
A MULTI-PATH ALGORITHMIC APPROACH TO PHASED 
ARRAY CALIBRATION 

Justine Mc Cormack, Tim Cooper and Ronan Farrell 
 

Centre of Telecommunications Value Chain Research, 
Institute of Microelectronics and Wireless Systems, 

National University of Ireland Maynooth, 

Co. Kildare, Ireland. 

jmccormack@eeng.nuim.ie, tcooper@eeng.nuim.ie, rfarrell@eeng.nuim.ie 
 
 

 
Keywords: Phase Array Antennas, Calibration, Tower-Top, 
Distributed Source Array, Autocalibration. 

Abstract 

The performance of phased arrays is dependent upon the 
amplitude and phase relationships between the elements of 
the array. In the presence of finite manufacturing tolerances 
and environmental effects these relationships cannot always 
be guaranteed, therefore synchronisation of these 
relationships is necessary. This paper presents an algorithmic 
approach to the calibration of these relationships, backed up 
with simulation results and comparisons.  

1. Introduction 

Adaptive antenna systems have been used for several 
years [10 – 11, 17]. Their performance is dependent upon the 
amplitude and phase relationships between elements [27], 
which are affected by multiple environmental effects and by 
manufacturing variations in system components. These 
effects cause imbalances in the amplitude and phase 
relationships from such potential causes as: thermal effects, 
antenna mutual coupling, component aging and finite 
manufacturing tolerances [1, 9, 21 - 23]. There are several 
different approaches taken to solving this synchronisation 
problem, which range from fixed feeder paths [2, 8, 14 – 15, 
18, 25] to calibration algorithms [4 - 5, 19 – 22, 24, 26,]. 
Calibration algorithms are generally used in conjunction with 
fixed feeder paths, as the transceiver electronics located at the 
tower bottom also requires synchronisation. In situations 
where the transceiver electronics are connected directly to the 
antenna elements, synchronisation may only be achieved 
through the use of calibration algorithms. An example of such 
a setup is the tower top deployment of basestation electronics 
presented in [4 - 5]. 
This paper presents a calibration algorithm for a tower top 
system. The basestation electronics are deployed to the tower 
top, where each element of the array is connected to a 
transceiver element. The calibration algorithm uses additional 
distributed measurement elements and takes advantage of the 
structure of the array to minimise the complexity of the 
calibration challenge.  
The paper is laid out as followed: section 2 presents an 
introduction to the tower top system. Which is followed by a 
description of the calibration algorithm in section 3. Finally 

an evaluation of the performance of the calibration algorithm 
is presented in section 4.    

2. The Tower Top Antenna Array 

A tower top system has the basestation electronics redeployed 
to the tower top, where each element of the array has its own 
transceiver element. These arrays are generally planar arrays 
from 16 to 64 elements, as planar arrays are more compact 
than circular arrays [6, 12]. Tower top array synchronisation 
is generally done by either radiative or non-radiative 
calibration. 
The system presented here uses non-radiative calibration to 
remove the need for external calibration equipment. The 
calibration algorithm uses the structure of the array to 
simplify the calibration of large arrays. The array is a planar 
array interlaced with reference elements, as shown in figure 1. 
Each reference element is connected to four transceiver 
elements via directional couplers [3]. This interconnection 
structure provides at least one calibration path for each of the 
transceiver elements of the array. These calibration paths, as 
shown in figure 2, are completed by digital feedback from the 
reference element to each of the transceiver elements.  
The planar array structure of the system can be considered in 
terms of building blocks. The array consists of reference 
elements; each reference element is surrounded by four 
transceiver elements. If you consider one reference element 
surrounded by the four transceiver elements as a single tile, 
then the whole array can be considered just a construct of 
overlapping tiles.  The reason for considering the array in this 
way is that a single reference element surrounded by four 
elements is basically a circular array. The layout looks square 
but each of the antennas is equidistant from the reference 
element, thus describing a circle. The advantage of using 
small circular arrays and tiling them to produce a larger array 
is that the scaling problem of circular arrays is overcome. 
Circular arrays are difficult to scale for a number of reasons 
[6, 12] for example, the larger the array the more area the 
array requires [16], fixed feeder paths are required to connect 
each element to the central reference element which can 
require long looped cables, and there is also a physical 
limitation to the number of connections a single reference 
element can handle. Thereby tiling small circular arrays 
together a scalable array can be constructed with a scalable 
calibration mechanism.  
 



 
Figure 1: Tower-Top, Cellular, Phased Array Antenna 

System. 

 
Figure 2: The Calibration Path of an Antenna Element. 

 

3. Algorithmic Approaches 

The algorithmic approach presented in this paper is compared 
with the shortest path algorithm, the best performing 
algorithm presented to date for this structure [4]. Both 
algorithms are based upon comparisons between elements, so 
a brief description of the shortest path algorithm is presented 
first, followed by a description of the new algorithm and a 
comparison of the simulation results of both algorithms. 

3.1 Shortest Path Calibration Algorithmic Approach 

The shortest path algorithm is based upon comparisons 
between elements. These comparisons start out from a 
reference transceiver element in the array; this element is 
measured by a reference element connected to it. Then 
another element connected directly to the same reference 
element is measured. The measured signals are then 
compared; the correction factor from this comparison is feed 
back into the second element to calibrate it to the reference 
transceiver element. These comparisons are continued 
throughout the array, by using intermediate reference 
transceiver elements and by calibrating around the reference 
elements in a similar way. This has the effect of removing the 
imbalances in the amplitude and phase relationships of the 
array due to the reference blocks, as each of the comparisons 
use measurements taken from the same reference elements. 
The reference element variations for the two compared 
measurements are the same so the reference element 
variations do not affect the correction factors. The 
comparisons also have the effect of removing individual 
transceiver block variations, as the comparisons of the 
transceiver elements are corrected to the reference 
transceiver’ specific imbalance.  

The elimination of the component block variations is only 
possible if the measurement taken by the reference blocks is 
accurate. This accuracy is affected by not only the 
measurement but also by the resolution of the analog to 
digital converters (ADC), because of the digital feedback of 
the system. These challenges can be over come by using high 
resolution ADCs in conjunction with a measurement 
technique such as cordic [19], or by themselves. However 
these issues will not be discussed in detail as they are beyond 
the scope of this paper. 
Due to the elimination of the component block variations, the 
overall array variation is dependent on the number of coupler 
variations that affect each element of the array, due to its 
correction factor. The correction factor generated from each 
comparison includes a coupler variation. This coupler 
variation is a composite of the coupler variations included in 
each of the measured signals in the comparison. As the 
number of comparisons required to calibrate the whole array 
increases, so does the number of coupler variations included 
in the correction factors, therefore the longer the calibration 
trail is to an element, the more coupler errors included in its 
correction factor. So each element’s accuracy is dependent on 
its correction factor, the further away it is from the reference 
transceiver element, the greater the number of coupler 
variations that affect it, and the less accurate it is.  
The accuracy of the array is dependent upon the number of 
couplers along the calibration trials from the reference 
transceiver elements to rest of the array. The accuracy can be 
improved by shortening the length of these paths, so by 
moving the reference transceiver element to the center of the 
array, the maximum distance from the reference transceiver 
element is shortened. By only calibrating previously 
uncalibrated elements the accuracy of the calibration is also 
improved, as calibrated elements are not recalibrated with less 
accurate correction factors due to longer paths.  

 

 
Figure 3: Comparison of the shortest path algorithm on a 

3x3 array. 
 

The shortest path algorithm calibrates the shortest path to 
each element, as shown in figure 3, for a three by three array. 
The shortest path algorithm calibrates in rings around the 
reference transceiver element, calibrating the elements 
directly connected to the reference transceiver element to it. 
Then as it moves further out, the next ring of elements are 
calibrated to the ring of previously calibrated elements 
directly connected to them, and so forth until the entire array 
is calibrated. This has the advantage of calibrating each 



element along the shortest route from the reference 
transceiver element to it, and only calibrating each element 
once. This type of comparison algorithm maximises the 
performance of a single step comparison approach. 
The accuracy of this algorithm can be predicted by 
calculating the number of couplers which affect each element 
of the array. The following expressions present in terms of 
odd and even n, n

2
 = N, N is the number of elements in the 

array. 
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Where, σak
2
 and σck

2
 are the RMS array variance and the 

RMS coupler variance respectively. 

3.2 Dual Path Calibration Algorithmic Approach 

 
Figure 4: Dual Path Calibration Comparisons for a 2x3 

Array. 
 

This proposed algorithm differs from other comparison based 
algorithms as it takes two routes to elements, where available, 
in order to reduce the effect of the coupler variation. This is 
achieved by taking two routes of the same length to any 
element, as shown in figure 4. The elements directly 
connected to the reference transceiver element are calibrated 
directly to the reference transceiver element, the same way as 
the shortest path algorithm. The elements further away are 
calibrated using two paths of the same length, each of these 
paths generate a correction factor for the element they are 
calibrating. These correction factors are averaged; thus 
statistically reducing the effect of couplers along the routes. 
This averaging reduces the effect of outlier coupler elements, 
but can also increase the variation of couplers with very small 
variations. 
As the accuracy of the algorithm is affected by the coupler 
variations, the algorithm’s accuracy can be predicted by 
calculating the number of coupler variations that affect each 

element of the array. The following expressions calculate the 
accuracy of the array relative to the reference transceiver 
element, which is not affected by coupler variations. The 
representation of the array in this way is conveniently 
expressed in terms of odd and even n, where n

2
 = N, N is the 

number of elements in the array. 
Even n:  
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Where σak
2
 and σck

2
 are the RMS array variance and the RMS 

coupler variance respectively and 2

ckσ  is the averaged RMS 

coupler variance. The first term in each expression represent 
the eight elements directly connected to the reference 
transceiver element, and are calibrated by only one path each. 
For small array sizes less than a 4x4 array, the performance of 
the single-path algorithm (1,2) and that of the dual-path 
approach (3,4) are the same, as all elements are directly 
connected to the reference transceiver and thus can only be 
calibrated along one path. As the size of the array increases 
then the number of coupler variations increase, this is a 
straight forward calculation for the shortest path algorithm 
prediction equations (1) and (2). However, for the dual path 
algorithm prediction equations (3) and (4) the calculation is 
slightly different. The first term in equation (3) and (4) is a 
calculation of the eight elements of the array directly 
surrounding the central reference transceiver element; which 
is calibrated by a single path. The remaining elements of the 
array are calibrated by dual paths.  From (3) and (4) the 
second and third terms calculate the number of elements 
calibrated by averaged coupler variations. 

4. Simulation Results 

Both algorithms have been simulated using Matlab, and have 
been implemented on a Matlab model, where each of the 
antenna chains is composed of component blocks of the 
system, as shown in figure 2, which are given a random 
variation in line with the manufacturing tolerances of that 
particular component block, as shown in table 1. Each 
transceiver is feed with a 20 dB signal that varies with a 0.5 
dB standard deviation, and a random phase. These are the 
base components of the models upon which simulations of the 
algorithms were performed.  
 

Component (i,j) µ(i,j) A Σ(i,j) A µ(i,j)Φ Σ(i,j)Φ 

Tx S21 50 dB 3 dB 10
o
 5

o
 

Ref S21 60 dB 6 dB 85
o
 5

o
 

Coupler S21 -20.3295 dB 0.3295 dB 90.197
o
 1.1175

o
 

Table 1: Component Block Imbalances. 



4.1 Comparison of Theory and Simulation 

Ten thousand simulations of the dual path algorithm were run 
to give a statistically significant result for square arrays 
ranging in size from a 2x2 array to a 10x10 array. These 
simulations were compared to the predicted accuracy of the 
dual path algorithm as estimated by (3) and (4). This 
comparison is shown in figure 5. Due to the prediction 
equations being based upon standard deviations of the 
couplers, the averaged coupler terms are estimated by a 
percentage reduction in the coupler standard deviation. The 
percentage reduction is calculated based upon size of the 
array, and therefore scales up as the size of the array 
increases. As can be seen in figure 5, this is a good 
approximation of the accuracy of the algorithm.  The RMS 
array error increases as the size of the array increases due to 
the dependency of the array accuracy on coupler variations.  

 

 
Figure 5: The overall array calibration accuracy predicted by 
equation 1 and 2 and calibration simulations. 

4.2 Comparison of the Two Calibration Algorithms 
Simulation Results 

A comparison between the two algorithms, shortest path 
algorithm and dual path algorithm, is presented in figure 6. 
Again 10,000 simulations of each size array are taken as a 
statistically significant measure. These results show that as 
the size of the array increases so does the RMS array error, as 
the calibration routes increase for each element, the more 
coupler variations that are included. Figure 6 clearly shows 
that as the size of the array increases so does the dual path 
algorithm performs improve in comparison to the shortest 
path algorithm performance. This is due to both algorithms 
performance being dependent upon the number of coupler 
variations included in each element’s correction factors. The 
dual path algorithm however uses an averaging of two paths 
of identical lengths to reduce the effect of the coupler 
variations, which will have more of an effect on the output of 
larger arrays as dual path calibration will be performed on 
proportionally more elements.  

 
 
 

 
 
 

 
Figure 6: Comparison of RMS Array Error of Shortest Path 
and Dual Path Calibration Algorithms, as the Size of the 
Array increases. 
 
A comparison of the number of elements that fall within the 
absolute array variations is shown in figures 7 and 8. This is 
based upon 10,000 simulations of a five by five array. The 
results are consistent with the previous set of comparison 
results, as the first 30% of elements (approximately 8 
elements per array) are exactly the same as that of the shortest 
path. Which is consistent with the two algorithms, as they 
both share a ring of elements that surround the reference 
transceiver element that are calibrated in exactly the same 
way. The results diverge at this point, which is consistent 
with the dual path averaging of the correction paths to reduce 
the overall error. 
 

 
Figure 7: Percentage Number of Elements vs. the Absolute 
Amplitude Variation. 



 
Figure 8: Percentage Number of Elements vs. the Absolute 
Phase Variation 
 

 5. Conclusions 

Synchronisation of phased arrays is of vital importance to the 
performance of the array. This synchronisation can be 
achieved through a combination of, or solely by, fixed feeder 
networks and calibration algorithms. This paper focuses on 
novel calibration algorithms that utilises the tessellated 
structure of rectilinear arrays. A scalable method was 
presented for calibrating planar arrays using a built-in non-
radiative calibration mechanism. The structure of the array 
provides multiple calibration paths for the elements of the 
array. The dual path algorithm utilises these multiple paths to 
improve the accuracy of the array. The dual path algorithm 
presented simulation results that show improvement over the 
previously presented shortest path calibration algorithm for 
this system. It shows a marked improvement as the array size 
increases, to an improvement of up to 0.2047 dB and 0.6833

o
. 

This improvement is down to the reduction of the directional 
coupler variation effect on the RMS array error variation, by 
averaging two paths of the same length to achieve this 
reduction. Future work will focus on the implementation of a 
4x4 array prototype. 
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