b1) C (D, by).

Set E := N(D,by), the stabilizer of by in Ny. Then e := |E : Cy| is called the inertial
index of B. Now p fe, by Brauer’s extended first main theorem. So e | (p — 1). Let
x € E. Then D = D;. As (D;,b;),(D;,b7) C (D, by), it follows from (2)) that b7 = b;.
So EC; C N(D;,b;). Conversely let n € N(D;,b;). As (D,by) and (D, by)" are Sylow
bi-subpairs (in the group C;), there is ¢ € C; such that nc¢; € E. This shows that
N(D;,b;) € EC;. This recovers Dade’s observation that N(D;, b;) = EC;.

Now E N C;/Cy is a subgroup of C; N Ny/Cy and a quotient of the group E/Cy. As
C; N Ny/Cy is a p-group and E/Cy has p’-order, we deduce that £ N C; = Cy. It follows
from this EC;/C; =2 E/Cy, and in particular |EC; : C;| = e.

By [D Theorem 1, Part 1] B has e irreducible Brauer characters, listed as xi, ..., Xe-
Each b; has inertial index 1. So b; has a unique irreducible Brauer character, denoted ¢;.

From the above discussion there are |N; : EC;| = ‘N—ec‘ distinct blocks of C; which
induce to B, namely b] as 7 ranges over N;/EC;. Also there.are % conjugacy

7

—_p

a—1

classes of G which contain a generator of D;. So B has £ — subsections (z,b), with
D; = (z). A consequence of Brauer’s second main theorem [NT! 5.4.13(ii)] is that the
number of irreducible characters in a block equals the number of columns in the block.

Lemma 9. A complete set of columns of B is

(L,x1)s -+, (1, xe)s (7 i), i=0,...,a—1.

Here x; is a fized generator of D;, o; ranges over a set of representatives for the cosets
of the image of N;/C; in Aut(D,_;) and n; ranges over a set of representatives for the
cosets of EC; in N;. In particular k(B) = e + £,

Let A be a set of representatives for the =1 orbits of E on Irr(D)*. Then

(3) Ire(B) = {X1,..., X} [ J{Xs [ A € A}

Also set Xy =5 xea X. Dade refers to the X as the exceptional characters of B.
Notice that as ¢(b;) = 1, b; is real if and only if ¢; is real. The next two propositions
are relatively elementary.

Proposition 10. All the blocks by, by, ..., b,_1 are real or none of them are real.

Proof. We have (b9)¢ = B° = B. So (D, by) and (D, b°) are Sylow B-subpairs, and there
is n € Ny such that bf = 0.

Suppose that b; is real, for some j = 0,...,a — 1. As (D;,b}),(D;,05) C (Do, b3), it
follows from (2)) that b} = b$ = b;. So n € N(Dj,b;) = EC;. Write n = ec, where ¢ € E
and ¢ € Cj. Then ¢ = e7'n € C; N Ny and b5 = by = b3. So ¢* € C;NE = Cy. But
C; N Ny/Cy has odd order, as it is a p-group. So ¢ € C, which shows that n € E. As
b§ = by, it follows that by is real.
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Now let ¢ = 0,...,a — 1. Then (D;,b;), (D;,b?) C (Do, by) = (Do, ). So b; = b2, for
i=0,...,a— 1, using (2). This shows that all by, ..., b, are real. [
We showed in [M3, 1.1] that the number of real irreducible characters in a block equals

the number of real columns in the block. Here (z, ) is real if 29 = 7! and 9 = , for
some g € G.

Let @ = 0,...,a — 1. As b; has inertial index 1, it has |D| irreducible characters.
Modifying [Dl p26] we use the notation
(4) Irr(b;) = { X}, | A € Irr(D)}.

Here X/, is the unique non-exceptional character in b;, and all characters X, with A # 1
are exceptional. Suppose that b; is real. The columns of b; are (d, p;), for d € D. As
C; acts trivially on the columns, the only real column is (1, ;). So Xj, is the only real
irreducible character in b;.

We will refine the next result in part (i) of Theorem [Ik

Proposition 11. All exceptional characters in B are real or none are real.

Proof. Tt follows from Corollary [ and Lemma [ that the number of real exceptional
characters in B equals the number of real columns (z, ¢) with € D* and ¢ € IBr(Cg(z)).
Suppose that B has a real exceptional character, and let (x,¢) be a real column of B,
with x € D*. Then (z) = D;, for some i =0,...,a—1. As N;/C; is abelian, the columns
(«', ") are real, for all generators z’ of D; and all n; € N;. In particular (z;, ¢;) is a real
column. Choose n € N; such that 27 = z; ! and ¢} = 3,. We may suppose that n? € C;.
Suppose first that b; is real. As ¢; = ©,, n fixes ¢; and inverts D;. So nCj; is an
involution in EC;/C;. As EC;/C; = E/Cy, we may assume without loss that nCj is an
involution in E/Cy. Now all the blocks by, ...,b,_1 are real. Hence all ¢y,..., @, 1 are
real. As n inverts D; and fixes ¢;, all columns (z;, ;) are real. Thus all columns (z, ¢),
with x € D, are real. So all exceptional characters in B are real in this case.
Conversely, suppose that b; is not real. As nC; is the unique involution in N;/C;, but
n ¢ EC;, it follows that |EC; : C;| = e is odd. Now (D, by) and (D, b3) are Sylow B-
subpairs, but by # b3. So there is m € Ny\FE such that 7' = 3. As m? € F and |E : O
is odd, we may choose m so that m? € Cy. Then mCj is the unique involution in Ny/Cj.
In particular m inverts every element of D. Let j = 0,...,a — 1. Then (D;,b7") and
(Dj, b%) are B-subpairs contained in (D,b). So bJ* = b and thus (dj;, ;)™ = (dj_l,@).
It follows that all exceptional characters in B are real in this case also. O]

Examination of the proof shows that:

Corollary 12. All exceptional characters in B are real if and only if by is real and e is
even, or by is not real and e is odd.

We need some additional notation. Set A, := {A € A | ker(\) = D, }, foru=1,...,a.
So |Ay| = pu_fkl. Now choose A € A, and set

€y = €(X)).
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Note that X and X, are Galois conjugates, for all A,z € A,, (this follows from [D|, part
2 of Theorem 1 and Corollary 1.9]). So €, does not depend on .

Recall our notation () for the irreducible characters X7, in b;. As already noted, X,
is the only possible real irreducible character in b;. We set

vi = e(X;,), fori=0,...,a—1

Now let i = 0,...,a — 1 and choose © € D; — D;;1 and p € N;. According to [D|

Theorem 1, Part 3] there are signs €(, €, €1 ..., €. and 7; such that
dg?zw = o Y. APTx), d,(;j,gpﬁ = g, forj=1,.. e
¢ TEECZ‘/C@ ¢
At e = ENACE), A = 1

Here EC;/C; is a set of representatives for the cosets of C; in EC;. Note that Feit uses the
notation 6y = —epand 0; = ¢;,forj =1,...,e. Nowleti =0,...,a—1landz € D;—D;;.
Then it follows from [Dl Corollary 1.9] that X;(x) = |N; : ECi|¢;(1)d;7;. So 6;7; is the
sign of the integer X;(x).

There is a nice relationship between the signs g, e1...,, and the Brauer tree of B.
Suppose that j and k are adjacent vertices in the Brauer tree. Then X; + X}, is a principal
indecomposable character of G. So it vanishes on D>, and hence §; + 6, = 0 (see [F, V11,
Section 9]). So suppose that there are d; edges between the vertex j and the exceptional
vertex 0 in the Brauer tree. Then §; = (—1)%dy. So g; = (—1)%~lgq, for j =1,...,e.

We now prove part (i) of our main theorem. But note that this proof does not depend
on Propositions [I0 and [IT}

Proof of part (i) of Theorem[. Applying (), with p € N; and z € D; — D;44, we get

Z e(Xj)e;y + Z e(X)eovi Z AT x) =y,

j=1 AEA TEECZ‘/C@

Now set 0 := g 25:1 €(Xj)e;. So o is independent of i, p and z. Then the above equality

transforms to
Zeu Z Z ANTx) = eoyivs — o,

u=1 AeA, TEEC;

where the right hand side is independent of p and x. Let p range over a set of representa-

tives for the NeCl cosets of EC; in N; and let x range over a set of representatives for the

% orbits of NV; on the generators of D;. Then "z will range over all generators

of D;. Summing the resulting equalities gives

ieu > e = (I)Q_Z%pa_z_l) (eovivi — o).

u=1 ANeAy 2ED;—Djy1
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We use |A,| = pu_f%l and Lemma [f] to transform this equality to

oo u—1 i+1 i a—i a—i—1
a—i a—i— p —Dp a—i—1P — P p - D
(P =p )Y e p T T e = ———— (0 — 0).
— e e e
After cancelling the factor ’%, we get
(5) > 0" =" e — plegs = eovivi — o

u=1

Here Zgzl(p“ — p“ e, is taken to be 0, when i = 0. We write down the equalities ()
fort=0,1,2,... in turn:

— € = &Y — 0

(p—1)e; — pes = NV — 0O

(p—1)er + (p2 —p)ey — p2es = EoYals — O

(6) (p—Der+ (p* —plea+ (p° —p*)es —pPes = eoyavz— 0
(p—Dea+ @ —pe+-+ @ —p" a1 — 0" 'ea = E0Va1Va1 — O

Subtract the first equality from the second to get

pler — €2) = go(n1 — Yolo)-

The left hand side equals —p,0 or p and the right hand equals —2,0 or 2. As p is odd,
the common value is 0. So €5 = €; and y1v; = Y. Substitute these values back into all
equations in (@). Now subtract the first from the third equality to get

p2(€1 - 63) = 50(72V2 - 701/0)-

Once again both sides are 0. So Y15 = Y1y and €3 = €;. Proceeding in this way, we get

€1 =€ =" =€ YoVo="1V1="=Ya—1Va-1-

O
Following the above proof, and the discussion before the proof, we obtain:

Corollary 13. Suppose that by is real and let D = (x). Then for each i =0,...,a — 1
and j =0,... e, the integer X;(x")X;(x) has sign e(X],)e(X( ).

There is no apparent relationship between the F-S indicators vy, ..., v, _1:

Example: The 2-nilpotent group G = (a,b,c | a*,a®> = b, a® = a7, a® = b, b¢ = ab)
has isomorphism type 3.SL(2,3). Set D = (¢). Then D is cyclic of order 9, with C =
D x {a*) and C; = G. Let 6 be the non-trivial irreducible character of Cy/D, and let by be
the 3-block of Cy which contains 6. Then 6 = X, is the unique non-exceptional character
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in by. So vy = €(Xg,) = +1. Set by = b§'. Then b; also has a unique non-exceptional
character Xj ;. But now vy = (X7 ;) = —1, as X7 restricts to the non-linear irreducible
character of (a,b) = Qs.

This example arises from the fact that the Glauberman correspondence [NT} 5.12] does
not preserve the F-S indicators of characters.

proof of part (iii) of Theorem[d. This is an immediate consequence of Lemma [§ and part

(i) of Theorem [ O
Consider the real-stem of B as a horizontal line segment with s vertices and s —1 edges,
where s > 1. We label the vertices using an interval [—¢, ..., —2,—1,0,1,2,...,7] so that

0 labels the exceptional vertex. Thus s = r 4+ ¢ 4 1, and there are ¢ real non-exceptional
characters on the left of the exceptional vertex, and r on the right (the choice of left and
right is unimportant).

As above, X is the sum of the exceptional characters in B. Now we relabel the non-
exceptional characters in B so that X; is the real non-exceptional character corresponding
to vertex 4, for i = —¢,...,r and i # 0. In view of parts (i) and (ii) of Theorem [ there
are signs e4 such that

€_, forve=—4,...,—1.
e(X;) =1 eo, for i = 0.
€1, fore=1,...,r.

Next let o be a generator of D. It follows from [D, Corollary 1.9] that Xy(o) =
—£070|No : Elpo(1). So X;i(o) = (=1)"Xo(0), as X; + X;11 is a projective character of G,
fori=—¢,...,r —1 (see [E}, VIL,2.19(ii)]).

Recall from Section (Bl that there are | Ny : E| blocks of Cjy which induce to B; these
are the blocks by, where 7 ranges over No/E. We note also that Xg, (7o) = ¢o(1). Now
[B, Theorem(4B)] is an immediate consequence of [Bl, Theorem(4A)]. In our context, this
states that

T

Y edXi)Xi(0) = |No = Ele(Xg,1)Xg,(0)-

i=—t
In view of the previous paragraph this simplifies to
l r
(7) Z(—l)ie_ + 6+ Z(_l)i€+ = —€0"0-
i=1 i=1

We consider a number of cases.
Suppose first that ¢y # 0. Then €. = ¢y = e, by part (iii) of Theorem [0l So ()
becomes
[ (=1 if sis odd.
(8) ~ 0%tec0 = { 0, if s is even.

In particular by is not real if s is even. As e is odd when s is even, this already follows
from Corollary 121
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Suppose then that ¢y = 0. Now (7)) evaluates as

€_, if £ is odd and 7 is even.

(9) e = € + ey, if ¢ and r are both odd.
070% €1, if £ is even and r is odd.

0, if £ and r are both even.

proof of part (iv) of Theorem[l. The hypothesis is that ¢y = 0, at least one of e_, e, is
not zero and ¢ = r =1 (mod 2). Now B has e non-exceptional characters, of which ¢ 4 r
are real-valued. So e = ¢ + r is even. Then by is not real, according to Corollary
This in turn implies that vy = 0. So €_ 4+ e+ = 0, according to ([@). We conclude that
e_e; = —1, which gives the conclusion of (iv). O

6. PASSING FROM B TO ITS CANONICAL CHARACTER

Let : =0,...,a — 1. Then N; contains the normalizer Ny of D in G. So by Brauer’s
first main theorem there is a unique p-block B; of N; such that B = B. As (B?)¢ =
B° = B, the uniqueness forces BY = B;. Now B, has defect group D and inertial index
e=|EC;:C;|. So {(B,—1) =€ and k(B,_1) = e+ 1‘%. We first consider the block B,_;
of the largest subgroup N,_;. Following [Di Section 7], write

IBr(Ba-1) = {X1, .- Xe}»  Ir(Baot) = {X1,..., Xe} [J{Xa [ A € A},
and set Xo = 3 X,.
Proposition 14. The exceptional characters in B and B,_1 have the same F-S indicators.
Proof. Suppose first that |A| > 2. According [D| (7.2)] there is a sign d such that
(Xy— X)) =d(X) — X,), forall \,ueA.

It follows that (X, X,) or (X,, Xy) is odd. So in view of part (i) of Theorem [ the
conclusion holds in this case.

From now on we suppose that |A| = 1. Then E has a single orbit on Irr(D)*, which
forces |[D| =pand e =p—1. As X, is the unique exceptional character in B,_1, it is real
valued. Then it follows from part (iii) of Theorem [I] that all real irreducible characters in
B,_1 have the same F-S indicators.

Now by [Dl (7.3), (7.8), first two paragraphs of p40], there is a sign €, such that

p—1 p—1
(XQ — ZXZ)G = 56 ZEZXZ
i=1 1=0

Here €y, ...,gp—1 are as introduced earlier and X, can be chosen to be real, as p is odd.
Taking inner-products o~f characters, and reading modulo 2, we see that QXZG , Xo) is odd,
for some real X;. So €(X;) = €(Xy). Then by the previous paragraph €(Xy) = ¢(Xy). O
Proposition 15. All exceptional characters in By, ...,B,_1 and B have the same F-S
indicators.
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Proof. We prove this by induction on |D|. The base case |D| = p holds, by Proposition
M4l Suppose that |D| > p. We assume that the conclusion holds for all p-blocks with a
cyclic defect group of order strictly less than |D].

We use the bar notation for subgroups and objects associated with the quotient group
Nuo-1/Dyq. Let i = 0,...,a — 1. Then N, is the normalizer of D; in N,_;. As C;
centralizes D, 1, Theorem 5.8.11 of [NT] shows that b; dominates a unique block b; of
C;. Moreover b; has cyclic defect group D. Now b; has the unique irreducible Brauer
character ¢;, and we can and do identify ¢; with the unique irreducible Brauer character
in b;. Then the inertia group of b; in N; is the inertia group of ¢; in N;, which is EC;.

According to [D| Section 4], there is a unique p-block of Nj;, denoted here by B,
which lies over b;. Moreover B; has cyclic defect group D. As inflation and induction
of characters commute, this block is dominated by B;. Now B; and B; have the same
inertial index as |EC; : Cy| = |EC; : Cj|. So by inflation IBr(B;) = IBr(B;). In particular
B; is the unique block of N; that is dominated by B;. Also by inflation Irr(B;) C Irr(B;).

As |D| < |D|, all exceptional characters in By, ..., B,_1 have the same F-S indicators,
by our inductive hypothesis. But the inclusion Irr(B;) C Irr(B;) identifies the exceptional
characters in B; with exceptional characters in B;. It now follows from part (i) of Theorem
[ that all exceptional characters in By, ..., B, 1 have the same F-S indicators. 0

Recall that by has a unique irreducible Brauer character ¢g. This is the canonical
character of B, in the sense of [NT!, 5.8.3]. For the next theorem, we simplify the notation
of () for the irreducible characters in by by writing xy in place of X ,, for all A € Trr(D).
Then according to W. Reynolds [NT), 5.8.14], for ¢ € Cy we have

(10) wie) = { pwld) Toeh

Then Irr(by) = {x» | A € Irr(D)}. Notice that x; is the unique irreducible character in b
whose kernel contains D.

Theorem 16. Suppose that B has a real exceptional character. Then Ny/Cy has a unique
subgroup T'/Cy of order 2, and all exceptional characters in B have F-S indicator equal
to the Gow indicator epjc,(X1)-

Proof. Recall that B has a real exceptional character if by is real and e is even, or if by is
not real and e is odd. In both these cases | Vg : Cpl is even. As Ny/Cy is also cyclic, it
has a unique subgroup 7'/Cy of order 2.

In view of Proposition [I5, we may assume that G = Ny. So B = By, D and Cj are
normal subgroups of G and F is the stabilizer of by in G. Then A is a set of representa-
tives for the orbits of Ny on Irr(D)*. Set E* as the stabilizer of {by, b3} in G. Clifford
correspondence defines a bijection between the irreducible characters of E* which lie over
by and the irreducible characters in B. This bijection preserves reality, and hence F-S
indicators. So from now on we assume that G = E*.
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As x; is invariant in E and E/Cj is cyclic, x; has e extensions to F, which we denote
by n1, ..., M. Then X; :=n% fori=1,..., e, give the e non-exceptional characters in B.
Moreover Xy := x§, for all A € A, give the exceptional characters in B.

Following Corollary [[2] there are three cases we must consider:

Case 1: b is real, e is even and B has real non-exceptional characters. Then according
to part (iii) of Theorem [[all real irreducible characters in B have the same F-S indicators.
We choose notation so that X is real. As Xj/r is a real extension of y; to T, it follows
that €(X,) = €(X1lr) = €/, (x1). This concludes Case 1.

Case 2: b is real, e is even but B has no real non-exceptional characters. As y; does
not extend to a real character of F, it does not extend to a real character of T', according
to Lemma @l So ep;c,(x1) = —€(x1), by the definition of the Gow indicator.

Now consider the notation used in the proof of part (i) of Theorem [Il Here C; = Cj
and ¢; = g and X;; = x1, fori =0,...,a — 1. If A € A then (X))l¢, = ZTeG/CO XA

So dg?i% =Y reqyc, A7), for all x € D*. This means that e9y; = 1, fori = 0,...,a—1.
Now in (), the term o is 0, as none of Xj,..., X, are real. So the first equation in (@)
simplifies here to —e(X) = €(x1), for all A € Ay. So €(X,) = er/c,(x1), for all A € A, by
the previous paragraph and Proposition

Case 3: The final case is that by is not real and e is odd. As B has an odd number
e of non-exceptional characters, at least one of them must be real valued. So we assume
that X7 is real. Then, just as in Case 1, all real irreducible characters in B have the same
F-S indicators.

As|E : Cylisodd and |G : E| = 2, we have G/Cy = E/CyxT/Cy. Now T'/Cy conjugates
Irr(bo) into Irr(b3). So x; is T-conjugate to ;. In particular y;17 is irreducible and real
valued. Now X; = ()¢ and (m1)dc, = X1 So (X1)dr = (x1)1T, by Mackey’s theorem.

Now from above €¢(X,) = €(X3), for all A € A. Also ¢(X;) = ¢((X1)lr), as both are
real valued. Finally €((X1)lr) = €r/c,(x1), by the definition. This completes Case 3. [

Finally, we prove the application to ordinary characters as stated in the Introduction:

Proof of Theorem[2. Let z be a weakly real p-element of G of maximal order and set
Q = (x) and N := Ng(Q). Let X be a faithful linear character of ). Then N, = Cy(z)
and N5 = Cy(x). So N} does not split over N,. By Lemma Bl there exists x € Irr(N | \)
such that e(y) = —1.

Let B be the p-block of N which contains X and let D be a defect group of B. Then
Q C D and Ng(D) C N. In particular B := B is defined and B has defect group D. So
Q = D;, N = N; and B = B for some i > 0, in cyclic defect group notation.

Notice that A is non-trivial. So D & ker(y). This means that y is an exceptional
character in B;. So all exceptional characters in B;, and hence also in B, are symplectic.
The number of exceptional characters in B is ‘D‘T_l, where e is the inertial index of B.
The number of weakly real p-conjugacy classes of G is equal to the number of N-orbits

on Q*, which equals Jﬁ'gl‘ As |D;| < |D| and e < |N; : C;|, we conclude that the
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number of symplectic irreducible characters of GG is not less than the number of weakly
real p-conjugacy classes of G. O
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