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FROBENIUS-SCHUR INDICATORS OF CHARACTERS IN BLOCKS

WITH CYCLIC DEFECT

JOHN C. MURRAY

Abstract. Let p be an odd prime and let B be a p-block of a finite group which
has cyclic defect groups. We show that all exceptional characters in B have the same
Frobenius-Schur indicators. Moreover the common indicator can be computed, using
the canonical character of B. We also investigate the Frobenius-Schur indicators of the
non-exceptional characters in B.

For a finite group which has cyclic Sylow p-subgroups, we show that the number of
irreducible characters with Frobenius-Schur indicator −1 is greater than or equal to the
number of conjugacy classes of weakly real p-elements in G.

1. Introduction and preliminary results

The Frobenius-Schur (F-S) indicator of an ordinary character χ of a finite group G is

ǫ(χ) :=
1

|G|
∑

g∈G

χ(g2).

If χ is irreducible then ǫ(χ) = 0,±1. Moreover ǫ(χ) 6= 0 if and only if χ is real-valued.
R. Brauer showed how to partition the irreducible characters of G into p-blocks, for

each prime p. Each p-block has an associated defect group, which is a p-subgroup of G,
unique up to G-conjugacy, which determines much of the structure of the block. If the
defect group is trivial, the block contains a unique irreducible character. In the next most
complicated case, E. Dade [D] determined the structure of a block which has a cyclic
defect group and defined the Brauer tree of the block.

Recall that a p-block is said to be real if it contains the complex conjugates of its
characters. We wish to determine the F-S indicators of the irreducible characters in a
real p-block which has a cyclic defect group. In [M2, Theorem 1.6] we dealt with the case
p = 2; there are six possible indicator patterns, and the extended defect group of the block
determines which occurs. In this paper we consider the case p 6= 2.

R. Gow showed [G, 5.1] that a real p-block has a real irreducible character, if p = 2.
This is false for p 6= 2, as was first noticed by H. Blau in the early 1980’s, in response to
a question posed by Gow. His example was for p = 5 and G = 6.S6 (Atlas notation). G.
Navarro has recently found a solvable example with p = 3 and G = SmallGroup(144, 131)
(GAP notation). We give examples for blocks with cyclic defect below.
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Now let B be a real p-block which has a cyclic defect group D. The inertial index of
B is a certain divisor e of p− 1. Dade showed that B has e irreducible Brauer characters

and e+ |D|−1
e

ordinary irreducible characters. The latter he divided into |D|−1
e

exceptional
characters and e non-exceptional characters.

Suppose that |D|−1
e

= 1 (which can only occur when |D| = p). Then the choice of
exceptional character is arbitrary, and the convention in [F] is to regard B as having no
exceptional characters. However, we will see that in this event B has real irreducible
characters, all of which have the same F-S indicators. So our convention is to assume that
B has a real exceptional character.

The Brauer tree of B is a planar graph which describes the decomposition matrix of
B. There is one exceptional vertex, representating all the exceptional characters, and one
vertex for each of the non-exceptional characters. Two vertices are connected by an edge
if their characters share a modular constituent.

J. Green [Gr] showed that all real objects in the Brauer tree lie on a line segment, now
called the real-stem of B. The exceptional vertex belongs to the real-stem (see Lemma 6
below). So it divides the real non-exceptional vertices into two, possibly empty, subsets.
We find it convenient to refer to the corresponding real non-exceptional characters as
being on the left or the right of the exceptional vertex. Here is our main theorem:

Theorem 1. Let p be an odd prime and let B be a real p-block which has a cyclic defect
group. Then

(i) All exceptional characters in B have the same F-S indicators.
(ii) On each side of the exceptional vertex, the real non-exceptional characters have

the same F-S indicators.
(iii) If B has a real exceptional character then all real irreducible characters in B have

the same F-S indicators.
(iv) Suppose that B has no real exceptional characters, and that there are an odd num-

ber of non-exceptional vertices on each side of the exceptional vertex. Then the real
non-exceptional characters have F-S indicator +1 on one side of the exceptional
vertex and −1 on the the other side.

Note that (i) is not a consequence of Galois conjugacy, as there are at least two Galois
conjugacy classes of exceptional characters, when |D| > p.

In Proposition 15 we show that the F-S indicators of the exceptional characters in B
agree with those of the Brauer corresponding block in the normalizer of a defect group.
In Theorem 16 we compute this common indicator using the ‘canonical character’ of B.

Next recall that an element of G is said to be weakly real if it is conjugate to its inverse
in G, but it is not inverted by any involution in G. Here is an application of Theorem 1
whose statement does not refer to blocks or to modular representation theory:

Theorem 2. Let p be an odd prime and let G be a finite group which has cyclic Sylow
p-subgroups. Then the number of irreducible characters of G with F-S indicator −1 is
greater than or equal to the number of conjugacy classes of weakly real p-elements in G.
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We use the notation and results of [NT] for group representation theory, and use [D]
and [F, VII] for notation specific to blocks with cyclic defect. When referring to the
character tables of a finite simple group we use the conventions of the ATLAS [A]. For
other character tables, we use the notation of the computer algebra system GAP [GAP].

2. Examples

We begin with a number of examples which illustrate the possible patterns of F-S
indicators in a block which has a cyclic defect group. Throughout G is a finite group and
B is a real p-block of G which has a cyclic defect group D. Also N0 is the normalizer in
G of the unique order p subgroup of D and B0 is the Brauer correspondent of B in N0.

Example 1: There are many blocks with cyclic defect group whose irreducible char-
acters all have the same F-S indicators. For blocks with all indicators +1, choose n ≥ 2,
a prime p with n/2 ≤ p ≤ n and any p-block of the symmetric group Sn. There are nu-
merous blocks with all indicators −1 among the faithful p-blocks of the double cover 2.An
of an alternating group, with n/2 ≤ p ≤ n e.g. the four faithful irreducible characters of
2.A5 have F-S indicator −1 and constitute a 5-block with a cyclic defect group.

Example 2: If e is odd then B has a real non-exceptional character. Now it follows
from [D, Part 2 of Theorem 1 & Corollary 1.9] that B has a Galois conjugacy class
consisting of p−1

e
exceptional characters. So B has a real exceptional character if p−1

e
is

odd. Thus B always has a real irreducible character if p ≡ 3 (mod 4).
When e is even and p ≡ 1 (mod 4), B may have no real irreducible characters. For

example SmallGroup(80, 29) = 〈a, b | a20, a10 = b4, ab = a7〉 has such a block, for p = 5. It
consists of the four irreducible characters lying over the non-trivial irreducible character
of 〈a10〉. Here is its character table. The first two rows indicate the 2 and 5 parts of the
class centralizers. The third row labels the classes by their element orders:

2 4 4 3 3 4 4 2 3 3 3 3 2 2 2
5 1 1 . 1 . . 1 . . . . 1 1 1

1a 2a 2b 4a 4b 4c 5a 8a 8b 8c 8d 10a 20a 20b

X.9 2 −2 . . 2i −2i 2 . . . . −2 . .
X.10 2 −2 . . −2i 2i 2 . . . . −2 . .
X.13 4 −4 . . . . −1 . . . . 1

√
−5 −

√
−5

X.14 4 −4 . . . . −1 . . . . 1 −
√
−5

√
−5

Note that SmallGroup(80, 29) has Sylow 2-subgroups isomorphic to SmallGroup(16, 6) =
〈s, t | s8, t2, st = s5〉. This 2-group is sometimes denoted M4(2).

Example 3: B may have a real non-exceptional character but no real exceptional
characters. For example SmallGroup(60, 7) = 〈a, b | a15, b4, ab = a2〉 has such a block, for
p = 5. It consists of the four irreducible characters lying over a non-trivial irreducible
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character of 〈a5〉. This is also an example of part (iv) of Theorem 1; the non-exceptional
characters X.5 and X.6 have F-S indicators −1 and +1, respectively. Here is the table of
character values, with α = (1 +

√
−15)/2:

2 2 2 1 2 2 . 1 . .
3 1 1 1 . . 1 1 1 1
5 1 . 1 . . 1 . 1 1

1a 2a 3a 4a 4b 5a 6a 15a 15b

X.5 2 −2 −1 . . 2 1 −1 −1
X.6 2 2 −1 . . 2 −1 −1 −1
X.8 4 . −2 . . −1 . α α
X.9 4 . −2 . . −1 . α α

Example 4: There is no apparent relationship between the F-S indicators of the non-
exceptional characters in B and in B0. For example, let B be the 5-block 2.A8 with
Irr(B) = {χ15, χ19, χ21, χ22}. Then the two non-exceptional characters χ15 and χ19 have
F-S indicator +1 and −1, respectively. However B0 is a real block which has no real
irreducible characters.

The character table of B can be found on p22 of The Atlas. Now N0 is isomorphic to
SmallGroup(120, 7) = 〈a, b | a15, b8, ab = a2〉. Here is the table of character values of its
5-block B0. Again α = (1+

√
−15)/2. In order to save space, we have omitted 4 columns

of zero values for the four classes of elements of order 8:

2 3 3 2 3 3 1 2 1 2 2 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 . . 1 1 1 . . 1 1 1 1

1a 2a 3a 4a 4b 5a 6a 10a 12a 12b 15a 15b 30a 30b

X.11 2 −2 −1 2i −2i 2 1 −2 −i i −1 −1 1 1
X.12 2 −2 −1 −2i 2i 2 1 −2 i −i −1 −1 1 1
X.15 4 −4 −2 . . −1 2 1 . . α α −α −α
X.16 4 −4 −2 . . −1 2 1 . . α α −α −α

We note that B has 2 irreducible modules and 2 weights, in conformity with Alperin’s
weight conjecture [Al]. However the irreducible modules are self-dual and the weights
are duals of each other. This shows that there is no obvious ‘real’ version of the weight
conjecture for p-blocks, when p 6= 2.

Consider the inclusion of groups N0 < PSL2(11) < M11, where N0
∼= 11 : 5. The

principal 11-blocks each have 5 non-exceptional characters. It is somewhat surprising that
the number of real non-exceptional characters in these blocks is 1, 5 and 3, respectively.
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Example 5: FinallyB may have a real exceptional character but no real non-exceptional
characters. For example let B be the 5-block containing the four faithful irreducible char-
acters of SmallGroup(20, 1) = 〈a, b | a5, b4, ab = a−1〉. The two exceptional characters
have F-S indicators −1, but neither of the two non-exceptional characters is real. Here is
the character table of B, with β = (−1 +

√
5)/2 and ∗β = (−1−

√
5)/2:

2 2 2 2 2 1 1 1 1
5 1 1 . . 1 1 1 1

1a 2a 4a 4b 5a 5b 10a 10b

X.3 1 −1 i −i 1 1 −1 −1
X.4 1 −1 −i i 1 1 −1 −1
X.5 2 −2 . . β ∗β −β −∗β
X.6 2 −2 . . ∗β β −∗β −β

3. Miscellaneous results

We need general results from representation theory, some of which are not so well-
known. So in this section p is a prime and B is a p-block of a finite group G.

Let χ be an irreducible character in B, let x be a p-element of G and let y be a p-regular
element of CG(x). Then

χ(xy) =
∑

ϕ

d(x)χ,ϕϕ(y),

where ϕ ranges over the irreducible Brauer characters in blocks of CG(x) which Brauer

induce to B, and each d
(x)
χ,ϕ is an algebraic integer, called a generalized decomposition

number; if x = 1, ϕ is an irreducible Brauer character in B and d
(x)
χ,ϕ is simplified to dχ,ϕ.

It is an integer called an ordinary decomposition number of B.
Brauer [B, Theorem (4A)] used his Second Main Theorem to prove the following re-

markable ‘local-to-global’ formula for F-S indicators:

(1)
∑

χ

ǫ(χ)d(x)χ,ϕ =
∑

ψ

ǫ(ψ)d
(x)
ψ,ϕ,

where χ ranges over the irreducible characters in B and ψ ranges over the irreducible
characters in blocks of CG(x) which Brauer induce to B. We have previously used this
formula to determine the F-S indicators of the irreducible characters in 2-blocks with a
cyclic, Klein-four or dihedral defect group.

Our next result relies on Clifford theory. However it was inspired by (and can be proved
using) the notion of a weakly real 2-block, as introduced in [M1]. Suppose that N is a
normal subgroup of G and φ ∈ Irr(N), with stabilizer Gφ in G. If Gφ ⊆ H ⊆ G, the
Clifford correspondence is a bijection Irr(G | φ) ↔ Irr(H | φ) such that χ↔ ψ if and only
if 〈χ↓H , φ〉 6= 0 or χ = ψ↑G. The stabilizer of {φ, φ} in G is called the extended stabilizer
of φ, here denoted by G∗

φ. So |G∗
φ : Gφ| ≤ 2, with equality if and only if φ 6= φ but φ
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is G-conjugate to φ. If G∗
φ ⊆ H it is easy to see that χ is real if and only if ψ is real.

Moreover in this case ǫ(χ) = ǫ(ψ).
We need one other idea. Suppose that T is a degree 2 extension of G. Then the Gow

indicator [G, 2.1] of a character χ of G with respect to T is defined to be

ǫT/G(χ) :=
1

|G|
∑

t∈T\G

χ(t2).

Clearly ǫ(χ↑T ) = ǫ(χ) + ǫT/G(χ). Just like the F-S indicator, ǫT/G(χ) = 0,±1, for each
χ ∈ Irr(G). Moreover ǫT/G(χ) 6= 0 if and only if χ is T -conjugate to χ.

Lemma 3. Let N be a normal odd order subgroup of G and let φ ∈ Irr(N). Suppose that
G∗
φ does not split over Gφ. Then there exists χ ∈ Irr(G | φ) such that ǫ(χ) = −1.

Proof. We first show that there exists ψ ∈ Irr(G | φ) such that ǫ(ψ) = +1. For let S
be a Sylow 2-subgroup of G. As φ↑G vanishes on the 2-singular elements of G, we have

(φ↑G)↓S = φ(1)|G|
|N ||S|

ρS, where ρS is the regular character of S. Now φ(1)|G|
|N ||S|

is an odd integer.

So 〈(φ↑G)↓S, 1S〉 is odd. Moreover φ↑G is a real character ofG. So 〈(φ↑G), ψ〉 = 〈(φ↑G), χ〉,
for each ψ ∈ Irr(G). Pairing each irreducible character of G with its complex conjugate,
we see that there exists a real-valued ψ ∈ Irr(G | φ) such that 〈ψ↓S, 1S〉 is odd. Then
ǫ(ψ) = ǫ(1S) = +1.

Following the discussion before the lemma, we may assume that G = G∗
φ. So |G : Gφ| =

2. Next suppose that g ∈ G and φ↑Gφ(g2) 6= 0. Write g = xy = yx, where x is a 2-element
and y is a 2-regular element. Then g2 = x2y2. As φ↑Gφ vanishes off N , we have x2 = 1
and y2 ∈ N . So x ∈ Gφ, as Gφ contains all involutions in G. Moreover y ∈ N , as y has
odd order. Thus g ∈ Gφ, whence

ǫG/Gφ
(φ↑Gφ) =

1

|Gφ|
∑

g∈G\Gφ

φ↑Gφ(g2) = 0.

Now Irr(Gφ | φ) contains no real characters, as φ 6= φ. So ǫ(φ↑G) = ǫG/Gφ
(φ↑Gφ) +

ǫ(φ↑Gφ) = 0. Equivalently
∑

χ∈Irr(G)

〈φ↑G, χ〉ǫ(χ) = 0.

Together with the fact that 〈φ↑G, ψ〉ǫ(ψ) > 0, this implies that 〈φ↑G, χ〉ǫ(χ) < 0, for some
χ ∈ Irr(G). Thus χ ∈ Irr(G | φ) and ǫ(χ) = −1, which completes the proof. �

It is well-known that each G-invariant irreducible character of a normal subgroup of G
extends to G, when the quotient group is cyclic.

Lemma 4. Suppose that N is a normal subgroup of G such that G/N is cyclic and of
even order. Let ϕ ∈ Irr(N) be real and G-invariant. Then ϕ has a real extension to G if
and only if ϕ has a real extension to T , where N ⊂ T ⊆ G and T/N has order 2.
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Proof. The ‘only if’ part is obvious. So assume that ϕ has a real extension to T . Then
both extensions of ϕ to T are real. Let ω be a generator of the abelian group Irr(G/N)
and let χ be any extension of ϕ to G. Then ωiχ, i ≥ 0 give all extensions of ϕ to G. Here
ωi = ωj if and only if i ≡ j (mod |G/N |).

As χ lies over ϕ, we have χ = ωiχ, for some i ≥ 0. Now χ↓T is an extension of ϕ to
T and χ↓T = (ωi↓T )(χ↓T ). As χ↓T is real, it follows that ωi↓T is trivial. So T ⊆ ker(ωi),

whence i ≡ 2j (mod |G/N |), for some j ≥ 0. Now ωjχ = ωi−jχ = ωjχ. So ωjχ is a real
extension of ϕ to G. �

Notice that in this context ϕ has a real extension to T if and only if ǫ(ϕ) = ǫT/N (ϕ).
When G/N has even order, but is not cyclic, and ϕ is a real irreducible character of N
which extends to G, it is not clear whether there is a sensible sufficient criteria for ϕ to
have a real extension to G.

Finally we need the following consequence of the first orthogonality relation:

Lemma 5. Let W ⊆ X ⊆ Y be finite abelian groups. Then for λ ∈ Irr(Y ) we have

∑

x∈X\W

λ(x) =







|X| − |W |, if X ⊆ ker(λ).
−|W |, if W ⊆ ker(λ) but X 6⊆ ker(λ).

0, if W 6⊆ ker(λ).

4. The Brauer tree and its real-stem

From now on G is a finite group, p is an odd prime and B is a real p-block of G
which has a cyclic defect group. To avoid trivialities we assume that the defect group is
non-trivial.

Dade asserts [D, Theorem 1, Part 2] that each decomposition number in B is either
0 or 1. The Brauer tree of B is a planar graph with edges labelled by the irreducible
Brauer character in B and with vertices labelled by the irreducible characters in B (the
exceptional characters in B label a single ‘exceptional’ vertex). The edge labelled by an
irreducible Brauer character θ meets the vertex labelled by an irreducible character χ if
and only if the decomposition number dχ,θ is not 0.

When B is real, complex conjugation acts on the Brauer tree of B, and in particular
fixes the exceptional vertex. However, as we have seen in Examples 2,3 and 4 above, B
may have no real exceptional characters. So we restate [F, VII,9.2] in the following more
precise fashion:

Lemma 6. The subgraph of the Brauer tree of B consisting of the exceptional vertex and
those vertices and edges which correspond to real characters and Brauer characters is a
straight line segment.

Feit calls this line segment the real-stem of B. An easy consequence is:

Corollary 7. The number of real non-exceptional characters in B equals the number of
real irreducible Brauer characters in B.
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Proof. Suppose that B has r real irreducible Brauer characters. Then the real-stem of
the Brauer tree has r edges and r+ 1 vertices. One of these is the exceptional vertex. So
B has r real non-exceptional characters. �

Let θ be a real irreducible p-Brauer character of a finite group G. As p is odd, the
G-representation space of θ affords a non-degenerate G-invariant bilinear form which is
either symmetric or skew-symmetric. Given the symmetry groups of such forms, we
refer to θ as being of orthogonal or symplectic type. Thompson and Willems [W, 2.8]
proved that there is a real irreducible character χ of G such that dχ,θ is odd. Moreover
θ has orthogonal type if ǫ(χ) = +1 or symplectic type if ǫ(χ) = −1. This implies that
ǫ(ψ) = ǫ(χ), for all real irreducible characters ψ such that dψ,θ is odd.

Proof of part (ii) of Theorem 1. Let X and Y be real non-exceptional characters which
lie on the same side of the exceptional vertex in the real-stem of B. Then by Lemma
6 there is a sequence X = X0, X1, . . . , Xn = Y of real non-exceptional characters and a
sequence θ1, . . . , θn of real irreducible Brauer characters such that dXi−1,θi = 1 = dXi,θi, for
i = 1, . . . , n. The Thompson-Willems result implies that ǫ(Xi−1) = ǫ(Xi), for i = 1, . . . , n.
So ǫ(X) = ǫ(Y ). This gives part (ii) of Theorem 1. �

A similar argument gives the following weak form of parts (i) and (iii) of Theorem 1:

Lemma 8. If B has a real exceptional character and a real non-exceptional character,
then all real irreducible characters in B have the same F-S indicators.

Notice that if B is the principal p-block of a group with a cyclic Sylow p-subgroup,
and B has an irreducible character with F-S indicator −1 (e.g. the principal 7-block of
U(3, 3)) then the lemma implies that B has no real exceptional characters.

5. The exceptional characters

We outline some results from [D] using the language of subpairs. See [NT, Chapter 5.9]
for a full description of the theory. We then prove results about the local blocks in B, in
Proposition 10, and the exceptional characters in B, in Proposition 11. This allows us to
prove parts (i), (iii) and (iv) of Theorem 1.

Recall that B is a p-block with a non-trivial cyclic defect group D. Write |D| = pa,
where a > 0, and let 1 ⊂ Da−1 ⊂ Da−2 ⊂ · · · ⊂ D1 ⊂ D0 = D be the complete list of
subgroups of D. So [D : Di] = pi, for i = 0, . . . , a−1. Set Ci = CG(Di) and Ni = NG(Di).
So C0 ⊆ C1 ⊆ . . . ⊆ Ca−1, and N0 ⊆ N1 ⊆ . . . ⊆ Na−1.

As p is odd, Aut(Di) is a cyclic group of order pa−i−1(p−1). So Ni/Ci is a cyclic group
whose order divides pa−i−1(p− 1). Moroever the centralizer of Di in Aut(D) has order pi.
So Ci ∩N0/C0 is a cyclic p-group. We note that the unique involution in Aut(D) inverts
every element of D.

Fix a Sylow B-subpair (D, b0). So b0 is a p-block of C0 such that bG0 = B and the pair
(D, b0) is uniquely determined up to G-conjugacy. Set bi := bCi

0 , for i = 1, . . . , a−1. Then
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by [NT, 5.9.3] the lattice of B-subpairs contained in (D, b0) is

(2) (1, B) ⊂ (Da−1, ba−1) ⊂ · · · ⊂ (D1, b1) ⊂ (D, b0).

Set E := N(D, b0), the stabilizer of b0 in N0. Then e := |E : C0| is called the inertial
index of B. Now p 6 | e, by Brauer’s extended first main theorem. So e | (p − 1). Let
x ∈ E. Then Dx

i = Di. As (Di, bi), (Di, b
x
i ) ⊆ (D, b0), it follows from (2) that bxi = bi.

So ECi ⊆ N(Di, bi). Conversely let n ∈ N(Di, bi). As (D, b0) and (D, b0)
n are Sylow

bi-subpairs (in the group Ci), there is c ∈ Ci such that nci ∈ E. This shows that
N(Di, bi) ⊆ ECi. This recovers Dade’s observation that N(Di, bi) = ECi.

Now E ∩ Ci/C0 is a subgroup of Ci ∩ N0/C0 and a quotient of the group E/C0. As
Ci ∩ N0/C0 is a p-group and E/C0 has p′-order, we deduce that E ∩ Ci = C0. It follows
from this ECi/Ci ∼= E/C0, and in particular |ECi : Ci| = e.

By [D, Theorem 1, Part 1] B has e irreducible Brauer characters, listed as χ1, . . . , χe.
Each bi has inertial index 1. So bi has a unique irreducible Brauer character, denoted ϕi.

From the above discussion there are |Ni : ECi| = |Ni:Ci|
e

distinct blocks of Ci which

induce to B, namely bτi as τ ranges over Ni/ECi. Also there are pa−i−pa−i−1

|Ni:Ci|
conjugacy

classes of G which contain a generator of Di. So B has pa−i−pa−i−1

e
subsections (x, b), with

Di = 〈x〉. A consequence of Brauer’s second main theorem [NT, 5.4.13(ii)] is that the
number of irreducible characters in a block equals the number of columns in the block.

Lemma 9. A complete set of columns of B is

(1, χ1), . . . , (1, χe), (xσii , ϕ
ni

i ), i = 0, . . . , a− 1.

Here xi is a fixed generator of Di, σi ranges over a set of representatives for the cosets
of the image of Ni/Ci in Aut(Da−i) and ni ranges over a set of representatives for the
cosets of ECi in Ni. In particular k(B) = e+ pa−1

e
.

Let Λ be a set of representatives for the pa−1
e

orbits of E on Irr(D)×. Then

(3) Irr(B) = {X1, . . . , Xe}
⋃

{Xλ | λ ∈ Λ}.
Also set X0 :=

∑

λ∈ΛXλ. Dade refers to the Xλ as the exceptional characters of B.
Notice that as ℓ(bi) = 1, bi is real if and only if ϕi is real. The next two propositions

are relatively elementary.

Proposition 10. All the blocks b0, b1, . . . , ba−1 are real or none of them are real.

Proof. We have (boi )
G = Bo = B. So (D, b0) and (D, boo) are Sylow B-subpairs, and there

is n ∈ N0 such that bo0 = bn0 .
Suppose that bj is real, for some j = 0, . . . , a − 1. As (Dj, b

n
j ), (Dj, b

o
j) ⊂ (D0, b

o
0), it

follows from (2) that bnj = boj = bj . So n ∈ N(Dj, bj) = ECj. Write n = ec, where e ∈ E

and c ∈ Cj . Then c = e−1n ∈ Cj ∩ N0 and bc0 = bn0 = bo0. So c2 ∈ Cj ∩ E = C0. But
Cj ∩ N0/C0 has odd order, as it is a p-group. So c ∈ C0, which shows that n ∈ E. As
bn0 = b0, it follows that b0 is real.
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Now let i = 0, . . . , a − 1. Then (Di, bi), (Di, b
o
i ) ⊂ (D0, b0) = (D0, b

o
0). So bi = boi , for

i = 0, . . . , a− 1, using (2). This shows that all b0, . . . , ba−1 are real. �

We showed in [M3, 1.1] that the number of real irreducible characters in a block equals
the number of real columns in the block. Here (x, ϕ) is real if xg = x−1 and ϕg = ϕ, for
some g ∈ G.

Let i = 0, . . . , a − 1. As bi has inertial index 1, it has |D| irreducible characters.
Modifying [D, p26] we use the notation

(4) Irr(bi) = {X ′
i,λ | λ ∈ Irr(D)}.

Here X ′
i,1 is the unique non-exceptional character in bi, and all characters X ′

i,λ with λ 6= 1
are exceptional. Suppose that bi is real. The columns of bi are (d, ϕi), for d ∈ D. As
Ci acts trivially on the columns, the only real column is (1, ϕi). So X ′

i,1 is the only real
irreducible character in bi.

We will refine the next result in part (i) of Theorem 1:

Proposition 11. All exceptional characters in B are real or none are real.

Proof. It follows from Corollary 7 and Lemma 9 that the number of real exceptional
characters in B equals the number of real columns (x, ϕ) with x ∈ D× and ϕ ∈ IBr(CG(x)).

Suppose that B has a real exceptional character, and let (x, ϕ) be a real column of B,
with x ∈ D×. Then 〈x〉 = Di, for some i = 0, . . . , a−1. As Ni/Ci is abelian, the columns
(x′, ϕni

i ) are real, for all generators x
′ of Di and all ni ∈ Ni. In particular (xi, ϕi) is a real

column. Choose n ∈ Ni such that xni = x−1
i and ϕni = ϕi. We may suppose that n2 ∈ Ci.

Suppose first that bi is real. As ϕi = ϕi, n fixes ϕi and inverts Di. So nCi is an
involution in ECi/Ci. As ECi/Ci ∼= E/C0, we may assume without loss that nC0 is an
involution in E/C0. Now all the blocks b0, . . . , ba−1 are real. Hence all ϕ0, . . . , ϕa−1 are
real. As n inverts Dj and fixes ϕj , all columns (xj , ϕj) are real. Thus all columns (x, ϕ),
with x ∈ D×, are real. So all exceptional characters in B are real in this case.

Conversely, suppose that bi is not real. As nCi is the unique involution in Ni/Ci, but
n 6∈ ECi, it follows that |ECi : Ci| = e is odd. Now (D, b0) and (D, bo0) are Sylow B-
subpairs, but b0 6= bo0. So there is m ∈ N0\E such that bm0 = bo0. As m

2 ∈ E and |E : C0|
is odd, we may choose m so that m2 ∈ C0. Then mC0 is the unique involution in N0/C0.
In particular m inverts every element of D. Let j = 0, . . . , a − 1. Then (Dj, b

m
j ) and

(Dj, b
o
j) are B-subpairs contained in (D, bo0). So bmj = boj and thus (dj , ϕj)

m = (d−1
j , ϕj).

It follows that all exceptional characters in B are real in this case also. �

Examination of the proof shows that:

Corollary 12. All exceptional characters in B are real if and only if b0 is real and e is
even, or b0 is not real and e is odd.

We need some additional notation. Set Λu := {λ ∈ Λ | ker(λ) = Du}, for u = 1, . . . , a.

So |Λu| = pu−pu−1

e
. Now choose λ ∈ Λu and set

ǫu := ǫ(Xλ).
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Note that Xλ and Xµ are Galois conjugates, for all λ, µ ∈ Λu (this follows from [D, part
2 of Theorem 1 and Corollary 1.9]). So ǫu does not depend on λ.

Recall our notation (4) for the irreducible characters X ′
i,λ in bi. As already noted, X ′

i,1

is the only possible real irreducible character in bi. We set

νi := ǫ(X ′
i,1), for i = 0, . . . , a− 1.

Now let i = 0, . . . , a − 1 and choose x ∈ Di − Di+1 and ρ ∈ Ni. According to [D,
Theorem 1, Part 3] there are signs ε′0, ε0, ε1 . . . , εe and γi such that

d
(x)

Xλ,ϕ
ρ
i

= ε0γi
∑

τ∈ECi/Ci

λ(ρτx), d
(x)

Xj ,ϕ
ρ
i

= εjγi, for j = 1, . . . , e

d
(x)

X′

i,λ
,ϕρ

i

= ε′0γiλ(
ρx), d

(x)

X′

i,1,ϕ
ρ
i

= 1

Here ECi/Ci is a set of representatives for the cosets of Ci in ECi. Note that Feit uses the
notation δ0 = −ε0 and δj = εj, for j = 1, . . . , e. Now let i = 0, . . . , a−1 and x ∈ Di−Di+1.
Then it follows from [D, Corollary 1.9] that Xj(x) = |Ni : ECi|ϕi(1)δjγi. So δjγi is the
sign of the integer Xj(x).

There is a nice relationship between the signs ε0, ε1 . . . , εe and the Brauer tree of B.
Suppose that j and k are adjacent vertices in the Brauer tree. Then Xj+Xk is a principal
indecomposable character of G. So it vanishes on D×, and hence δj+ δk = 0 (see [F, V11,
Section 9]). So suppose that there are dj edges between the vertex j and the exceptional
vertex 0 in the Brauer tree. Then δj = (−1)djδ0. So εj = (−1)dj−1ε0, for j = 1, . . . , e.

We now prove part (i) of our main theorem. But note that this proof does not depend
on Propositions 10 and 11:

Proof of part (i) of Theorem 1. Applying (1), with ρ ∈ Ni and x ∈ Di −Di+1, we get

e
∑

j=1

ǫ(Xj)εjγi +
∑

λ∈Λ

ǫ(Xλ)ε0γi
∑

τ∈ECi/Ci

λ(ρτx) = νi.

Now set σ := ε0
∑e

j=1 ǫ(Xj)εj. So σ is independent of i, ρ and x. Then the above equality
transforms to

a
∑

u=1

ǫu
∑

λ∈Λu

∑

τ∈ECi

λ(ρτx) = ε0γiνi − σ,

where the right hand side is independent of ρ and x. Let ρ range over a set of representa-

tives for the |Ni:Ci|
e

cosets of ECi in Ni and let x range over a set of representatives for the
pa−i−pa−i−1

|Ni:Ci|
orbits of Ni on the generators of Di. Then ρτx will range over all generators

of Di. Summing the resulting equalities gives

a
∑

u=1

ǫu
∑

λ∈Λu

∑

x∈Di−Di+1

λ(x) =

(

pa−i − pa−i−1

e

)

(ε0γiνi − σ) .
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We use |Λu| = pu−pu−1

e
and Lemma 5 to transform this equality to

(pa−i − pa−i−1)

i
∑

u=1

pu − pu−1

e
ǫu − pa−i−1 p

i+1 − pi

e
ǫi+1 =

pa−i − pa−i−1

e
(ε0γiνi − σ).

After cancelling the factor pa−i−1(p−1)
e

, we get

(5)
i

∑

u=1

(pu − pu−1)ǫu − piǫi+1 = ε0γiνi − σ.

Here
∑0

u=1(p
u − pu−1)ǫu is taken to be 0, when i = 0. We write down the equalities (5)

for i = 0, 1, 2, . . . in turn:

(6)

− ǫ1 = ε0γ0ν0 − σ

(p− 1)ǫ1 − pǫ2 = ε0γ1ν1 − σ

(p− 1)ǫ1 + (p2 − p)ǫ2 − p2ǫ3 = ε0γ2ν2 − σ

(p− 1)ǫ1 + (p2 − p)ǫ2 + (p3 − p2)ǫ3 − p3ǫ4 = ε0γ3ν3 − σ

...

(p− 1)ǫ1 + (p2 − p)ǫ2 + · · ·+ (pa−1 − pa−2)ǫa−1 − pa−1ǫa = ε0γa−1νa−1 − σ

Subtract the first equality from the second to get

p(ǫ1 − ǫ2) = ε0(γ1ν1 − γ0ν0).

The left hand side equals −p, 0 or p and the right hand equals −2, 0 or 2. As p is odd,
the common value is 0. So ǫ2 = ǫ1 and γ1ν1 = γ0ν0. Substitute these values back into all
equations in (6). Now subtract the first from the third equality to get

p2(ǫ1 − ǫ3) = ε0(γ2ν2 − γ0ν0).

Once again both sides are 0. So γ2ν2 = γ0ν0 and ǫ3 = ǫ1. Proceeding in this way, we get

ǫ1 = ǫ2 = · · · = ǫa, γ0ν0 = γ1ν1 = · · · = γa−1νa−1.

�

Following the above proof, and the discussion before the proof, we obtain:

Corollary 13. Suppose that b0 is real and let D = 〈x〉. Then for each i = 0, . . . , a − 1

and j = 0, . . . , e, the integer Xj(x
pi)Xj(x) has sign ǫ(X

′
i,1)ǫ(X

′
0,1).

There is no apparent relationship between the F-S indicators ν0, . . . , νa−1:
Example: The 2-nilpotent group G = 〈a, b, c | a4, a2 = b2, ab = a−1, c9, ac = b, bc = ab〉

has isomorphism type 3. SL(2, 3). Set D = 〈c〉. Then D is cyclic of order 9, with C0 =
D×〈a2〉 and C1 = G. Let θ be the non-trivial irreducible character of C0/D, and let b0 be
the 3-block of C0 which contains θ. Then θ = X ′

0,1 is the unique non-exceptional character
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in b0. So ν0 = ǫ(X ′
0,1) = +1. Set b1 = bG0 . Then b1 also has a unique non-exceptional

character X ′
1,1. But now ν1 = ǫ(X ′

1,1) = −1, as X ′
1,1 restricts to the non-linear irreducible

character of 〈a, b〉 ∼= Q8.
This example arises from the fact that the Glauberman correspondence [NT, 5.12] does

not preserve the F-S indicators of characters.

proof of part (iii) of Theorem 1. This is an immediate consequence of Lemma 8 and part
(i) of Theorem 1. �

Consider the real-stem of B as a horizontal line segment with s vertices and s−1 edges,
where s ≥ 1. We label the vertices using an interval [−ℓ, . . . ,−2,−1, 0, 1, 2, . . . , r] so that
0 labels the exceptional vertex. Thus s = r + ℓ + 1, and there are ℓ real non-exceptional
characters on the left of the exceptional vertex, and r on the right (the choice of left and
right is unimportant).

As above, X0 is the sum of the exceptional characters in B. Now we relabel the non-
exceptional characters in B so that Xi is the real non-exceptional character corresponding
to vertex i, for i = −ℓ, . . . , r and i 6= 0. In view of parts (i) and (ii) of Theorem 1 there
are signs ǫ± such that

ǫ(Xi) =







ǫ−, for i = −ℓ, . . . ,−1.
ǫ0, for i = 0.
ǫ+, for i = 1, . . . , r.

Next let σ be a generator of D. It follows from [D, Corollary 1.9] that X0(σ) =
−ε0γ0|N0 : E|ϕ0(1). So Xi(σ) = (−1)iX0(σ), as Xi +Xi+1 is a projective character of G,
for i = −ℓ, . . . , r − 1 (see [F, VII,2.19(ii)]).

Recall from Section (5) that there are |N0 : E| blocks of C0 which induce to B; these
are the blocks bτ0 , where τ ranges over N0/E. We note also that X ′

0,1(
τσ) = ϕ0(1). Now

[B, Theorem(4B)] is an immediate consequence of [B, Theorem(4A)]. In our context, this
states that

r
∑

i=−ℓ

ǫ(Xi)Xi(σ) = |N0 : E|ǫ(X ′
0,1)X

′
0,1(σ).

In view of the previous paragraph this simplifies to

(7)

ℓ
∑

i=1

(−1)iǫ− + ǫ0 +

r
∑

i=1

(−1)iǫ+ = −ε0γ0ν0.

We consider a number of cases.
Suppose first that ǫ0 6= 0. Then ǫ− = ǫ0 = ǫ+, by part (iii) of Theorem 1. So (7)

becomes

(8) − ε0γ0ν0ǫ0 =

{

(−1)ℓ, if s is odd.
0, if s is even.

In particular b0 is not real if s is even. As e is odd when s is even, this already follows
from Corollary 12.
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Suppose then that ǫ0 = 0. Now (7) evaluates as

(9) − ε0γ0ν0 =















ǫ−, if ℓ is odd and r is even.
ǫ− + ǫ+, if ℓ and r are both odd.
ǫ+, if ℓ is even and r is odd.
0, if ℓ and r are both even.

proof of part (iv) of Theorem 1. The hypothesis is that ǫ0 = 0, at least one of ǫ−, ǫ+ is
not zero and ℓ ≡ r ≡ 1 (mod 2). Now B has e non-exceptional characters, of which ℓ+ r
are real-valued. So e ≡ ℓ + r is even. Then b0 is not real, according to Corollary 12.
This in turn implies that ν0 = 0. So ǫ− + ǫ+ = 0, according to (9). We conclude that
ǫ−ǫ+ = −1, which gives the conclusion of (iv). �

6. Passing from B to its canonical character

Let i = 0, . . . , a − 1. Then Ni contains the normalizer N0 of D in G. So by Brauer’s
first main theorem there is a unique p-block Bi of Ni such that BG

i = B. As (Bo
i )
G =

Bo = B, the uniqueness forces Bo
i = Bi. Now Bi has defect group D and inertial index

e = |ECi : Ci|. So ℓ(Ba−1) = e and k(Ba−1) = e+ pa−1
e

. We first consider the block Ba−1

of the largest subgroup Na−1. Following [D, Section 7], write

IBr(Ba−1) = {χ̃1, . . . , χ̃e}, Irr(Ba−1) = {X̃1, . . . , X̃e}
⋃

{X̃λ | λ ∈ Λ},

and set X̃0 =
∑

X̃λ.

Proposition 14. The exceptional characters in B and Ba−1 have the same F-S indicators.

Proof. Suppose first that |Λ| ≥ 2. According [D, (7.2)] there is a sign d such that

(X̃λ − X̃µ)
G = d(Xλ −Xµ), for all λ, µ ∈ Λ.

It follows that 〈X̃λ, Xλ〉 or 〈X̃µ, Xλ〉 is odd. So in view of part (i) of Theorem 1, the
conclusion holds in this case.

From now on we suppose that |Λ| = 1. Then E has a single orbit on Irr(D)×, which

forces |D| = p and e = p− 1. As X̃0 is the unique exceptional character in Ba−1, it is real
valued. Then it follows from part (iii) of Theorem 1 that all real irreducible characters in
Ba−1 have the same F-S indicators.

Now by [D, (7.3), (7.8), first two paragraphs of p40], there is a sign ε′0 such that

(X̃0 −
p−1
∑

i=1

X̃i)
G = ε′0

p−1
∑

i=0

εiXi.

Here ε0, . . . , εp−1 are as introduced earlier and X0 can be chosen to be real, as p is odd.

Taking inner-products of characters, and reading modulo 2, we see that 〈X̃G
i , X0〉 is odd,

for some real X̃i. So ǫ(X̃i) = ǫ(X0). Then by the previous paragraph ǫ(X̃0) = ǫ(X0). �

Proposition 15. All exceptional characters in B0, . . . , Ba−1 and B have the same F-S
indicators.
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Proof. We prove this by induction on |D|. The base case |D| = p holds, by Proposition
14. Suppose that |D| > p. We assume that the conclusion holds for all p-blocks with a
cyclic defect group of order strictly less than |D|.

We use the bar notation for subgroups and objects associated with the quotient group
Na−1/Da−1. Let i = 0, . . . , a − 1. Then N i is the normalizer of Di in Na−1. As Ci
centralizes Da−1, Theorem 5.8.11 of [NT] shows that bi dominates a unique block bi of
C i. Moreover bi has cyclic defect group D. Now bi has the unique irreducible Brauer
character ϕi, and we can and do identify ϕi with the unique irreducible Brauer character
in bi. Then the inertia group of bi in N i is the inertia group of ϕi in N i, which is ECi.

According to [D, Section 4], there is a unique p-block of Ni, denoted here by Bi,
which lies over bi. Moreover Bi has cyclic defect group D. As inflation and induction
of characters commute, this block is dominated by Bi. Now Bi and Bi have the same
inertial index as |ECi : Ci| = |ECi : Ci|. So by inflation IBr(Bi) = IBr(Bi). In particular
Bi is the unique block of Ni that is dominated by Bi. Also by inflation Irr(Bi) ⊆ Irr(Bi).

As |D| < |D|, all exceptional characters in B0, . . . , Ba−1 have the same F-S indicators,
by our inductive hypothesis. But the inclusion Irr(Bi) ⊆ Irr(Bi) identifies the exceptional
characters in Bi with exceptional characters in Bi. It now follows from part (i) of Theorem
1 that all exceptional characters in B0, . . . , Ba−1 have the same F-S indicators. �

Recall that b0 has a unique irreducible Brauer character ϕ0. This is the canonical
character of B, in the sense of [NT, 5.8.3]. For the next theorem, we simplify the notation
of (4) for the irreducible characters in b0 by writing χλ in place of X ′

0,λ, for all λ ∈ Irr(D).
Then according to W. Reynolds [NT, 5.8.14], for c ∈ C0 we have

(10) χλ(c) =

{

λ(cp)ϕ0(c
′
p), if cp ∈ D.

0, if cp 6∈ D.

Then Irr(b0) = {χλ | λ ∈ Irr(D)}. Notice that χ1 is the unique irreducible character in b0
whose kernel contains D.

Theorem 16. Suppose that B has a real exceptional character. Then N0/C0 has a unique
subgroup T/C0 of order 2, and all exceptional characters in B have F-S indicator equal
to the Gow indicator ǫT/C0

(χ1).

Proof. Recall that B has a real exceptional character if b0 is real and e is even, or if b0 is
not real and e is odd. In both these cases |N0 : C0| is even. As N0/C0 is also cyclic, it
has a unique subgroup T/C0 of order 2.

In view of Proposition 15, we may assume that G = N0. So B = B0, D and C0 are
normal subgroups of G and E is the stabilizer of b0 in G. Then Λ is a set of representa-
tives for the orbits of N0 on Irr(D)×. Set E∗ as the stabilizer of {b0, bo0} in G. Clifford
correspondence defines a bijection between the irreducible characters of E∗ which lie over
b0 and the irreducible characters in B. This bijection preserves reality, and hence F-S
indicators. So from now on we assume that G = E∗.
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As χ1 is invariant in E and E/C0 is cyclic, χ1 has e extensions to E, which we denote
by η1, . . . , ηe. Then Xi := ηGi , for i = 1, . . . , e, give the e non-exceptional characters in B.
Moreover Xλ := χGλ , for all λ ∈ Λ, give the exceptional characters in B.

Following Corollary 12, there are three cases we must consider:

Case 1: b0 is real, e is even and B has real non-exceptional characters. Then according
to part (iii) of Theorem 1 all real irreducible characters in B have the same F-S indicators.
We choose notation so that X1 is real. As X1↓T is a real extension of χ1 to T , it follows
that ǫ(X1) = ǫ(X1↓T ) = ǫT/C0

(χ1). This concludes Case 1.

Case 2: b0 is real, e is even but B has no real non-exceptional characters. As χ1 does
not extend to a real character of E, it does not extend to a real character of T , according
to Lemma 4. So ǫT/C0

(χ1) = −ǫ(χ1), by the definition of the Gow indicator.
Now consider the notation used in the proof of part (i) of Theorem 1. Here Ci = C0

and ϕi = ϕ0 and X ′
i,1 = χ1, for i = 0, . . . , a − 1. If λ ∈ Λ then (Xλ)↓C0

=
∑

τ∈G/C0
χλτ .

So d
(x)
Xλ,ϕi

=
∑

τ∈G/C0
λ(τx), for all x ∈ D×. This means that ε0γi = 1, for i = 0, . . . , a−1.

Now in (6), the term σ is 0, as none of X1, . . . , Xe are real. So the first equation in (6)
simplifies here to −ǫ(Xλ) = ǫ(χ1), for all λ ∈ Λ1. So ǫ(Xλ) = ǫT/C0

(χ1), for all λ ∈ Λ, by
the previous paragraph and Proposition 15.

Case 3: The final case is that b0 is not real and e is odd. As B has an odd number
e of non-exceptional characters, at least one of them must be real valued. So we assume
that X1 is real. Then, just as in Case 1, all real irreducible characters in B have the same
F-S indicators.

As |E : C0| is odd and |G : E| = 2, we haveG/C0 = E/C0×T/C0. Now T/C0 conjugates
Irr(b0) into Irr(bo0). So χ1 is T -conjugate to χ1. In particular χ1↑T is irreducible and real
valued. Now X1 = (η1)↑G and (η1)↓C0

= χ1. So (X1)↓T = (χ1)↑T , by Mackey’s theorem.
Now from above ǫ(Xλ) = ǫ(X1), for all λ ∈ Λ. Also ǫ(X1) = ǫ((X1)↓T ), as both are

real valued. Finally ǫ((X1)↓T ) = ǫT/C0
(χ1), by the definition. This completes Case 3. �

Finally, we prove the application to ordinary characters as stated in the Introduction:

Proof of Theorem 2. Let x be a weakly real p-element of G of maximal order and set
Q := 〈x〉 and N := NG(Q). Let λ be a faithful linear character of Q. Then Nλ = CN(x)
and N∗

λ = C∗
N(x). So N

∗
λ does not split over Nλ. By Lemma 3 there exists χ ∈ Irr(N | λ)

such that ǫ(χ) = −1.

Let B̃ be the p-block of N which contains χ and let D be a defect group of B̃. Then
Q ⊆ D and NG(D) ⊆ N . In particular B := B̃G is defined and B has defect group D. So
Q = Di, N = Ni and B̃ = Bi for some i ≥ 0, in cyclic defect group notation.

Notice that λ is non-trivial. So D 6⊆ ker(χ). This means that χ is an exceptional
character in Bi. So all exceptional characters in Bi, and hence also in B, are symplectic.

The number of exceptional characters in B is |D|−1
e

, where e is the inertial index of B.
The number of weakly real p-conjugacy classes of G is equal to the number of N -orbits

on Q×, which equals |Di|−1
|Ni:Ci|

. As |Di| ≤ |D| and e ≤ |Ni : Ci|, we conclude that the



F-S INDICATORS, CYCLIC DEFECT 17

number of symplectic irreducible characters of G is not less than the number of weakly
real p-conjugacy classes of G. �
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