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Abstract

When presented with two samples (a smaller sample from a Minority population and a

larger sample from a Majority population) where some rare/frequent feature occurs at

exactly the same rate in both samples, people reliably associate the rare feature with the

Minority population and the frequent feature with the Majority population. This

pattern is referred to as ‘illusory correlation’, reflecting the standard assumption that

such associations are fundamentally irrational. In this paper we show that this

assumption is incorrect, and demonstrate that this pattern of association linking rare

features with the Minority and frequent features with the Majority (given a sample

where those features occurred at the same proportion in both categories, and no further

information) is in fact normatively correct and follows a result in epistemic probability

theory known as the ‘Rule of Succession’. Building on this result, we present a new

computational model of frequency-based illusory correlation, based on the Rule of

Succession. We also discuss the implications of the Rule of Succession for our

understanding of various other cognitive biases.

keywords: probability; rationality; biases; illusory correlation
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The Rationality of Illusory Correlation

Psychologists have long been interested in the apparent patterns of bias or

systematic error seen in people’s probabilistic judgements under uncertainty. One such

bias, referred to as ‘illusory correlation’, arises in probabilistic inference from samples:

when presented with two samples (a smaller sample from a Minority population and a

larger sample from a Majority population) where some rare/frequent feature occurs at

exactly the same rate in both samples, people reliably associate the rare feature with the

Minority population and the frequent feature with the Majority population. Since the

ability to accurately recognise associations or correlations is fundamental to intelligent

behaviour, this bias has become an important research topic in the study of learning and

conditioning (Alloy and Tabachnik, 1984), reasoning (Berman and Kenny, 1976;

Podsakoff et al., 2003) and memory (Kao and Wasserman, 1993; Katagiri et al., 2007;

Kareev, 1995b). Since illusory correlation is seen as a driving force behind stereotype

formation, this is also a central topic of research in social psychology (Bar-Tal et al.,

2013; Sherman et al., 2009; Kutzner and Fiedler, 2015). Finally, since illusory

correlation is seen as a systematic cognitive error, its occurrence has implications for

ongoing debate on the rationality or irrationality of human thought processes (see, e.g.

Tversky and Kahneman, 1974; Kahneman and Tversky, 1996; Kareev, 1995a).

The name ‘illusory correlation’ reflects the standard assumption that such

differential judgements of association, given samples in which there is no difference in

rate of occurrence, are fundamentally irrational and represent “erroneous inferences

about the relationship between categories of events”(Hamilton and Gifford, 1976, p.392).

Our primary aim in this paper is to show that this is assumption is incorrect. Instead,

when we apply normative probability theory (and in particular, a rule from epistemic

probability theory known as the ‘Rule of Succession’) to standard illusory correlation
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tasks we find that the mathematically correct and rational response is to conclude that

the rare feature is more likely in the Minority population; that there is a correlation

between feature occurrence and category membership.

The organisation of this paper is as follows. In the first section we give a general

overview of illusory correlation research. In the second section we address the rationality

of illusory correlation, describe the Rule of Succession and its consequences, and show

that this rule can explain many experimental results on illusory correlation and related

biases in probabilistic reasoning. In the third section we present a new computational

model of the cognitive processes behind judgements of association, based on the

application of the Rule of Succession in a noisy-reasoning system. In the final section we

discus the question of rationality more generally, and consider links between illusory

correlation, the Rule of Succession, and discrimination and societal prejudice.

Background: illusory correlation

There are two main strands of research on illusory correlation: expectancy-based

(Hamilton and Rose, 1980) and frequency-based (Hamilton and Gifford, 1976). Research

on expectancy-based illusory correlation investigates the relationship between people’s

prior expectations (their preconceptions) and their interpretation of new data. Research

in this area typically finds that people’s prior expectation reliably influences their

perception of correlation between features in a given set of data, even when they are

explicitly told to disregard all prior knowledge when assessing the data. For example,

when presented with a dataset of drawings produced by patients in the psychiatric

draw-a-picture test, each paired with the patient’s diagnosis, diagnosticians reported

enhanced associations between certain features (e.g. head shape) and related diagnoses

(e.g. worries about intelligence), even though no such association existed in the data
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(Chapman, 1967). Such expectancy-based correlations have been reliably observed in

psychiatric and clinical diagnosis, in organisational trait perception, and in personality

and self-perception (see Fiedler, 2000, for an excellent review).

Research on expectancy-based illusory correlation does not necessarily address the

question of rationality in people’s judgement of association: people’s expectations may

represent rational Bayesian priors, and the influence of such expectations on judgements

of association in a given set of data may be rationally correct. A central and striking

result in frequency-based illusory correlation, however, does speak directly to the

question of rationality in this area. This result was first identified in an influential study

by Hamilton and Gifford (1976), where participants read a set of statements describing

the positive or negative behaviours of members of one of two novel categories of people:

a Majority group, which occurred often in the set, and a Minority group, which occurred

less often. Participants were told that these statements were sampled at random from

the categories in question, and were asked to make various judgements about the

Minority and Majority categories based on the sample of statements seen. Importantly,

the sample of statements was specifically controlled so that negative behaviours

occurred at exactly the same proportion in both categories, as did positive behaviours.

In Hamilton and Gifford’s first experiment positive behaviours were frequent in the

sample and negative behaviours were rare, while in their second experiment negative

behaviours were frequent and positive behaviours were rare. In both experiments

participants tended to reliably associate the rare feature (negative behaviour in the first

experiment, positive behaviour in the second experiment) with the Minority and the

frequent feature with the Majority, with the association between rare feature and

Minority being stronger than that between frequent feature and Majority (Hamilton and

Gifford, 1976; Fiedler, 1991; McConnell et al., 1994; Mullen and Johnson, 1990). Table 1



Illusory Correlation 6

Table 1

Proportion and count of features samples from Minority and Majority categories in Hamilton

and Gifford (1976) Experiment 1, alongside participant choice probabilities and normative

population probabilities.

Feature

Sample

Proportion

Sample

Count

Participant choice

probability

Normative population

probability

(Rule of Succession)

Majority Minority Majority Minority Majority Minority

Freq. 0.69 18 9 0.66 0.56 0.68 0.67

Rare 0.31 8 4 0.34 0.44 0.32 0.33

26 13 1.0 1.0 1.0 1.0

Note. Participant choice probabilities were calculated from choice frequency counts in Hamilton and

Gifford (1976). Participants’ choice probabilities show illusory correlation (regression) associating the

rare feature with the minority category and the frequent feature with the majority category. This

association is stronger for the smaller Minority sample. Normative population probabilities

calculated from the Rule of Succession show the same pattern.
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shows the count of rare/frequent features in Minority and Majority samples in one of

these experiments, alongside one measure of association from that experiment (this data

is from Hamilton and Gifford, 1976, Experiment 1). This type of association between

rare features and the Minority is shown in measures of frequency estimation (people

estimate the rare feature as occurring more frequently in the Minority than the

Majority); of cued recall (when asked to recall which category was associated with which

feature, people recall the Minority when cued with the rare feature); and of category

evaluation (when the rare feature has negative valence, people judge the Minority more

negatively, while when the rare feature has positive valence, people judge the Minority

more positively). This association between features and categories in such studies does

not depend on prior expectations about categories (because the categories are novel) or

on prior expectations about features (because the same relationship between rare

features and the minority category holds irrespective of semantic content of features).

The observed stronger association between rare features and the Minority leads

social psychologists to view illusory correlation as fundamental to stereotype formation

and societal patterns of discrimination and prejudice against minorities (e.g. Smith and

Alpert, 2007). This is because encounters with members of minorities are, by definition,

less frequent than encounters with members of the majority for the population at large,

and because there are good reasons to assume that negative behaviours are less frequent

than positive behaviours. This pattern is not limited to social categories, however, but

occurs in just the same way when categories are shapes and features are colours (Primi

and Agnoli, 2002), when the categories are letters and the features are shapes (Fiedler

and Armbruster, 1994), or when categories are different types of coins and features are

marks on those coins (Kareev, 2000).1

1Note that this association only holds when participants are presented with an actual sample of items:
if people are simply shown a contingency table as in Table 1, illusory correlation does not occur.
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Table 2

Proportion and count of features in samples from categories A, B, C and D in Van Rooy et al.

(2013), Experiment 1, alongside participant choice probabilities and normative probabilities.

Feature

Sample

Proportion

Sample Count Participant choice

probability

Normative population

probability

(Rule of Succession)

A B C D A B C D A B C D

Freq. 0.67 16 8 4 2 0.62 0.53 0.53 0.62 0.65 0.64 0.63 0.75

Rare 0.33 8 4 2 0 0.38 0.47 0.47 0.38 0.35 0.36 0.37 0.25

regression 0.05 0.14 0.14 0.38 0.02 0.03 0.04 0.25

Note. For the smallest sample, D, the rare feature never occurs: has a sample proportion of 0. The

‘Regression’ row shows the difference between participants’ choice probabilities for features and the

actual proportion in the observed sample (first block), and similarly the difference between the

normative probability for features and the actual proportion in the observed sample (second block).

Participants’ estimates show illusory correlation (regression), with the strength of the effect increasing

as sample size falls. Normative population probabilities calculated from the Rule of Succession show

the same pattern.
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This pattern of association can be described in terms of regression towards 0.5, the

center-point of the probability scale: in illusory correlation, participants’ judgements are

regressive (closer to 0.5) compared to the observed sample proportions, with this

regression being stronger for judgements about the Minority than the Majority (e.g.

Fiedler and Unkelbach, 2014). We see just this pattern in Hamilton and Gifford’s data

in Table 1, for example. This pattern of regression seems to hold, not just for the

two-category Majority/Minority situation investigated by Hamilton and Gifford (1976),

but in situations involving multiple categories. Van Rooy et al. (2013), for example,

found similar patterns of illusory correlation in an experiment where participants saw

statements describing 4 categories of people (A, B, C, D) with different numbers of

members of each group (24 members of category A, 12 members of category B, etc.).

Positive behaviours occurred more often for each category (frequent features) and

negative behaviours occurred less often (rare features). Results showed a similar

regressive pattern of illusory correlation, with regression effects being weaker when the

size of the sample is large, and being stronger when the size of the sample is small (see

Table 2). The underlying assumption in this research is that such patterns of regression

represent a systematic deviation from normatively correct rules of probabilistic

reasoning. In the next section we show that this assumption is incorrect.

Rational inference in frequency-based correlation

Studies of frequency-based illusory correlation ask participants to make a

probabilistic inference from an event’s probability in a sample to that event’s probability

in the population overall. How should such an inference be made? Given a sample of

size N drawn from a given population, and given that some event A occurs K times in

that sample, what is the optimal, normative, estimate for the population probability
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P (A) (the probability of A in the population from which the sample was drawn)? In

work on illusory correlation the implicit assumption seems to be that the normatively

correct probability estimate for A, given a sample of N items containing K A’s, is equal

to the sample proportion

Pr(A) = K

N
(1)

This assumption implies that, if we have two samples (a Majority and a Minority) with

the same sample proportion Pr(A), then the correct inference is that those samples were

drawn from populations with equal population probabilities P (A): that there is no

correlation between feature and sample category.

This assumption is fundamentally incorrect. To see why informally, consider an

extreme case, where you are shown a sample of 2 items (neither of which are instances of

A) that come from one population, and a sample of 20 items (none of which are instances

of A) that come from another population. The sample proportions in both cases are

Pr(A) = 0. Is it correct to conclude that A has a probability of 0 in both populations?

Obviously not: the fact that A did not occur in a sample of 2 items does not allow us to

conclude that A will never occur in the population from which the sample was drawn. Is

it correct to conclude, on the basis of these two samples, that A has the same

probability in both populations? Again, obviously not: for example, P (A) = 0.25 could

reasonably hold in the first population (the probability of drawing a sample of 2 items

neither of which are A, from a population where P (A) = 0.25, is (1− 0.25)2 = 0.56; a

more than 50% chance), but P (A) = 0.25 is extremely unlikely to hold in the second

population (the probability of drawing a sample of 20 items, none of which are A, from

a population where P (A) = 0.25, is (1− 0.25)20 = 0.003; a less than 1% chance).

Given a sample of N items, K of which are A, what, then, is the optimal

normative estimate for the population probability of A? We first investigate this in a
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Algorithm 1 Average generating probability for samples of N events containing k A’s

function Sample(p,N) // p:probability of A; N :sample size

k ← 0

for i← 1 to N do

q ← uniform random number in [0 . . . 1] // generate random number.

if q < p then // event A has occurred.

k ← k + 1 // increment count.

end if

end for

return k // return number of A’s in sample.

end function

function Probabilities(N) // N : sample size

for k ← 0 to N do // Pk: list of probabilities that

Pk ← [ ] // generate samples containing k A’s.

end for

for i← 1 to 10, 000 do // For each cycle, generate a random

p ← uniform random number in [0 . . . 1] // probability p for event A.

K ← Sample(p, N) // Draw a random sample.

PK ← p // Add generating probability p

end for // to list PK

for K ← 0 to N do

Pr ← K/N // Pr: Sample proportion.

P ← Mean(Pk) // P : mean generating probability

Print(K, Pr, P ) // for samples containing K As.

end for

end function
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direct and simple way, via computational simulation (see Algorithm 1). For a given

sample size N we run this simulation by calling the function Probabilities(N). This

function loops 10, 000 times, on each cycle randomly picking a value for the population

probability p = P (A) of some event A (p is drawn uniformly from the range 0 . . . 1

inclusive). On each cycle the function Sample(p, N) then draws a sample of N items

from the population with p = P (A), by randomly picking N values q, drawn uniformly

from the range 0 . . . 1 inclusive: cases where q < p are counted as an instance of event A

in our sample. Sample(p, N) then returns the number of cases which were counted as

an instance of event A in the drawn sample. For each K from 0 to N the function

Probabilities(N) has an associated storage list PK : on each cycle of our simulation

where the drawn sample contains K instances for event A, we add the probability

p = P (A) which generated that sample to the associated storage list PK . Each list PK

thus holds the set of population probabilities p = P (A) which generated samples of N

events containing K instances of A. After running this simulation for 10, 000 cycles, we

then display the average generating probability that produced samples of size

K = 0, K = 1, . . . K = N . This average generating probability represents the optimal

estimate for the underlying population probability P (A), given an observed sample of

size N that contains K instances of A. A reasoner who makes this estimate for the

underlying probability given the observed sample will be, on average, closest to the true

population probability that generated the observed sample.

Table 3 shows the output from this simulation for values N = 16, 8, 4. It is clear

from this Table that, for a given sample of N items containing K instances of event A,

the average probability P that generated that sample differs from the sample proportion

Pr = K/N . Specifically, the average generating probability (and so the normatively

correct and optimal estimate for the population probability, given the sample in
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Table 3

Average generating probability P and sample proportion Pr = K/N for samples

of size N containing K instances of some feature A, as generated by Algorithm

1.

N=16 N=8 N=4

K Pr P K Pr P K Pr P

0 0.00 0.06 0 0.00 0.10 0 0.00 0.17

4 0.25 0.28 2 0.25 0.30 1 0.25 0.33

8 0.50 0.50 4 0.50 0.50 2 0.50 0.50

12 0.75 0.72 6 0.75 0.70 3 0.75 0.67

16 1.00 0.94 8 1.00 0.90 4 1.00 0.83

Note. For a given sample of size N containing K instances of A, the average

generating probability P represents the average probability of A in the population

from which the sample was drawn; and thus represents the optimal normative estimate

for that population probability, based on the presented sample. Note that these

optimal population probability estimates precisely follow the Rule of Succession:

P = (K + 1)/(N + 2).
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question) is regressive towards 0.5 with the degree of regression increasing as the sample

size N falls. For some rare feature A (where Pr(A) < 0.5), this means that the

normative population probability estimate for A, given a smaller sample, will be greater

than the normative estimate for A, given a larger sample, even where Pr(A) is the same

across both samples: the rare feature will be more associated with the population from

which the smaller sample was drawn. This is just the pattern of association seen in

people’s judgements in frequency-based illusory correlation results. We cannot,

therefore, describe these patterns of association as illusory: they reflect a normatively

correct inference from the presented samples to feature/category associations.2

The Rule of Succession

Why do these patterns of association occur? They follow from a well-known rule

in epistemic probability theory, known as Laplace’s Rule of Succession. This rule states

that the normative estimate for the probability of A in a population, given a sample of

N events drawn from that population which contains K occurrences of A (and no

further information about the probability of A, beyond that sample) is actually given by

P (A) = K + 1
N + 2 (2)

This expression has been proved in various different ways, with the strongest and most

general proof being given by De Finetti (1937). As Zabell (1989), in a very interesting

presentation of the history and various proofs of the rule of Succession, notes, “[I]n order

to attack [De Finitti’s proof] one must attack the formidable edifice of epistemic

probability itself. Modern philosophy continues to ignore it at its own peril”. The

various mean generating probabilities shown in Table 3 precisely follow this rule.
2For consistency we will continue to refer to these patterns of association as ‘illusory correlations’.

This naming is intended as a label rather than a description: these ‘illusory correlations’ are not illusory.
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This rule undermines the standard assumption in frequency-based illusory

correlation research, which is that when participants judge the rare feature to be more

likely in the Minority than the Majority (and the frequent feature to be less likely), they

are reasoning incorrectly and are demonstrating a systematic bias away from the

requirements of normative reasoning. In fact, when we apply the Rule of Succession to

Hamilton and Gifford’s standard illusory correlation materials we find that the

normatively correct response is to conclude that the rare feature is more likely (more

probable) in the Minority population than in the Majority population; and similarly to

conclude that the frequent feature is less probable in the Minority population than in

the Majority population (see Rule of Succession values in Table 1). Similarly, when we

apply this Rule to Van Rooy et al.’s 4-category illusory correlation materials, we find

that the normatively correct inferred probabilities show the same pattern of regression

and illusory correlation seen in people’s estimates in that experiment, with the rare

feature having a higher normative population probability for categories with smaller

samples than for those with larger samples, and with a pattern of increasing regression

as sample size decreases (see Rule of Succession values in Table 2).

To avoid confusion or overgeneralisation, it is useful to carefully state the scope of

application of this rule. First, the Rule of Succession only applies in situations involving

probabilistic inference from an observed sample to an underlying or latent population. If

the task is to say something about a population, given a sample from that population,

the the Rule of Succession applies. If the task is to say something about the sample

itself (rather than about the population from which it was drawn) the Rule of

Succession does not apply. Second, the Rule of Succession only applies in situations

where we have absolutely no other information about the probability of A, apart from

the observed sample. Technically speaking, the Rule of Succession only applies when the
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prior probability of A, before the sample was observed, is uniform. In fact, however, the

pattern of regression seen in the Rule of Succession also arises for other many other

plausible prior probabilities (see Discussion).

It is worth noting that, in this Rule of Succession account of illusory correlation,

the effect will arise frequently for randomly selected samples from any population

containing a minority and a majority group, even when there is in fact no correlation

between group membership and feature occurrence. To see this consider, for example,

the situation shown in Table 4 where we have two large sub-populations of some overall

population U such that the Minority makes up 20% of U and the Majority makes up

80%, and where some rare feature occurs at exactly the same rate of 25% in both

Minority population and Majority population, so there is no association or correlation

between categories and features in U . Suppose we draw a random sample of 20 items

from U . Since we are taking a random sample from Bernoulli-distributed variables

(features are either present or absent: an item is either a member of a category or is

not), the count of occurrence of categories and features in our sample will follow the

Binomial distribution. In the Binomial distribution the most likely number of items in a

sample is simply equal to the sample size times the population probability of that item:

so a random sample of 20 items from this universe will most likely contain 0.2× 20 = 4

items from the Minority population, of which 0.25× 4 = 1 will have the rare feature,

and 0.8× 20 = 16 items from the Majority population, of which 0.25× 16 = 4 will have

the rare feature (see left block in Table 4). The population probabilities inferred from

these most likely samples via the normatively correct Rule of Succession, however,

indicate a correlation between category membership and feature occurrence (see right

block in Table 4). So the most likely sample from a population with no correlation

between features and categories will lead a rational reasoner to infer that there is a
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Table 4

Most likely sample of 20 items from a population U in which there is no correlation between

features and categories. Also shown are optimal population probability estimates inferred from

this sample via the Rule of Succession.

Feature Most likely sample of 20

items from U

Population probability of

features inferred from this

sample (Rule of Succession)

Majority

(80% of U)

Minority

(20% of U)
Majority Minority

Frequent (75% of U) 12 3 0.72 0.67

Rare (25% of U) 4 1 0.28 0.33

16 4 1.0 1.0

Note. In this example we assume that in population U there is no association between features and

categories: P (Frequent | Majority) = P (Frequent | Minority) = P (Frequent feature) = 0.75, and

P (Rare | Majority) = P (Rare | Minority) = P (Rare feature) = 0.25 in U . The most likely the category

and feature count for a random sample of 20 items from this population U is most shown in the left

block. The normatively correct population probabilities inferred from most likely sample of 20 items

from U , however, show a relatively strong association between category and feature occurrence.

correlation between features and categories in that population. Though this can appear

almost paradoxical, there is no paradox here. Instead, this result is simply a reflection of

the fact that, even if S is the sample most likely to be drawn from a population U , this

does not imply that U is the most likely population from which sample S was drawn.
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Degree of bias

Comparing the level of regression in normative probabilities produced by the Rule

of Succession against that the level of regression in participants’ probability estimates

(Tables 1 and 2) we see that, while participants’ estimates were regressive in the

normatively correct direction (that required by the Rule of Succession) producing

apparent illusory correlation, the level of regression was higher in participants responses

than in normatively correct population probabilities. Given this, a natural question is:

to what extent do people’s judgements in frequency-based correlation tasks follow the

normative probability values specified by the Rule of Succession? If people are asked to

estimate the probability of some feature A which occurs K times in a sample of size N ,

to what extent do their estimates agree with the normative population probability

P (A) = (K + 1)/(N + 2)? The literature on frequency-based illusory correlation does

not, as far as we can see, give us any way of answering this question. There are two

main problems. First, experiments in this literature measure correlation in various

different ways (frequency estimation, cued recall, positive or negative evaluation of

categories). These measures allow us to see whether participants form associations

between features and categories in such frequency-based tasks (they allow us to test

against the null hypothesis of no association, which researchers have assumed to be the

normatively correct response in frequency-based tasks). However, they do not provide

any natural way to test against the normative hypothesis, which is that judgements of

association should approximate the relationship described by the Rule of Succession.

This is because it is not clear how differences in frequency estimation, cued recall, or

category evaluation should be related to differences in estimated population probability.

A second problem arises because the degree of association between features and

categories in these experiments is typically measured in terms of averages across
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participants. In testing against the hypothesis that there is no association, this use of

averages across participants is appropriate. In testing against the hypothesis that there

is a certain degree of regression, whose extent is described by the Rule of Succession,

however, this use of averages is problematic. This is because averages in general are

themselves regressive, due to participant variability; and this regression, arising solely

due to averaging across participants, confounds attempts to measure or estimate other

forms of regression in judgement. Given these two problems, future work on people’s

judgement of frequency-based correlation should focus on responses at the individual

level, and should use tests that allow direct comparison between participant responses

and the normative requirements given by the Rule of Succession.

Explaining illusory correlation results

The two most general patterns seen in frequency-based illusory correlation are

consistent with the Rule of Succession: that judgements are regressive (closer to 0.5)

compared to observed sample proportions, with this regression being stronger for

judgements about the Minority than the Majority, and with this pattern holding, not

just for the two-category situation investigated by Hamilton and Gifford (1976), but in

situations involving multiple categories (Van Rooy et al., 2013). Here we very briefly

describe a number of other consistent results.

The degree of illusory correlation in people’s inference from samples is related to

sample size, with more illusory correlation (more regression) for smaller Minority

samples than for larger Majority samples. This observation suggests that the degree of

illusory correlation in people’s responses will increase in cases where the Minority or

Majority categories are ‘split’ into subcategories. A series of studies by Fiedler and

Armbruster (1994) investigated this by examining illusory correlation for standard
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Majority and Minority samples and for equal-size subcategories of those samples

(minorityA and minorityB, or majorityA and majorityB). Across these studies Fiedler

and Armbruster found that illusory correlation effects were reliably stronger for these

smaller subcategories than for the original categories, and that the strength of this effect

was inversely related to category size. Again, this follows the Rule of Succession, in

which degree of regression depends on sample size.

One aspect of the Rule of Succession is that the smaller the sample, the stronger

degree of regression in probabilistic inference from that sample. In the limit, this means

that regression (illusory correlation) is maximised when sample size is at its smallest:

that is, with a sample size of 1. This is consistent with results on ‘one-shot illusory

correlation’, where we find that people form strong associations between minority group

membership and rare behaviour after presentation of a single sample item of a member

of the minority exhibiting that rare behaviour (Risen et al., 2007).

Illusory correlation is often presented in terms of inference from group membership

to feature occurrence (inferring that members of the Minority group are more likely to

have a certain rare feature). Hamilton and Gifford (1976), however, investigated the

occurrence of illusory correlation in both in terms of inference from group to feature and

from feature to group. In both of their experiments Hamilton and Gifford asked

participants two questions, one about group membership, given behaviour (given

negative behaviour, which group did the person come from?), and one about behaviour,

given group membership (given a person is a member of the Minority, what is the

probability of negative behaviour?). Both forms of question revealed the same pattern of

illusory correlation (of regression depending on sample size). This pattern is consistent

with the Rule of Succession, in which illusory correlation arises solely due to frequency

of co-occurrence, and so applies equally to inference from category to feature and from
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feature to category.

The Rule of Succession also has implications for accounts of other biases in

probability estimation or judgement, especially those which involve probability

judgement from samples. One such bias is that of underconfidence in probability

estimation: the finding that people’s estimates for the probability of an event from an

observed sample (for which the sample proportion is known) tend to be systematically

biased away from the sample proportion and towards 0.5 (that is, systematically

regressive, compared to the sample proportion). Erev et al. (1994), for example, found

this pattern in a study where participants played a video game and then estimated the

probability of different events in that game: participants reliably overestimated the

probability of low-probability events and underestimated that of high-probability events.

Lichtenstein et al. (1978) found this pattern in a series of studies where participants

estimated the probability of different causes of death: participants reliably

overestimated low frequency causes and underestimated high-frequency causes. Teigen

(1973) found this pattern in a study where participants estimated the frequency of

occurrence of a given symbol in a presented sequence: participants reliably

overestimated the occurrence of rare symbols and underestimated the occurrence of

frequent symbols (for similar results see e.g. Poulton, 1973; Erlick, 1964). The direction

of this bias follows the regressive pattern of the Rule of Succession.

An alternative model of illusory correlation

Research on frequency-based illusory correlation has worked on the assumption

that, when participants judge a rare feature (which occurs at the same rate in a smaller

Minority sample and a larger Majority sample) to be correlated with membership in the

Minority category, those participants are demonstrating systematic error. Our primary
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aim has been to show that this assumption is mistaken: when we apply the Rule of

Succession to standard frequency-based illusory correlation materials we find that the

correct response is to conclude that the rare feature is more likely in the Minority

population.

In this section we turn to a secondary aim: that of presenting a new theoretical

model for illusory correlation, based on the Rule of Succession. There are currently two

major theoretical accounts of frequency-based illusory correlation. The first, Hamilton

and Gifford’s ‘distinctiveness’ account (e.g. Hamilton and Gifford, 1976; McConnell

et al., 1994; Sanbonmatsu et al., 1987), has a privileged position because it was

presented in the seminal paper by Hamilton and Gifford (1976) that first described

frequency-based illusory correlation effects. In this account the observed association

between the rare feature and the Minority is assumed to arise due to the enhanced

distinctiveness of the most infrequent combination: Minority members who have rare

features. Such infrequent and distinctive category/feature combinations are assumed to

be more salient and available to recall; so probability estimates for such combinations

are enhanced due to this memory advantage, producing illusory correlation effects.

While this proposal was widely accepted (leading to use of the term distinctiveness based

illusory correlation to refer to these frequency-based results), and is still given in

textbooks as the standard account of this form of illusory correlation, empirical evidence

in favour of this account is somewhat weak, with a range of research showing no

memory advantage for rare combinations, and with frequency-based illusory correlation

arising in cases where the distinctiveness account does not seem to apply (Fiedler, 2000,

1991; Kutzner and Fiedler, 2015). To give just one illustration, Table 2, for example,

shows significant regression - the characteristic feature of illusory correlation - for the

rare feature in the smallest category D, even though no instances of that feature in that
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category were seen by participants and so no memory advantage could apply.

The distinctiveness account of illusory correlation is based on a particular selective

bias in recall from memory. An alternative account, sometimes referred to as an

‘information loss’ or ‘incomplete learning’ account, assumes no such bias. Such accounts

have been implemented computationally in various different ways (e.g. Smith, 1991;

Fiedler, 2000, 1991). Speaking generally, there are two core proposals in these accounts.

The first is that learning increases with the number of trials, and so the proportion of

feature occurrence is better learned for the larger Majority category than for the smaller

Minority category. The second proposal is that incomplete learning, or ‘information loss’

for the Minority category produces regression in responses, explaining illusory

correlation results. This is consistent with the standard statistical idea that any error in

measurement of the relationship between two variables will produce regression (Fiedler

and Unkelbach, 2014).

Both theories of these are presented as explanations for why people infer

associations between rare features and minority categories from samples where, by

assumption, those associations are not present. Since our results show that, in fact, it is

normatively correct to infer such associations from such samples, these theories must

take on a different explanatory role: rather than standing as attempts to explain a

pattern of deviation from normative requirements, these theories instead stand as

possible explanations for why people’s judgements in illusory correlation tasks follow the

normative pattern specified by the Rule of Succession (at least to a first approximation,

in terms of direction of regression and increased regression with smaller sample size).

Our results lead us to propose an alternative theoretical account, where illusory

correlation arises because the cognitive mechanisms of probabilistic inference are in

some way designed or constructed to follow the normatively correct Rule of Succession
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for probabilistic inference from samples, but where these cognitive mechanisms are

affected by random noise or error. We have three primary reasons for making this

proposal. First, the ability to make correct probabilistic inferences (and so correct

decisions) is central to successful intelligent behaviour in an fundamentally

unpredictable world (Brunswik, 1955): the Rule of Succession describes normative

probabilistic inference from samples, and so we would a priori expect people’s

probabilistic inference to follow this rule in some way. Second and more specifically,

considering Tables 1 and 2 we see that the patterns seen in people’s illusory correlation

results follow the probabilities computed via the Rule of Succession, both in terms of

regression relative to the sample proportion and in terms of stronger regressive effects

for smaller (Minority) samples. These results are consistent with this theoretical

proposal. Third, this proposal would place illusory correlation within a theoretical

framework in which a range of other systematic biases and errors in probabilistic

reasoning are explained in terms of normatively correct mechanisms subject to random

noise (e.g. the ‘probability theory plus noise’ model; Costello and Watts, 2014, 2017,

2016a; Costello et al., 2018; Costello and Watts, 2018).

While the general patterns seen in frequency-based illusory correlation are

consistent with the Rule of Succession, Tables 1 and 2 suggest that the degree of

regression (the strength of these effects) in experimental studies of illusory correlation is

larger than that produced by that Rule (subject to the qualifications about

measurement described in the previous section). To account for this difference in degree

of regression it is enough to note that many forms of unbiased random error will

produce regression in probability estimation. We illustrate this point using a

computational simulation where judgement of the probability of an event in a given

category is computed by applying the rule of Succession to instances of that category
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recalled from memory, but there is a constant, unbiased rate f of random recall failure

(so that if there are N instances of some category in memory, on average some random

subset (1− f)N will be recalled). Such random error will reduce the sample size used

when applying the Rule of Succession to calculate event probability (if a sample of 10

items was seen, but the forgetting rate is 0.5, only 5 items from the sample will be

recalled and used in probability calculation). As we saw earlier, regressive effects are

greater for smaller sample sizes, and so random forgetting errors will increase regression

levels and magnify illusory correlation effects.

A simulation of this ‘Rule of Succession + random error’ model is described in

Algorithm 2. In this algorithm, function Estimate(K, N, f) takes as input a parameter

N , representing sample size, a parameter K, representing the number of sampled items

with feature A, and a forgetting rate f representing the chance of an sampled item

being randomly forgotten. For each instance in the category sample the function draws

a random number between 0 and 1: if that number is greater than f then that instance

is recalled, otherwise it is ‘forgotten’. The function keeps track of the number, m, of

instances which are recalled, and the number, c, of recalled instances which contain the

feature A. The function applies the Rule of Succession to these counts m and c, to

produce a probability estimate for the feature A in the population the category sample

was drawn from. Since forgetting is random, this Estimate will return randomly

varying population probability estimates for A. The function

AverageEstimate(K, N, f) draws 10, 000 of these estimates and returns their

average, giving the mean estimate for the population probability of A given a sample of

N events containing K A’s, and a forgetting rate of f .

Table 5 shows the probabilities produced by this ‘Rule of Succession + random

error’ model for the sample counts used in Hamilton and Gifford (1976), and Table 6
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Algorithm 2 ’Rule of Succession + random error’ probability estimation model.
// N : items in category, k items

function estimate(k,N, f) // with feature, f : forgetting rate

m ← 0 // m: count of recalled items

c ← 0 // c: count of recalled items

for i← 1 to N do

q ← uniform random number in [0 . . . 1] // generate random number.

if q > f then // This instance is recalled.

m ← m + 1 // increment count of items.

if i ≤ k then // this instance contains feature.

c ← c + 1 // increment count of features.

end if

end if

end for

return (c + 1)/(m + 2) // return probability estimate via

end function // (Rule of Succession).

function averageEstimate(K,N,f)

P ← [ ] // holds a list of estimates

for i← 1 to 10, 000 do

P ← estimate(K, N, f) // Add new estimate to list.

end for

return average(P) // Return average estimate

end function
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shows the probabilities produced for the sample counts used in Van Rooy et al. (2013).

The random forgetting error rate was set at f = 0.8 for the data in Table 5, and f = 0.6

for the data in Table 6 (these values were selected to illustrate approximate agreement

between simulated probabilities and participants’ probability judgements). Comparing

with the normative Rule of Succession probabilities given in Tables 1 and 2, we see that

these simulated probabilities follow the overall illusory correlation pattern, but with a

larger degree of regression: so giving results closer to participants estimated

probabilities in those experiments. These results suggest that illusory correlation results

such as those seen by, for example, Hamilton and Gifford (1976) and Van Rooy et al.

(2013) can be explained by assuming that probabilistic inference is a cognitive process

that in some way implements the rationally correct Rule of Succession, but that this

process is subject to random, unbiased noise or error in recall.

Implementing the Rule of Succession: working memory and noise

Of course, the idea that people estimate probabilities in a way that explicitly

follows the Rule of Succession (adding 2 to the denominator and 1 to the numerator in

sample-count ratios to produce probability estimates) seems cognitively implausible.

Standard models of memory (e.g. Dougherty et al., 1999; Bearden and Wallsten, 2004)

typically assume that event probability is measured proportionally, in terms of the

strength of response from memory-traces to a probe, with higher strength (and so higher

probability) when the event is frequent in memory and so many traces respond, and

lower strength (lower probability) when the event is rare and few traces respond. Such

proportional responses do not give access to numerator and denominator values directly

(only to their ratio), and so the Rule of Succession cannot be explicitly applied.

There are, however, cognitively plausible mechanisms that can produce or



Illusory Correlation 28

Table 5

Proportions, feature counts, and participant choice probabilities from Hamilton and

Gifford’s Experiment 1 (as in Table 1), alongside probabilities produced via the Rule of

Succession in a simulation with a constant, unbiased ‘random forgetting error rate’ of

f = 0.8.

Feature

Sample

Proportion

Sample

Count

Participant

choice

probability

Simulation:

Rule of Succession

+ random error

Majority Minority Majority Minority Majority Minority

Freq. 0.69 18 9 0.66 0.56 0.64 0.60

Rare 0.31 8 4 0.34 0.44 0.36 0.40

Note. Recall that normative probability values follow the illusory correlation pattern of

association seen in people’s judgements in this experiment (Table 1). ‘Rule of Succession +

random error’ probabilities also follow this pattern, but with an increased level of regression

(more closely matching participant’s choice probabilities).
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Table 6

Proportions, feature counts, and participant choice probabilities for features in categories A, B

C and D in Van Rooy et al. (2013), Experiment 1 (as in Table 2), alongside population

probabilities produced via the Rule of Succession + random error simulation (Pf) with a

constant, unbiased random forgetting error rate of f = 0.6.

Feature

Sample

Proportion

Sample Count Participant choice

probability

Simulation:

Rule of Succession

+ random error

A B C D A B C D A B C D

Freq. 0.67 16 8 4 2 0.62 0.53 0.53 0.62 0.63 0.60 0.58 0.61

Rare 0.33 8 4 2 0 0.38 0.47 0.47 0.38 0.37 0.40 0.42 0.39

regression 0.05 0.14 0.14 0.38 0.04 0.07 0.09 0.39

Note. Recall that normative probability values follow the illusory correlation pattern of association

seen in people’s judgements in this experiment (Table 2). ‘Rule of Succession + random error’

probabilities also follow this pattern, but with an increased level of regression (more closely matching

participant’s choice probabilities).



Illusory Correlation 30

approximate the Rule of Succession for such proportional measurements. For example,

consider the ‘probability theory plus noise’ model (Costello and Watts, 2014, 2016a,

2018), which assumes that people estimate the probability of some event A by randomly

sampling events (or traces) in memory and returning the proportion of instances of A in

the sample (the strength of response to A in the sample). Since processing is subject to

various forms of random error or noise, this model assumes that events, or memory

traces, have some chance d < 0.5 of responding incorrectly to a probe: there is a chance

d that a ¬A (not A) trace will incorrectly respond as A, and the same chance d that an

A trace will incorrectly respond as ¬A. Taking Pr(A) to be the sample proportion of A

(the proportion of traces containing A), with this form of noise the chance of a

randomly sampled event trace responding as A, and so the expected average value for a

noisy probability estimate of P (A), is

P (responds as A) = (1− d)Pr(A) + (1− Pr(A))d = (1− 2d)Pr(A) + d (3)

with individual estimates varying independently around this expected value.

This expression is regressive towards 0.5 relative to sample proportions Pr(A).

Are there values of d for which th.is expression will produce regression equivalent to that

required by the Rule of Succession? We can answer this by setting

(1− 2d)Pr(A) + d = (1− 2d)K

N
+ d = K + 1

N + 2

and solving for d. Some algebraic manipulation shows that this equality holds when

[d(N + 2)− 1](N − 2K) = 0

and so we see that if the rate of noise in individual memory-traces in a sample is

d = 1
N + 2 (4)
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then the noisy probability estimate obtained by measuring response strength (the

sample proportion) will be, on average, equal to the correct, normative population

probability (calculated via the Rule of Succession). An extension of the simulation

described in Algorithm 2 tested this proposal by modifying the function

Estimate(K, N, f) so that, rather than returning the Rule of Succession value

calculated from feature and category counts (after random forgetting), it returned the

feature-to-category proportion after both random forgetting and noisy counting (with

noise rate as in Equation 4). This simulation produced average probability estimates

that were essentially the same as those produced by the Rule of Succession calculations

shown in Tables 5 and 6, supporting the idea that the Rule of Succession’s regressive

effects can be produced by random noise. While random noise is typically seen as

detrimental to reasoning, leading to unwanted variation and error, this result suggests

an interesting possibility: that random noise could play a functional and adaptive role in

probabilistic reasoning, biasing responses in a way that follows the normatively correct

requirements of the Rule of Succession.

Consistency with previous results

As this model implements the Rule of Succession, it inherits that rule’s account for

various illusory correlation effects (effects of sample size, effects of category splitting,

symmetry between features and categories, ‘one-shot’ illusory correlation, etc), and for

other sample-based biases such as underconfidence.

In addition, this ‘Rule of Succession + random error’ account also can explain an

observed relationship between cognitive load in general (and memory load in particular)

and degree of illusory correlation. In this account, the greater the level of cognitive or

memory load, the higher the rate of random forgetting. Higher rates of random
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forgetting produce, in this model, greater levels of regression (greater illusory correlation

effects), and so this model predicts that illusory correlation will increase with cognitive

and memory load. A range of results support this prediction (see Fiedler et al., 1993, for

a review).

The relationship between the Rule of Succession and the regressive effects of noise

may also explain another bias: people’s tendency to exaggerate the degree to which

small samples resemble the population from which they are drawn (referred to by

Tversky and Kahneman, 1971, as the ‘belief in the law of small numbers’). We know that

random noise is present throughout the nervous system (e.g. Faisal et al., 2008). Given

a certain base rate of unavoidable random noise in probabilistic reasoning, the above

argument suggests an optimal corresponding sample size for probability estimation (and

hence for optimal decision-making under uncertainty). Inverting Equation 4, we see that

if the average rate of random noise in event responses is d, then the optimal sample size

for probability estimation (the size for which the sample probability will, on average,

match the normatively correct population probability given by the Rule of Succession) is

N = 1
d
− 2 (5)

As this equation shows, the optimal sample size N is inversely proportional to the noise

rate d (as the rate of noise increases, the optimal sample size falls), and so will tend to

be small for even relatively low rates of noise. For values of d around d = 0.1 – an

estimate for the median rate of noise in probability estimation from previous

experimental results (Costello and Watts, 2016a) and computational simulations

(Costello and Watts, 2017) – the optimal sample size N from Equation 5 is around 8, for

example. More generally, this equation shows that, in a noisy environment, the average

sample probability obtained from a small sample size will tend to resemble the true
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population probability more closely than that obtained from a larger sample: a result

which suggests that people’s tendency to exaggerate the degree to which small samples

resemble the population from which they are drawn (their ‘belief in the law of small

numbers’) may be explained as a rational response to random noise.

It is useful to give an example illustrating this effect. Suppose we have a sample of

8 events drawn from some population, of which 2 are instances of A (a sample

probability of 0.25). According to the Rule of Succession, the optimal estimate for the

population probability of A is
2 + 1
8 + 2 = 0.3

Suppose also that there is a rate of random noise or error d = 0.1 in identifying or

counting these items (one time in ten we will mistakenly count an A as ¬A or count a

¬A as A). Given this the average noisy sample probability (from Equation 3) is

(1− 2d)0.25 + d = 0.8× 0.25 + 0.1 = 0.3

and this average sample probability equals the optimal population probability estimate.

Now, by contrast, suppose we have a sample of 32 events drawn from some population,

of which 8 are instances of A (again, a sample probability of 0.25). According to the

Rule of Succession, the optimal estimate for the probability of A in this population is

8 + 1
32 + 2 = 0.26

while the average noisy sample probability (assuming a noise rate of d = 0.1) is, as

before,

(1− 2d)0.25 + d = 0.8× 0.25 + 0.1 = 0.3

Comparing these results we see that the average sample probability matched the

optimal estimate for the population probability for the smaller sample size N = 8, while
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it significantly overestimates the optimal estimate for the larger sample size N = 32:

sample probability estimates produced from the smaller sample better resemble the

population probability of the population from which they are drawn, possibly explaining

people’s belief in the ‘law of small numbers’.

As an aside, note that the optimal sample size for noise rates of around d = 0.1 is

close to Miller’s ‘magical number 7± 2’ for working memory capacity (Miller, 1956).

This leads to the (very speculative) idea that the capacity of working memory may, in

part, be dictated by the unavoidable presence of random noise: for decision-making

under uncertainty (that is, for probabilistic reasoning) in a system with a rate of noise

around d = 0.1, the optimal sample size for probabilistic judgement (that is, the sample

size for which noise moves sample probability estimates towards normatively correct

population probabilities) is somewhere in the region 7± 2. A somewhat similar

argument, proposing that working-memory size around 7± 2 in various ways optimises

the chances for detection of reliable correlations, is made by Kareev (2000).

Discussion

Frequency-based illusory correlation tasks ask people to judge the degree of

association between features and categories, given only a sample of category members

and no additional information beyond that sample. In such tasks people tend to

associate rare features with the Minority category and frequent features with the

Majority category, even though these features occur at the same rate in both categories

in the observed sample. This pattern of judgement represents a particular form of

regression dependent on sample size, and has typically been seen as a systematic pattern

of erroneous inference (Hamilton and Gifford, 1976). In this paper we have shown that

this form of association is a rational inference from samples with equal feature rates but
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different category sizes and no additional information, and follows the normatively

correct Rule of Succession.

Readers may have concerns over our use of ‘rationality’ here, since this word has

many different meanings (referring to utility maximisation in some contexts, internal

consistency in others, agreement with normatively correct rules in still others, and so

on) and has been the subject of vigorous debate for at least the last 50 years (see e.g.

Sturm, 2012). This question of the ‘rationality’ of illusory correlation is by no means

academic. Recall that frequency-based illusory correlation is seen by social psychologists

as fundamental to stereotype formation, discrimination, and prejudice against minorities

(e.g. Smith and Alpert, 2007). This is because illusory correlation will tend to associate

negative behaviours with people who are members of a minority (since negative

behaviours are typically rare, and illusory correlation causes people to associate rare

features with smaller samples). This relationship between sample size and negative

association is consistent with extensive social psychology research showing that

discrimination or prejudice against a given group is inversely related to level of contact:

the less contact you have with members of a minority group (that is, the smaller your

sample size ), the more likely you are to be prejudiced against that group. In a

meta-analysis of 515 studies investigating prejudice and group contact, for example,

Pettigrew and Tropp (2006) found that 94% of studies “show an inverse relationship

between contact and prejudice”.

As we have shown, this type of association between rare features and smaller

samples follows directly from epistemic probability theory, purely as a consequence of

differences in sample size. This suggests that prejudice against minorities may arise in

rational and unbiased reasoners, simply as a consequence of reduced contact with

members of a minority group. Does our argument, then, mean that such discrimination
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is rational? To answer this question, it is important to be clear about the precise

meaning of ‘rationality’ in the context of illusory correlation. The focus in illusory

correlation research is on people’s tendency to give (apparently) erroneous judgements

of association. A rational reasoner, in this context, is one who gives answers that

minimise error: in other words, answers are most likely to be correct and to reflect the

true probability of association. The Rule of Succession shows that that, when a reasoner

is required to make judgements about association in a population based on a sample

from that population with equal feature distribution but unbalanced category

membership ( fewer Minority members in the sample) and when that reasoner has no

further information beyond that sample, then the mathematically correct and hence

rational response is to judge the rare feature as more likely in the Minority than the

Majority population. Importantly, however, while the Rule of Succession provides an

explanation for such differential judgement of minority and majority groups (in terms of

rational reasoning from unbalanced samples), it does not provide any justification for

persistence in such judgement. On the contrary, the Rule of Succession tells us that

differential judgements of minority and majority groups are reliably influenced by

category imbalance in samples; the rational response is to be aware of this influence (a

form of ‘metacognitive’ rationality; Petty et al., 2007) and to therefore draw future

samples in a way that is systematically biased towards the inclusion of minority

members at a rate higher than the population rate.3 A sampling process that is biased

towards the inclusion of the minority is rational (again, in the sense of minimising error,

or producing answers that are most likely to be correct) because this sampling process

will equalise information available about minority and majority populations, and so

allows a more accurate and unbiased assessment of the relationship between group

3We’d like to thank Klaus Fiedler for this point about metacognitive rationality.
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membership and feature occurrence.

Of course, this ‘minimising error’ view of rationality in probabilistic reasoning is

only one possible perspective on human judgement. Numerous other perspectives are

available, which give different views on the problem of illusory correlation. For example,

a utility-maximisation analysis would require a rational reasoner to assign a cost to

making errors in judgements of association, and also to assign a cost to drawing further

samples from the minority and the majority population: rational behaviour, in such a

perspective would depend on the relationship between these three costs. The

relationship between illusory correlation and utility maximization is a important topic

for future work.

Another perspective on the relationship between the Rule of Succession and views

of rationality comes from considering the role of prior probabilities in estimation. The

Rule of Succession describes normatively correct probabilistic inference from sample to

population under the assumption of a uniform prior; that is, under the assumption that

prior to obtaining the observed sample, every possible population probability for a given

event was equally likely. This assumption of a uniform prior is rational in illusory

correlation tasks where we have no information at all about feature probability beyond

the presented sample: from the principle of indifference every possible prior probability

for a feature must be equally likely in such situations. Our simulations implement this

‘uniform prior’ assumption: in those simulations, population probabilities were selected

randomly, uniformly in the range 0 . . . 1; generating probabilities in those simulations

exactly matched the Rule of Succession.

What happens when this assumption of a uniform or ’flat’ prior does not hold? In

such cases we have reason to infer extra information about the prior probability

distribution, independent of the presented sample. We can consider two forms of
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non-uniform prior. The first form arises when the prior distribution is biased towards

the boundary values of 0 or 1 (when we have reason to think, before seeing any sample

data, that the probability of some feature A is more likely to be close to 0 or to 1 than

close to 0.5). Such prior distributions might be inferred when, for example, estimating

the probability of lethal risks (where we have a priori reasons, independent of observed

samples, for thinking that the probabilities in question are low). In such cases we would

not necessarily expect to observe the pattern of regression seen in the Rule of

Succession, because the prior distribution pulls probability estimates away from the 0.5

probablity centerpoint, potentially counteracting regressive effects.4

The second form of non-uniform prior we consider is one where the prior

distribution is biased towards the central probability of 0.5 (where we have good reasons

for thinking, before seeing any sample data, that the probability of some event or

feature A is more likely to be close to 0.5 than to be close to 0 or 1). For such prior

distributions we would expect to see a magnification of the pattern of regression, and

illusory correlation, seen with the Rule of Succession. This is because in these cases the

regressive prior distribution provides a further ‘pull’ towards the 0.5 probablity

centerpoint, adding to the regression arising via the rule of Succession. Interestingly,

such regressive prior distributions can be inferred by considering the link between

uncertainty and the allocation of attention by rational agents. Events or features with

higher uncertainty (that is, events or features whose probabilities of occurrence are

closer to 0.5) are a priori more informative, in an information-theoretic sense, than

those with lower uncertainty, and so should receive more attention. Events which almost

4It is worth noting, however, that certain non-uniform priors which are biased away from 0.5, such as

the well-known Jeffreys prior, will still produce regressive effects similar to those produced by the Rule

of Succession (see,e.g. Jaynes, 1968).
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never occur or which almost always occur, by contrast (those with probabilities near 0

or 1) convey almost no information and so should receive very little attention. A

rational agent will thus tend to allocate more attention to features or events whose

probabilities are closer to 0.5 and less to those whose probabiilties are far from 0.5, all

else being equal. Given this it is rational to assume that, if a given event or feature has

been selected for attention, then it will tend to be informative, and so will a priori be

more likely to have a probability closer to 0.5 than closer to 0 or 1 (a regressive prior

distribution). This, again, is a form of ‘metacognitive’ rationality: a rationality which is

aware of the role of informativeness in selecting events and features for attention, and

which assumes that prior probabilities are regressive towards 0.5 for that reason. Again,

whether or not this type of metacognitive reasoning has an impact on people’s

judgments in illusory correlation tasks is a topic for future research.

Conclusions

Our primary aim in this paper has been to show that the pattern of association

seen in frequency-based illusory correlation studies, widely seen as a significant and

systematic error in human reasoning, is not an error. Instead, this pattern of association

follows the normatively correct Rule of Succession, both in terms of the regressive

direction of judgements and in terms of the differential influence of sample size on this

regression. Further, the Rule of Succession is consistent with a range of other

experimental results on frequency-based illusory correlation. Conclusions about the

irrationality of human judgements of association derived from this frequency-based

illusory correlation research are thus called into question.

Given this, our secondary aim has been to present an alternative theoretical model

of people’s probabilistic inference in frequency-based illusory correlation tasks. This
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model sees human probabilistic reasoning as implicitly implementing the normatively

correct Rule of Succession from probability theory, via the regressive effects of random

noise. This model thus represents an application of a more general ‘probability theory

plus noise’ account, which sees human probabilistic reasoning as based on normatively

correct frequentist probability theory, but subject to random noise that causes

systematic biases (or in this case, produces responses that follow the Rule of

Succession). In previous work we have shown that this ‘probability theory plus noise’

account explains various different patterns of bias in people’s probability estimates for

both direct and conditional probabilities, and makes a number of novel predictions

about patterns of bias and agreement with probability theory for various probabilistic

expressions: predictions which are supported by experimental results (see Costello and

Watts, 2014, 2016b, 2017, 2016a; Costello et al., 2018; Costello and Watts, 2018). The

illusory correlation results we describe here extend this account, and suggest that many

aspects of human probabilistic judgement may be explained if we assume that people’s

reasoning is based on frequentist probability theory, but is subject to random noise or

error.

It is important to stress here that we are not suggesting people are consciously

aware of the equations of probability theory (or, indeed of the Rule of Succession) when

judging probabilities. Instead our proposal is that people’s probability judgements are

derived from a ‘black box’ that estimates probabilities by retrieving (some analogue of)

a count of instances from memory. Such a mechanism is necessarily subject to the

requirements of set theory and therefore embodies the rules of probability theory, and is

also subject to random errors in counting and recall, which produce systematic biases in

probabilistic reasoning. We see this probability module to be unconscious, automatic,

rapid, parallel, relatively undemanding of cognitive capacity and evolutionarily ‘old’.
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Support for this view comes from that fact that people make probability judgements

rapidly and easily and typically do not have access to the reasons behind their

estimations, from extensive evidence that event frequencies are stored in memory by an

automatic and unconscious encoding process (Hasher and Zacks, 1984) and from

evidence suggesting that infants have surprisingly sophisticated representations of

probability (Cesana-Arlotti et al., 2012). Other support comes from results showing that

animals effectively judge probabilities (for instance, the probability of obtaining food

from a given source) and that their judged probabilities are typically close to optimal

(Kheifets and Gallistel, 2012).

In terms of its application to illusory correlation, this approach is similar in some

ways to Fiedler’s ‘information loss’ account of illusory correlation (Fiedler, 1991, 2000),

because both accounts give a central role to regression (caused by some form of random

error) in explaining frequency-based illusory correlation. The primary theoretical

difference between these two accounts lies in the functional role that regression plays. In

Fiedler’s information loss account, regression plays a negative role, causing bias and

error in people’s probabilistic reasoning and moving people’s judgement away from the

normatively correct responses. In our account, by contrast, regression can play a

positive role, correcting proportional probability estimates and moves them towards the

normatively correct ‘Rule of Succession’ value. We hope that an understanding of the

Rule of Succession will contribute to the ongoing debate in psychology on the rationality

or irrationality of human probabilistic reasoning.
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