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Abstract — A mathematical model for evoked potentials
is outlined. The model has been developed by
considering phase synchronisation of the underlying
neurological processes. The model, consisting of an
ensemble of uncoupled linear oscillators with a gaussian
distribution of frequencies is shown to reproduce the
typical response of P100 visual evoked response. The
model structure is parallel in form and is considered to
be physiologically realistic. It is also shown that the
calculated behaviour of the ensemble can be generated
by a 2* order linear differential equation with time
varying coefficients, thus highlighting the fact that
entirely different physical structures can generate
identical responses.

L INTRODUCTION

The analysis of EEG data for the presence of evoked
potentials has traditionally been carried out by a signal
averaging process. However, a number of methods have
been proposed which employ the information contained
within the pre-stimulus interval to aid the identification
process [1] [2]; it is generally assumed that the evoked
response is an additive contribution to the on-going
spontaneous EEG activity.

However, is has been suggested that the external stimulus
acts to phase-modify the spectral components of the
spontancous activity {3]. It has been further suggested that
evoked ‘potentials and event related potentials reflect
external stimulus and endogenous synchronisation,
frequency stabilisation, frequency selective enhancement
and phase re-ordering of the on-going EEG [4]. It has also
been reported that 750 milliseconds following auditory
stimulus any phase-control of spontaneous EEG activity
diminishes, allowing fully spontaneous activity to be
restored [5]. As a point of interest one of the authors was
involved in the development of a model of the
autoregulation in the kidney based on uncoupled but
nonlinear oscillators [6].

The approach taken involves analysis of evoked responses
in the frequency domain. An investigation of Fourier
harmonic components show that the phase angle of a
given component becomes a random variable, due to the
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noise content of the measured waveform. This phase angle
has a uniform distribution from 0° - 360° if the component
is composed of solely of noise. However, it has been
reported that the presence of an evoked response will cause
an aggregation of phase values in some angular region
when repeated measurements are performed, with
resulting non-uniformity of the phase angle distribution
[(71. Such non-uniformity has been employed as a detection
criterion for the presence of auditory brainstem evoked
potentials, resulting in a reduction of stimulation
administered to the subject.

IL MODEL STRUCTURE
A model composed of linear oscillators has been developed
to simulate the synchronisation of phases. Considering
sin(ax), where @ is a random variable with probability
density function
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Since p(w) is a probability density function,
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independent of # and o . If the first integrand is denoted
as eqn. (5) '
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the second integrand is simply the same with ¢ replaced by
-t. Consider the integrand
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This can be configured into the form of eqn. (7).

1760



18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996
6.2.7: Physiological Modelling - Neuromuscular - Mathematical

o't —(a-p-ja’t)!
! 2
eMe 2 e 20 M
o3 1 © —(m—p-ja‘l)’

Cf e 2 202
L =eMe 2 2”:[: do  (8)

-4
which from eqn. (7) evaluates to
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This is the result for resetting all the phases of the
oscillators to zero. For n oscillators the expected sum will
be
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This function is graphed in Fig. 1 for 4 =10 and a range
of o values.
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Fig. 1. Graph of eqn. (11) for =1, 4 =10 and a range of O values.

A differential equation solved by this y(t) is
dz.V. 2, dy 2 2 4.2],, _
Ez—+2a t}—t—+[a’ +u’ +o't ]y—nyo‘(t) (12)

This differential equation describes a linear time-variant

system. One solution is for }{0) =0 ;%(0) =0.

IIL EXPERIMENTATION AND ANALYSIS
Investigation of the full field monocular pattern shift
reversal Visual Evoked Potential (VEP) was carried out
[8]. A sample rate of 2000Hz was employed, with the
checkerboard pattern being reversed at a rate of 1Hz. The
P100 waveform was detected following ensemble
averaging of 100 trails. Using a 2-D assembly of
oscillators (15x15) a response similar to the

experimentally measured P100 was obscrved from the
summation of the outputs on resetting the phases, Fig.2.
This simulated response can be described analytically by
eqn. (11). Thus, a measure of the variance of the oscillator
frequencies can be obtained. The P100 has been modelled
by assuming that our measurement system observes the
outputs of two communities of oscillators, in the vicinity of
active and reference electrodes, reset in sequence by a
wave travelling through the brain. Thus
P100= y(t)
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Fig. 2. Measured P100, Oscillator and Analytical Responses

Iv. CONCLUSION

A model based on a parallel configuration of oscillators
has been shown to produce a response similar to that of the
P 100 obtained from the full ficld monocular pattern shift
reversal Visual Evoked Potential. A measure of the
variance of the underlying neurological oscillator model
can be calculated, which may then be used as a benchmark
for neurological studies.
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