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Abstract— Quickly and cheaply finding areas of interest 

within an image can save computationally intensive image 

processing in a vision pipeline. Existing region proposal 

networks are either too general (finding all objects in an image) 

or too complex (providing fine-tuned bounding boxes for 

classification). We propose a straightforward region proposal 

network that simply scores parts of the image based on whether 

or not they contain an object of interest. This calculation can be 

carried out quickly and for many applications including 

autonomous driving only a small fraction of the image area may 

contain objects of interest. We trained our network on an 

autonomous robot soccer dataset with similar characteristics to 

the popular KITTI autonomous driving dataset and achieved a 

recall greater than 95% while eliminating on average over 80% 

of the image area from further processing. 
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I. INTRODUCTION 

Real world image processing for tasks like autonomous 
driving, pedestrian detection, and service robots require 
solutions that are real-time capable. State-of-the-art deep 
learning techniques [1], [2] are computationally expensive and 
difficult to run in real-time without powerful GPUs. Quickly 
searching an image for a region of interest can eliminate the 
need to carry out extensive and expensive image processing 
on regions of the image where no objects of interest are 
present [3]. In many real-world problems, large areas of the 
image contain no objects of interest and hence no regions of 
interest for object detection. In autonomous driving, typical 
examples of this would be areas of empty road or sky. Quickly 
identifying the regions of interest (for object detection) within 
a given image can massively reduce the computation required 
to process an image.  

In standard region proposal networks, regions are 
proposed with bounding box coordinates and a score 
indicating how likely it is that the bounding box contains an 
object [4]. This region proposal approach generates multiple 
overlapping bounding boxes as outputs, each of which are 
subject to further processing (e.g. for classification). 
Furthermore, these region proposal networks typically 
produce 103 proposals for a given image [3]. This leads to 
substantial processing being required further on in the image 
processing pipeline. In contrast to this we propose a simpler 
region proposal network that uses a fixed grid as the output 
and where each cell in the grid is activated only if an object of 
interest intersects with the cell. 

Our straightforward region proposal network has the 
advantage that there will never be any overlapping regions 
proposed. Furthermore, the maximum number of proposals is 
N2 where N is the side of the grid at the output layer. In this 
work we will analyse a popular deep learning autonomous 
driving KITTI dataset [5] to demonstrate that large portions of 
real-world image processing tasks contain little information. 

We will then show that this property is also reflected in our 
real-world dataset for autonomous robot soccer [6]. 

The remainder of this paper will cover existing work in the 
literature in Section II. We outline our proposed approach in 
Section III. Section IV details our results and Section V 
presents our conclusions. 

II. RELATED WORK 

Before region proposal networks, object detectors relied 
on the well-known sliding window paradigm [7], [8] where a 
classifier would be run in every candidate image window. 
Sliding window classifiers are exhaustive, requiring around 
104-105 windows per image at a single scale, with the number 
of windows increasing by an order of magnitude for multi-
scale detection. The sliding window approach was acceptable 
provided that the classifier to run on each window was 
efficient [7] however modern object detectors use 
Convolutional Neural Networks [9] where the sliding window 
paradigm is much less computationally feasible. 

RCNN replaced the sliding window paradigm with 
Selective Search [10]. Selective Search has no learned 
parameters and greedily merges superpixels to generate 
proposals. Selective search parameters are manually tuned for 
best performance. Similar and faster methods than Selective 
Search are Bing [11] and EdgeBoxes [12]. Bing uses a simple 
linear classifier trained over edge features and applied in a 
sliding window manner. EdgeBoxes also starts from a coarse 
sliding window pattern but builds on object boundary 
estimates and adds a subsequent refinement step to improve 
localisation. In both Bing and EdgeBoxes no parameters are 
learnt. The above proposal methods reduce the number of 
proposals from selective search from 106 proposals down to 
around 103 proposals. Furthermore, these methods are class 
agnostic detectors and work to propose any possible object. 
However, it has been shown that similar performance to the 
Bing method can be achieved without looking at the image. 
This image independent method, CrackingBing [13] achieved 
similar performance to Bing using combinatorial geometry 
and exploiting the evaluation framework used to score 
proposal networks. 

When using class agnostic detectors, all objects are 
proposed for processing. Many real-world systems require 
proposals only for objects of interest to the application for 
efficient vision pipelines. For the problem of autonomous 
driving as few as two distinct classes for car and pedestrian  
are considered [5]. Deep Learning approaches can be used to 
train region proposal networks specific to a given problem. In 
Faster RCNN, the Selective Search algorithm was replaced by 
a Region Proposal Network [14] which was trained on the 
same dataset as the rest of the vision pipeline. The Region 
Proposal Network used in Faster RCNN used a state-of-the-
art CNN [15] to generate proposals and shared the 
convolutional features extracted from the network for both the 



region proposal and subsequent classification parts of the 
pipeline. 

The Region Proposal Network in Faster RCNN is not class 
agnostic and is trained to propose regions for specific object 
classes. However it uses a computationally intensive CNN on 
the whole image. Unlike the Region Proposal Network in 
Faster RCNN, we propose a lightweight computationally 
inexpensive CNN for Region Proposal. By using a lightweight 
CNN in the early stage of the vision pipeline we can reduce 
the unnecessary computation on parts of the image where no 
objects are present. Our proposed network only outputs 
regions of interest in an image whereas Faster RCNN’s 
Region Proposal Network proposes bounding boxes. Faster 
RCNN’s Region Proposal Network operates on convolutional 
features generated by a state-of-the-art CNN [15] which runs 
at least 8×slower than the most computationally intensive 
YOLO network [2]. 

III. PROPOSED APPROACH 

Our proposed approach depends on the hypothesis that in 
many real-world image processing problems only a small 
percentage of a given image actually contains an object or 
region of interest. To examine this, we first perform an 
analysis of a real-world autonomous driving dataset along 
with a dataset from a robot soccer problem. After this we give 
an overview of our proposed network for the region proposal 
problem. 

A. Problem Analysis 

In real world vision problems only a fraction of an image 
may contain regions of interest for a given problem. This 
includes problems such as autonomous driving where images 
contain areas of empty road, buildings or sky. The KITTI 
dataset [5] is a representative dataset used to evaluate object 
detection for the autonomous driving domain. Analysis of the 
ground truth data for the KITTI dataset indicated that the mean 
object area coverage of the image was 9%.  

We performed the same calculation on our own SPL 
dataset for autonomous robot soccer [6], which consists of 
4,140 images containing 12,048 object instances (3,973 ball, 
3,944 robot, 2,534 goal post, and 1,597 penalty spot). The 
dataset was gathered from a range of Nao robot camera image 
logs in various locations and lighting conditions including our 
lab, RoboCup2016 indoor and outdoor, and RoboCup 2017. 
The SPL dataset’s mean object area coverage was 7% which 
was similar to the KITTI measure. 

Our network outputs a grid where each cell contains an 
objectness score for the cell. Any grid cell which intersects 
with the ground truth bounding box of an object should be 
detected as an object. The size of the grid cells used for the 
output affects the total area proposed as containing an object, 
with larger grid cells resulting in more of the image being 
detected as shown in Figure 1. Our proposed region proposal 
network takes an input image size of 288×288 pixels which is 
used in state-of-the-art object detectors [2]. By using pooling 
layers with a 2×2 kernel and a stride of 2, various output grid 
sizes can be used as detailed in Table I. 

 

 

 

 

TABLE I.  OUTPUT GRID SIZE FOR VARIOUS POOLING LAYERS 

Input Size 

Number 

of 

Pooling 

Layers 

Spatial 

Reduction 

Output 

Size 

288×288 1 2× 144×144 

288×288 2 4× 72×72 

288×288 3 8× 36×36 

288×288 4 16× 18×18 

288×288 5 32× 9×9 

 

For this work we analyse networks with an output grid of 
18×18 and 9×9 as can be seen in Figure 1 for the KITTI dataset 
and Figure 2 for our SPL dataset.  

The area of image covered by ground truth region 
increases as the grid cell size increases as can be seen in Table 
II.  

TABLE II.  MEAN AREA COVERED FOR VARIOUS GRID SIZES 

Output 

Size 

Mean 

Area 
Min Area Max Area Std Dev. 

288×288 7% 0.06% 93% 9% 

72×72 8% 0.2% 94.6% 9.2% 

36×36 9% 0.3% 94.6% 9.5% 

18×18 11.2% 0.3% 95.7% 10.1% 

9×9 16.2% 1.2% 96.3% 11.6% 

 

B. Prosposed network 

The proposed region proposal network uses standard 
convolution and pooling layers, the network is modelled on 
the tiny YOLO architecture [2]. We chose the tiny YOLO 
architecture as a starting point as it is one of the object detector 
networks with a low computational cost, requiring a relatively 
small number of FLOPs for a forward pass through the 
network. The number of FLOPs is given by the following 
equation. 

  𝐹𝐿𝑂𝑃𝑆 =  2𝐻𝑊(𝐶𝑖𝑛𝐾2 + 1)𝐶𝑜𝑢𝑡  (1) 

where 𝐻 , 𝑊 , and 𝐶𝑖𝑛  are height, width and number of 
channels of the input feature map, 𝐾  is the kernel size 
(assumed to be symmetric), and 𝐶𝑜𝑢𝑡 is the number of output 
channels. 

 



 

 

 

Fig. 1. Analysis of area coverage for proposed region proposal network for 

KITTI dataset with ground truth shown in (a) and area coverage for an 18×18 

and 9×9 grid shown in (b) and (c) respectively. 

 

 

 

 

 

Fig. 2. Analysis of area coverage for proposed region proposal network for 

SPL dataset with ground truth shown in (a) and area coverage for an 18×18 

and 9×9 grid shown in (b) and (c) respectively. 
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For our networks we use the same architecture as tiny 
YOLO for the first 5 convolution layers with a reduced 
numbers kernels in each layer. This common architecture is 
detailed in Table III. The final layers of our two networks 
differ to output grid cells at a 9x9 and 18x18 resolution. In 
practice this simply means removing one extra pooling layer 
to have a larger spatial dimension at the output layer. The final 
layers for Region Proposal 18 and Region Proposal 9 
networks are detailed in Table IV and Table V respectively. 
Comparing the computational load of both these networks to 
the tiny YOLO network trained for object detection on the 
same dataset, the Region Proposal 18 network results in a 6.1x 
reduction in computational cost while the Region Proposal 9 
network results in a 11.3× reduction in computational cost. 
The tiny YOLO network took 2.56 G FLOPs for one forward 
pass through the network. 

TABLE III.  COMMON LAYERS OF OUR REGION PROPOSAL NETWORKS 

Layer 

Type 

Kernel Size 

/ Stride 
Kernels Input Size FLOPS 

Conv 3×3 / 1 8 288×288×3 37.2 M 

Pool 2×2 / 2  288×288×8  

Conv 3×3 / 1 16 144×144×8 48.4 M 

Pool 2×2 / 2  144×144×16  

Conv 3×3 / 1 32 72×72×16 48.1 M 

Pool 2×2 / 2  72×72×32  

Conv 3×3 / 1 64 36×36×32 47.9 M 

Pool 2×2 / 2  36×36×64  

Conv 3×3 / 1 128 18×18×64 47.9 M 

Total    229.5M 

TABLE IV.  REGION PROPOSAL 18 NETWORK ARCHITECURE 

Layer 

Type 

Kernel Size 

/ Stride 
Kernels Input Size FLOPS 

Common 

Layers 
  18x18x64 229.5 M 

Conv 3×3 / 1 256 18×18×128 191.1 M 

Conv 1×1 / 1 1 18×18×256 0.167 M 

Total    420.8 M 

TABLE V.  REGION PROPOSAL 9 NETWORK ARCHITECURE 

Layer 

Type 

Kernel Size 

/ Stride 
Kernels Input Size FLOPS 

Common 

Layers 
  18x18x128 229.5 M 

Pool 2×2 / 2  18×18×128  

Conv 3×3 / 1 256 9×9×128 47.8 M 

Conv 1×1 / 1 1 9×9×256 0.042 M 

Total    227.3 M 

To train the region proposal network, we optimize the 
straightforward loss function: 

𝐿𝑜𝑠𝑠 =  ∑ 𝕀𝑖
𝑜𝑏𝑗

(𝑂𝑖 −  �̂�𝑖)

𝑠2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ 𝕀𝑖
𝑛𝑜𝑜𝑏𝑗

(𝑂𝑖 − �̂�𝑖)

𝑠2

𝑖=0

 

where s represents the spatial dimension of the output image, 

𝑂𝑖  represents the predicted objectness score and �̂�𝑖  represents 

the ground truth object score. 𝕀𝑖
𝑜𝑏𝑗

and 𝕀𝑖
𝑛𝑜𝑜𝑏𝑗

 is one whenever 

an object is present or not present for cell i. For a ground truth 

for a given cell i, �̂�𝑖  is 1 if the cell intersects with the ground 
truth bounding box of an object and 0 is the cell does not 
intersect with any object. 

C. Post Network Processing 

The output of our network is an objectness score for every 
output cell which can result in irregular contiguous regions 
being outputted as a single proposal. Most standard state-of-
the-art image processing techniques [1], [2], [9], [14], [15] use 
a rectangular image as input and to facilitate this we expand 
out contiguous blobs to a rectangular shape for further 
processing. This expansion is done by creating a bounding box 
out of the edgemost sections of a contiguous region. 
Expanding a region in this way creates more of the image 
required for further processing but also increases the recall of 
the entire proposal network. Figure 3 shows the results of 
expanding out contiguous connected cells into rectangular 
sections. 

 

 

Fig. 3. Post network processing to expand connected regions into 

rectangles. The green area shows detected cells and the blue are shows 

detected cells added after expanding connected cells. 

 

IV. RESULTS 

We trained both our networks for 100,000 iterations with 
a batch size of 32 (determined by the computational 
capabilities of the evaluation platform). For training, our 
dataset is divided into training, validation, and test sets in an 
80:10:10 split. The precision recall curves for both trained 
networks can be seen in Figure 4. The precision recall curve 
is calculated for confidence ranges from 5% to 95% at 
intervals of 0.5%. Both networks tended to score higher on 
precision than on recall. At a confidence threshold of 50%, 
Region Proposal 9 has a precision of 94.7% and a recall of 

 



90.2%. Region Proposal 18 scores similarly with 94.4% 
precision and 89.9% recall. Choosing a lower confidence 
threshold increases network recall but decreases network 
precision with Region Proposal 9 reaching 92.8% precision. 

 

 

Fig. 4. Precision Recall curve for Region Proposal 9 and Region Proposal 

18 networks. 

Expanding detected cells into rectangular regions to allow 
for further processing increases the recall but decreases the 
precision. It also increases the area of the image which is then 
subject to further processing. The precision recall curve for the 
expanded regions are shown in Figure 5 which were 
calculated for confidence ranges from 10% to 90% at intervals 
of 10% for the Region Proposal 9 network. The recall for 
Region Proposal 9 reaches 95.2% at a confidence of 10% 
however precision drops to 80.2%. 

 

 

Fig. 5. Precision Recall curve for Region Proposal 9 network with detected 

cells expanded to rectangular regions. 

The size of proposed regions of interest directly affects the 
computation required for further processing. An efficient 
region proposal network should score high on recall while 
proposing as small an area of the image as possible. The 
smallest region of interest area that it is possible to propose 
while having high recall is determined by the ground truth 
bounding box. The number of cells in the output grid also 
determines the minimum area that can be proposed while 
encompassing the ground truth bounding box. Our results 
indicated that a 9×9 output grid resulted in an average of 

15.6% of an image being proposed as object cells while an 
18×18 output grid proposed just 10.8% of the image area on 
average.  

However, subsequent processing generally requires 
rectangular regions and therefore the smallest rectangle that 
can encompass the adjacent object cells must be generated. 
For the Region Proposal 9 network (with a 9×9 output grid) 
this increased the area of proposed regions from 15.6% to 
18.6% on average. The computational load of the region 
proposal network can be traded against the total area of 
proposal regions by changing the output grid size. The Region 
Proposal 9 network has a lower computational load than the 
Region Proposal 18 network but yields proposals that cover 
more of the image area. When the region proposal network is 
incorporated in a full vision pipeline an optimisation of total 
computational load can be performed by trading 
computational load in the region proposal network (which is 
affected by output grid size) to computational load in the 
remainder of the pipeline (which depends on total area of 
regions to be processed further). 

V. CONCLUSION 

In this paper we have proposed a straightforward region 
proposal network for task specific image processing problems 
where only a small area of the image contains objects of 
interest which is a problem encountered in real world data sets 
including those for autonomous driving. Our proposed 
solution can has a recall of 95%,a precision of 80%, and 
proposes an average image area of 18.6%. For region proposal 
networks, a higher recall is more important than a higher 
precision as precision can be improved with further processing 
but recall cannot. Our network uses 11.3× fewer FLOPs than 
the tiny YOLO network while performing inference. 
Nevertheless, the tiny YOLO network performs full object 
detection and processes the entire image in one CNN. 
Although our approach only proposes regions of interest and 
must be integrated in an image pipeline that subjects proposed 
regions to further processing, it offers the possibility of faster 
object detection than tiny YOLO because it uses less than 9% 
of the computation of tiny YOLO. This leaves over 91% in 
computational bandwidth to process just 18% of the image. 
Therefore, less computation should be required to perform 
object detection overall and this is a direction of our future 
work. 
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