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Abstract 

 

Intrinsically disordered proteins (IDPs) and regions (IDRs) are defined as proteins, or 

proteins’ regions, that lack a stable 3D structure. The nature of the IDP(R)s amino acid 

residues and their sequence prevents these systems from folding. IDPs and IDRs are 

ubiquitous in biology, playing many different roles that range from mechanical, see 

for example elastin, to scaffolding the structure of macromolecular assemblies, such 

as the XPA in the Nucleotide Excision Repair (NER) pathway, to regulatory and 

signalling functions, such as p53 and short linear motifs (SLiMs)-containing regions. 

Trying to understand the relationships between structure and functions in these highly 

flexible and dynamic systems is rather challenging, because their intrinsic flexibility 

makes them extremely difficult to characterize experimentally through structural 

biology methods, such as X-ray crystallography, NMR, or Cryo-EM. Indeed, the 

actual classification of protein domains as “intrinsically disordered” derives from the 

inability of determining 3D atomic coordinates from experimental sources. According 

to the dogma underlying the whole field of structural biology, all the different 

functions that IDP(R)s are key player in should be linked to their structure, however 

this structure is undecipherable within the experimental timescale. The overarching 

design of my thesis work was to understand these structure-to-function relationships 

in specific IDP(R)s by molecular simulation techniques. My main goal was to 

understand how different levels of residual secondary structure propensity in specific 

IDP(R)s systems of importance in health and disease can explain their macroscopic 

function and more specifically, how structural disorder can regulate molecular 

recognition at the atomistic level of details. Molecular simulation techniques have now 

come to age and are well suited to play a starring role in structural biology, not only 

as a support for experimental methods, but also as equal partners and/or as the primary 

research tool for discovery. In this thesis I show how different molecular simulations 

techniques can be successfully used for discovery in the structure and function of 

IDP(R)s a) on their own, b) as an equal partners to experiments, c) as tools to 

understand experimental data and d) for the ad hoc design of new experiments. More 

specifically, we found that in many systems, namely in XPA and in the p53 and ECSIT 

C-terminal domains, molecular recognition can be explained in terms of a distinct 

residual secondary structure propensity, which results in an enrichment of the 
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disordered conformational ensemble with secondary structure motifs that may act as 

molecular recognition features (MoRFs), or nucleation sites. According to this 

hypothesis, specific MoRFs are recognized by receptors and fold upon binding, within 

a scheme that lies between the two extremes of “conformational selection” and 

“induced fit”. As shown for XPA, the structure of these MoRFs obtained through 

computing can inform the design of macrocyclic systems that can be used to inhibit 

specific receptors or pathways in the absence of any other structural information, in 

view of the development of new diagnostic and/or therapeutic strategies. In this work 

I also show cases where the propensity to form MoRFs, also termed pre-structuring, 

is not required. More specifically, in the case of the very short SLiM LxCxE-

containing peptides, which can reach low nM binding affinities for the Retinoblastoma 

(Rb) protein, we have not detected any residual secondary structure propensity (or 

MoRF) in the unbound peptides. This particular study was conducted in partnership 

with experiments, through extensive sampling simulations for the bound and unbound 

peptides, in the presence of counterions or no counterions, and in the case of 

phosphorylation and in the absence of phosphorylation. Interestingly, in agreement 

with experiment, our simulations show that phosphorylation increases the level of 

polyproline II (PPII) structure in the unbound peptides, which has been also recently 

underlined as an important in signalling pathways. In summary, I believe that this 

research work on a few examples of structurally disordered systems contributes to 

shed some light into intrinsic disorder in biomolecular recognition and how intrinsic 

disorder should not be classed as one grey area, but instead viewed as incorporating 

many different shades of conformational degrees and diversity that modulate binding 

affinity through their structure, via enthalpy, and relative stability, via entropy. 
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Chapter 1: Introduction 

 

Proteins are an important class of biomolecules, responsible for driving the inner 

works of the cellular machinery through a multitude of biological processes. Proteins 

vary in size from short peptides, to large multimeric structures and, within their native 

environment, their primary structure, or sequence, determines uniquely their 

propensity to form stable 3D structures, or to fold. Over 50% of proteins encoded in 

the human genome contain regions that because of their amino acids sequence do not 

fold1,2, retaining a very high degree of structural disorder, or intrinsic disorder. 

Intrinsically disordered regions (IDRs) and intrinsically disordered proteins (IDPs) are 

characterized by a low sequence complexity with an over representation of hydrophilic 

and charged residues3,4. This trait has been be used quite reliably as a predictor of 

intrinsic disorder5–7. This intrinsic conformational dynamic hinders their 

characterization through experimental structural biology techniques, leading to sparse 

and underdetermined data that are very difficult or impossible to resolve. In the last 

few years computer simulations techniques have shown great promise in providing 

support for the interpretation of these data8–10. Molecular dynamics (MD) is a well -

established method for the study the structure and function of biomolecules in their 

environment11. However, simulations of large proteins and IDPs is restricted by the 

availability of computational resources, which leads to a fundamental limit to the size 

of the system which can be studied. This also limits the timescales that can be sampled. 

Recent advances in HPC have allowed the study of larger and more diverse systems 

and the ever-increasing sophistication of protein force fields, molecular simulations 

have shown the ability to play a leading role in discovery12–14. Some recent and 

important studies of IDPs include the study of a multichain system of elastin. Elastin 

is a completely unstructured protein, however its function and elasticity come from its 

lack of structure15. In the past, short simulations in the nanosecond range were carried 

out on monomer systems or with up to 6 peptides at most. Recent work carried out by 

Rauscher et al16 studied a system of 27 elastin chains to probe the aggregation 

dynamics showed that elastin exhibits a polymer melt-like disordered protein state. 

Other recent applications of MD in the field of IDPs include showing the disorder to 
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order transition of an IDP upon phosphorylation17. This is of particular importance to 

my work, see Chapter 5, where I discuss the phosphorylation of the LxCxE containing 

HPV E7 peptide and its increase in PPII content upon phosphorylation18. Other work 

has shown that phosphorylation can increase the propensity to form helical17 and beta 

structures19, aside from PPII20. The limitation of these studies is that their result may 

be force field-dependent and this dependence is difficult to assess. Many force fields 

were benchmarked from single chain systems and work well for structured proteins. 

However, they have been shown to be somewhat lacking for the study of IDPs, as most 

ensembles are too compact and, in the specific case of AMBER force fields, they may 

over stabilise helical motifs21. There has been significant effort recently to address this 

problem and to tailor forcefields to describe IDPs22. However, there are example that 

this tailoring may cause a force field to lose its ability and accuracy to describe folded 

proteins23. 

 

In this thesis I will present the work I have done using molecular simulation techniques 

to understand if and how different degrees of disorder facilitate the many different 

biological functions that proteins’ intrinsically disordered regions (IDR) perform. In 

particular my work has focused on determining the relative propensity of particular 

sequences, studied as peptides of different lengths, to form stable secondary structure 

motifs that can function as molecular recognition features (MoRFs). This ‘pre-

structuring’ propensity, terminology often used in this thesis to signify the tendency 

of some sequences to form MoRFs, facilitates the recognition and binding from 

specific receptors, therefore limiting the entropic penalty upon binding24. Within the 

framework of molecular recognition theories25, a structureless random coil would have 

to pay a maximum entropy penalty to fold-upon-binding after recognition, through a 

mechanism known as “induced fit”, especially if the bound conformation is a distinct 

secondary structure such as a helical motif. Meanwhile, according to the 

“conformational selection” theory the disordered peptide would adopt in solution sub-

structures identical to the final bound structure, minimizing the entropic penalty upon 

binding26–28. As we will discuss in detail, we found that in many of the cases we have 

studied, different degrees of pre-structuring exist and may play a role in recognition, 

within the framework of a mechanism that sits between conformational selection and 

induced fit.  The regulation of the level of conformational disorder through sequence 
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makes IDRs ideal counterparts in transient and reversible protein-protein interactions 

(PPIs), thus essential players in signalling and regulatory pathways29–31 and as 

scaffolding proteins, coordinating the reversible formation of macromolecular 

assemblies32,33. 

 

It has been estimated that approximately 50% of the human proteome contains at least 

one IDR34, yet these regions are rarely completely unstructured. As I will show in the 

work carried out in this thesis and as it has been shown previously35 varying degrees 

of prestructuring can be observed in the unbound structure of peptides in solution. This 

prestructuring, in terms of both its degree and type, may be inherently linked to the 

function of the peptide36. Since IDP binding affinities can range between high µm to 

low nm, it can be difficult to determine the role of prestructuring in general. However, 

within the framework of kinetic binding experiments, see Chapter 5, prestructuring 

should affect primarily Kon and have little to no effect on Koff. The average rate of 

association of a protein-protein complex is estimated in the 104  – 106 M-1s-1 range37. 

Association rates can be classified as either diffusion limited, or conformationally 

limited. Below approximately 105 M-1s-1 the association is said to be conformationally 

limited and above this limit association is diffusion limited38. The association rate of 

IDPs varies but commonly they have a value in the range of 107 M-1s-1 39. A study of 

the coupled folding and binding of the IDP cMyb transactivation domain, which binds 

the KIX protein in a helix, has residual helicity of 30% via CD37. The Kon for this 

reaction is 2.2 ± 0.2 107 M-1s-1. If the 30% helicity corresponds to a fully formed 

binding motif the Kon would still be an order of magnitude lower than the threshold 

for diffusion limited association for a solely conformational selection-based 

association. It has also been proposed37 that this protein may be suitable for probing 

the effects of disorder as there is little ionic dependence of the system. However, to 

my knowledge, no such study has been carried out so far. 

 

As I will discuss in Chapter 3, sub-structures sampled within prestructuring can be 

stabilized by restraining the peptide using the “stapling” synthetic methodology. This 

strategy can in principle improve the peptide binding affinity by locking the active 

conformation40. Stapled peptides have been used to target several different proteins to 

act as a chemotherapeutics, namely targeting the MDM2 protein, which is over 
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expressed in cancer cells and negatively regulates the p53 tumour suppressor41, and 

MCL-1 which binds to an apoptosis inducing protein42. A study of stapled peptides 

derived from IDPs showed an increase in binding affinity of up to 2 orders of 

magnitude compared to the wild type peptide increasing binding affinity from µm into 

the nm range40. 

 

Protein secondary structure motifs are defined by the values of the phi (φ) and psi (ψ) 

torsion angles as shown in Figure 1.1. where their relative stabilities can be  

represented on a Ramachandran plot43. 

 

Figure 1.1: Diagram showing the phi psi and omega dihedrals of the protein backbone. ω is almost exclusively 

180⁰ except in proline where it adopts an angle of 0⁰44 

 

In the example shown in Figure 1.2, the most thermodynamically stable secondary 

structure motifs correspond to φ/ψ torsions values indicated within specific regions 

delimited by contours on the diagram. During the study of different sequences 

discussed in details in the chapters ahead, we have found that MoRFs can be  

structures, i.e. hairpins and strands, or helical turns, more commonly  or 3-10 turns, 

all closely related to the structure of the natural ligand in terms of RMSD values. In 

the specific case of the LxCxE short linear motif (SLiM)-containing peptides, 
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discussed in detail in Chapter 5, we have found that phosphorylation dramatically 

enhances the propensity to form PPII structures. This is particularly interesting to us 

as it is in agreement with experimental data obtained for the hyperphosphorylation of  

Tau45. 

 

Figure 1.2: Ramachandran plot showing the phi/psi dihedrals values for α-helix (α) , β-sheet (β), 310 helix (310), 

left handed α-helix (Lα) and polyproline helix (poly P), which is comprised of polyproline type I and II46. 

 

The overarching question I have tried to explore throughout my thesis work is, how 

disordered are disordered proteins? A simple disregard of intrinsic disorder does not 

justify the abundance of IDPs47, the wide range of functions they have3 and their 

specificity in their particular function48. Is it possible that different degrees of disorder 

facilitate different molecular functions? Through the study of all the different cases 

discussed in this thesis, it transpires that the high flexibility characterizing IDRs does 

not translate into a complete lack of structure. Indeed, we and others have found that 

short-lived structured motifs can be found within the disordered ensemble and can be 

interconverting too quickly to be clearly identified experimentally47–49. For example, 

we have found that the scaffolding protein XPA N- and C- terminal tails, which are 

completely disordered, form distinct nucleation sites32,50–52 which serve as docking 
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points for repair enzymes and proteins in the formation of the molecular assembly 

responsible for the DNA-damage excision in the Nucleotide Excision Repair (NER) 

pathway, see Chapter 3. The extreme C-terminal region of the p53 tumour suppressor 

(p53-CTD) is also classified as intrinsically disordered, but targeted by many 

receptors, making it a classic example of promiscuous binding target. Our work, 

detailed in Chapter 4, shows that the p53-CTD has the distinct propensity to form 

different secondary structure motifs, each significantly populated for recognition. This 

degree of diverse conformational propensity confers the p53-CTD its binding 

promiscuity, while preserving its binding specificity to each receptor. In Chapter 5 

we look at a different type of ID system, namely the short-linear motif (SLiM) LxCxE 

embedded within different peptide sequences that bind specifically the retinoblastoma 

protein (Rb). SLiMs are defined as short sequences of residues, usually 3 to 15 

residues in length, which consist a few highly conserved residues interspersed with 

other less conserved or non-conserved residues53. Because of their short length,  

SLiMs generally bind in the lower µM range54, but in case of the LxCxE motif-

containing peptide the affinity for Rb reaches the nM range18. In this specific case we 

found that the LxCxE does not show any evidence of pre-structuring, possibly not seen 

as an advantageous feature due to the extremely short length of the sequence. Finally, 

in Chapter 6 we discuss another case, where the propensity for pre-structuring within 

the human vs. murine ECSIT C-terminal tails is actually a clear defining structural 

difference between the two sequences, and possibly the feature that explains their very 

different stabilities. Details on the physics and on the algorithms behind biomolecular 

simulation methods are discussed in Chapter 2. Finally, concluding remarks provide 

a brief summary of the work discussed in the chapters and attempt to frame all the 

different degrees of intrinsic disorder within a self-contained interpretation to the 

classic structure-to-function relationship dogma of structural biology.        
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Chapter 2: Computational Method 

 

In this chapter I describe the methodology which underpins the work I carried out in 

this thesis. In the first section I will discuss the basic of the molecular mechanics 

approach to atomistic simulations. Secondly, I will discuss the molecular dynamics 

simulation method and the options available to the user in setting up an MD 

simulation. Following that I will outline the use of enhanced sampling methods for 

MD, in particular REMD. Finally, I will discuss binding free energy calculations, and 

the application of MMGBSA as an end-point free energy calculation method. 

Molecular Mechanics and Empirical Force Fields. Within a molecular mechanics 

(MM) formalism, atoms are described in as ‘classical’ objects, namely as hard, 

impenetrable spheres, which behaviour and energetic properties are determined by an 

empirical force field. In a classical force field covalent (bonded) interactions, namely 

bond length and bond angles and torsions, are approximated using Hooke’s law, where 

torsions are treated as a sinusoidal function. Non-bonded interactions are divided into 

electrostatic and van der Waals (vdW), modelled using the Coulomb and Lennard-

Jones potentials, respectively. These contributions are summarised in Equation 2.1. 

 
𝑉(𝑟𝑁) = ∑

𝐾𝑖
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2.1 

Atoms in a force field are assigned an “atom type”, based on its nature and chemical 

bonding environment. The atom type is descriptive of the properties of that atom. In 

an empirical force field, bonding and non-bonding parameters assigned to each atom 

type are derived from experimental, from quantum mechanical (QM) calculations or 

from both and are developed to reproduce properties of the atoms. Most force fields, 

especially the best known and most widely used ones, such as AMBER99SB-ildn1, 

have been successful in simulating the properties of folded proteins. However, many 

of the force fields developed to describe folded proteins have been found not to be 
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suitable to describe unfolded, also known as disordered, proteins, which nowadays are 

a field of ever-increasing interest in science and biophysics. In fact, a study of the most 

popular force fields2 at the time, shows that simulations done using different force 

fields produced a high variability in chain dimension and that CHARMM363 during 

unusually long simulation times generated left-handed helices, which are rarely or 

never encountered in known protein structures deposited in the RCSB Protein Data 

Bank (PDB). During the past few years there has been an increased interest in 

developing force fields that can accurately reproduce the properties of intrinsically 

disordered proteins (IDPs). Among those, as part of the AMBER family of force fields, 

a99SB-disp4 has been developed specifically to simulate IDPs and has been obtained 

from a99SB*-ILDN1 by rescaling the protein torsion parameters, adjusting the 

carbonyl oxygen amide hydrogen Lennard-Jones potential and adjusting the protein-

water vdW interactions. Results show that the a99SB-disp forcefield appears to 

suitable for simulations of both, structured and disordered proteins4. From the 

CHARMM family of force fields, CHARMM36m5 has also been developed 

specifically to describe IDPs and it was obtained from the CHARMM36 parameter 

set, where the vdW radius of the backbone Cα was adjusted to eliminate the occurrence 

of left handed α-helices. The CHARMM36m parameters were specifically tuned to 

closely match the experimental SAXS and NMR data5. Several other forcefields that 

have been developed for IDP simulations6–10.  

In addition to parameter sets that describe protein atoms, the quality of a simulation 

greatly depends on the choice of water force field. Ideally, the chosen water model 

should be the one that was used in the parameterization and validation of the protein 

force field itself, however the use of different combinations of protein and water force 

fields, which are not necessarily compatible, or which compatibility has not been 

proven, are commonly used. The most common water models are transferable 

intermolecular potential with three points and 4 points models, known as TIP3P and 

TIP4P, respectively11. Models derived from these are also frequently used12,13. 

Because of the importance of the water parameters, there has been some effort in the 

development of water force fields specifically aimed at improving the accuracy of 

IDPs simulations. For example, work carried out on the unfolded N-terminal Zn-

binding domain of HIV-1 integrase13, showed that the TIP3P and TIP4P-Ew and 

TIP4P/2005 water models all generate overly compact ensemble averages with Rg 
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similar to the folded state rather than to the unfolded state. Based on these results, the 

TIP4P-D water model was developed to determine an increased dispersion interaction 

potential, which was found to alleviate the over compactness and to reproduces more 

closely the experimental results13 . As stated in a personal communication from Dr. 

Paul Robustelli first author on the original work13, a significant drawback of the 

TIP4P-D water model is that the increased dispersion interactions cause the unphysical 

unfolding of known structured motif. We also demonstrated this shortcoming of the 

TIP4P-D model with results shown in Chapter 5. As the reader will see in the 

following chapters, rather than testing each possible combination of parameter sets, 

for the work presented in this thesis we used a limited number of different force fields 

and of different combinations of water and protein models. Our choice has been 

fundamentally based on “the best reputed” force field to describe IDPs at the time the 

work was undertaken, where the study, as a whole, spans literally four years. 

Nevertheless, because of the ever-growing production of new IDP force fields and 

specifically tailored approximations, we would have never been able to simulate 

exhaustively every system we studied with every combination of IDP force field and 

water model. Rather we focused on performing exhaustive sampling and carefully 

treating the simulation conditions based on the information we had on the limitation 

of the models. As shown in Chapter 6, we find that through sufficient sampling two 

historically accurate force field even so slightly adapted for the correct treatment of 

intrinsic disorder, produce the same results. 

Molecular Dynamics. In the work presented in this thesis, we used both classical 

(conventional) molecular dynamics (MD), as well as enhanced sampling in the form 

of replica-exchange MD to perform conformational sampling. MD studies the 

evolution of a system over time. A force field is used to calculate the potential energy 

of such system using Equation 2.1, where the forces acting on the atoms are obtained 

through Equation  

2.2. 

 
𝐹 =  −

𝑑𝑉

𝑑𝑟
 

 

2.2 

As such, the accelerations of the atoms can be calculated using Newton’s second law 

of motion, shown in Equation 2.3 
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 𝐹 = 𝑚𝑎 2.3 

Where m is the atom mass. In order to calculate how the positions and velocities of 

particles change over time Newton’s equation of motion is to be integrated 

numerically. As an example of a classic integrator, the Verlet algorithm, which is 

derived from Equations 2.4 and 2.5, is shown in Equation 2.6, which uses positions 

and accelerations at time t and positions at time t-δt to calculate new positions at time 

t+δt. 

 
𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑣(𝑡)𝛿𝑡 +

1

2
𝑎(𝑡)𝛿𝑡2 + ⋯   2.4 

 

 
𝑟(𝑡 − 𝛿𝑡) = 𝑟(𝑡) − 𝑣(𝑡)𝛿𝑡 +

1

2
𝑎(𝑡)𝛿𝑡2 − ⋯   2.5 

 

 𝑟(𝑡 + 𝛿𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − 𝛿𝑡) +  𝑎(𝑡)𝛿𝑡2 2.6 

As an alternative, in the leapfrog integrator14, shown in Equations 2.7 - 2.8, the 

velocities are calculated at time t+1/2δt and the accelerations are calculated at time t, 

while the positions are calculated at r(t+δt) using r(t) and v(t+1/2δt), so that velocities 

and positions “leap-frog” over each other.  

 
𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝑣 (𝑡 +

1

2
𝛿𝑡) 𝛿𝑡 2.7 

 

 
v (t +

1

2
δt) = v (t −

1

2
δt) + a(t)δt 2.8 

The advantage of the Leap-Frog over the Verlet integrator is that the velocities are 

explicitly calculated, even if not at the same time as the positions. In this work we use 

a stochastic dynamics leap-frog integrator (sd)15, which includes into the integrator a 

friction term. Other integrators are available such as the velocity Verlet algorithm16 or 

the Runge-Kutta method17. As we sampled in the NPT ensemble, the system needs to 

be brought at target pressure and temperature, thus a suitable thermostat and barostat 

must be used to equilibrate and maintain the system at the desired temperature and 

pressure. The leap-frog stochastic dynamics integrator also acts as the thermostat and 
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we used a Berendsen barostat to regulate pressure. The Berendsen barostat has been 

shown to have issues with calculating compressibility, it has been described as “simply 

wrong” in simulations where the fluctuation of volume is important18 . As such, use 

of a different barostat, such as the Parrinello-Rahman barostat19, which more 

accurately calculates compressibility18, is recommended. All REMD simulations were 

run in the NVT ensemble, where we only required a thermostat.  

A crucial aspect of MD simulations is the size of the time-step as it determines how 

long the simulation will take to run based on the computational resources available. 

The time step must be an order of magnitude shorter than the shortest vibration of the 

system. This is usually the vibration of the covalent bond between a hydrogen and a 

carbon atom, which is approximately 10 fs, corresponding to a time step of 1 fs. Most 

simulation setups constrain this vibration allowing a longer time step of 2 fs. Two 

methods to constrain these bonds are the SHAKE20 and LINCS21 algorithms, 

implemented in AMBER and GROMACS MD packages,  respectively. While the use 

of a time step that is too short will be inefficient and slow down the simulations 

unnecessarily, provided LINCS or SHAKE algorithms are used, a time-step that is too 

long will cause overlap of the vdW spheres or large electrostatic repulsions that will 

lead to instability and erroneous behaviours.  

A general protocol for running an MD simulation begins with the choice of an initial 

conformation of the system under study, which would ideally correspond to an NMR 

or a crystal structure. In case of disordered peptides, we do not have experimental 

structures to rely on, therefore the peptide should be built in a chosen conformation or 

in the fully extended conformation. As described in each specific chapter,  we chose 

to build peptides in extended conformations and to use short simulations to generate a 

single, or multiple starting structures for the MD study. After the initial conformation 

is chosen, the target molecule(s) is placed in a box with water, where ions are added 

to neutralise the system and to reach the desired ionic strength. The positions of the 

water molecules and ions are then minimised, where the structure of the target 

molecule(s) is constrained. This step allows the water molecules to reorient themselves 

around the solute molecule. Different equilibration steps follow where the system is 

brought up to the desired temperature and pressure and the conformation is has reached 
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as stable starting point.   The production phase of the conformational search begins 

here when the properties of interest can be collected and analysed. 

Enhanced sampling. The two main factors that limit the accuracy of conventional 

sampling through MD simulations are the accuracy of the force field, which I 

discussed briefly earlier within the context of IDPs, and the computational cost of 

simulations that can greatly limit their duration thus search power. When the potential 

energy landscape of biomolecules presents many local minima with potentially large 

energy barriers separating them, sufficient sampling of the whole conformational 

space of the target biomolecule may require the implementation of enhanced sampling 

simulation methods. Enhanced sampling methods are a class of molecular simulation 

techniques developed to provide the target system with enough energy to escape 

potential energy wells and overcome barriers. Examples of these techniques include 

REMD22, metadynamics23, and umbrella sampling24. In this work we used REMD, for 

which the basics are outlined below.  

The REMD algorithm developed by Sugita and Okamoto22 is a widely used enhanced 

sampling method that combines the parallel tempering method used in Monte Carlo 

simulations25 with an MD approach. The general REMD protocol is summarised in 

Figure 2.1.  

 

Figure 2.1: Overview of temperature REMD, showing exchanges being attempted after every m simulation 

steps. Exchanges can only happen between adjacent temperatures26. 

REMD is usually implemented using temperature as an exchange variable, but other 

types exist, such as Hamiltonian replica exchange27. Within the framework of  

temperature replica exchange, multiple isothermal (conventional) MD simulations are 
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run in parallel sorted by increasing temperatures in the range (T0,T1,…,Tn-1). After 

every m number of steps the system attempts to swap replicas i and j with an 

acceptance ratio dependent on the difference in energy between replicas, as shown in 

Equation 2.9.  

 
min {1, e

(Ei−Ej)∗(
1

𝑘𝑇𝑖
−

1
𝑘𝑇𝑗

)
} 

2.9 

The larger the difference between temperatures the least likely will be the exchange 

probability. When deciding the temperature distribution, it is best to have a geometric 

series of temperatures, so that the ratio of temperatures between all pairs of adjacent 

replicas is the same and each replica should visit every temperature during the 

simulation28,29. The advantage of REMD over other enhanced sampling techniques is 

that it is relatively easy to set up compared to metadynamics and umbrella sampling, 

where one has to consider their collective variables and bias potentials carefully. A 

disadvantage of temperature REMD is the relatively high simulation cost, due to a 

large number of replicas being required for protein simulations in explicit solvent30. 

Binding Free Energy Calculations. In some of the studies presented in this thesis we 

have calculated binding free energies, see Chapter 5. Binding free energy calculations 

are extremely informative within the context of providing support in the interpretation 

and design of experiments. Free energy perturbation (FEP) and thermodynamic 

integration (TI) are highly accurate binding free energy calculation methods, but very 

computationally expensive and restricted to cases where the differences in 

conformation between initial (unbound) and final (bound) states are negligible. 

Because of the large conformational ensemble commonly sampled by IDPs, the use of 

binding free energy calculations based on perturbation theory is unfeasible in terms of 

convergence. End point methods such as MM/PB(GB)SA offer a more viable, less 

computationally expensive alternative for the calculation of relative binding affinities 

of interactions involving IDPs. In Chapter 5 we present work where binding free 

energies of short peptides were estimated by MM/GBSA. The general thermodynamic 

cycle on which the MM/GBSA approach is based is shown in  

Figure 2.2, with the corresponding contributions to the free energy shown in 

Equation 2.10.  
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 ∆𝐺𝑏 
𝑠 =  ∆𝐺𝑏 

𝑔
+ ∆𝐺𝑠𝑜𝑙 

𝐶 − ( ∆𝐺𝑠𝑜𝑙 
𝐿 +  ∆𝐺𝑠𝑜𝑙 

𝑅 ) 2.10 

The MM/GBSA calculation consists in three parts: 1) a molecular mechanics (MM) 

contribution that gives the total energy for the bonded and non-bonded interactions 

 

Figure 2.2: General thermodynamic cycle for MM/GB(PB)SA showing the ligand and receptor, and complex in 

the gas phase and solution phase. Also shown are the free energies of solvation of the ligand receptor and 

complex and the binding free energy of the complex in gas phase and solution phase31. 

 

from Equation 2.1, 2) the desolvation free energy calculated as a polar contribution 

given by solving the Poisson Boltzmann (PB) equation, or the generalised born (GB) 

equation, 3) the non-polar contribution to desolvation free energy is obtained from a 

linear equation which is dependent on solvent accessible surface area (SASA). The 

solvation binding free energy, in Equation 2.10, is calculated as the sum of these 

contributions, namely a gas phase enthalpic contribution from the MM forcefield and 

a solvation free energy contribution from the sum of the PB or GB free energy and the 

SA free energy. 
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Chapter 3: Conformational analysis of XPA67-80 peptide 

homologues and design of high-affinity macrocyclic XPA67-80 

derivatives  

 

3.1 Introduction 

The nucleotide excision repair (NER) pathway is responsible for repairing bulky DNA 

lesions, such as pyrimidine dimers caused by UV damage and crosslinked adducts 

caused by alkylating agents1. These lesions all destabilise the DNA double helix2. This 

damage is detected through stalling of RNA polymerase, which initiates transcription-

coupled NER (TC-NER), or through damage sensing proteins, which initiates global-

genomic NER (GG-NER)2. After damage recognition, both GG-NER and TC-NER 

proceed through the same pathway. NER begins with recognition of damage, followed 

by unwinding of the DNA surrounding the lesion and incision at both 3′ and 5′ ends. 

The lesion containing strand is then removed and  the missing bases are replaced and 

ligated2,3. The main steps leading to the damage excision in the GG-NER pathway are 

summarized in Figure 3.1. Helical distortions resulting from bulky DNA adducts  are 

detected by XPC–RAD23B complex and GG-NER is initiated2–4. As shown in Figure 

3.1, panel b, TFIIH, which is composed of two helicases XPB and XPD, is recruited 

by XPC–RAD23B to the damage site5. TFIIH unwinds the DNA helix, exposing the 

strand carrying the lesion, a structure known as a DNA bubble1. XPA is recruited at 

this stage along with RPA through an interaction with the XPC N-terminal domain6,7, 

as shown in Figure 3.1, panel c9. XPA interacts with TFIIH and TFIIH may be 

involved in XPA recruitment, or in the recruitment of the XPA–RPA complex10. The 

XPA–RPA causes the dissociation of the XPC–RAD23B from the damage site11. As 

shown in Figure 3.1, panel d, XPA performs a scaffolding role by docking the 5′ 

endonuclease, ERCC1-XPF dimer, to the junction of the single and double strand 

DNA1,2,13,14. The XPG endonuclease (not shown) which cleaves DNA at the 3′ end is 

likely recruited to the damage site by TFIIH2,16,17. Excision begins with ERCC1–XPF 

at the 5′ side followed by the XPG at the 3′ side19. The damaged oligonucleotide is 

released along with TFIIH20, which causes XPA to unbind and the missing bases to be 

replaced and ligated2.  
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Figure 3.1: Graphical rendition the macromolecular assembly of NER proteins during the pre-excision phase of 

the DNA damage, shown in yellow. a) DNA damage is detected by the XPC-RAD24B dimer. b) TFIIH is 

recruited by XPC-RAD24B which opens the DNA bubble to expose the DNA damage. c) XPA shown in red and 

RPA shown in tan are recruited, releasing XPC-RAD24B. The disordered region of XPA is represented by a red 

line connecting it to RPA32. d) XPA recruits  the ERCC1-XPF endonuclease, shown in green and purple 

respectively, to the 5′ side of the lesion. Figure adapted from reference 21 
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The ERCC1-XPF heterodimer is responsible for cleavage of bulky DNA lesions at the 

5’ end of the DNA1. Xeroderma pigmentosum group A (XPA) is a key protein involved 

in the NER pathway. Its role is to provide the scaffolding for the assembly of the pre-

excision multi-protein complex2. In this context XPA is known to bind the DNA 

double helix at the 3’ junction through its globular, folded core, i.e. between residues 

98 to 21922. The ERCC1 binding region of XPA is located between residues 67 and 

80, which is part of the unstructured N-terminal region of the protein23. A peptide with 

sequence corresponding to this the ERCC1 binding region of XPA, namely XPA67-80, 

was found to be sufficient to competitively inhibit the XPA-ERCC1 interaction23. 

NMR data show that the XPA67-80 peptide is unstructured in solution23, meanwhile, as 

shown in Figure 3.2, when bound to ERCC1 is in a β-hairpin conformation. Cisplatin 

is an anti-cancer drug used in the treatment of different type of cancers, such as 

testicular cancer, and it acts by forming an adduct with DNA by cross linking two 

guanine bases24. NER is the repair pathway responsible for excision of Pt adducts. 

ERCC1 concentration is related to cisplatin drug resistance, and the overexpression of 

ERCC1 is linked to cisplatin resistance in cancer cells25. The use of microarray 

technology with a high affinity binder for ERCC1 could be used to qualitatively 

determine ERCC1 expression levels in cells and, as such, as a diagnostic tool for 

whether to prescribe Pt-based drugs to a patient. 

 

Figure 3.2: NMR structure (PDBid 2JNW) of XPA67-80 shown in red bound to ERCC1, represented as its solvent 

accessible surface area, shown in cyan. XPA peptide in the NMR structure includes only residues 67 to 77, as 

residues 78 to 80 are too flexible to be localized. The inset image shows the residues of XPA that are involved in 

interactions with ERCC1 as sticks, namely Asp 79, Gly 72 to 74 and Phe 75. 

 



26 

 

Conformational sampling of the free peptide through conventional MD simulations 

shows that the XPA67-80 peptide can adopt β-hairpin structures stable at the low s 

timescale26,27. This β-hairpin may behave as a MoRF, where this hairpin motif can be 

recognised by ERCC1 causing XPA to adopt its binding conformation28,29. Previous 

simulation work26,27 also highlighted the role of residues Asp 70, Gly 72 to 74 and Phe 

75 in establishing direct contacts with the ERCC1 binding site, as well as the role of 

Lys 67 and Glu 78 to 80 in stabilizing the β-hairpin conformation of the free peptide 

in solution. More specifically, Phe 75 interacts with the ERCC1 Asn 110 sidechain 

forming a π-stacking interaction. Gly 72 forms a hydrogen bond between its backbone 

carbonyl oxygen and the sidechain of ERCC1 Arg 156, Gly 73 forms a hydrogen bond 

between its backbone carbonyl oxygen and ERCC1 Gln 107 sidechain amide,  Gly 74 

forms a hydrogen bond between its backbone carbonyl oxygen and ERCC1 Ser 142 

backbone amide nitrogen. Asp 70 forms hydrogens bonds with both ERCC1 Tyr 145 

sidechain hydroxyl and with ERCC1 His 149 Nε. In previous work from the group27 

different mutants were designed to investigate further the role of key residues in the 

recognition and binding of the XPA67-80 peptide by ERCC1. More specifically, the 

F75W mutation was designed to increase the aromatic surface area and potentially 

improve on the stacking interaction with the ERCC1 Asn 110, meanwhile the I68K 

mutant was designed to increase the stability of the -hairpin conformation of the 

peptide when free in solution by enhancing the electrostatic interaction between the N 

and C termini of the peptide27. However, extensive sampling simulations showed that 

both of these mutations changed the conformational propensity of the peptide in 

solution, dramatically reducing the stability of the recognized -hairpin conformer27. 

Although these results do not indicate that the mutations won’t be tolerated at all, they 

do not suggest either that the binding affinity for ERCC1 would be increased relative 

to the wild type XPA67-80. With these results in mind we set out to evolve this XPA67-

80 motif into a high affinity binder with the potential for use in a diagnostic tool to 

determine cisplatin resistance. To evolve this sequence from a low affinity binding 

peptide to a high affinity binder we looked at two different strategies to modify the 

peptide. According to the first strategy, we studied XPA sequences from selected 

species with functional NER pathways, shown in Table 3.1, to evaluate the effects of 

mutations relative to H. sapiens on the structural propensity of the peptide and on its 

binding interaction with ERCC1. The second strategy concerns chemically restricting 
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the degrees of freedom of the XPA67-80 peptide to decrease its entropic penalty upon 

binding by designing suitable linkers that would restrain its conformation in its -

hairpin MoRF conformation. Both of these strategies have highlighted potential ways 

to increase the peptide’s binding affinity for ERCC1  

Table 3.1: Wild type sequences of XPA67-80 from select species with mutated residues relative to the H. sapiens 

sequence highlighted in red. Complementary mutations found in the ERCC1 protein sequences from the same 

species relative to the H. sapiens are also indicated. 

Species XPA67-80 sequence Complementary ERCC1 mutation 

H. sapiens KIIDTGGGFILEEE - 

R. norvegicus KVIDTKGGFILEEE G155E 

C. lanigera KIIDTEGGFILEEE G155K 

X. laevis KVIDSGGGFFIEEE - 

 

3.2 Computational method 

The following protocol was used to set-up and run the MD simulations of both, the 

XPA67-80 peptides unbound in solution and in complex with ERCC1.  

As starting structure for the simulation of the H. sapiens ERCC1/XPA67-80 complex 

we used the first conformation form the NMR ensemble (PDBid 2JNW)23. The starting 

structures for the simulations of the complexes between ERCC1 and the XPA67-80 from 

X. laevis, C. lanigera and R. norvegicus were obtained with  by structural alignment 

of the highly populated -hairpin motifs identified from the MD simulations of the 

free peptide the H. sapiens ERCC1/XPA67-80 structure from NMR. We carried out 

all the simulations of the wild type peptides using GROMACS v 4.6.330. We used the 

AMBER99SB-ILDN31 force field to represent the protein atoms and counterions and 

TIP4P-Ew32 for the water. The complex was placed in a rhombic dodecahedral 

simulation box with minimum distance between the protein and the sides of the box 

of 1.2 nm. We solvated the system and neutralised with either Na+ or Cl- ions. We 

carried out an energy minimisation through 500,000 steps of steepest descent, with a 

force-based convergence threshold of 100 kJ mol-1nm-1. Long range electrostatics 

were represented through periodic boundary conditions within the Particle Mesh 

Ewald (PME) framework with a switch of from real space to reciprocal space at 1.2 

nm. Van der Waals interactions were calculated using a cut-off method, with a cut-off 

of 1.2 nm. All hydrogen bonds were constrained using the LINCS algorithm. After 
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minimization, we carried out an equilibration of 500 ps in the NVT ensemble 

restraining the position of all solute heavy-atoms atoms. To integrate the equation of 

motion we used a leap-frog stochastic dynamics (sd) integrator, with a friction 

coefficient corresponding to the inverse of tau-t equal to 0.1 ps, where tau-t is the time 

constant for coupling. The sd integrator was set to maintain a target temperature of 

300 K. We performed a second restrained equilibration of 500 ps in the NPT ensemble, 

with a Berendsen barostat set to a target pressure of 1 bar. For the ERCC1/XPA67-80 

complex, the production stage involves three consecutive equilibration steps of 5 ns 

each, first with the heavy atoms of the receptor and the ligand backbone atoms 

restrained, then restraining only the backbone atoms of ligand and receptor, and finally 

with the ligand atoms free and the receptor backbone atoms restrained. All 

ERCC1/XPA67-80 complexes were simulated for 2 μs of conventional MD. In case of 

the XPA67-80 peptides free in solution only one 5 ns of unrestrained MD equilibration 

was considered as sufficient, followed by a production step of 100 ns, which was used 

to isolate ten uncorrelated snapshots (one every 10 ns) that were used as starting point 

of ten independent MD simulations that were run in parallel, from which we collected 

data. Each of these ten simulations was run for 1 μs. We carried out a clustering 

analysis of the backbone atoms of each of the ten XPA peptide free in solution 

simulations with the first NMR structure in 2JNW used as a reference using the 

gromos method33 and a RMSD cut-off of 0.15 nm. This value considered as optimal 

after testing cut-offs in a range between 0.05 nm and 0.2 nm, as it allowed to obtain 

the highest number of clusters while avoiding redundancy. In the set-up of the 

simulations of the XPA peptide from other species bound to ERCC1, we also mutated 

the ERCC1 so that the sequence of both ERCC1 and XPA match that of the 

corresponding animal. While there are more mutations than just those shown in Table 

3.1, as shown in Figure 3.3, the mutations are either between residues with similar 

properties or the site of mutation is sufficiently far from the binding site so as to not 

affect it, as such we are only interested in the mutations listed in Table 3.1 
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Figure 3.3: Sequence alignment of H. sapiens ERCC99-214 to corresponding sequences from X. laevis, R. 

norvegicus and C. lanigera. Alignment obtained with Clustal-Omega34 

 

We built the macrocycles based on the XPA67-80 structure from the first entry of 2JNW 

using the molecular builder MAESTRO35. All macrocycles MD simulations were ran 

using AMBER v.1236. The AMBER99SB-ILDN force field was used to represent 

protein atoms and counterions, while we atoms of the linkers were represented by the 

Generalized Amber Force Filed (GAFF)37. The topology files were prepared using 

tleap tool, which is part of the AMBER v.12 distribution. We solvated the peptide with 

TIP4P-Ew32 water model and placed it in an octahedral periodic box, as tleap doesn’t 

support a dodecahedral box, with minimum distance between the peptide and the box 

sides of 12 Å. The system was minimised with 500k steps of steepest descent with 

protein heavy atoms restrained with a restrain weight of 5.0 kcal mol-1 Å-2. Hydrogen 

bond lengths were restrained using the SHAKE algorithm38. According to the AMBER 

standard protocol, the temperature of the system is raised to 300 K gradually over two 

500 ps NVT equilibration steps, first heating from 0 K to 100 K and then from 100 K 

to 300 K. An NPT equilibration followed to reach the equilibrium pressure of 1 bar. 

The equilibrated systems were then simulated for 1 μs in the NPT ensemble with all 

atoms unconstrained. For the simulation of the macrocycles in complex with ERCC1, 

the starting structures were obtained by structural alignment of a snapshot from the 

trajectories of the macrocycles unbound in solution onto the first structure from the 

NMR ensemble (PDBid 2JNW). For the equilibration of the system we followed the 

same protocol as the one used in the simulations of the unbound macrocycles, with 

four additional equilibration steps of 5 ns each, 1) with only the macrocycle sidechains 
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unrestrained, 2) with all sidechains (macrocycle and protein) unrestrained, 3) with all 

atoms of the macrocycle unrestrained, and 4) and finally with all atoms unrestrained. 

This was followed by production runs of 1 μs for all four complexes.  

MM/GB(PB)SA Calculations. The calculations were run by using the MMPBSA.py 

script39 as part of the AMBER v.12 distribution. For the wild type peptides, we 

converted pdb files to AMBER topology and structure files, namely prm7 and rst7 

files, respectively, using the tleap tool. The trajectories were converted from 

GROMACS format to AMBER format using VMD 

(http://www.ks.uiuc.edu/Research/vmd/)40. 

Conformational Entropy. We carried out Principal Component Analysis (PCA) 

calculations in GROMACS v 4.6.3 to obtain the conformational entropy contribution 

to the binding free energy not included in the MMGB(PB)SA free energy estimate. 

All calculations were done based on the peptide’s backbone atoms. The total entropy 

was estimated based on the quasiharmonic formula and Schlitter’s method41 at 300K. 

We calculated the entropy penalty upon binding as the difference in entropy between 

the bound and free states.  

 

3.3 Results 

XPA67-80 unlinked peptides. The identification of MoRFs within the conformational 

ensembles produced by the MD simulations and the corresponding stability in terms 

of relative populations were estimated by clustering analysis. The results obtained 

from the simulations of the R. norvegicus, C. lanigera and X. laevis XPA67-80 peptides 

are shown in Table 3.2, Table 3.3 and  

 

 

 

 

 

Table 3.4, respectively. To determine if a cluster is a MoRF, the representative 

structure of the cluster was superimposed into the binding pocket of ERCC1 and was 

visually inspected for clashes with ERCC1. If the cluster has a hairpin motif and does 

http://www.ks.uiuc.edu/Research/vmd/
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not clash with ERCC1 it is considered a MoRF. The clusters classified as “maybe” 

would have a backbone conformation matching the binding conformation 

requirement, but with the Phe 75 sidechain in an unsuitable orientation, which would 

cause a clash with ERCC1. As the reorientation of the Phe 75 sidechain into its binding 

conformation would feasible upon recognition this can be seen in Figure 3.4 panels c, 

f and i. 

Table 3.2: Clustering analysis results for the three highest populated clusters from the 10 MD simulations (S1 to 

S10 in the first column) of the  R. norvegicus XPA67-80 peptide. Binding conformations (MoRFs) are highlighted 

in green. The number of clusters generated through the clustering method is shown in the second column. The % 

population of each of the three most populated clusters is also shown.  Middle Å indicates the RMSD of the 

representative structure of a cluster compared to the first structure of XPA in 2JNW. 

 

Cluster Pop #1 

middle 

(Å) Binding Pop #2 

middle 

(Å) Binding Pop #3 

middle 

(Å) Binding 

S1 136 50.1 4.140 Maybe 13.7 3.706 N 4.1 4.014 N 

S2 357 10.3 2.971 Y 2.8 3.551 Y 2.8 3.036 N 

S3 330 14.8 3.964 Maybe 4.7 3.428 N 3.3 3.505 N 

S4 330 10.0 2.811 N 2.5 2.759 Y 2.2 4.797 N 

S5 123 67.2 3.608 Maybe 3.3 3.082 N 2.9 3.498 Y 

S6 45 63.4 3.992 Maybe 12.4 3.082 N 5.6 3.039 Y 

S7 134 36.3 3.623 N 9.4 2.870 N 6.2 4.237 N 

S8 298 9.9 4.991 N 5.8 3.002 N 3.9 3.489 Y 

S9 244 25.6 5.806 N 10.3 4.659 N 3.7 5.267 N 

S10 322 5.8 4.556 Y 5.0 1.940 N 2.9 4.025 N 

Table 3.3 Clustering analysis results for the three highest populated clusters from the 10 MD simulations (S1 to 

S10 in the first column) of the  C. lanigera XPA67-80 peptide. Binding conformations (MoRFs) are highlighted in 

green. The number of clusters generated through the clustering method is shown in the cluster column. The % 

population of each of the three most populated clusters is shown.  Middle Å indicates the RMSD of the 

representative structure of a cluster compared to the first structure of XPA in 2JNW. 

 

cluster Pop #1 

middle 

(Å) Binding Pop #2 

middle 

(Å) Binding Pop #3 

middle 

(Å) Binding 

S1 275 40.5 2.575 Maybe* 2.2 3.142 Maybe* 2.1 3.886 N 

S2 189 46.1 4.096 Y 6.3 4.160 N 2.1 2.616 Maybe* 

S3 203 13.5 3.384 Maybe* 7.2 4.127 N 5.4 4.396 N 

S4 197 11.4 3.725 N 7.2 5.470 N 5.8 3.449 Y 

S5 229 21.2 3.042 Maybe* 10.3 1.801 Maybe* 5.2 3.495 N 

S6 242 13.6 4.312 N 10.2 2.060 Maybe* 9.6 3.962 N 

S7 298 5.3 3.940 N 5.0 2.880 Y 4.1 4.189 N 

S8 320 8.1 4.413 Y 7.5 4.378 N 3.1 2.208 N 

S9 100 37.9 2.768 Y 28.6 4.203 N 3.4 4.058 Y 

S10 127 24.0 3.618 N 17.5 4.116 N 14.1 4.360 N 
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Table 3.4: Clustering analysis results for the three highest populated clusters from the 10 MD simulations (S1 to 

S10 in the first column) of the  X. laevis XPA67-80 peptide. Binding conformations (MoRFs) are highlighted in 

green. The number of clusters generated through the clustering method is shown in the cluster column. The % 

population of each of the three most populated clusters is shown.  Middle Å indicates the RMSD of the 

representative structure of a cluster compared to the first structure of XPA in 2JNW. 

 
Cluster Pop #1 

middle 
(Å) Binding Pop #2 

middle 
(Å) Binding Pop #3 

middle 
(Å) Binding 

S1 317 8.0 3.225 N 7.3 2.872 Y 6.6 3.172 Y 

S2 137 34.5 4.308 Maybe* 10.4 4.856 N 6.3 3.885 N 

S3 151 51.8 4.784 N 3.0 4.230 N 2.9 4.433 Y 

S4 459 9.7 3.559 Maybe* 2.8 2.694 Maybe* 1.9 4.473 Maybe* 

S5 83 64.0 3.500 Y 7.6 3.067 Maybe* 4.0 4.182 N 

S6 156 59.0 3.193 Y 5.4 3.685 N 4.5 2.942 Y 

S7 170 36.6 3.240 Y 8.8 4.150 N 4.5 5.330 N 

S8 222 10.4 2.114 Maybe* 8.7 2.824 N 4.4 3.390 N 

S9 238 33.3 4.161 Maybe* 16.0 2.875 Y 3.9 3.929 Maybe* 

S10 112 39.0 3.950 Maybe* 34.0 3.760 Maybe* 3.0 2.830 Maybe* 

Because the MD simulations were started from different conformers it is possible that 

within the 1 s sampling some simulations would end up exploring the same 

conformational space and some will not. For there we cross analysed the clusters 

identified for each trajectory in terms of structural similarity by backbone RMSD. The 

results are shown in Table 3.5, Table 3.6 and Table 3.7 for the simulations of the R. 

norvegicus, C. lanigera and X. laevis XPA67-80 peptides, respectively. Conformations 

with a difference in backbone RMSD below 1.5 Å, which was cut-off value used in 

the clustering analysis, were considered as part of the same cluster. The total 

populations of the XPA67-80 peptides from different species corresponding to MoRFs  

are shown in Table 3.8.  

Table 3.5: Similarity matrix of the highest populated cluster from each MD simulation (S1 to S10)  of the 

R.norvegicus XPA67-80 peptide with identical clusters highlighted in green. 

Population 50.1 10.3 14.8 10.0 67.2 63.4 36.3 9.9 25.6 5.8 

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 

s0 0.0          
s1 3.4 0.0         
s2 2.6 3.3 0.0        
s3 3.8 3.7 3.1 0.0       
s4 4.1 2.6 3.8 3.4 0.0      
s5 1.1 3.7 0.5 2.6 3.3 0.0     
s6 4.7 3.7 4.4 3.9 3.6 4.8 0.0    
s7 5.2 6.1 6.3 5.8 5.9 5.9 3.8 0.0   
s8 3.6 4.3 3.3 4.3 4.7 3.9 4.8 5.0 0.0  
s9 3.0 4.1 3.1 4.5 4.5 3.4 4.8 5.7 3.7 0.0 
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Table 3.6: Similarity matrix of the highest populated cluster from each MD simulation (S1 to S10)  of the C. 

lanigera XPA67-80 peptide with identical clusters highlighted in green. 

Population 40.5 46.1 13.5 11.4 21.2 13.6 5.3 8.1 37.9 24.0 

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

s0 0.0          
s1 3.8 0.0         
s2 4.7 4.2 0.0        
s3 5.5 3.8 3.0 0.0       
s4 2.0 3.4 4.7 4.9 0.0      
s5 4.0 2.3 4.0 3.9 3.2 0.0     
s6 6.5 5.5 5.1 5.4 6.2 6.3 0.0    
s7 4.9 3.4 2.9 2.6 4.3 3.7 5.2 0.0   
s8 3.5 4.1 4.6 4.2 3.1 4.4 5.5 4.8 0.0  
s9 2.8 3.5 4.0 4.5 2.9 4.2 5.3 4.2 3.7 0.0 

Table 3.7: Similarity matrix of the highest populated cluster from each MD simulation (S1 to S10)  of the X. 

laevis XPA67-80 peptide with identical clusters highlighted in green. 

Population 8.0 34.5 51.8 9.7 64.0 59.0 36.6 10.4 33.3 39.0 

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

s0 0.0          
s1 4.2 0.0         
s2 3.7 4.1 0.0        
s3 3.4 3.5 4.2 0.0       
s4 3.5 2.7 4.1 1.6 0.0      
s5 2.6 2.9 3.9 2.4 2.1 0.0     
s6 3.2 2.3 4.4 3.0 2.5 1.5 0.0    
s7 3.4 4.9 3.9 4.6 4.4 4.4 4.6 0.0   
s8 3.5 2.2 3.4 3.2 2.6 2.8 2.6 3.8 0.0  
s9 3.5 2.0 4.0 3.2 2.5 2.2 2.0 5.0 2.5 0.0 

Table 3.8: Total populations (%) of conformations corresponding to MoRFs identified from the MD simulations 

of the XPA67-80 peptides. The corresponding populations calculated considering the conformation for the Phe 75 

sidechain unable to reorient upon binding, thus excluding the conformations flagged as *MAYBE, are shown in 

parentheses. 

 H. sapiens R. norvegicus X. laevis C. lanigera 

MoRFs  36.4 24.0 (3.4) 37.7 (19.7) 16.4 (8.7) 

 

Structural alignment of the representative (middle) conformers of the highest 

populated MoRF-like cluster, non-MoRF-like cluster and potential MoRF-like cluster 
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(*MAYBE) for each wild type XPA67-80 peptide sequence to the first conformer from 

the NMR ensemble (PDBid 2JNW) from the H. sapiens XPA67-80 are shown in Figure 

3.4. The positions of Phe 75 sidechains relative to the bound conformation of the H. 

sapiens XPA67-80 are highlighted. 

 

 

Figure 3.4: Structural alignments of highest populated a) MoRF-like cluster b) non-MoRF-like cluster and c) 

potential MoRF-like cluster from the simulations of the R. norvegicus XPA67-80 peptide are shown in green to the 

H. sapiens XPA67-80 peptide from PDBid 2JNW in cyan. Alignments of highest populated d) MoRF-like cluster 

e) non-MoRF-like cluster and f) potential MoRF-like cluster  from the simulations of the C. lanigera XPA67-80 

peptide are shown in green. Alignments of highest populated g) MoRF-like cluster h) non-MoRF-like cluster i) 

potential MoRF-like cluster from the simulations of the X. laevis XPA67-80 peptide are shown in green. 

 

We evaluated the binding of the XPA67-80 peptide variants to ERCC1 by looking at 

specific contacts between residues that in the different species we studies are mutated 

relative to H. sapiens, namely a salt bridge between Glu 155 of ERCC1 and Lys 72 of 

XPA67-80 for R. norvegicus a salt bridge between Lys 155 and/or Arg 106 of ERCC1 

and Glu 72 of XPA67-80 for C. lanigera, and a cation− interaction between Phe 76 

and Arg 144 for X. laevis. The results in terms of distances between the heavy atoms 
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involved in these interactions are shown in  Table 3.9. The complexes binding 

affinities values calculated by MM-GBSA with entropies from PCA are shown in 

Table 3.10. 

Table 3.9:  Average distances between the heavy atoms involved in interactions between the mutated residues in 

the XPA67-80/ERCC1 variants. Error shown in parentheses and the population below a cut-off of 5 Å is shown in 

brackets. Error is calculated as the standard deviation of the average value 

 R. norvegicus (Å) C. lanigera (Å) 

K72-E155  9.42 (2.65) [10] - 

E72-K155  - 12.70 (2.86) [0] 

 C. lanigera (Å) X. laevis (Å) 

E72-R106  5.48 (1.49) [46] - 

F75-R144  - 4.21 (0.53) 

Table 3.10: Complexes binding free energies are shown in kcal mol-1. Conformational entropies at 300 K 

evaluated by the Schlitter’s method are shown. Total ΔG is calculated as the sum of ΔGMMGBSA and -TΔS from 

PCA. Errors are indicated in parentheses. Error is calculated as the standard deviation of the average value 

 H. sapiens R. norvegicus X. laevis C. lanigera 

ΔGMMGBSA -43.39 (3.59) -43.27 (4.54) -41.87 (4.52) -49.14 (3.47) 

-TΔS 14.33  20.13  17.90  30.29 

Total ΔG -29.06 -23.14 -23.97 -18.85 

 

Figure 3.5: Interactions between ERCC1 (shown in green) and XPA67-80 peptides (shown in red) in a) R. 

norvegicus, b) C. lanigera and c) X. laevis 

 

Macrocyclic peptides. We looked at rigidifying the motif through formation of a 

macrocycle. The design of which based on modifying naturally occurring amino acids 

and using click chemistry to simplify the synthetic route and minimise the difference 

between the macrocyclic peptide and wild-type peptide. The sequences of the 

macrocyclic peptides are shown in  
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Table 3.11 and modified amino acids can be seen in Figure 3.6. MMGBSA data for 

the bound peptides and PCA results are shown in Table 3.12. 

 

Table 3.11: Sequences of the macrocyclic peptides, * indicates the position of residues which we modified to 

form the macrocycle. In the case of MC004 the first and last residues have a peptide bond between their 

backbone atoms to form a fully cyclic peptide. 

sequence XPA67-80 sequence 

MC001 KIID*GGG*ILEEE 

MC002 KIIDT*GG*ILEEE 

MC003 KIID*GGG*ILEEE 

MC004 KIIDTGGGFILEEEPAAP 

 

 

Figure 3.6: Macrocyclic peptides a) MC001 b) MC002 c) MC003 and d) MC004 with the modified residues 

shown as sticks and naturally occurring residues shown as a cartoon. 

 

Table 3.12: Complexes binding free energies are shown in kcal mol-1. Conformational entropies at 300 K 

evaluated by the Schlitter’s method are shown. Total ΔG is calculated as the sum of ΔGMMGBSA and -TΔS from 

PCA. Errors are indicated in parentheses. Error is calculated as the standard deviation of the average value 

 MC001 MC002 MC003 MC004 

ΔGMMGBSA -32.75 (4.19) -42.33 (4.33) -47.47 (4.99) -38.51 (6.26) 

-TΔS 6.77 12.43 8.56 10.93 

Total ΔG -25.98 -29.90 -38.91 -27.58 
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3.4 Discussion 

The XPA67-80 peptide homologues we have chosen to analyse have subtle but 

interesting mutations in their sequence relative to H.sapiens, see Table 3.1. The G72K 

and G72E mutations  are particularly striking as they appear at the head of the -

hairpin MoRF conformation, which is occupies a sterically constrained region of the 

ERCC1 binding pocket. Our simulations show that in fact these mutations that involve 

residues with large sidechains from a glycine, with no sidechains can be well 

accommodated in the ERCC1 binding site. Additionally, in both R. norvegicus and C. 

lanigera, the XPA67-80 mutations are accompanied by mutations in the ERCC1 

sequences, namely G155E and G155K, respectively. In R. norvegicus G155E forms a 

weak salt bridge with the G72K of XPA67-80  stable for 10% of the simulation time, 

see Table 3.9. Meanwhile, the inverse of these mutations in C. lanigera, namely the 

ERCC1 G155K and the XPA67-80 G72E, are not seen to interact through a salt bridge, 

as the distance between heavy atoms is always significantly above a cut-off of 5 Å 

throughout the simulation. However, our results show that the Glu 72 of the C. 

lanigera XPA67-80 forms a stable salt bridge with the ERCC1 at Arg 106, a residue that 

is also present in the human ERCC1. The contribution of this new interaction is 

reflected by the binding affinity values calculated by MMGBSA, see Table 3.12, for 

the peptide from C. lanigera relative to the human counterpart. Therefore, based on 

this result a G72E mutation could be introduced to improve the binding affinity of the 

peptide. Another interesting mutation is found in X. laevis XPA67-80, namely I76F 

shown in Table 3.1. The additional Phe in position 76 forms a cation- interaction 

with the ERCC1 Arg 144 that is stable throughout the simulation. Arg 144 is also 

present in the human ERCC1. However, this mutation does not affect the binding free 

energy of the peptide relative to H. sapiens, this may be due to Arg 144 being on the 

surface of ERCC1 and being exposed to the solvent. It is important to note that  all 

these mutations contribute to enhance the conformational entropy of the peptide in 

solution, thus the penalty upon binding evaluated through PCA, in particular the ones 

where the Gly 72 is replaced by a charged residue, either Lys in R. norvegicus or Glu 

in C. lanigera. Indeed, as shown in Table 3.9, the introduction of these mutations at 

the head of the -hairpin destabilizes the MoRF. Although all the mutations do not 

seem to enhance the linear XPA67-80 peptide’s binding affinity, mostly because of their 

effect on the entropy, we think that it could be useful to consider these mutations, and 
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particularly the G72E mutation, within the context of the design of conformationally 

restrained macrocycles, as any conformational entropy penalty will be limited by the 

cyclization.  

As shown in Table 3.12, all the macrocycles we have designed have a lower entropic 

penalty upon binding relative to the linear XPA67-80, proving the introduction of 

chemical linkers to restrain the peptide’s dynamics is a promising strategy for the 

generation of high affinity binders. However, the macrocycles studied here do not 

show an improvement in the binding enthalpy and in fact, as shown in Tables 3.12, 

all have a slightly lower GMMGBSA contribution relative to the linear peptides. 

Nevertheless, rounds of improvement in the macrocyclic peptide sequence, potentially 

guided by the results obtained for the linear peptides from the XPA homologues, could 

very well lead to high-affinity macrocyclic XPA67-80 peptide candidates. 

3.5 Conclusion 

From this work we see that nature can be a useful resource of inspiration for the 

identification of viable mutations of short IDR. This strategy is viable as we know that 

those mutations lead to functional proteins in the respective species they are in and 

thus must be functional. Because of this, it is important that when looking at these 

alternative sequences from homologues, complementary mutations in the receptor 

must be also considered, as the same and/or additional interactions may not be possible 

in the human (or targeted) receptor. Our results show that interestingly all the  

mutations we have looked at can modify the dynamics of the peptide balancing out the 

binding enthalpy gain with a higher entropic penalty upon binding. Macrocyclisation 

is therefore a valuable tool to rigidify a highly flexible peptide  and to reduce its 

conformational entropy. We think that combining these two approaches, i.e. 

introduction of point mutations that enhance the enthalpic contribution from other 

species and chemically restraining the dynamics of the peptide through cyclization, 

represent an interesting and viable strategy to develop higher affinity molecules from 

IDR scaffolds.   
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Chapter 4:  The transient manifold structure of the p53 extreme 

C-terminal domain: insight into disorder, recognition, and 

binding promiscuity by molecular dynamics simulations 

 

Note: This Chapter is largely based on the paper, Fadda E. and Nixon MG, Phys Chem 

Chem Phys (2017), 19(32): 21287-21296, which was also highlighted on the journal’s 

front cover. 
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4.1 Introduction 

The p53 extreme C terminal domain (CTD) is a 30 residue highly basic IDP of the p53 

tumour suppressor. The p53-CTD has been shown to have a negative regulatory 

control of the p53 DNA-binding activity1–3, with phosphorylation or deletion of the 

p53-CTD region resulting in a constitutively DNA-binding active p53 molecule4. The 

p53-CTD is also highly targeted for post-translational modifications, which modulate 

its DNA-binding activity4,5. The p53-CTD is poorly structured in solution6,7, but it 

adopts a variety of stable secondary structures when bound to different receptors, 

ranging from α-helices, to coils6,8,9. Recognition and binding could follow these 

different mechanistic scenarios, (a) a non-specific “encounter complex” is initially 

formed between peptide and receptor, followed by an induced fit phase, where the 

progressive setting of specific interactions drives folding, or (b) the peptide unbound 

in solution can access its bound fold, which is selected and bound by the target 

receptor, i.e. by conformational selection, or (c) a mechanism in between these two 

scenarios, whereby conformational selection and induced fit both play a role10,11. In 

the specific case of the p53-CTD, it has been determined that the folded conformations 

are stable only when the peptide is bound6,12,13. Intricate balances regulating 

recognition and binding are not unusual for IDPs6,12–19. Because of the high degree of 

intrinsic disorder, structural investigations of the unbound p53-CTD in solution have 

not been particularly informative in terms of subtleties in its residual secondary 

structure2. 

Recent work strongly suggests that recognition and binding mechanisms of IDPs 

depends on their intrinsic secondary structure propensity, dictated by the 

peptide/protein sequence17. In this work we used extensive molecular dynamics (MD) 

simulations to analyse the conformational propensity of the unbound p53-CTD in 

solution and to investigate the structure and potential roles of transiently stable 

structural motifs in recognition and binding20. Indeed, these motifs could function as 

molecular recognition features (MoRFs)21,22, by being selectively targeted by different 

receptors, thus working as nucleation sites for the completion of the folding by induced 

fit20,23–25. Also, an intrinsic propensity to form minimal structural motifs that can be 

specifically recognized by different receptors would explain how the p53-CTD 

conformational disorder supports its binding promiscuity26.  
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The analysis of over 20 μs of cumulative MD simulation trajectories of a 22 residue 

peptide free in solution, with sequence corresponding to the p53-CTD 

367SHLKSKKGQSTSRHKKLMFKTE388 segment, suggest that the p53-CTD 

conformational disorder also includes in addition to random coils, structures 

containing specific, relatively stable, localized and reoccurring short secondary 

structure motifs, which encompass stretches of 3 to 4 residues in case of helical turns. 

The results also show that the MoRFs we identified occur with higher probability in 

the C-terminal half of the peptide, while the N-terminal half remains mostly 

disordered. These findings are in agreement with structure/disorder prediction tools, 

namely s2D27 and PONDR-VL-XT28 that show a different degree of structural 

propensity along the p53-CTD sequence and supported by very recent experimental 

results that in agreement with our simulation results suggest the presence of β-turn or 

helical structures29. The identification of such distinct motifs within the disordered 

ensemble suggests that the p53-CTD may exert its broad binding specificity through 

minimal structural MoRFs, which are specifically selected and bound by different 

receptors, fitting within a broader framework of the conformational selection 

theory10,11. We discuss a potential MoRF-based recognition and binding mechanism 

in the case of the p53-CTD peptide in complex with the Ca2+ bound S100B(ββ) dimer6, 

and with sirtuin Sir29.  

4.2 Computational method  

A 22-residue peptide corresponding to residues 367–388 of the H. sapiens p53-CTD 

was built in a fully extended conformation with the molecular builder tool in Maestro 

v.9.730. N- and C-termini were capped with ACE and NME residues, respectively. The 

fully extended peptide, measuring 8.4 nm, was centred in a truncated dodecahedral 

simulation box sized so that the minimum distance between the peptide and the box 

sides would not be lower than 1.2 nm. The total charge of +6 was neutralized with the 

addition of Cl− counterions. Because the aim of this work is to determine the 

conformational propensity of the peptide in function of its sequence, the effect of ionic 

strength in physiological conditions has not been addressed. Protein atoms and 

counterions were represented with AMBER-99SB-ILDN parameters31 while TIP4P-

Ew32 was chosen as water model. Convergence of our simulations has been verified 

by monitoring, (a) the average backbone RMSD values, calculated relative to 2 distinct 
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and highly populated MoRFs we identified, namely an asymmetric β sheet hairpin 

(cluster 1, MD1) and a conformer containing a 310 helical turn located at 376STS378 

(cluster 2, MD3), and (b) the corresponding backbone RMSD running averages, and 

(c) the RMSD average correlation values (RAC)33, see Figure 4.1. 

 

Figure 4.1: Backbone RMSD values for  a) a highly populated asymmetric hairpin b) a highly populated 310 

helical turn and c) using the RMSD average correlation (RAC) values. 
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Bond lengths with hydrogen atoms were constrained with the LINCS algorithm34. 

Long range electrostatic interactions were treated with Particle Mesh Ewald (PME), 

with a switch from real space to reciprocal space at 1.2 nm. Van der Waals interactions 

were also cut off at 1.2 nm. All MD simulations were run with version 4.6.3 of 

GROMACS35. Two additional simulations, each of 2 μs production, were run starting 

with the p53-CTD peptide in the helical conformation seen when in complex with 

S100B(ββ) (PDBid 1dt7). The following protocol was used to set-up and run all 

simulations in this work. An initial energy minimization of 500k steps of steepest 

descent were used to prepare the system for the equilibration phase. During the 

minimization only the positions of the solvent molecules, counterions, and hydrogen 

atoms was left unconstrained. 500 ps of equilibration in the NVT ensemble and 

subsequently 500 ps in the NPT ensemble followed, with a target temperature of 300 

K and pressure of 1 bar. Following this stage, a 1 ns equilibration was run with the 

backbone atoms restrained and the sidechain atoms free. All restraints were then 

released for 5 ns and a 100 ns production run was recorded for analysis. From this 

trajectory, snapshots were collected every 10 ns. The 10 uncorrelated peptide 

structures were removed from their original simulation box and placed in a truncated 

dodecahedral simulation box of 84 Å sides, sized to leave enough space to 

accommodate largely extended conformations that may occur during the simulation. 

The minimization and equilibration protocol described above was repeated for all 10 

systems. Production of every trajectory was extended to 2 μs, for a total simulation 

time of 20 μs. The clustering analysis was performed with the gromos algorithm36 with 

a cut-off of 0.45 nm. Such large cut-off value is necessary due to the highly dynamic 

nature of the N-terminal tail of the peptide, and it was found as the minimum cut-off 

value that allows us to separate and group significant secondary structure motifs. The 

secondary structure analysis was done on the 10 highest populated clusters obtained 

from each MD trajectory. These clusters are representative of a minimum of 63% of 

all conformations accessible, in case of high conformational dynamics, up to a 

complete coverage of 100%, in case of the formation of stable secondary structure 

motifs. MoRF populations for each MD trajectory were calculated based on clusters 

populations, with counts of 1 ns per frame. Populations over the cumulative 20 μs 

simulation were estimated as sums of the populations during the single trajectories, 

where the error bars correspond to the standard deviation. Secondary structures were 
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assigned according to the STRIDE online tool37. Image rendering, structural 

alignments, and distance analysis was done with PyMOL v.1.638. 

4.3 Results  

The conformational dynamics of a 22-residue peptide, corresponding to the Ser 367 to 

Glu 388 section of the p53-CTD, was analysed with molecular dynamics (MD) for a 

cumulative time of 20 μs. The simulation is an aggregate of ten separate trajectories, 

started from uncorrelated snapshots, selected from a 100 ns trajectory started from a 

fully extended backbone conformation. In addition to these ten separate trajectories, 

we ran two separate, 2 μs long, trajectories, both started from the helical conformation 

of p53-CTD peptide when in complex with S100B(ββ)6 (PDBid 1dt7). These 

calculations were run to assess the stability of the helix in solution and the residual 

helicity retained in function of the starting structure.  

The p53-CTD peptide size was analysed in terms of its Rg. The average Rg calculated 

over the combined 20 μs trajectories is 0.97 ± 0.07 nm. This value is larger than the 

Rg value 0.73 nm, predicted for a 22 residue random-flight polymer with link distances 

of 0.38 nm, representative of a random coil behaviour, but smaller than 1.01 ± 0.04 

nm, the Rg measured for the Ace-(AAKAA)4-GY-NH2 peptide, containing well-

structured α helical motifs39. The Rg plots obtained from the 10, 2 μs long, trajectories 

are shown in Figure 4.2 
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Figure 4.2: Radius of gyration (Rg) values calculated over the 10 (2 s) MD simulations, namely MD 1 to 10, of 

the 22 residue p53-CTD peptide unbound in solution. Standard deviations are indicated in brackets. 
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The trends describe a highly dynamic structure with recurrent signatures of relatively 

stable conformers. These correspond to localized and short secondary structure motifs, 

which we have classified through clustering analysis and are described in the sections 

below. The relative populations of the secondary structure motifs identified over the 

20 μs of cumulative simulation time are shown in Figure 4.3 and in Table 4.1. The 

highest populated structures contain β-bridges (27.3%), and β-sheet hairpins (25.7%). 

We also identified helical turns (13%), both α-helical, and 310. Random coils and turns, 

which contribute the most to the disordered character of the peptide, have a relative 

population of 15.2%. Interestingly, similar secondary structure motifs form recurrently 

throughout the dynamics, and are found to involve preferentially the same group of 

residues within the C-terminal half of the peptide. The relative populations only 

accounts for the presence of the motif and does not account for the number of residues 

which comprises the motif, so the true level of secondary structure will be lower than 

indicated in Figure 4.3 and in Table 4.1. 

 

Figure 4.3: Relative populations of secondary structure motifs identified over a cumulative 20 μs MD simulation 

of the 22 residue p53-CTD peptide.  

 

 

Table 4.1: Relative populations (%) of the secondary structure motifs identified during each trajectory. MD 1–10 

are trajectories started from a common fully extended peptide, see Computational method section, while Helix 1–

2 MD indicate trajectories started from the α helical conformation from the complex with S100B(ββ) (PDBid 

1dt7). Populations are calculated over 2 μs and account for the 10 highest populated clusters. The total reflects 

the populations over 20 μs cumulative sampling, where the standard deviation is indicated in brackets 

Trajectory β-Strands α/310 helices β-Bridges Coil/turns 

MD 1 55.3 7.7 8.9 13.4 

MD 2 0.0 19.1 0.0 53.4 

MD 3 0.0 27.8 24.4 17.3 

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f1_hi-res.gif
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MD 4 0.0 0.0 81.4 14.5 

MD 5 3.8 19.9 9.4 14.4 

MD 6 63.4 7.1 26.5 4.7 

MD 7 17.7 21.1 83.1 0.0 

MD 8 89.0 0.0 8.9 2.2 

MD 9 0.0 2.9 0.0 57.6 

MD 10 27.5 24.8 30.1 6.0 

Total (over 20 μs) 25.7(3.2) 13.0(1.1) 27.3(3.1) 18.3(2.0) 

Helix 1 MD 0.0 52.7 0.0 30.7 

Helix 2 MD 0.0 11.7 41.4 29.0 

 

β-Sheet hairpin motifs. As shown in the Rg plot in Figure 4.2, the first MD trajectory 

(MD1) visits a relatively stable conformation between 400 ns and 1.5 μs. In this 

interval the peptide is in an asymmetric β-sheet conformation, shown in Figure 4.4. 

The core of the β-sheet is held  

 

Figure 4.4: Examples of the β-sheet motif identified through the clustering analysis of the 20 μs MD simulation 

of the p53-CTD. The conformations visited during MD 1, MD 7, and MD 8 (cluster 1 and 3), are shown in cyan, 

red, green, and purple, respectively. The flexible tail corresponds to the stretch between Ser 367 and Gly 374.  

 

together by hydrogen bonds connecting Ser 376 and Phe 385, while the free N-

terminal tail, spanning residues Ser 367 to Gly 374 (367SHLKSKKG374), is not tied 

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f2_hi-res.gif
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into the hairpin and its dynamics determines the oscillations of the Rg value. The 

hairpin turn comprises His 380 and Lys 381. This conformation is the highest 

populated, stable for 55% of the simulation time, or more than half of the MD1 

trajectory. The structural alignment of all the β-sheet motifs found during all the other 

simulations shows that this particular asymmetric hairpin conformation is the highest 

populated type of β-sheet, also present in MD6 with 63.4% population over 2 μs, MD7 

with 17.7% population, MD8 with 89.0% population, and MD10 with population of 

23.0%. Two other slightly different, and lower populated, β-sheet conformations have 

been identified, one in MD5, with a population of 3.8% over 2 μs, and the other in 

MD10, with a population of 4.4%. As shown in Figure 4.5, these two conformers 

show the same asymmetry,  

 

 

Figure 4.5: Low populated -sheet conformers identified through the MD simulation that slightly differ from the 

highest populated and most stable asymmetric fold. In panel a) the conformer corresponding to MD5 cluster 9, in 

panel b) the conformer corresponding to MD10 cluster 7. 

but one (MD10) has a wider hairpin section, formed by Lys 381, Lys 382, and Leu 

383, and the other one (MD5) with a slightly different hydrogen bonding pattern 

relative to the highest populated motif, connecting not only Ser 376 to Phe 385, but 

also Ser 378 to Met 386. An RMSD matrix obtained through sequence alignment of 

the 15-residue stretch between Gly 375 and Glu 388, followed by structural alignment 

of all the β-sheet motifs, is shown in Table 4.2. 
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β-Bridges containing motifs. As shown in Figure 4.3, structures containing β-bridges 

are the highest populated over the 20 μs MD. Because of the degree of conformational 

flexibility a single hydrogen bond allows, structures containing β-bridges can be quite 

different, ranging from elongated narrow hairpins, to globular folds containing one or 

two β-turns, see Figure 4.6 

 

 

Figure 4.6: Structures containing -bridges visited during the 20 ms MD simulations. The label beside each 

structure indicates the MD run and the cluster number, 1 to 10, 1 being the highest populated. The relative 

population of the structure, or of the structures in case of MD7, over 2 s is indicated in brackets. Structures are 

represented with the N-terminal tail on the left-hand side of the image. 
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Table 4.2: RMSD (Å) values matrix obtained by sequence alignment, followed by structural refinement, of all 

the -sheet structural motifs identified during the 20 s MD simulation. RMSD. The alignment was done with 

PyMol. 
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The most stable hairpins that contain β-bridges are structurally similar to asymmetric 

hairpins described in the previous section. In fact, these β-bridge hairpins also present 

along dynamic tail that comprises residues Ser 367 to Gly 374 (367SHLKSKKG374) 

and also have His 380 and Lys 381 at the hairpin turn. The largest group of stable, 

narrow, asymmetric hairpins was visited during MD7 with 76.7% population over 2 

μs MD, see Figure 4.6. The structure of the highest populated hairpins containing β-

bridges and β-sheet hairpins are structurally very similar; they fall in different 

categories as the MoRFs structure classification we used is based on the STRIDE 

definition of the clusters middle structure. Indeed, clusters of narrow hairpins with a 

β-bridge often also contain β-sheets and vice versa.  

 

310 and α helical turns. Over the 20 μs MD we were able to distinguish 3 significantly 

populated short helical motifs, either 310 or α single helical turns. Representative 

structures are shown in Figure 4.7 

  

 

Figure 4.7: Short helical motifs identified during the 20 μs MD simulations. The labels indicate the group of 

residues where the helical turn is centred, and the minimum stretch for a 310 turn, while the relative populations 

over 20 μs are indicated in brackets.  

 

The highest populated helical MoRF involves a 3 residue segment, between Ser 376 

and Ser 378 (376STS378), with a relative population of 6.1% (±0.3) over the cumulative 

20 μs. Two helical motifs are equally populated; one is located at the N-terminus end 

of the peptide, stretching across Lys 370 to Lys 372 (370KSK372) with a relative 

population of 2.4% (±0.2) over 20 μs, and the other is located at the C-terminus end, 

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f3_hi-res.gif
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between Lys 381 and Leu 383 (381KKL383), with a relative population of 2.3% (±0.8). 

Although we found that the single helical turn motifs are in general less stable 

overtime than the asymmetric β-sheet or β-bridge-containing hairpins, we observed 

that the highest populated helical turns are stable for between 250 and 450 ns, see 

Figure 4.8.  

Stability of the S100B(ββ)-bound conformation in solution. We ran 2 additional 2 

μs trajectories to determine the stability in solution of the α/310 helical structure of the 

22 residue p53-CTD peptide when in complex with the S100B(ββ) dimer6. According 

to the STRIDE classification, this structure is α helical from Thr 377 to Met 384, and 

310 helical from Phe 385 to Thr 387. As shown by the NMR ensemble6 (PDBid 1dt7), 

large part of the N-terminal half of the peptide, i.e. from Ser 367 to Ser 376, is unbound 

and highly dynamic. Although the helical structure of the peptide unfolds quite readily 

within the first 2 ns of both trajectories, the secondary structure analysis in Table 4.1 

 

Figure 4.8: Cluster ID overtime calculated for MD10. The secondary structure assignments (STRIDE) for the 

middle structure of each cluster is indicated on the right-hand side, together with the peptide sequence. B-sheets, 

310 helices, b-bridges, coils and turns are indicated with the letters, e (red), g (green), b (pink), c and t (black) 

respectively. 

 

shows that a higher degree of helicity remains in one of the two 2 μs trajectories, 

namely in Helix 1 MD, relative to all other trajectories originated from the common 

fully extended starting structure. A high degree of helicity in the unbound p53-CTD 

was described in a recently published computational work40. Such strong 

conformational propensity is inconsistent with circular dichroism data7,40 and could be 
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due not only to force field limitations, but also to the choice of starting structures 

derived from the S100B(ββ) bound conformation40. In 30.7% of the helical structures, 

the residual helicity spans the 381KKL383 stretch. In all other cases, single helical turns 

are observed in the disordered, and unbound N-terminal tail, often in addition to the 

helical turn at 381KKL383. As shown in Table 4.1, also during the Helix 2 MD 

simulation, a residual helical character remains, however much less predominant than 

in the case of Helix 1 MD. Indeed, the highest populated cluster corresponds to an 

asymmetric hairpin structure with a free N-terminal tail (Ser 367 to Lys 373), similar 

to the β-bridge and β-sheet hairpin motifs observed during the 20 μs simulation MD 1 

to 10, described in the previous sections. Average Rg values are 9.96 Å for Helix 2 

MD and 10.59 Å for Helix 1 MD, see Figure 4.9 

 

Figure 4.9: Rg values (nm) from the 2 s trajectories started from the helical conformation of the p53-CTD 

peptide when bound to the S100B() (PDBid 1dt7). The Helix 2 MD (black line) was started from structure 6 of 

the NMR ensemble, while Helix 1 MD (red line) was started from structure 3 of the NMR ensemble. 
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4.4 Discussion  

The extreme C-terminus of the p53 tumour suppressor (p53-CTD) is a 30 residue long 

conformationally disordered6, highly alkaline region, responsible for regulating the 

p53 DNA binding activity1–4. This intrinsically disordered region (IDP) is also highly 

targeted for post-translational modifications, which modulate its DNA binding 

activity1,2,5,6,41. The p53-CTD binds numerous receptors, adopting significantly 

different conformations when bound6,8,9. In this work we used extensive sampling via 

MD simulations to analyse the conformational propensity of a 22-residue peptide, 

bearing all the binding determinants of the p53-CTD6,42–44, while unbound in solution. 

Our objective was to the dynamic nature of the p53-CTD peptide conformational 

ensemble at equilibrium and to search for structural distinctive elements, or Molecular 

Recognition Features (MoRFs), that could be specifically selected and bound by 

different receptors, initiating receptor-specific folding patters. As shown in Figure 

4.3, we have identified a set of distinct structural MoRFs, significantly populated over 

20 μs of cumulative sampling. These include β-sheet and β-bridges-containing 

asymmetric hairpins, conformations with 310 and α single helical turns, as well as coils 

and turns-containing structures, which account for the disordered nature of the peptide. 

An analysis of the size of the peptide in terms of Rg values in relation to the relative 

populations of the different structural MoRFs is shown in Figure 4.10. The most 

compact, and highest populated, conformations correspond to asymmetric hairpin 

structures, examples of which are shown in Figure 4.4, while the most extended ones 

correspond to disordered coils.  
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Figure 4.10: Average Rg values (nm), calculated over the 10, 2 μs trajectories, ordered from smaller to larger 

values. Above each bar are indicated the largest percentages of secondary structures identified during each 

trajectory, with (e) indicating β-sheet motifs, (b) β-bridges, (g h−1) 310/α helical single turns, and (t/c) turns and 

coils.  

A comparison between the secondary structure propensity per residue calculated over 

the 20 μs of MD simulation and the disorder predictions obtained with the s2D27 and 

with the PONDR-VL-XT28 tools is shown in Figure 4.11. Provided that the disorder 

scores obtained from the structure prediction tools are not numerically comparable to 

the secondary structure propensity values calculated from the MD simulations, or to 

each other, our analysis shows a good agreement with the s2D data, which predict a 

decrease in disorder (<70% disorder score) in the 377TSRHKKLMFKT387 segment, 

where we also observe the highest propensity for secondary structure. The PONDR-

VL-XT prediction is also in agreement with our data, showing a smoother decrease in 

disorder from N- to C-terminus, with a significant decrease for a slightly shorter 

sequence range relative to the s2D data, namely 380HKKLMFKTE388. As shown in 

Figure 4.11, the MD data provide a rationalization for this decrease in disorder in the 

C-terminal half of the peptide, by showing a higher propensity for the formation of β-

sheet asymmetric hairpins with a disordered N-terminal tail, and single helical turns. 

The propensity to form short helical motifs is also detected in the mostly disordered 

N-terminal half of the peptide, a trend mirrored by a slight decrease in disorder 

predicted by the s2D tool, see Figure 4.11, panel (a).  

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f4_hi-res.gif
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Figure 4.11: Comparison of the conformational propensity per residue calculated from the 20 μs MD simulations 

to the disorder prediction tools s2D on panel (a), and PONDR-VL-XT on panel (b). The legends on the right-

hand side of the graphs indicate specific secondary structure motifs, namely β sheets (e), α (h) and 310 helices (g), 

β bridges (b), turns (t) and coils (c). Secondary structure assignments have been done with STRIDE45 

 

The identification of these minimal structural motifs, or MoRFs, provides a rationale 

that can explain the binding promiscuity of p53-CTD, or its specificity towards 

multiple receptors. Our working hypothesis is that the p53-CTD receptors have 

different binding affinities for the structural MoRFs accessible at equilibrium, because 

of their ‘preformed’ 3D spatial arrangements, which provides structural 

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f5_hi-res.gif
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complementarity to different binding site. As the MoRFs constitute minimal structural 

motifs, the MoRF-receptor structural complementarity provides only on a few 

protein/peptide specific contacts, resulting in a relatively low binding enthalpy 

contribution. For instance, when in complex with the S100B(ββ) dimer, the p53-CTD 

peptide is in a helical conformation6. Within our the minimal MoRF-recognition 

framework, the S100B(ββ) dimer selects one (or more) of the single helical turn-

containing MoRFs found in the p53-CTD conformational ensemble to form an initial 

recognition (or nucleation) complex. Completion of the folding, with a corresponding 

increment of the binding affinity, will proceed by induced fit10. The completion of the 

helical motif after binding is in agreement with the observation that in the absence of 

stabilizing tertiary interactions, α-helices rarely persist in isolation39, and it is also 

supported by the instability of the S100B(ββ)-bound helical conformation of the p53-

CTD peptide when unbound in solution, see Table 4.1.  

As shown in Figure 4.12, an example of a potential recognition complex can be built 

by structural alignment of the backbone atoms of the 376STS378 helical turn MoRF, the 

highest populated helical motif over the cumulative 20 μs, onto the bound peptide 

conformation. The structure of the S100B(ββ)/p53-CTD NMR complex6 reveals sets 

of specific ligand-receptor interactions, which include a hydrogen bond between Ser 

376 of p53-CTD and Glu 45 of S100B(ββ), a salt-bridge between Arg 379 of p53-

CTD and Glu 49 of S100B(ββ), and the insertion of Leu 383 into the hydrophobic 

binding groove. As shown in Figure 4.12, these interactions are conserved in the 

putative recognition complex and retained during a 100 ns MD structure relaxation 

run. Notably, the disordered character of the unbound N-terminal tail of the peptide 

highlighted in the NMR structure6 is also well reproduced. Another potential example 

of MoRF-based conformational selection can explain the binding of a p53-CTD 

peptide with sirtuin Sir2 (PDBid 2h2f)9. The only resolved residues of the p53-CTD 

peptide in the complex are the one directly in contact with the Sir2 binding site, namely 

378SRKKLM383. While most of the contact between Sir2 and its target peptide involve 

mostly backbone atoms9, as shown in Figure 4.13, when in complex with the 

unmodified p53-CTD peptide, a few significant specific contacts can be highlighted. 

More specifically, Lys 381 of p53-CTD is in a salt bridge with the Gly 163 backbone 

carbonyl of Sir2, while the sidechain of Lys 382, targeted by acetylation, protrudes 

into the Sir2 binding site, with Phe 162 and His 116 flanking the aliphatic side chain, 
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Figure 4.12: (Panel a) Close up on specific contacts the helical MoRF p53-CTD peptide (red) makes during the 

100 ns MD when in one of the potential recognition complexes with S100B(ββ) (grey). Shown from top to 

bottom, the hydrogen bond interaction between Ser 376 of p53-CTD and Glu 49 of S100B(ββ), the salt bridge 

between Arg 379 of p53-CTD and Glu 45 of S100B(ββ), and the interaction of Leu 383 inserted in the 

hydrophobic binding groove of S100B(ββ). (Panel b) Structure of the recognition complex built by structural 

alignment of a peptide containing the STS helical (red) turn on to the p53-CTD bound conformation. (Panel c) 

Set of contacts highlighted in panel (a) shown for the bound conformation of the p53-CTD peptide (green) in 

complex with S100B(ββ), PDBid 1dt7. 

 

and the amino group bound to a water molecule9. Based on the structural data 

available, the transition from conformational disorder to order upon binding appears 

to be less significant in this case relative to the S100B(ββ). Nevertheless, if we 

consider the interactions between the Sir2 and Lys 381 and 382 of p53-CTD as 

potential recognition contacts, we have 2 examples, shown in Figure 4.13, of 

potentially recognized MoRFs in coil/turn conformation, with an optimal orientation 

of the Lys sidechains for initial recognition.  
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Figure 4.13: Potential recognition complexes between the p53-CTD peptide (in purple) and Sir2Tm (in green), 

PDBid 2h2f, obtained by structural alignment of MoRFs identified through clustering analysis of 20 μs MD 

trajectories. In panel (a) alignment of the middle structure from cluster 8 of MD5 (in red) with a RMSD based on 

4 Ca atoms of 0.4 Å, in panel (b) alignment of the middle structure from cluster 8 of MD9 (in cyan) with a 

RMSD based on 4 Ca atoms of 0.3 Å. Peptide sequence and respective secondary structures assignments 

(STRIDE) are indicated in the legend.  

 

To our knowledge there are no structures of complexes with the unmodified p53-CTD 

in an asymmetric β-sheet conformation; nevertheless, we are currently investigating 

the recognition of the highest populated p53-CTD MoRF, namely the β-sheet or β-

bridge-containing asymmetric hairpin, by β-sheet structured binding sites, such as in 

the PCL1-PHD1 domain46.  

Because of their relatively low populations and frequent interconversion, the p53-CTD 

peptide structural MoRFs will be extremely difficult, if not impossible, to characterize 

experimentally. Indeed, existing NMR6 and CD40 data show that the p53-CTD section 

is highly disordered when unbound in solution. Nevertheless, based on the information 

discussed in this work, experimental support for the MoRF-driven molecular 

recognition mechanism could be obtained by biasing the conformational ensemble 

towards specific structural MoRFs by means, for example, of stapling the peptide47. 

More specifically, based on the potential recognition discussed earlier in this section 

of the 376STS378 helical turn by S100B(ββ) as the initial, low affinity recognition 

complex, a suitably placed aliphatic chain staple would enhance the conformational 

propensity of the helical MoRF, thus its population, without affecting sequence 

integrity. Changes in relative conformers populations would affect binding kinetics. 

Furthermore, the role of MoRFs in p53-CTD recognition and binding could also be 

https://pubs.rsc.org/image/article/2017/cp/c7cp02485a/c7cp02485a-f7_hi-res.gif
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tested by introducing mutations that suppress specific structural motifs. Indeed, in the 

case of the small disordered protein PUMA, an Ala-Gly scanning scheme was put in 

place to suppress helicity without affecting residual structural propensity in solution19. 

Binding kinetics showed that the mutations do not affect k+, suggesting that folding 

occurs by an induced fit-driven mechanism19. As a proof of principle, based on the 

recognition mechanism proposed earlier for the 376STS378 310 helical turn MoRF by 

S100B(ββ), mutations of Thr 377 and/or Ser 378 would affect conformational 

propensity without compromising specific contacts with the receptor. Work in this 

direction is currently underway.  

4.5 Conclusions  

In this work we have used extended conformational sampling through conventional 

MD simulations to determine the degree of residual secondary structure within the 

conformational disorder at equilibrium of a 22-residue peptide, corresponding to the 

367–388 region of the p53 C-terminal domain (p53-CTD). This peptide contains all 

binding determinants of the p53-CTD within the active p53 tumour suppressor6,9. 

Clustering analysis of the MD trajectories, accounting for a cumulative time of over 

20 μs, show the p53-CTD peptide has a high conformational flexibility, but also a 

distinct propensity for the formation of specific and short structural motifs that 

encompass 3 to 4 residues at most. Furthermore, a per residue analysis of the 

conformational propensity along the p53-CTD peptide shows that these structural 

motifs are localized along the sequence, involving specific groups of residues. 

Localization of the structural MoRFs makes the p53-CTD C-terminal half less 

disordered than the N-terminal half. This observation is also in agreement with 

disorder predictions obtained with the s2D27 and PONDR-VL-XT28 secondary 

structure and disorder prediction tools. We propose that the functional role of these 

minimal structural molecular recognition features (MoRFs) is to confer to the p53-

CTD binding specificity towards different receptors, whereby each receptor would 

have a higher affinity for a specific MoRF due to 3D structural complementarity, based 

on a reduced number of contacts, relative to the final, bound conformation. Molecular 

recognition through selection of specific MoRFs, would lead to the completion of 

folding through induced fit. This mechanism is consistent with the molecular 

recognition proposed for other IDP systems17, although it does not necessarily 
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preclude access to other recognition and binding pathways17,19, that could in principle 

coexist.  
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Chapter 5: Effects on the conformational propensity of the 

variable residues on LxCxE short linear motifs and implications 

on binding affinity 

 

5.1 Introduction 

The Human Papilloma Virus (HPV) is responsible for almost all cases of cervical 

cancer, where the majority of these are caused by HPV 16/18 strain1. HPV has also 

been implicated in a number of other cancers1. After cell infection, HPV promotes 

cellular proliferation triggered by the interaction between the human retinoblastoma 

protein (Rb), a 928-residue tumour suppressor protein, and the HPV E7 oncoprotein2. 

The anti-tumour action of Rb derives from it arresting cell cycle at the G1 phase 

through binding the E2F family of proteins3. As shown in Figure 5.1, the Rb B-domain 

binds specifically a short linear motif (SLiM), namely LxCxE2, which is found in the 

HPV16 protein E7 located in the intrinsically disordered CR2 region of E74,5. The 

LxCxE motif is a high affinity binder for Rb, with a peptide with sequence 

corresponding to residues 16 to 40 of E7 (E716-40) having a Kd in the low nM range6. 

The binding of the LxCxE motif may promote the E7 CR3-region to bind the Rb C-

domain3 which displaces the E2F “marked box” region and destabilises the Rb-E2F 

complex7–9, releasing E2F and causing the cell to progress from the G1 phase to S 

phase10. E2F itself does not bind Rb through an LxCxE motif7,11. LxCxE is a highly 

conserved motif found in many viral proteins and in cellular proteins, see Figure 5.2.  

In this work, in collaboration with Prof Lucia Chemes at the Universidad de San 

Martin in Buenos Aires, we performed enhanced sampling simulations to gain an 

insight into the role of the variable residues, i.e. the x residues in LxCxE, on the motif’s 

binding affinity and on its structural propensity. More specifically, our aim was to 

determine if the choice of variable residues would affect pre-structuring of the motif 

to a conformation complementary to the Rb binding site, thus affecting the entropy of 

binding, regulating its binding affinity. Within this framework, in addition to the 

variable residues in the motif, we also looked at the effect of the LxCxE flanking 

residues, namely the residues immediately before and after the motif with which the x 

residues could interact. In terms of the simulations set-up, we examined the role of salt 
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Figure 5.1: Potential displacement pathway of E2F from Rb by E7. a) The pRb B domain (in cyan) is 

represented through its solvent accessible surface. The LxCxE binding motif shown in red (PDBid 1GUX)  with 

the corresponding sequence highlighted in red in Panel b). Panel c) shows the pRb C-domain (in yellow) bound 

to the heterodimer E2F-DP1 (in blue) and binding of the E7 CR3 region (in green) which displaces the E2F from 

the Rb C region and causes the dissociation of E2F-DP1 from the RbAB interface.  

 

 

Figure 5.2: Sequence alignment of LxCxE motifs from selected viral and cellular proteins, listed in bold on 

the left-hand side. The LxCxE motif is highlighted in red, while the region rich in acidic residues is highlighted 

in blue. The Ser residues in blue are known to be phosphorylated 

 

 

concentration in the simulations by comparing simulations in bulk water to 

simulations in 200 mM NaCl, which corresponds more closely to the experimental 

conditions we are comparing our results to. Also, we looked at the effects of 
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phosphorylation at Ser 31 and 32 (pSer), which are conserved almost to the extent as 

the LxCxE motif6, corresponding to the naturally active form of the E7 protein5,12. 

Notably, the peptides tested in the Prof Chemes’ lab for binding kinetics are not 

phosphorylated, while phosphorylation in such positions is known increase the 

binding ten-fold, the non-phosphorylated peptides still bind in the low nM range6. In 

addition to HPV16 E7 LxCxE variants we also studied the structure and dynamics of 

a few other known and potential LxCxE motifs, namely from Cyclin D, BRCA1, 

FOG2 and GATA1 proteins. From all these results we found no evidence of 

prestructuring, which for the E7 peptide variants is consistent with experimental 

results see Table 5.5 in results. We also found that salt concentration has minimal 

effect on the structure and dynamics of the peptides. Finally, our results of the Rb-

bound LxCxE-containing peptides are able to clearly explain the experimental kinetic 

data and the differences in affinity of the different mutants and variants. 

5.2 Interaction between the HPV E7 LxCxE and Rb 

In HPV 16 E7 the variable residues are both Tyr residues, i.e. the motif is LYCYE as 

shown in Figure 5.2, and the flanking residues we are concerned with are Asp 21 and 

Leu 28. The interactions between the variable and flanking residues play a role in 

modulating the binding affinity of the motif to Rb. The mutations proposed in this 

work, shown in Table 5.1, were designed to alter or eliminate one or more of these 

interactions at same the time. The main interactions found in the crystal structure of 

the HPV E7 peptide in complex with Rb (PDBid 1GUX) are a hydrogen bond between 

Tyr 25 and Asp 21, a π-stacking interaction between Tyr 23 and Tyr 25. Additionally, 

there is a stacking between Tyr 23 and Rb Asn 757, Asn 757 forms two hydrogen 

bonds with the backbone of the E7 LxCxE motif, the stacking between Tyr 23 and Rb 

Asn 757 may serve to exclude water from interacting with Asn 757 which would 

reduce the strength of the hydrogen bonds to E7. We also looked at the importance of 

the highly acidic region of E7 found after the LxCxE motif, namely residues 30-40, as 

there is a highly alkaline patch on Rb and the interaction between the two oppositely 

charged regions maybe be important for binding. Leu 22, Cys 24 and Leu 28 sit into 

hydrophobic pockets on Rb while Glu 26 forms a bidentate hydrogen bond with the 

backbone of Rb, see Figure 5.3. 
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Figure 5.3: Crystal structure of E7 21-28 shown in green bound to Rb B-region shown in grey (PDBid 1GUX). 

A) From right to left, interactions between conserved E7 Leu 22, Cys 24, Glu 26 and Leu 28 and Rb. B) Variable 

residue interactions of E7, π-stacking between Tyr 23 and 25, Hydrogen bond between Asp21 and Tyr 25 and 

stacking between Asp 23 and Rb Asn 757 (shown in blue). C) Alkaline patch of Rb, Arg and Lys residues are 

shown in blue. 

 

The Y23A mutation eliminates the π-stacking with Tyr 25 of the E7 and with Asn 757 

of Rb, the Y25F mutation aims to determine the importance of the hydroxyl group of 

the Tyr in this specific position as the hydroxyl forms a hydrogen bond with Asp 21 

in the crystal structure. The Y25A mutation represents the reversed case of the 

previous one, eliminating the π-stacking with Tyr 23 and the hydrogen bond to Asp 

21. The D21A and Y25F mutations both eliminate the hydrogen bond between Ty r25 

and Asp 21. Finally, the E26A mutation was proposed based on preliminary kinetic 

data to assess the role of the highly conserved Glu from the LxCxE motif, while a 

series of Ala “spacers” is designed to push Leu 28 out of the hydrophobic pocket it 

sits in, see Figure 5.3b. Also, the LxCxE motifs from GATA1 and FOG2 proteins, 
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see Table 5.1, were introduced into the E7 peptide frame to investigate how different 

variable residues known to bind Rb affect binding of the E7 peptide. 

5.3 Computational method 

In this study we analysed the conformational dynamics of 24 residue peptides with 

sequences shown in Table 5.1 by replica exchange MD (REMD) simulations13 both 

free in solution and bound to Rb. The simulations were repeated in 200 mM NaCl and 

with peptides phosphorylated and non-phosphorylated at Ser 31 and 32. All REMD 

simulations were carried out with 87 replicas to cover a range of temperatures between 

300 K to 500 K, chosen based on the “Temperature Generator for REMD” online tool 

(http://folding.bmc.uu.se/remd/)14. All simulations were run with CHARMM22*15 to 

represent the protein atoms and counterions and with TIP4P-D as a water model16. 

This force field combination was chosen as at the time we started the project in 2016 

it was the one for intrinsically disordered proteins (IDPs) that best agreed with 

experimental results17. All calculations were run with two GROMACS versions, 

namely 4.6.3 and 2018.318. Computational resources were provided by the Irish Centre 

for High-End Computing (ICHEC). Energy minimizations were carried out on 2 

nodes, i.e. 80 cores. NVT equilibrations and Replica Exchange MD (REMD) 

production simulations were run on 2 processors per replica for 87 replicas, i.e. 174 

processors over 5 nodes. We estimated that the final cost for all MD simulations in 

this project reached approximately 6,000,000 CPU hours. We performed the same 

simulations as described above for a number of mutants of E717-40 as well as LxCxE 

containing peptides from BRCA, corresponding to residues 353-376, Cyclin D, 

corresponding to residues 1-23, FOG2, corresponding to residues 40-63 and GATA1, 

corresponds to residues 76-99. In the following text, all peptides are numbered based 

on the E7 numbering going forward with the LxCxE motif as residue 22 to 26. The N-

termini of all peptides were capped with an acetyl group (ACE) and the C-termini 

were capped with an N-methyl (NME) group. All systems studied here, i.e. bound and 

unbound peptides, were placed in a rhombic dodecahedron simulation box with a 

minimum distance between the peptide and the edge of the box of 1.2 nm. Bond 

lengths to hydrogen atoms were constrained using the LINCS algorithm. Long range 

electrostatic interactions were treated with Particle Mesh Ewald (PME) with a switch 

http://folding.bmc.uu.se/remd/
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from real space to reciprocal space at 1.2 nm. The van der Waals (vdW) interactions 

were cut-off at 1.2 nm.  

Table 5.1: Peptides sequences studied in this work with the conditions under which they were simulated. All 

peptides were simulated free in solution and bound to Rb except E7PE26A, which was only simulated when 

bound to Rb. E7 mutations are highlighted in bold and phosphoserines are underlined. Checkmarks indicate 

whether the simulations were done in both bulk water and 200 nM NaCl. 

Peptides Sequence bulk water 200 mM NaCl 

E7 17 PETTDLYCYEQLNDSSEEEDEIDG 40 ✓ ✓ 

E7P PETTDLYCYEQLNDSSEEEDEIDG ✓ ✓ 

E7PD21A PETTALYCYEQLNDSSEEEDEIDG ✓ ✓ 

E7PE26A PETTDLYCYAQLNDSSEEEDEIDG ✓ ✓ 
E7PAA PETTDLACAEQLNDSSEEEDEIDG ✓ ✓ 

E7AY PETTDLACYEQLNDSSEEEDEIDG ✓ ✓ 

E7PAY PETTDLACYEQLNSSEEEDEIDG ✓ ✓ 

E7FF PETTDLFCFEQLNDSSEEEDEIDG ✓ ✓ 

E7PFF PETTDLFCFEQLNDSSEEEDEIDG ✓ ✓ 

E7PFY PETTDLFCYEQLNDSSEEEDEIDG ✓ ✓ 

E7PYA PETTDLYCAEQLNDSSEEEDEIDG ✓ ✓ 

E7PYF PETTDLYCFEQLNDSSEEEDEIDG ✓ ✓ 

FOG2 FGPENLSCEEVEYFCNKGDDEGIQ  ✓ 

E7PFOG PETTNLSCEEQLNDSSEEEDEIDG  ✓ 

GATA1 QVYPLLNCMEGIPGGSPYAGWAYG  ✓ 

E7PGATA PETTLLNCMEQLNDSSEEEDEIDG  ✓ 

E71A PETTDLYCYEQALNDSSEEEDEIDG ✓ ✓ 

E72A PETTDLYCYEQAALNDSSEEEDEIDG ✓ ✓ 

E73A PETTDLYCYEQAAALNDSSEEEDEIDG ✓ ✓ 

E7P1A PETTDLYCYEQALNDSSEEEDEIDG ✓ ✓ 

E7P2A PETTDLYCYEQAALNDSSEEEDEIDG ✓ ✓ 

E7P3A PETTDLYCYEQAAALNDSSEEEDEIDG ✓ ✓ 

BRCA WNKQKLPCSENPRDTEDVPWITLN  ✓ 

Cyclin D MEHQLLCCEVETIRRAYPDANLL  ✓ 

 

The starting structure for all bound peptides was based on the crystal structure of the 

E7 LxCxE motif bound to Rb (PDBid 1GUX), with the peptide extended in both 

directions built with Schrodinger MAESTRO19, minimising the contact with the Rb 

protein to prevent biasing the starting conformation of the complex. In the interest of 

computational resources Rb A-box domain was omitted from the simulations. This 
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starting structure was modified using pymol 20 to obtain the different sequences shown 

in Table 5.1. For the starting conformation of the peptides free in solution, we build 

the 24 residue E7 peptide in a fully extended conformation also with the MAESTRO 

molecular builder. For the extended peptide a 500k steps of steepest descent 

minimization was carried out in implicit solvent, followed by a 100 ns NPT MD run 

and a random structure was selected as the starting conformation for REMD. The 

REMD simulation protocol for both free E7 and E7 bound to RB involved an initial 

energy minimization, namely 500k of steepest descent with a force-based convergence 

threshold of 100 kJmol-1nm-1 restraining the protein heavy atoms. After the energy 

minimization, we carried out a 500 ps equilibration in the NVT ensemble with the 

same set of restraints, where each replica was equilibrated to its specific temperature. 

To ensure the system maintained a pressure of 1 bar, the density of the system at 300 

K was monitored throughout the simulation and verified that its value matched that of 

water at 300 K and 1 bar, so no that further equilibration was required. To integrate 

the equations of motion we used a leap-frog stochastic dynamics (sd) integrator, with 

a friction coefficient corresponding to the inverse of tau-t equal to 0.1 ps, where tau-t 

is the time constant for coupling. Production stage followed with all atoms 

unrestrained in the free peptide simulations and with only Rb backbone atoms 

restricted in the bound peptide simulations. The system attempted to exchange replicas 

every 500 steps, i.e. every 1 ps, and the production was extended to 26 ns per replica, 

for a total cumulative simulation time of 2.3 μs for each peptide.  

As an important note, based on Dr P. Robustelli’s personal communication, the TIP4P-

D water model21 was shown to partially unfold folded proteins, therefore we kept the 

Rb backbone atoms restrained in all simulations discussed in the Results section. 

Nevertheless, we tested the effects of TIP4P-D in a fully unrestrained complex and 

indeed found that the water model contributes to unfold helical motifs on the structured 

receptor. The test results are shown in Figure 5.4 

5.4 Results 

HPV16 E7 peptide. As the variable residues in the LxCxE are not evolutionarily 

conserved, we studied the role of these variable residues in the structure and dynamics 

of the peptides. More specifically, we looked at the interactions present in the crystal 

structure of the Rb-HPV E7 complex (PDBid 1GUX) and how they change throughout 
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the simulation, in terms of their stability and how they change as a function of the 

choice of x residues. We measured π-stacking between Tyr 23 and Tyr 25 as an 

average RMSD value of the sidechain heavy atoms truncated at Cζ relative to the 

crystal structure and the hydrogen bond between Asp 21 and Tyr 25 as the average 

 

Figure 5.4: A) Rb structure from the final frame of the simulation of both restrained (red) and unrestrained 

(green) Rb-E7P complexes. B) RMSD values of Rb backbone atoms relative to the crystal structure with 

restrained backbone atoms shown in orange and unrestrained backbone atoms shown in blue 

distance between the Asp 21 sidechain carboxylate oxygens (Oε1 and Oε2) and Tyr 

25 sidechain hydroxyl oxygen. The π-stacking RMSD calculation is truncated at Cζ 

atom, i.e. excluding the Tyr sidechain hydroxyl oxygen, since mutants containing Phe 

in place of Tyr do not feature this hydroxyl oxygen and the RMSD values for those 

mutants may be skewed. Results are shown in Table 5.2 for both the bound and the 

free peptide in solution, in bulk water and with 200 mM NaCl.  

Table 5.2: Comparison of results of the wild-type LxCxE, in bulk water and with 200 mM NaCl, of interactions 

found in complex crystal structure, with standard deviation show in parentheses. Asp-Tyr Hydrogen bond is 3.81 

Å and 4.18 Å respectively in the crystal structure 

Bulk water π-stacking (Å) Asp-Tyr Hydrogen 

bond OE1 (Å)  

Asp-Tyr Hydrogen 

bond OE2 (Å) 

Salt bridge at 5 Å 

(count) 

E7-free 

E7-bound 

2.15 (0.57) 

1.52 (0.11) 

11.71 (1.94) 

4.81 (1.76) 

11.54 (2.03) 

5.03 (1.68) 

 

1.52 (0.80) 

E7P free 

E7P bound 

1.93 (0.54) 

1.48 (0.07) 

10.57 (4.11) 

4.28 (1.45) 

10.89 (3.73) 

5.01 (1.65) 

 

1.97 (1.17) 

200 mM NaCl     

E7-free 

E7-bound 

2.31 (0.76) 

1.55 (0.12) 

10.53 (2.82) 

5.73 (2.02) 

11.08 (2.90) 

6.18 (2.12) 

 

1.08 (1.04) 

E7P free 

E7P bound 

2.10 (0.76) 

1.51 (0.09) 

7.48 (3.06) 

5.50 (1.67) 

7.99 (3.59) 

5.66 (2.05) 

 

2.31 (1.23) 
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E7 peptide phosphorylated at Ser 31 and 32 (indicated here as E7P) is the naturally 

active, Rb binding form, thus we wanted to understand the role of phosphorylation on 

the peptide’s structure and dynamics. As such we performed the same analysis of E7 

as above on E7P. We also compared the number of salt bridges formed between the 

highly acidic C-terminal tail of the peptide and the alkaline surface patch on Rb, 

measured as the number of Lys or Arg residues within 5 Å of the carboxyl group 

oxygens of Asp Glu and the phosphate group oxygens of pSer between residues 30 to 

40. In order to determine the conformational propensity of free and bound E7, we 

performed a per residue breakdown of the phi/psi backbone torsion angle values, see 

Figure 5.5. In E7 free we see that Glu 26 is helical in solution while it adopts a PPII 

conformation when bound to Rb. Phosphorylation at Ser 31 and 32 enhances the 

propensity to form PPII regions in the free peptide, but there are no conformational 

differences when the peptide is bound. As the binding assays are carried out in 200 

mM salt, we sought to understand the effect of salt on the system, therefore we ran 

and analysed the simulations of all systems in of 200 mM NaCl. See Table 5.2 and 

Figure 5.5. 

 

E7-mutants and LxCxE-containing variants. In order to further understand the role 

of the variable residues on the structure and dynamics of the peptide, we analysed the 

E7 mutants and variant sequences indicated in Table 5.1. More specifically, we also 

looked at the average backbone RMSD values of residues 21 to 28, namely xLxCxExx, 

relative to the 1GUX crystal structure, the stacking between an aromatic residue in 

position 23 of E7 and Asn 757 residue on Rb, which forms a bidentate hydrogen bond 

with the E7 backbone, and finally the hydration of Asn 757, represented as the average 

number of water molecules within 3 Å of the Asn 757 sidechain heavy atoms. Results 

are shown in Table 5.3 and Table 5.4. Where specific interactions are eliminated due 

to the mutation of one or both residues involved, no values are shown. 

We also looked at the effect of a spacer after the LxCxE motif as there a hydrophobic 

pocket that Leu 28 sits into. We evaluated this via the number of salt bridges formed 

with the alkaline patch on the Rb surface to determine how well the acidic region of 

E7 overlaps with alkaline patch on Rb. And the average backbone RMSD values of 
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the DLxCxEQA motif relative to the 1GUX crystal structure to determine how well 

bound to Rb the DLxCxEQA motif is. Results are shown in Table 5.3 and Table 5.4. 

To understand the role of the LxCxE motif in other peptides we looked at peptides 

containing the motif from other known LxCxE containing proteins namely CyclinD, 

BRCA1, GATA1, FOG2 and E7 mutants based on GATA1 (E7Pgata) and FOG2 

(E7Pfog). As few to none of the properties evaluated for the E7 mutants are not present 

in these sequences, different properties were measured, namely the Rg of the LxCxE-

containing peptide when bound to Rb see Figure 5.6, and measuring the interactions 

between the variable residues. 
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Figure 5.5: Ramachandran (phi/psi) plots showing dihedral angle values for Glu 26 in four different simulations 

with bulk water only, namely A) E7 unbound in solution B) E7 Rb-bound C) E7P unbound in solution D) E7P 

Rb-bound. And in 200 mM NaCl namely, E) E7 unbound in solution F) E7 Rb-bound, G) E7P unbound in 

solution, and H) E7P Rb-bound. 
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Table 5.3: Summary of results for E7 mutant peptides simulated in bulk water with error shown in parenthesis. 

Error is calculated as the standard deviation of the average value % π-stacking below a cuttoff of 1.7 Å and 

hydrogen bond below a cutoff of 5 Å are shown in brackets. 

Bulk water 

 

Sequence 

π-stacking (Å) 

Asp-Tyr 

Hydrogen bond 

OE1 (Å) 

Asp-Tyr 

Hydrogen 

bond OE2 (Å) 

Aromatic–

Asn 757 

stacking 

RMSD aa 

21-28 

(Å) 

Hydration 

of Asn 757 

Salt bridge 

at 5 Å 

(count) 

E7-free 

E7-bound 

2.15 (0.57) [10] 

1.52 (0.11) [93] 

11.71 (1.94) [0] 

4.81 (1.76) [73] 

11.54 (2.03) 

5.03 (1.68) 

 

3.86 (0.45) 

3.11 (0.73) 

1.39 (0.36) 

 

2.95 (1.30) 

 

1.52 (0.80) 

E7P free 

E7P bound 

1.93 (0.54) [15] 

1.48 (0.07) [95] 

10.57 (4.11) [3] 

4.28 (1.45) [74] 

10.89 (3.73) 

5.01 (1.65) 

 

3.93 (0.35) 

2.66 (0.83) 

1.32 (0.34) 

 

3.07 (1.10) 

 

1.97 (1.17) 

E7PE26A bound 1.51 (0.10) [92] 4.61 (0.86) [70] 4.61 (1.31) 4.33 (1.03) 1.60 (0.56) 3.20 (1.17) 2.12 (1.18) 

E7PD21A free 

E7PD21A bound 

2.53 (0.83) [0] 

1.81 (0.15) [77] 

 

 

 

 

 

5.89 (1.14) 

3.18 (0.71) 

1.72 (0.28) 

 

3.79 (1.26) 

 

2.44 (1.06) 

E7PAA free 

E7PAA bound 
    

3.34 (0.59) 

1.69 (0.24) 

 

4.34 (1.15) 

 

2.06 (0.82) 

E7AY free 

E7AY bound 
 

13.10 (4.01) [0] 

5.60 (1.84) [55] 

13.65 (4.12) 

5.83 (1.79) 
 

2.39 (0.88) 

1.56 (0.46) 

 

4.26 (1.24) 

 

1.61 (1.14) 

E7PAY free 

E7PAY bound 
 

15.41 (3.74) [4] 

5.58 (1.61) [57] 

15.24 (3.68) 

5.75 (1.67) 
 

2.42 (0.59) 

1.61 (0.27) 

 

4.23 (1.28) 

 

1.68 (1.25) 

E7FF free 

E7FF bound 

1.90 (0.49) [17] 

1.54 (0.10) [85] 

 

 
 

 

5.09 (1.40) 

2.19 (0.65) 

1.60 (0.34) 

 

3.44 (1.07) 

 

2.20 (1.60) 

E7PFF free 

E7PFF bound 

2.29 (0.56) [17] 

1.65 (0.30) [80] 

 

 

 

 

 

5.06 (1.37) 

2.36 (0.91) 

1.66 (0.36) 

 

3.68 (1.17) 

 

2.15 (0.90) 

E7PFY free 

E7PFY bound 

2.62 (0.19) [3] 

1.79 (0.19) [75] 

11.09 (3.84) [2] 

5.25 (1.69) [62] 

11.17 (3.83) 

5.79 (1.61) 

 

5.66 (1.13) 

3.24 (0.67) 

1.67 (0.21) 

 

3.01 (1.29) 

 

1.67 (1.05) 

E7PYA free 

E7PYA bound 
   

 

5.68 (1.39) 

3.39 (0.70) 

1.73 (0.40) 

 

3.90 (1.32) 

 

1.92 (0.78) 

E7PYF free 

E7PYF bound 

2.51 (1.02) [12] 

1.82 (0.23) [79] 
  

 

5.54 (1.17) 

2.93 (0.55) 

1.65 (0.25) 

 

3.46 (1.34) 

 

2.05 (1.00) 

E71A free 

E71A bound 

2.36 (0.47) [9] 

1.48 (0.08) [95] 

11.88 (3.39) [0] 

5.42 (1.86) [60] 

11.84 (3.57) 

5.62 (1.61) 

 

3.95 (0.55) 

2.61 (0.96) 

2.18 (0.39) 

 

2.87 (1.16) 

 

1.27 (1.42) 

E72A free  

E72A bound 

2.14 (0.41) [6] 

1.51 (0.13) [87] 

13.99 (3.82) [4] 

5.34 (1.86) [62] 

13.99 (3.80) 

5.95 (1.79) 

 

4.11 (0.89) 

2.37 (0.87) 

1.68 (0.27) 

 

3.05 (1.16) 

 

2.05 (0.99) 

E73A free  

E73A bound 

2.17 (0.43) [7] 

1.53 (0.17) [91] 

14.51 (4.48) [0] 

5 .75 (2.06) [64] 

14.12 (4.61) 

6.57 (2.85) 

 

4.50 (1.13) 

2.93 (0.75) 

1.58 (0.27) 

 

3.15 (1.11) 

 

2.12 (1.04) 

E7P1A free 

E7P1A bound 

2.43 (0.41) [6] 

1.51 (0.07) [94] 

14.33 (4.31) [0] 

5.48 (1.23) [53] 

14.74 (3.93) 

6.01 (1.88) 

 

4.33 (1.06) 

2.28 (0.58) 

1.97 (0.48) 

 

3.08 (1.20) 

 

1.26 (0.91) 

E7P2A free  

E7P2A bound 

2.31 (0.44) [6] 

1.53 (0.15) [88] 

13.90 (3.16) [5] 

5.31 (1.65) [58] 

14.26 (3.74) 

5.77 (2.03) 

 

3.94 (0.74) 

2.63 (0.85) 

1.63 (0.25) 

 

3.05 (1.15) 

 

2.03 (1.12) 

E7P3A free  

E7P3A bound 

2.20 (0.42) [95] 

1.66 (0.21) [9] 

15.61 (3.62) [0] 

5.71 (1.40) [60] 

15.44 (3.45) 

5.68 (1.68) 

 

5.03 (1.34) 

2.54 (0.43) 

1.60 (0.30) 

 

3.08 (1.14) 

 

2.53 (1.12) 
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Table 5.4: Summary of results for E7 mutant peptides simulated with 200 mM NaCl. Error shown in 

parentheses. % π-stacking below a cuttoff of 1.7 Å and hydrogen bond below a cutoff of 5 Å are shown in 

brackets 

200 mM NaCl 

Sequence 
π-stacking (Å) 

Asp-Tyr 

Hydrogen bond 

OE1 (Å) 

Asp-Tyr 

Hydrogen 

bond OE2 (Å) 

Aromatic–

Asn 

stacking 

RMSD of 

xLxCxExL 

(Å)  

Hydration 

of Asn 757 

Salt bridge 

at 5 Å 

(count) 

E7 free 

E7 bound 

2.31 (0.76) [16] 

1.55 (0.12) [92] 

10.53 (2.82) [2] 

5.73 (2.02) [51] 

11.08 (2.90) 

6.18 (2.12) 

 

3.78 (0.27) 

2.77 (0.55) 

1.57 (0.41) 

 

3.35 (1.20) 

 

1.08 (1.04) 

E7P free 

E7P bound 

2.10 (0.76) [13] 

1.51 (0.09) [95] 

7.48 (3.06) [7] 

5.50 (1.67) [58] 

7.99 (3.59) 

5.66 (2.05) 

 

3.81 (033) 

2.37 (0.92) 

1.53 (0.39) 

 

3.19 (1.13) 

 

2.31 (1.23) 

E7PE26A bound 1.57 (0.11) [85] 5.45 (1.86) [50] 5.64 (1.71) 4.45 (1.13) 1.60 (0.56) 3.40 (1.06) 2.15 (1.38) 

E7PD21A free 

E7PD21A bound  

2.35 (0.61) [0] 

1.69 (0.20) [77] 
  

 

5.04 (1.38) 

2.76 (0.76) 

1.66 (0.30) 

 

3.84 (1.19) 

 

2.37 (0.90) 

E7PAA free 

E7PAA bound 
   

 

 

3.00 (0.55) 

1.69 (0.23) 

 

3.86 (1.25) 

 

1.71 (1.42) 

E7AY free 

E7AY bound 
 

13.37 (3.99) [2] 

5.20 (2.07) [55] 

13.54 (4.00) 

5.22 (1.98) 
 

2.56 (0.66) 

1.57 (0.33) 

 

4.26 (1.34) 

 

2.23 (1.01) 

E7PAY free 

E7PAY bound 
 

15.20 (3.60) [52] 

5.64 (1.52) [0] 

16.36 (4.06) 

6.10 (1.46) 
 

2.47 (0.69) 

1.60 (0.36) 

 

4.06 (1.44) 

 

1.72 (0.90) 

E7FF free 

E7FF bound 

2.42 (0.78) [8] 

1.62 (0.24) [92] 
  

 

5.62 (1.88) 

2.61 (0.77) 

1.67 (0.50) 

 

3.55 (1.20) 

 

2.09 (1.07) 

E7PFF free 

E7PFF bound 

1.87 (0.39) [17] 

1.58 (0.11) [88] 
  

 

5.35 (1.42) 

2.69 (0.80) 

1.75 (0.44) 

 

3.66 (1.05) 

 

1.96 (1.07) 

E7PFY free 

E7PFY bound 

2.17 (0.52) [3] 

1.70 (0.22) [77] 

9.48 (2.69) [0] 

5.87 (1.57) [50] 

10.15 (2.75) 

5.92 (1.23) 

 

4.86 (1.33) 

3.10 (0.64) 

1.71 (0.41) 

 

3.46 (1.16) 

 

2.08 (0.79) 

E7PYA free 

E7PYA bound 
   

 

5.33 (1.29) 

3.36 (0.84) 

1.70 (0.33) 

 

4.18 (1.23) 

 

1.67 (1.29) 

E7PYF free 

E7PYF free 

2.17 (0.48) [12] 

1.63 (0.19) [79] 
  

 

5.33 (1.26) 

3.21 (0.74) 

1.67 (0.40) 

 

3.37 (1.27) 

 

2.10 (1.09) 

E71A free 

E71A bound 

2.25 (0.36) [11] 

1.54 (0.17) [85] 

16.38 (3.64) [0] 

5.47 (1.44) [55] 

16.48 (3.79) 

5.50 (1.55) 

 

3.80 (1.14) 

2.77 (0.64) 

2.19 (0.54) 

 

3.13 (1.11) 

 

1.05 (0.98) 

E72A free  

E72A bound 

2.39 (0.52) [14] 

1.51 (0.13) [89] 

14.64 (2.87) [2] 

5.72 (1.79) [49] 

15.06 (2.81) 

5.78 (1.47) 

 

4.12 (0.88) 

2.33 (1.23) 

1.64 (0.24) 

 

3.37 (1.12) 

 

1.91 (0.98) 

E73A free  

E73A bound 

2.61 (0.58) [0] 

1.58 (0.15) [84] 

15.53 (4.38) [0] 

5.60 (2.03) [52] 

15.21 (4.41) 

5.95 (1.70) 

 

4.18 (0.89) 

3.02 (0.71) 

1.64 (0.42) 

 

3.14 (1.48) 

 

2.07 (1.54) 

E7P1A free 

E7P1A bound 

2.70 (0.52) [10] 

1.56 (0.25) [87] 

11.63 (2.42) [6] 

5.50 (1.41) [49] 

12.06 (2.20) 

6.14 (1.51) 

 

3.83 (0.41) 

2.49 (0.75) 

2.19 (0.40) 

 

3.33 (1.17) 

 

1.25 (0.75) 

E7P2A free  

E7P2A bound 

2.64 (0.75) [86] 

1.52 (0.14) [6] 

13.59 (3.17) [3] 

5.53 (1.87) [54] 

13.40 (3.40) 

6.08 (1.86) 

 

4.05 (0.92) 

2.20 (0.68) 

1.65 (0.35) 

 

3.31 (1.14) 

 

2.33 (0.97) 

E7P3A free  

E7P3A bound 

2.29 (0.31) [7] 

1.66 (0.29) [88] 

15.46 (4.38) [1] 

5.81 (1.88) [53] 

15.75 (3.99) 

6.36 (1.84) 

 

4.06 (1.13) 

2.67 (0.62) 

1.62 (0.30) 

 

3.32 (1.19) 

 

1.98 (0.98) 

 

.  
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Figure 5.6: Histogram populations of peptide Rg for E7P (light blue) BRCA1 (magenta, p < 0.01), Cyclin D 

(grey p < 0.01), E7Pgata (orange), GATA1 (yellow p < 0.01), E7Pfog (green p < 0.01) and FOG2 (maroon p < 

0.01). P-values calculated relative to E7P 

 

The LxCxE found in Cyclin D is LLCCE with a Gln in position 21 in place of Asp 

found E7. The LxCxE motif is held in the bound conformation, when bound to Rb, by 

a hydrophobic interaction between these three residues, namely Gln 21 Leu 23 and 

Cys 25, for 100% of the simulation. Which we calculated as the amount of time in the 

simulation Leu 23 sidechain is within 4 Å of Cys 25 or Gln 23. As there is no acidic 

region in the Cyclin D peptide, it doesn’t form any interaction with the basic patch of 

Rb and instead folds back upon itself. This is reflected in the fact that the Rg of the 

peptide is smaller than that of the E7 peptide bound. There is a small population with 

a Rg value closer to E7 which corresponds to residues 30-40 overlapping with the 

alkaline patch of Rb but these interactions are comprised hydrophobic interactions 

rather than electrostatic interactions. See Figure 5.7.  

 

The LxCxE motif found in BRCA1 is LPCSE with Lys in position 21 instead of Asp. 

As Pro sidechain can’t form interactions with other sidechains only Lys 21 and Ser 25 

can interact to stabilise the motif in a bound conformation. However, there are no 

interactions between these two variable residues, with an average bond length of 7.34 

± 3.63 Å. The section containing residues 30 to 40 exhibits two conformations, one 

which overlaps the alkaline region of Rb, which is the same behaviour found in E7 

and a second conformation in which this segment folds over onto itself which is the 

same as found in Cyclin D. 
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Figure 5.7: Rb B domain shown in grey with more compact Cyclin D peptide shown in green and less compact 

peptide shown in cyan.  

 

The GATA LxCxE motif is LNCME with Leu in position 21 in place of Asp. The 

motif is held in a binding conformation when bound by hydrophobic interaction 

between Leu 21 and Met 25 which are within 4 Å of each other for 100% of the 

simulation. Two peaks are found in the Rg plot for GATA. The lower of these 

populations occurs when residues 30-40 are bound to Rb, not through ionic 

interactions with the alkaline patch but instead forming intermittent hydrophobic 

interactions with Rb Lys and Arg hydrocarbon sidechains. The higher population 

occurs when residues 30-40 do not interact at the with Rb alkaline patch, nor does the 

peptide fold back upon itself such as the case found in Cyclin D and BRCA1, see 

Figure 5.8  

E7Pgata LxCxE motif is held in a binding conformation when bound by hydrophobic 

interaction between Leu 23 and Met 25 which are within 4 Å of each other for 100% 

of the simulation as is the case for GATA1. Unlike GATA1, E7Pgata has the highly 

acidic region of E7 and as such it overlaps with the alkaline region of Rb which is 

reflected in the Rg of E7Pgata resembling that of E7. The FOG LxCxE motif is LSCEE 

with an Asn in position 21 instead of Asp. The LxCxE motif is held in a bound 

conformation when bound, by hydrogen bond between the Asn 21 and Glu 25 variable 
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residues with average bond length values between Asn sidechain nitrogen and Glu 

oxygen OE1 and OE2 of 4.56 ± 2.01 and 4.88 ± 1.95 Å, respectively. Similar to 

GATA1, two Rg populations exist, one which is similar to the E7 peptide bound and 

another than is neither bound to Rb nor folds back upon itself. In this manner residues 

30-40 behave similarly to the same residues in the GATA peptide. 

 

Figure 5.8: Rb B domain shown in grey with more compact GATA1 peptide shown in green and less compact 

peptide shown in cyan.  

 

E7PFog LxCxE motif is held together by the same interactions as FOG but, unlike E7 

and E7PGATA, does not form any interactions between the acidic residues 30-40 and 

the alkaline patch of Rb this is reflected in the high Rg value for the peptide bound. 

Experimental Results. In Prof Chemes’ lab, the binding kinetics between Rb and 

HPV E7 was studied through fluorescence spectroscopy of FITC labelled peptides and 

results are shown in Table 5.5. These peptides correspond to E7 and the E7 derived 

mutants we simulated in this work. These peptides feature non-phosphorylated serines.  
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Table 5.5 Summary of experimental equilibrium and kinetic data from Prof Chemes’ lab. kon represents the 

association rate constant of the peptide and protein. koff represents the dissociation rate constant of the complex 

Peptide Sequence KD (nM) kon x 107 (M-1s-1) koff (s-1) 

E7 QPETTDLYCYEQLNDS 7 1.95 0.14 

E7D21A QPETTALYCYEQLNDS 80 1.71 1.37 

E7AY QPETTDLACYEQLNDS 60 1.82 1.10 

E7FY QPETTDLFCYEQLNDS 10 2.24 0.22 

E7YA QPETTDLYCAEQLNDS 139 1.90 2.64 

E7YF QPETTDLYCFEQLNDS 51 1.69 0.86 

E7E26A QPETTDLYCYAQLNDS 12477 0.30 37.76 

E71A QPETTDLYCYEQALND 22 1.12 0.24 

E72A QPETTDLYCYEQAALN 120 0.45 0.53 

E7AA QPETTDLACAEQLNDS 860 - 17.71 

E7FF QPETTDLFCFEQLNDS 57 3.70 2.10 

 

5.5 Discussion 

From the dynamics of the E7 peptide free in solution, and bound to Rb, we were 

looking for evidence of pre-structuring of the peptide in solution. By comparing the 

π-stacking of Tyr 23 and Tyr 25, the hydrogen bond between Asp 21 Tyr 25 and RMSD 

of residues 21 to 28 to the crystal structure we find no evidence of pre-structuring of 

the peptide. We can see this as the average hydrogen bond distance is significantly 

larger than a cut-off of 5 Å22 and π-stacking RMSD is 0.63 Å higher for the free motif 

compared to the bound motif which represents a significant increase in the dynamics 

of both Tyr sidechains. Additionally, the solution RMSD is quite high, which shows 

the motif is quite flexible and not locked into the linear motif found in the crystal 

structure. This is consistent with experimental results that show changing the variable 

residues only affect the koff and not the kon, see Experimental Results Table 5.5, i.e. 

changing the variable residues doesn’t affect the dynamics of the peptide in solution 

and only affects the peptide once it is bound to Rb.  

As Ser 31 and Ser 32 are phosphorylated in vivo12 and there is a higher population of 

PPII content in the peptide free in solution experimentally when phosphorylated5,6, we 

calculated the same properties for E7P as for E7 and found there is little difference 

between E7 and E7P properties though the Asp 21 Tyr 25 Hydrogen bond is slightly 
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longer for E7 free compared to E7P free but still significantly above 5 Å. We 

performed a per-residue breakdown of the dihedrals and found that there is a high 

degree of PPII content in the bound peptide of both E7 and E7P, most notably at Glu 

26. Phosphorylation leads to an increase in PPII content of the free peptide, where Glu 

26 goes from having α-helical dihedrals in E7 free to having PPII-like dihedrals in 

E7P free. Phosphorylation makes the solution peptide dihedrals more like that of the 

bound peptide, leading to pre-structuring of the E7P peptide not seen in the E7 peptide. 

We also expected that the phosphoserines would increase the strength of the 

interaction between the tail and the basic patch however this is not the case and both 

E7 and E7P form the same number of salt bridges. E7P bound has a higher average 

number of salt bridges than E7 the difference is within the error. Experimental results 

of the E7P peptide shows that only the kon is affected by the phosphorylation of Ser 31 

and 32. This increase in association rate agrees with our results that results that show 

phosphorylation leads to a prestructuring of the peptide. 

As the experiments are performed in 200 mM salt, we investigated what effect if any, 

the increased ionic strength has on the system. What we find is that the increased ionic 

strength weakens the hydrogen bond between Asp 21 and Tyr 25 of E7 and E7P. This 

is caused by the screening of the negative charge of the Asp by the Na ions. The results 

for all the mutants agree closely with results for mutants simulated with bulk water 

only. Perhaps most surprisingly, the higher ionic strength has no effect on the 

formation of salt bridges between the acidic tail and the alkaline patch of Rb. What 

we expected to happen with the introduction of ions is that the association of the C-

terminal tail and the basic patch on Rb would be disrupted due to the ionic screening 

effect. However, this is not the case and the same number of salt bridges are formed 

on average both with bulk water and with the 200 mM NaCl. 

The results from E7 and E7P, bound and free, show that the variable residues do not 

play a role in pre-structuring the unbound peptide. Our results show that Y23A 

mutation causes an increase in the hydration of the Rb Asn 757. More specifically, 

Tyr 23 plays a role in protecting the hydrogen bonding with Asn 757 of Rb to the 

backbone of E7 from water by forming a stacking interaction with Asn 757, 

strengthening it. In the Y23F mutant the average number of water molecules around 

Asn 757 is the same as E7, although the distance between Phe 23 and Asn 757 is larger 
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as shown in Table 5.3 and Table 5.4. The reason for this is that the sidechain of Rb 

Met 761, which constitutes part of the hydrophobic pocket occupied by Leu 22, forms 

an intermittent hydrophobic interaction with the Phe sidechain in an orientation that 

does not allow the Phe sidechain to stack with Asn 757. While this interaction is 

possible in the wildtype sequence, it is not seen. The reason for this may be due to the 

higher hydrophilicity of the Tyr sidechain over the Phe sidechain disfavouring the 

hydrophobic interaction with Met 761. In the Y25A and Y23A Y25A double mutant 

we see the hydration of Asn 757 is increased, similar to Y23A mutant, which suggests 

the stacking interaction between Tyr 23 and Tyr 25 functions to stabilise the hydrogen 

bond between Asn 757 and E7. Both the Y25F mutant and Y23F Y25F double mutant 

show the same increase in distance between Phe 23 and Asn 757 but do not affect the 

hydration of Asn 757. Additionally, we expected the D21A mutant, which eliminates 

the Asp 21 Tyr 25 hydrogen bond while maintaining the aromaticity of residue 25 to 

behave like the Y25F mutant. As expected, our results show that the D21A and Y25F 

mutants behave the same. The simulation results of changing the “x” variable residues 

in the LxCxE motif are able to somewhat capture the experimental results, we can see 

the E7PAA double mutant is less stable due to the complete elimination of an aromatic 

residues. However, it is difficult to rank which mutant is less stable and which is more 

stable between E7AY and E7YA. Similarly, for the E7PFF E7FF E7PYF E7PFY and 

E7PD21A mutants, the simulations are able to capture the destabilising effects of 

mutating the variable residues, however ranking the destabilising effects of the 

mutants is not possible. 

The results of adding an Ala spacer between Gln 27 and Leu 28, shown in Table 5.3 

and Table 5.4, show that the variable residue interactions of the LxCxE motif are 

unaffected by the spacer, which we might have expected. We see that the introduction 

of a single alanine causes a dramatic increase in the RMSD of the motif backbone 

when bound to Rb which indicates that the peptide is more loosely bound than all other 

bound peptides simulated in this work. This is due to Leu 28 no longer being able to 

fit into the hydrophobic pocket and thus not being as tightly bound and as a result 

residues 30 to 40 have less optimal overlap with the alkaline patch resulting in lower 

salt bridge formation. Introducing a second and third Ala allows the two Ala residues 

to take the place of the leucine, with their Cβ atoms facing into the hydrophobic 

pocket. This can be seen by the RMSD values of E72A and E73A more closely matching 
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that of the E7 bound value, and an increase in the number of salt bridges being formed 

by residues 30 to 40 as these residues can now properly overlap with the alkaline patch. 

Experimentally the introduction of a single Ala residue, namely in E71A has a small 

effect on the energetics of binding of the peptide, however introduction of a second 

Ala residue in E72A shows a much greater destabilising effect. The experimental 

results suggest that the binding groove is broad enough to accommodate a hydrophobic 

residue in position 28 or 29. A possible explanation for the disparity between 

experimental and simulation results is that the restraints on the Rb backbone atoms, 

which we showed are required to prevent Rb unfolding, could prevent this 

hydrophobic pocket which Leu 28 occupies in the crystal structure from being mobile 

enough to accommodate the hydrophobic residue when found in position 29.  

Since Glu 26 is conserved in the sequence, we looked at the effects of mutating this 

residue to Ala in the E7PE26A mutant. We found that the Asp 21 Tyr 25 hydrogen bond 

and Tyr 23 Tyr 25 π-stacking are unaffected by the mutation. However, we found that 

the Rb Asn 757 is not as well protected from the solvent which can be seen in the 

longer Rb Asn 757 Tyr 23 distance value and increased hydration of Asn 757. We also 

see that the RMSD of the DLxCxAQL motif is higher than that of the E7 bound and 

E7P bound which indicated that the peptide is more loosely bound than that of either 

wildtype peptide. Additionally, this residue could play a role in recognition of the 

peptide by Rb. This mutant incurs a enthalpic penalties over E7 and E7P peptides 

where the loss of the bidentate hydrogen bond between Glu 26 and Rb leads to a loss 

of enthalpy of binding. Experimentally we see that the E7PE26A mutant has a 

destabilising effect on both the kon and koff values. The results of the simulation agree 

with these experimental results and the possibility of Glu 26 playing a role in 

recognition between Rb and E7 could account for the lower kon value of the E7PE26A 

mutant. 

From the Rg plots of the other LxCxE-containing sequences we can see that BRCA1 

and Cyclin D have more compact conformations than the E7 mutants due to residues 

30 to 40 not interacting strongly with the alkaline patch and instead folding back on 

itself. Conversely, the GATA1 and FOG2 peptides show partial overlap with the 

alkaline patch of Rb but also show a more expanded conformation when not 

interacting with Rb. The E7PGATA and E7PFOG residues 30 to 40 were expected to 
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behave more like E7P than the GATA1 and FOG2 peptides respectively. We see that 

this is the case for E7PGATA as it has one major peak corresponding to the tail forming 

salt bridges with Rb which matches up with E7P. There is also one peak for E7PFOG 

however it is centred at ~2 Å higher than both E7P and E7Pgata and is close in value 

to the higher peaks of the GATA and FOG proteins. A reason that E7PFOG doesn’t 

overlap with the basic patch is that the variable residue interaction introduced by from 

the FOG peptide is a tight hydrogen bond, namely between residues Asn 23 and Glu 

25, and this pulls the LxCxE motif tighter together and prevents the tail from 

overlapping with the basic patch. 

A possible explanation for why the tail of E7/E7P, and the mutants derived from them, 

overlap with the Rb basic patch while the other peptides do not is that, as previously 

mentioned, it is known that E7 binds to Rb in two binding pockets namely the LxCxE 

SLiM binding pocket found in the B domain of Rb and another found in the A-B 

domain interface. Having this acidic region on E7 may be required to guide the second 

binding region in CR3 region of E7 to its binding site at the Rb A-B region interface. 

This functionality may not be required for the other proteins to perform their roles as 

it possible they only bind Rb in the B-domain.  

5.6 Conclusion 

In this work we looked at the conformational propensities of a 24-residue peptide from 

E7, which contains the LxCxE motif, and mutants of this peptide in which the variable 

residues, flanking residues, or Glu 26 were modified. We also looked at the effects of 

phosphorylation of Ser 31 and 32 on the system, as well as the effects of an NaCl 

concentration of 200 mM. We also looked at other LxCxE containing peptides from 

BRCA1, Cyclin D, FOG2 and GATA1. We found that the flanking residues and 

variable residues are important for the binding of the E7 peptide, but only affect the 

bound peptide and have no influence on the peptide free in solution. The possible role 

of residues 30 to 40 of E7 is to guide the CR3 region of E7 to the C domain of Rb and 

thus lead to displacement of E2F from Rb, the guiding of the CR3 region is 

accomplished through the formation of salt bridges by residues 30 to 40 with the Rb 

alkaline patch. This interaction may not be necessary in the other LxCxE containing 

peptides as it is possible they only bind Rb in the B-domain, as a result their equivalent 

residues 30 to 40 are more alkaline or hydrophobic. Phosphorylation can be seen to 
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pre-structure the peptide by changing the secondary structure propensity of some 

residues, when the peptide is free in solution, to more closely resemble the higher PPII 

content found in the bound peptide. We found that 200 mM NaCl has little effect on 

the system and only slightly weakens a single interaction found in the wildtype 

peptide, namely the Asp 21 Tyr 25 hydrogen bond. Our simulation results agreed quite 

well with the experimental results however, ranking the peptides, which contain 

similar mutations, in terms of their destabilising effects wasn’t possible. The 

simulations also reproduced the destabilising effects of Ala mutation of Glu 26. 

However, the simulations failed to reproduce the properties of the E71A and E72A 

mutants, which is possibly due to the requirement of restraining the Rb backbone 

which prevents Rb from accommodating a hydrophobic residue in position 29, instead 

of position 28 as found in the crystal structure.  
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Chapter 6: Conformational analysis of the intrinsic disorder in 

human and murine ECSIT C-terminal tails 
 

6.1 Introduction 

ECSIT isoform I is a 431-residue, 50 kDa protein involved in many different 

biochemical and metabolic pathways, including immune system activation and 

homeostasis1. The human and murine ECSIT sequences are shown in an alignment in 

Figure 6.1.  

 

Figure 6.1 Clustal omega sequence alignment of human ECSIT and murine ECSIT from M. musculus  

 

As one of its fundamental roles, ECSIT is a key player in the assembly of the 

mitochondrial respiratory Complex I through interactions with NDUFAF1 and 

ACAD9 Complex I assembly proteins2,3. Knockout of ECSIT leads to lethality in the 

embryo stage of mice4, but knockout of ECSIT in mature macrophages is consistent 

with dysfunction of complex I5. No structural information is available on the ECSIT 

protein and very few details are known on the specific roles that its different domains 
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play in the assembly of Complex I. Nevertheless, it has been determined that the N-

terminal region, and more specifically the segment between residues 1 and 48, targets 

ECSIT for mitochondrial localisation3. This region is then cleaved off after 

mitochondrial localisation to produce 45 kDa mitochondrial ECSIT3.  

As part of a collaboration with Prof Paul N. Moynagh in the Department of Biology 

at Maynooth University, we have embarked in a project aimed at determining the key 

role of the ECSIT protein in the assembly of the respiratory complex I, and more 

specifically in characterising the domain responsible for this function and how 

mutations of its sequence affect it. Within this framework, experimental studies based 

on expression levels conducted in Prof Moynagh’s lab, show that human ECSIT 

(hECSIT) is significantly less stable than murine ECSIT (mECSIT). Interestingly, a 

swap of the terminal 34 amino acid residues between human and murine ECSIT, 

regions we will name here hECSIT398-431 and mECSIT402-435, respectively determines 

an inversion of the relative stabilities of the two proteins, resulting in a mutated 

mECSIT which is much less stable than the hECSIT see Figure 6.26. 

 

Figure 6.2: Cell lysates of HEK293T were generated at indicated times showing relative stabilities of hECSIT 

and mECSIT through western blot. 

 

Furthermore, in vivo experiments in mice expressing humanised ECSIT show the 

development of a rather enlarged heart, a clear result of heart congestion due to a less 

efficient ATP production see Figure 6.36. 
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Figure 6.3: Representative images of male and female hearts of mice at 7-months of age showing enlargement of 

hearts in mice which express mECSIT with the C-terminal tail from hECSIT denoted as ECSIT+/+. 

 

At first glance the sequence of the extreme C-terminal regions of both human and 

murine ECSITs seem poorly structured, if not completely disordered. Sequence 

analysis done with the disorder prediction software disEMBL7 indeed shows that the 

C-terminal tails of both hECSIT and mECSIT are highlighted to be potential IDP 

regions, see Figure 6.5. 

Table 6.1: Wild-type human (hECSIT) and murine ECSIT (mECSIT) peptides and hybrid peptides (hECSITm 

and mECSITh) with the 12 residue regions that was swapped highlighted in red. Residue numbers for the 

residues within the whole ECSIT protein are shown on the left- and right-hand side of the sequence, with the re-

numbering scheme that we used to identify the hybrid peptides indicated in parenthesis. 

hECSIT: 398(1) RELQTTSAGLEEPPLPEDHQEEDDNLQRQQQGQS 431(34) 

mECSIT: 402      TTSRLEGQSPPHSPPKGPEEDDETIQAEQQQGQS 435 

hECSITm:       RELQTTSAGLEEPPLPEDHQEEDDNLQRQQQGQS 

mECSITh:       TTSRLEGQSPPHSPPKGPEEDDETIQAEQQQGQS 

 

Here we used enhanced sampling molecular simulations via temperature REMD to 

gain insight into the structure and dynamics of the ECSIT C-terminal tails to determine 

the relative degrees of disorder and potential residual secondary structure in 32 

residues peptides derived from the human and murine ECSIT, see Error! Reference s

ource not found.. The simulation results support the bioinformatics prediction that 

the two tails are intrinsically disordered. Furthermore, our simulations provide the 

additional insight that hECSIT and mECSIT have quite different secondary structure 

propensities. Based on this information we proposed very specific mutations that were 

later on proven experimentally to invert the relative stability of mECSIT and hECSIT, 
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very much like the whole C-terminal region swap. In the following sections we will 

discuss the simulations result within the context of their role in the ECSIT protein 

stability and function. 

6.2 Computational method 

DisEMBL 1.57 was used to predict the structural disorder of the hECSIT and mECSIT 

proteins with default parameters and the sequence for human and mouse as found on 

the NCBI website. DisEMBL uses three definitions of disorder, namely loops/coils, 

hot loops, Remark-465. Loops/coils correspond to any secondary structure that is not 

an α-helix, 310 helix or β-strand according to DSSP8. The hot loops method refines the 

loops/coils method to consider the mobility of the residue determined by B-factor of 

the α-carbon9. The Remark-465 definition is based on coordinates missing in the 

PDB10. PSIPRED 4.011,12 was used to predict the structure of the 34-residue hECSIT 

and mECSIT peptides. 

All REMD simulations were carried out with 77 replicas to span temperatures in the 

range 300 K to 500 K, based on the Temperature Generator for REMD online tool 

(http://folding.bmc.uu.se/remd/)13, with two different forcefield setups, namely 

a99SB-disp14 with the TIP4P-D15 water model and CHARMM36m with the TIP3P for 

CHARMM water model16. All calculations were run with GROMACS v. 2018.3 s17. 

Computational resources were provided by the Irish Centre for High-End Computing 

(ICHEC). All calculations were run on the ICHEC supercomputer “Kay” on 2 x 20 

2.4 GHz Intel Xeon Gold 6148 (Skylake) processors, 192 GiB of RAM, a 400 GiB 

local SSD for scratch space and a 100 Gbit OmniPath network adaptor. Energy 

minimizations were carried out on 2 nodes, i.e. 80 cores. NVT equilibrations and 

REMD production simulations were run on 2 processors per replica for 77 replicas, 

i.e. 154 processors over 4 nodes. We estimated that the final cost for all MD 

simulations in this project reached approximately 175,000 CPU hours.  

The human ECSIT (hECSIT) and murine ECSIT (mECSIT) sequences correspond to 

the 34 terminal amino acids of their respective protein C-terminal regions. Both 

mECSIT and hECSIT were built in the fully extended conformation using the 

academic version of Schrödinger MAESTRO software18. The two hybrid peptides 

were generated via point mutations with pymol19. The N-termini of all peptides were 

http://folding.bmc.uu.se/remd/
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capped with an acetyl group (ACE) and the C-termini were left uncapped because they 

are the protein’s termini. A 500k steps of steepest descent minimization was carried 

out in implicit solvent, followed by a 100 ns NPT MD run and a random structure was 

selected as the starting conformation for REMD. This structure was placed in a 

rhombic dodecahedron simulation box with a minimum distance between the peptide 

and the edge of the box of 1.2 nm. Counterions were added to neutralise the system 

and to bring the ionic strength up to 200 mM. Bond lengths were constrained using 

LINCS and the long-range electrostatic interactions were treated with Particle Mesh 

Ewald (PME) with a switch from real space to reciprocal space at 1.2 nm. The van der 

Waals interactions were cut off at 1.2 nm.  

The REMD simulation protocol involved an initial energy minimization, namely 500k 

of steepest descent with a force-based convergence threshold of 100 kJmol-1nm-1, of 

the ions, water and hydrogen atoms positions with the protein heavy atoms restrained. 

After the energy minimization, we carried out a 500 ps equilibration in the NVT 

ensemble with the same set of restraints, where each replica was equilibrated to its 

specific temperature. To ensure that the system maintained a pressure of 1 bar, the 

density of the system at 300 K was monitored throughout the simulation and ensured 

that it matched that of water at 300 K and 1 bar, so that no further equilibration was 

required. To integrate the equations of motion we used a leap-frog stochastic dynamics 

(sd) integrator, with a friction coefficient corresponding to the inverse of tau-t equal 

to 0.1 ps, where tau-t is the time constant for coupling. Production stage followed with 

all atoms unrestrained. The system attempted to exchange replicas every 500 steps, 

namely every ps, and the production was extended to 26 ns per replica, for a total 

cumulative simulation time of 2.0 s for each peptide, for each force field set-up. The 

trajectory corresponding to the replica at 300K was analysed in terms of their radius 

of gyration and secondary structure propensity. The clustering analysis was based on 

the Gromos method20 with an RMSD cut-off of 0.75 nm, chosen within a range 

between 0.4 nm and 0.75 nm, as it allowed to obtain the highest number of clusters 

while avoiding redundancy. The cluster’s secondary structure was determined using 

STRIDE21. STRIDE requires two consecutive hydrogen bonds between residue pairs 

[k,k+4] and [k+1,k+5] and residues k+1 to k+4 are labelled as helical21. Since we used 

a large cut-off in the clustering procedure, the helicity might not be shown in the 

structure selected to represent the cluster. As such when STRIDE recognised a residue 
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as a turn (T) a visual inspection and phi/psi angle calculation was performed to confirm 

the presence or absence of helicity. The data convergence was assessed by means of 

average RMSD values correlation function22. Based on the plots shown in Figure 6.4, 

the simulations can be considered as converged after approximately 15 ns per replica.  

 

Figure 6.4: Data convergence assessed by average RMSD values correlation functions. The plots show data 

convergence for the simulations of a) hECSIT, b) mECSIT c) hECSITm and d) mECSITh. Data relative to the 

simulations with a99SB-disp/TIP4P-D are shown in blue and with CHARMM36m/TIP3P are shown in orange. 

 

6.3 Results 

The ECSIT sequence was analysed with DisEMBL7 to assess the intrinsic propensity 

for conformational disorder. As shown in see Figure 6.5, the software identified a 

region in the ECSIT extreme C-terminal domain highly likely to be structurally 

disordered. More specifically, results obtained with the hot-loops and Remark-465 

definitions suggest that the last 34 and 31 residues of the human and the murine ECSIT 

C-terminal tail, respectively, are disordered. The hECSIT and mECSIT peptides in 

this study were built based on these on this information, with sequences corresponding 

to the to the last 34 residues of the human and murine ECSIT C-terminal tails.  

In order to get further insight, we also analysed the mECSIT and hECSIT peptides 

sequence through PSIPRED11 (http://bioinf.cs.ucl.ac.uk/psipred/) to check for any 

secondary structure propensity. The results shown in Figure 6.6, indicate that the 

http://bioinf.cs.ucl.ac.uk/psipred/
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peptides C-terminal region is expected to have a propensity to form helical motifs. As 

shown in Figure 6.7, the REMD results indicate that the two 34-residue hECSIT and 

mECSIT peptides have similar dimensions in terms of radius of gyration (Rg), with 

Rg values differences between the a99SB-disp and CHARMM36m force fields of 0.1 

nm, a value within one standard deviation. Namely, hECSIT has average Rg 

 

 

Figure 6.5: DisEMBL disorder prediction for hECSIT (top) and mECSIT (bottom) with disordered regions 

shown in bolded capital letters. 
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Figure 6.6: PSIPRED sequence analysis results for the hECSIT (top) and mECSIT (bottom) peptides. Coils are 

shown in grey and helices in magenta.  

 

values of 14 (3) Å with a99SB-disp and of 15 (3) Å with CHARMM36m, while 

mECSIT has average Rg values of 14 (3) Å with a99sb-disp and of 15 (3) Å with 

CHARMM36m. 

.  

Figure 6.7: Histogram analysis of Rg values obtained for hECSIT (left) and mECSIT (right) with a99SB-disp 

(blue) and CHARMM36m (orange). 

In terms of secondary structure propensity, the hECSIT peptide’s REMD data resulted 

in 10 clusters for both, the a99SB-disp and CHARMM36m force fields. Meanwhile, 

the mECSIT peptide REMD data were clustered in 13 and 17 clusters for a99SB-disp 
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and CHARMM36m forcefields, respectively. The STRIDE21 secondary structure 

analysis of the clusters is shown in Table 6.2. There is 78% and 70% helicity in 

hECSIT for a99SB-disp and CHARMM36m respectively, with cluster 2 6 and 8 being 

reclassified as helical for CHARMM36m. While mECSIT has helicity it is represented 

much lower at 10% for both a99SB-disp CHARMM36m. The structures of these 

helical motifs are shown in Figure 6.8.  

An overall analysis of the peptides secondary structure propensity throughout the 

simulations shows that the sequences can be divided in two regions, one with different 

degrees of helicity, high for the hECSIT and low for the mECSIT, and one with a high 

degree of PPII content for both sequences, see Figure 6.9. Based on this information, 

we proposed to generate two mutants, namely hECSITm and mECSITh, were in 

hECSITm the residues shown in red in Figure 1.7 panel c) are swapped with the 

corresponding residues from mECSIT shown in red in Figure 1.7 panel d). The same 

criterium was used to create the mECSITh peptide 
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Table 6.2: STRIDE secondary structure of the 10 highest populated clusters determined for the hECSIT (top) 

and mECSIT peptides (bottom) with both forcefields. The letters represent the following: T – turn, G – 3.10 

helix, H – helix, B β-bridge. 

CHARMM36m/TIP3P a99SB-disp/TIP4P-D 

RELQTSSAGLEEPPLPEDHQEEDDNLQRQQQGQS(%Pop) 

   TTTBTBTT    TTTT   HHHHTT      (33%) 

   B  HHHHH           TTTT   TTTT (16%) 

  TTTT      TTTTTTTTTTHHHH BTTTT  (14%) 

 TTTT        B       TTTTTTTBTTT  (10%) 

                        TTTT      ( 8%) 

 TTTTTTTB     TTT    TTTTTTT      ( 4%) 

  TTTT             B  TTTT        ( 4%) 

     TTTT      TTTT  TTTTTT  TBTT ( 3%) 

    TTTTT      TTTT               ( 2%) 

        TTTT  TBTT   TTTTTTT      ( 2%) 

RELQTSSAGLEEPPLPEDHQEEDDNLQRQQQGQS(%Pop) 

   TTTTTTTTT   TTTT B GGGG   TTTT (60%) 

   TTTTTTTTTT TTTT   HHHHHHHHHBTT (13%) 

 TTTT TTTTTT   TTTT  TTTTTTT      (13%) 

HHHHH   TTTT          TTTTT  TTTT ( 3%) 

 TTTTT BTTTT                      ( 3%) 

 TTTTB          TTTTT HHHHTTTTT   ( 3%) 

                      HHHHH       ( 2%) 

                     B            ( 2%) 

TTTTTT  TTTT          TTTTT       ( 1%) 

                   TTTTTTTT    B  ( 1%) 

 

CHARMM36m/TIP3P a99SB-disp/TIP4P-D 

TTSRLEGQSPPHSPPKGPEEDDETIQAEQQQGQS(%Pop) 

TTTTbTTT       BBTTTTTTTBT B TTTB (29%) 

 B  TTTT                          (15%) 

    TBTT  TTTTTTTB   HHHHH TTTGGG (10%) 

   TTTT         TTTT   B    TTTT  ( 8%) 

    b         BTTTTTTTTT          ( 7%) 

                     TTTT         ( 5%) 

   TTTT         TTTT      TTTT  B ( 4%) 

         TTTTTTTT     B B         ( 4%) 

    TTTTT                B        ( 3%) 

   TTTTTTTTTT          BTTT   B   ( 3%) 

TTSRLEGQSPPHSPPKGPEEDDETIQAEQQQGQS(%Pop) 

TTTTTTTT        BBTTTTTTBT   TTTT (51%) 

    TTTT          B       TTTT    (18%) 

    TTTT             HHHH   BTTTTT( 8%) 

    TTTTT       BTTTTTTTT         ( 7%) 

    TTTT         BTTTTTTB      B  ( 5%) 

TTTTTT             BTTTT TTTTT B  ( 2%) 

TTTTTTTTTTTTTT TTTTTTTTTTTTTT TTT ( 2%) 

TTTTTTTTTTTTT   TTTT   B  GGG     ( 2%) 

              TTTT        TTTT    ( 1%) 

                    TTTTTTTTTBTT  ( 1%) 

.  
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Figure 6.8: Representative structures of the clusters from hECSIT and mECSIT, on the left- and right-hand side, 

respectively, with propensity to form helical motifs. Results correspond to the simulations run with 

CHARMM36m, see also Table 6.2. 

.  

Figure 6.9: Ramachandran (phi/psi) plots of the peptide sequences regions (highlighted in red) with high degree 

of polyproline II (PPII) for hECSIT in panel a) and mECSIT in panel b) and with higher degree of helicity for for 

hECSIT in panel c) and for mECSIT in panel d).     
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The REMD results show that the hybrid peptides, hECSITm and mECSITh, also have 

very similar dimensions in terms of Rg values, see Figure 6.10. As for the simulation 

of the wild type peptides, the differences in Rg values between the two force fields, is 

0.1 nm.  

 

Figure 6.10: Histogram analysis of Rg values obtained for hECSITm (left) and mECSITh (right) with the 

a99SB-disp (blue) and CHARMM36m (orange) force fields. 

Indeed, the hECSITm average Rg value is 15 (3) Å with CHARMM36m and 14 (3) Å 

with a99sb-disp, while the mECSITh Rg values are 1.4 (0.2) with CHARMM36m and 

1.5 (0.3) with a99sb-disp. Using the same clustering parameters determined as optimal 

for the wild type peptides, the clustering analysis classifies the hECSITm peptide into 

12 clusters with a99SB-disp (16 with CHARMM36m) and the mECSITh peptide into 

13 clusters with a99SB-disp (17 with CHARMM36m). The STRIDE secondary 

structure analysis of these clusters is shown in Table 6.3. The hECSITm peptide shows 

a 65% helicity with a99SB-disp and 61% helicity with CHARMM36m. Meanwhile, 

the mECSITh peptide has a 27% helicity with a99SB-disp and 21% helicity with 

CHARMM36m with cluster 3 being reclassified as helical for CHARMM36m. 
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Table 6.3: STRIDE secondary structure of the 10 highest populated clusters determined for the hECSIT (top) and 

mECSIT peptides (bottom) with both forcefields. The letters represent the following: T – turn, G – 3.10 helix, H 

– helix, B β-bridge. 

CHARMM36m/TIP3P a99SB-disp/TIP4P-D 

RELQTSSAGLEEPPLPGPEEDDETIQAEQQQGQS(%Pop) 

  TTTTTTTTTTT          GGGG TTTT  (32%) 

  TTTT          B     GGG         (21%) 

    TTTT            B             (11%) 

      TTTT       B TTBTB          (11%) 

  TTTT  TTTT B   B    TTTTTTGGG   ( 8%) 

         B            B           ( 3%) 

  TTTT TTTTTT      B      TTTTTT  ( 3%) 

TTTTTT  TTTT          GGGGTTTT    ( 2%) 

   TTTTTTT       TTTTTTTTT        ( 2%) 

TTTTB                BTTTTTT      ( 1%) 

RELQTSSAGLEEPPLPGPEEDDETIQAEQQQGQS(%Pop) 

  TTTTTTGGGB       TTTHHHH   BTTB (51%) 

  TTTTT TTTT B TTTTTTTTTTT        (14%) 

HHHHHH           TTTTGGGGG        (14%) 

TTTTTTTTBb     TTTT          TTTT ( 8%) 

TTTTTTT TTTT     B   TTTTTTT      ( 5%) 

TTTTTTTTT       TTTT TTTTT        ( 3%) 

TTTT             TTTTTTTT  TTTT   ( 2%) 

                 TTTTTTTTTTTTTT   ( 1%) 

     b              TTTTTTTTTTTTT ( 1%) 

TTTTT TTTTTT         TTTTTT       ( 1%) 

 

CHARMM36m/TIP3P a99SB-disp/TIP4P-D 

TTSRLEGQSPPHSPPKEDHQEEDDNLQRQQQGQS(%Pop) 

TTTTTTTTT       BTTTTTTTBT   TTTT (31%) 

     B    TTTT  TTTT  TTTT        (17%) 

TTTTTTTTT       TTTTTTTTB         (11%) 

                     HHHHB        ( 8%) 

      B  TTTT                     ( 7%) 

         TTTT  TTTT  TTTTTT       ( 5%) 

         TTTT              TTTTT  ( 3%) 

      TTTT   TTTTTTT GGG TTTT     ( 3%) 

   BTTTT TTTT               TTTT  ( 2%) 

    B                TTTTT        ( 2%) 

TTSRLEGQSPPHSPPKEDHQEEDDNLQRQQQGQS(%Pop) 

TTTTTTTT      BB TTTTTTTTTTTTTTTT (43%) 

TTTTB    TTTT  TTTT  HHHHH   TTTT (15%) 

  BTBTTB       TTTTTTTTTGGG       (12%) 

TTTTTTTT TTTTT TTTTTBBTTTTTTTTTT  ( 7%) 

    TTTTT TTTT BTTTTTTTTT         ( 6%) 

  BTTTTTT  B    TTTTTTTTTT TTTTBTT( 4%) 

TT        TTTT TTTT     TTTTTTTT  ( 4%) 

     BTTT TTTT  TTTTTTTTT TTT     ( 4%) 

TTTTTT   TTTT        TTTTTTTTTTT  ( 2%) 

            B  TTTT  TTTTTTTT     ( 2%) 

 

6.4 Discussion 

The REMD simulations results provides important information on the structure and 

disorder of the two ‘wild-type’ peptides, i.e. hECSIT and mECSIT, corresponding to 

the C-terminal regions of the human and murine ECSIT proteins, and of the two 

mutant peptides, were specific sets of residues were swapped between hECSIT and 

mECSIT. In terms of average dimensions/compactness of the ensemble, hECSIT and 
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mECSIT, and also hECSITm and mECSITh are very similar, if not identical. Also, the 

Rg average values obtained with the two different force fields, i.e. a99SB-disp/TIP4P-

D and CHARMM36m/TIP3P, for all peptides are within one standard deviation, with 

the ensemble obtained with the a99SB-disp/TIP4P-D force field slightly more 

compact. Compactness has been shown to be highly dependent on forcefield23. 

However, this is an usual finding as the TIP4P-D was parameterised to alleviate the 

over compactness found with the TIP3P water model15. Overall, the difference in 

compactness between a99SB-disp/TIP4P-D and CHARMM36m/TIP3P is on the scale 

of approximately 1 Å which is less than the standard * of the values. 

The structural disorder of the peptides was gauged based on the number of clusters 

determined through Gromos clustering analysis20 followed by a secondary structure 

analysis based on the STRIDE classification21. The number of clusters (10) does not 

change between a99SB-disp and CHARMM36m for hECSIT, meanwhile the two 

force fields provide slightly different results in the case of mECSIT, predicting 17 

clusters with CHARMM36m and 13 clusters with a99SB-disp. Based on this 

classification mECSIT appears to be slightly more disordered than hECSIT, although 

only the first 10 clusters are significantly populated, accounting for 99% and 90% of 

the total simulation for a99SB-disp and CHARMM36m, respectively. 

The secondary structure analysis provides important clues about the origin of this 

slight difference in the conformational propensity between hECSIT and mECSIT. 

Indeed, the two peptides can be divided two regions in terms of sequence, one with a 

high degree of PPII structure in both hECSIT and mECSIT towards the N-terminus 

and another region that has a high degree of helicity in hECSIT, but a significantly 

lower degree of helicity in mECSIT at the C-terminus, see Figure 1.7. Based on this 

information we swapped the sequence of residues that have the characteristic high 

helicity in hECSIT with the residues with low helicity in mECSIT to test if this specific 

section was determinant for the observed protein stability differences. Experimental 

results have shown that the swap of the 12-residue sequence we identified between 

reversed the relative stabilities of the whole ECSIT proteins see Figure 6.116. More 

specifically human ECSIT became stable, while murine ECSIT became unstable, to 

the same extent as obtained by swapping the whole C-terminal tail6. 
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Figure 6.11: Western blot  analysis of cell lysates from HEK293T cells transfected with empty vector (EV) or 

expression constructs encoding myc-tagged hECSIT,  myc-tagged mEcsit mutants or indicated hybrid mutants of 

mECSIT and hECSIT. 

 

Simulations of the mutant sequences, namely mECSITh and hECSITm, provide 

further insight into the structural features that may be responsible for the observed 

behaviour. The mECSITh peptide showed an increased helicity relative to mECSIT, 

with 27% and 21% helicity of the swapped sequence obtained with a99SB-disp and 

CHARMM36m, respectively. In case of the hECSITm peptide, based on the behaviour 

of the 12 residues sequence from mECSIT we introduced, we were expecting a 

decreased helicity, meanwhile we found that the helicity remains approximately the 

same as observed for the wild-type, namely 65% and 60% for a99SB-disp and 

CHARMM36m, respectively. The link between helicity and lack of stability we were 

pursuing, considering that being the only difference in the conformational propensity 

of the two peptides, derives from the role that residual secondary structure plays in the 

molecular recognition of motifs within disordered regions24,25. These residual 

structural features contain the molecular determinants that facilitate specific 

recognition and binding. The partially structured motifs function as nucleation sites 

for folding which occurs upon binding24,25. There are a few examples where partial 

helical motifs within intrinsically disordered regions are specifically recognized by 

receptors are fold into full alpha helices upon binding26,27. Within this framework, the 

helical motif within the hECSIT peptide could be the docking point for the interaction 

with a specific receptor that can lead to the protein degradation, meanwhile this 

interaction cannot occur in mECSIT. When we swap the sequences that may carry a 
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degree of intrinsic propensity for helicity, we may have introduced in mECSITh the 

ability of binding to this not-yet identified receptor, meanwhile we lost it in hECSITm, 

not because the motive has lost its helicity but because the specific residues that form 

that helix are actually different, as they correspond to the mECSIT sequence. Indeed, 

the helical turn that may function as nucleation site to bind the receptor involves 4 

residues, namely EDDNL in the case of hECSIT and ETIQA in the case of hECSITm. 

These specific mutations could negate the initial specific contacts with the receptor 

binding site and prevent recognition, thus binding. 

 

6.5 Conclusions 

In this work we determined that the extreme C-terminal domain of the protein ECSIT 

is intrinsically disordered in both human and murine proteins. From an initial scan of 

the sequence with disorder and structure prediction tools, namely disEMBL and 

PSIPRED, we selected a 10-residue region of the human and murine ECSIT C-

terminal tails to build peptides and carry out a thorough conformational analysis by 

means of REMD simulations. Our results indicate a significantly different propensity 

to form helical motifs between the two tails, located in a specific 12 residues region, 

with hECSIT having a much higher propensity than mECSIT. Based on this 

information we proposed to swap these regions to create mutant peptides that we have 

further investigated with REMD, and that our collaborator have done within the 

context of the whole protein. Experimental data strongly indicate that these 12 residues 

regions are indeed the key to understand the very different stabilities of human and 

murine ECSIT and simulation results indicate that the residual helicity in hECSIT and 

mECSITh could determinant for the recognition and binding to a not-yet identified 

receptor. This interaction could be key to understand the role of ECSIT in the 

mitochondrial respiratory pathway.  
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Conclusions 

 

As outlined in the introduction, the overarching goal of my thesis work was to 

investigate the relative structural propensity of IDPs in function of the specific 

sequence and how this structure level is integral to the specific IDP/R function. Also, 

another important goal was to show how computer simulation methods, such as 

conventional and enhanced sampling MD simulations, can be instrumental for the 

identification of structural motifs that cannot be detected on the experimental 

timescale and thus that it can be used as a primary discovery tool and not only as a 

support for experimental data. Indeed, while some studies in my thesis work are only 

computational and the links between structure level and function of the IDP systems 

studied are made based on earlier experimental studies, the work on LxCxE SLiM-

containing peptides, see Chapter 5, and the human vs. murine ECSIT C-terminal tail, 

see Chapter 6, are both computational and experimental, where computational results 

are an essential support for the understanding of the molecular/atomistic basis of the 

IDP function. 

As an overall summary, we obtained many interesting results from our simulations 

that all support the key role of residual secondary structure in the molecular 

recognition and function of IDPs. In the case of the XPA 14-residue peptide, discussed 

in Chapter 3, we found that there is a transiently stable β-hairpin motif that is 

potentially recognised by ERCC1 as a MoRF. Because of the high structural similarity 

of this MoRF with the ERCC1-bound conformation of the XPA 14-residue peptide, 

we suggest that the peptide follows a coupled folding and binding mechanism, through 

a recognition mechanism that sits in between the conformational selection and 

induced-fit schemes. Crucially, our results also show that the β-hairpin propensity is 

highly sequence-dependent. For example, in the case of the C. lanigera XPA67-80, a 

single Gly-to-Glu mutation halves the population of a binding conformer. Within this 

context we have also examined how restricting the peptide conformational flexibility 

to a MoRF-like structure through macrocyclization is a potentially viable tool to 

reduce the entropic penalty of binding. Computing here can be instrumental in ranking 

potential candidates for synthesis both in terms of conformational flexibility and 
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optimal fit into the receptor binding site, but also in terms of binding affinity, via end-

point methods, as it was done in this work.    

In case of the p53-CTD our aim was to investigate the molecular basis for the very 

interesting binding promiscuity of the peptide. Our simulations results, discussed in 

Chapter 4, show that the ability of this peptide to bind specifically different number 

of receptors may rest in the complexity of its substructure, namely in its ability to 

adopt different stable secondary structure motifs that can act as multiple different 

MoRFs within the conformational ensemble. These MoRFs comprise helices, namely 

α-helical and 310 helical turns, and β structures, i.e. β-hairpins and β-strands. Notably 

recent experimental data support our findings1.  

In Chapter 5 we discuss the role of the variable “x” residues in regulating the binding 

affinity of a large set of LxCxE SLiM-containing peptides to the Rb protein. This work 

has been run hand-in-hand with peptide synthesis and binding kinetic experiments. 

We found that modification of the “x” variable residues and of the residues before and 

after LxCxE motif on the HPV E7 peptide does not affect the structural propensity of 

the free peptide, which is not pre-structured, or that does not form any stable residual 

secondary structure. Through lengthily simulations of the bound conformation run in 

many different conditions, we found that the modulation of the binding affinity as a 

function of the variable “x” residues results from changes in the direct contacts 

between the motif and the Rb binding cleft that are triggered by the nature of the “x” 

residues. Interestingly and very excitingly all our simulation results support very well 

the narrative obtained from the experimental results. Additionally, we found that the 

peptide’s phosphorylation promotes a PPII structure, a conformation more similar to 

that of the bound peptide. 

Finally, in Chapter 6 I discussed the results we obtained in the investigation of the 

human vs murine ECSIT C-terminal tail and its potential links to the very different 

stability of the two proteins verified experimentally by our collaborators. Though the 

exact function of the C-terminal tail of ECSIT is not known, we found a striking 

difference in the structural propensities of the hECSIT and mECSIT C-terminal 

peptides. Indeed, hECSIT shows a high degree of helicity relative to mECSIT, which 

has a much lower helicity and no particular or specific residual secondary structure. 

Through extensive sampling by REMD we were able to identify the specific regions 
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in the ECSIT C-terminus that carried these helical motifs and proposed to our 

collaborator to swap of these regions between human and murine and to test the 

relative stability of the two mutants. Experiments proved that swapping this region 

inverts the whole protein stability to the same degree as swapping the whole tails and 

thus suggesting that this specific helical motif could function as a MoRF, facilitating 

binding of the hECSIT to a degrading protein or to a protein that leads hECSIT to a 

degrading pathway.  

In this work I have looked at four different IDP systems with different sequences, level 

of intrinsic disorders and functions. Indeed, XPA is scaffolding protein involved in 

macromolecular assembly along the NER pathway, p53 is a tumour suppressor, 

LxCxE-containing peptides are contained in an oncoprotein, while the ECSIT C-

terminal tail function is yet to be established. They all show an over representation of 

key residues, namely the charged residues, Arg, Glu, and Lys. As well the hydrophilic 

residues Asn, Gln, and Ser. They also feature high levels of Pro and Gly which are all 

considered to be disorder promoting residues, however as shown in Figure 7.1 there 

is no significant difference in composition of amino acids between disordered and 

ordered peptides. As IDPs, they all show a lack of structure at the experimental time 

scale, with the exception of ECSIT which structure has not been solved and for which 

the C-terminal tail is only predicted to be disordered, a prediction supported by our 

results discussed in Chapter 6. Our simulations results have shown that prestructuring 

plays an important role in all of these peptides. In the case of XPA there is a high 

degree of prestructuring towards a highly populated hairpin that can be potentially 

recognised by ERCC1. Prestructuring of p53 is a bit different, as it involves different 

structural motifs. Indeed, the p53 C-ter conformational ensemble includes a number 

of low populated α-helix and β-turn structures that could be recognised by multiple 

different binding partners, which can explain its binding promiscuity. The LxCxE 

motif shows little to no prestructuring, which is not surprising considering the size of 

this motif. However, we have shown that upon phosphorylation it adopts an increased 

PPII content, consistently with experimental results. Finally, we have determined that 

the ECSIT C-terminal tail shows a propensity to adopt an α-helix motif in both human 

and mouse sequences, with significantly different relative populations, which could 

be affecting the stability of the whole protein.  
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Figure 7.1: Comparison of amino acid composition of ordered proteins (blue) and IDPs (orange) 
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The main difference between the LxCxE-containing peptide and the three other 

systems is that it is much less sensitive to the effects of point mutations. In the case of 

XPA a single Phe to Trp mutation is sufficient to significantly destabilise the 

prestructuring. Since the LxCxE containing peptide is only prestructured by the 

phosphorylation of two serine residues, a double Tyr to Ala mutation or Glu to Ala 

mutation have no effect on the prestructuring as seen in our results and also confirmed 

by lack of change in Kon experimentally.  

Through all my thesis work presented here I hope to have contributed in showing how 

conformational disorder can be functionally important and diverse in different proteins 

and protein regions. My work as a whole supports the view that the term intrinsic 

disorder does not indicate that a sequence is devoid of secondary structure, but only 

that its structural propensity cannot be probed at the experimental scale and that its 

rich and informative complexity can be studied successfully through computer 

simulation methods. 
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