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Climate change may bring new hazards through novel com-
binations of extreme weather (compound events)1. Here we 
evaluate the possibility of dangerous heat following major 
tropical cyclones (TCs)—a combination with serious potential 
consequences given that mega-blackouts may follow powerful  
TCs2, and the heavy reliance on air conditioning3. We show 
that ‘TC–heat’ events are already possible along densely 
populated coastlines globally but, to date, only an estimated 
1,000 people have been impacted. However, this number 
could rise markedly with over two million at risk under a story-
line of the observed TCs recurring in a world 2 °C warmer than 
pre-industrial times. Using analogues as focusing events we 
show, for example, that if the catastrophic 1991 Bangladesh 
cyclone occurred with 2 °C global warming, there would be 
>70% chance of subsequent dangerous heat. This research 
highlights a gap in adaptation planning and a need to prepare 
for an emerging TC–heat compound hazard.

Extreme heat is a major threat to public health and a risk that is 
projected to rise with global warming4, even if temperatures are held 
below the Paris targets of 1.5 or 2 °C (ref. 5). With around 1.6 billion 
units in operation, air conditioning reduces vulnerability to extreme 
heat3,6. However, populations dependent on air conditioning may 
become highly exposed in the event of power failure7. Substantial 
electricity outages have already been caused by TCs, with the 
top three events (2013 Typhoon Haiyan, 2017 Hurricane Maria 
and 2012 Typhoon Bopha) incurring between 3.2 and 6.1 billion  
customer-hours of lost supply over one or two months2,8–10. 
Widespread heat-related mortality was not reported during these 
mega-blackouts but, given the rapid rise in dangerous humid heat 
projected at low latitudes4, we identify the growing threat of a cata-
strophic ‘TC–heat’ compound hazard. In this storyline, a TC first 
cripples electrical infrastructure and is then followed by deadly heat 
as the population tries to recover. Here, we provide the first assess-
ment of the present and evolving risk of the TC–heat hazard under 
climate change.

We searched observational records (1979–2017) for com-
pound TC–heat events, defined here as a major TC (central pres-
sure ≤945 hPa) followed within 30 d by a heat index (HI) >40.6 °C 
at the site of landfall (see Methods). We use the HI because of its 
widespread operational use, not least by the United States National 
Weather Service, to communicate danger when values exceed 
40.6 °C. We employ the same threshold to define onset of potentially 
deadly conditions. According to our criteria, TC–heat events have 
been vanishingly rare, with only four of the 121 major TCs that made 
landfall followed by maximum HI ≥ 40.6 °C (hereafter, HI40.6). 
All these events were in remote northwest Australia (Fig. 1a),  
where around 1,000 people were exposed. Given that nearly 40 mil-
lion people live in the paths of the 121 major TCs, and that almost 

6 million of them are routinely exposed to HI40.6 (99.9th percentile 
of HI40.6; Fig. 1b), it is fortunate that so few have been exposed to a 
compound TC–heat event.

We investigated reasons for the infrequent overlap of TCs and 
HI40.6 using the Northwest Pacific, South Indian and North Atlantic 
basins, which account for more than 85% of the TCs in our sample. 
Seasonal cycles of maximum TC probability and maximum HI40.6 
occurrence are not generally in phase. In all three ocean basins, the 
maximum HI40.6 extent occurs before peak TC probability (Fig. 2).  
This is due to the difference in thermal inertia between land and 
ocean. Land heats up rapidly with the seasonal solar cycle, whereas 
sea surface temperatures take longer to peak and remain elevated 
whilst the land and atmosphere begin to cool, creating an environ-
ment with increased convective available potential energy suitable 
for intense TCs11,12. Figure 2 also reveals that the greatest overlap 
in seasonal curves of HI40.6 extent and major TC landfall prob-
ability is in the South Indian basin, suggesting that conditions there 
most favour TC–heat. This fits with our observation that northwest 
Australia (South Indian) is the only region to have experienced the 
hazard during the period of observations (Fig. 1a).

The rarity of TC–heat is due to asynchronous seasonal cycles 
of TC probability and HI40.6. Contrary to expectations13, TCs 
do not reduce the probability of HI40.6 after landfall by modify-
ing the thermodynamic environment (Fig. 3). They arrive after 
anomalously high HI from amplified air temperatures and specific 
humidity, meaning the average HI anomaly in the 30 d before land-
fall (0.45 °C) is significantly different from zero according to a one-
sample, two-tailed Student’s t-test (t = 4.52, P < 0.05). Passage of the 
TC then causes all variables, except specific humidity, to decrease, 
partially compensating for the fall in air temperature and thereby 
maintaining the HI. After TC passage, HI anomalies return to zero 
within approximately 10 d and the mean anomaly in the 30 d after 
landfall (0.16 °C) is not significantly different from zero (t = 1.34, 
P = 0.18). This return to the climatology results in a significant dif-
ference between HI anomalies before and after landfall according 
to a paired, two-sample t-test (t = 2.51, P < 0.05). The passage of a 
TC therefore reduces the HI, but only from unusually high values 
to conditions consistent with long-term averages. This implies that 
the probability of HI40.6 in the 30 d following TC landfall is not 
lower than in the same 30-day window in other years. The finding 
is robust when re-analysed with data from nearby weather stations 
(see Supplementary information).

A stochastic simulation was applied to gain deeper insight into 
the contemporary compound TC–heat hazard, and under climate 
change scenarios generated by pattern-scaling air temperature 
whilst holding relative humidity constant (for example, ref. 14). Note 
that the independence between TCs and subsequent HI conditions 
means that the probability of HI40.6 for each TC reduces to the  
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climatological relative frequency of HI40.6 within 30 d of the land-
fall date. These probabilities can be summed over TCs to compute 
the expected number of TC–heat events for each 30-year period, 
then used as weights to evaluate the expected number of people at 
risk (see Methods for details).

We find a rapid, non-linear increase in the number of TC–heat 
events as the climate warms (Fig. 4a). Under baseline conditions, 
the expected frequency is 0.10 compound events per year (three 
events per 30-year climate normal period), which matches the 
observed rate. If the global mean temperature rises by 1.5 or 2 °C 
above pre-industrial, the expected frequency per 30 years becomes 
7 and 11 events, respectively. If global warming reaches 4 °C (repre-
senting a high-emissions, end-of-century scenario), TC–heat events 
could occur at least annually (Fig. 4a).

The rising frequency of TC–heat hazards increases the num-
ber of people potentially affected (Fig. 4b). Under the 1.5 or 2 °C 
global warming scenario there could be, respectively, 1.2 or 2 mil-
lion people at risk per 30-year period, rising to 11.8 million for 4 °C. 
Using the baseline temperature anomaly (1981–2010, 0.68 °C above 
pre-industrial; see Methods), our analysis yields an expectation 
of 0.4 million people affected during 1979–2017, indicating that 
TC–heat is already possible along densely populated coastlines and 
highlighting the good fortune that only approximately 1,000 people 
were affected over this period. We also anticipate an increase in the 
intensity of humid heat for people recovering from TCs. Figure 4c 
shows that extreme HI values averaged across TC landfall sites after 
landfall (see Methods) could rise almost 2.5-fold faster than global 
mean air temperature. As shown before, this is a consequence of 
the combined effect of rising air temperature and water vapour on 
humid heat15,16.

Observed TC tracks (analogues) help demonstrate the evolving 
TC–heat hazard. We identified TCs that could possibly (probabil-
ity > 0) or probably (probability > 0.5) be followed by HI40.6 under 
the different scenarios of warming (Fig. 5 and Methods). Possible 
TCs under baseline conditions include very notable events, such 
as the 1991 Cyclone Marian that killed more than 138,000 people, 
affected over 15 million and left around one million homeless17. 
Whilst the actual HI peaked at 37.9 °C 9 d after the TC made  
landfall in Bangladesh, the same 30-day window experienced 
HI40.6 in six separate years during the period 1981–2010. Neither 
the North Atlantic nor the Northwest Pacific basin has experienced 
a TC–heat event but our results suggest there have been near misses, 
with Hurricane Emily (maximum HI = 38.3 °C, 21 d after land-
fall) and Typhoon Rammasun (maximum HI = 39.9 °C, 6 d after  
landfall) amongst those identified as possible analogues. Emily 
struck the Caribbean and Mexico in July 2005, impacting thou-
sands and causing billions of dollars’ worth of damage, including 
to electricity infrastructure15. After Rammasun made landfall in the 
Philippines (July 2014), blackouts affected Manila and complaints 
about the hot weather were reported in the media16. As expected 
from Fig. 2, early-season landfall is a common feature of these ana-
logues. All but one of the 13 possible TCs in the three basins men-
tioned above occurred before the peak likelihood of a major TC 
landfall in each basin.

When the HI is scaled for global warming, many possible ana-
logues transition to probable. Typhoon Rammasun and Hurricane 
Emily achieve this status with 1.5 °C warming (probable at 1.25 and 
1.5 °C, respectively), whereas Cyclone Marian transitions under 
the 2 °C scenario (at 1.75 °C). Under a 4 °C scenario, the number 
of probable analogues increases substantially. These include 2017 
Hurricane Harvey (at 2.25 °C of warming) and 2005 Hurricane 
Katrina (at 3.5 °C). At 4 °C, Typhoon Haiyan—the cause of the larg-
est blackout in history—becomes a probable analogue with >70% 
likelihood of being followed by HI40.6.

Our assessment shows that TC–heat events are rare but already 
possible along some of the most densely populated coastlines 
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Fig. 1 | Observed TCs and extreme heat. a, Tracks of 121 major TCs. Red 
lines denote four TCs that were followed by HI40.6 within 30 d of landfall. 
b, Number of people exposed to a maximum HI of at least the value given 
by the x coordinate in the 30 d of TC landfall (black line). The red line 
denotes the number of people (living in the same TC-impacted grid cells) 
that experience a 99.9th percentile HI (all days of year) of at least the value 
given by the x coordinate. Values in brackets in parentheses report series’ 
intersection with HI40.6 (grey line).
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Fig. 2 | Seasonal climatologies for major TC occurrence and extent of 
HI40.6 by ocean basin. a, Gaussian-smoothed day-of-year climatology 
for major TC landfall probability (blue) and HI40.6 occurrence (red). All 
series have been normalized by their respective maximum. Labels above 
the polar plots denote ocean basin; abbreviations shown in b. Note that the 
angle of rotation indicates day of year (labelled). b, Map of the domains 
corresponding to the ocean basins. Red points mark locations impacted 
by major TCs: only these points in each domain were used to compute the 
HI40.6 climatology.
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on Earth. With no change in TCs, the likelihood of TC–heat is 
expected to increase rapidly with warming, consistent with more 
frequent and dangerous heatwaves in lower latitudes under climate 
change4,14. The growing dependence on air conditioning in coun-
tries at risk of TCs6 is therefore of concern, particularly so given that 
it may decrease humans’ natural thermal adaptability7.

The threat of TC–heat may not be restricted to those affected by 
loss of air conditioning. Some of the TCs already mentioned dis-
placed millions of people, and relief housing may not provide safe 
refuge from extreme heat18. Furthermore, humanitarian operations 
in the wake of TCs can involve large numbers of non-native person-
nel, such as the 7,600+ US troops arriving after Cyclone Marian19. 
People require several days to acclimatize and improve their physi-
ological response to extreme heat20, placing such rescue workers 
at higher risk. Evacuations ahead of major TCs may also become 
progressively more dangerous with climate warming, because our 
results show that the HI is anomalously high before major TCs 
make landfall.

Our assessment of evolving TC–heat is subject to some impor-
tant caveats. First, we use the storyline of ‘no change’ in TCs, yet 
major TCs are likely to become more frequent with warming21. 

Changes in seasonality are more uncertain22, but the likelihood  
of TC–heat would be expected to increase more rapidly if  
future TCs occur earlier in the year (cf. Fig. 2). Second, our pat-
tern-scaling assumes uniform changes across the temperature 
distribution and constant relative humidity. The even tempera-
ture increase is probably conservative because greater warming is 
expected at higher quantiles23. Climate model projections suggest 
modest reductions in mean relative humidity over land and even 
more subtle increases over ocean24, supporting our constant rela-
tive humidity treatment given the transitionary nature (ocean/land) 
of the coastal locations impacted by TCs. Even so, such statements 
refer to mean quantities, and little is known about relative humid-
ity changes during extreme heat events in the low latitudes. Third, 
we assume a 2015 population, so our assessment reflects only the 
increasing hazard frequency and not the changing population 
exposure or their vulnerability. Low-latitude regions are projected 
to have rapid population growth over the twenty-first century, add-
ing many more people to the regions with the highest increases in 
deadly humid heat25.
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Fig. 3 | Composite impact of a major TC passage on meteorology across 
all ocean basins. a–d, HI (a), 2-m air temperature (b), specific humidity (c) 
and surface air pressure (d). The red line denotes zero and the grey shading 
spans an anomaly of ±2 s.e.m. Anomalies were calculated from a day-of-
year climatology using the same Gaussian kernel procedure as in Fig. 2.
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Fig. 4 | Change in TC–heat hazard under climate change. a, Expected 
number of compound TC–heat events as a function of global warming level. 
Shading spans the uncertainty range from repeating the analysis using the 
5th and 95th percentiles of pattern-scaling coefficients; black line denotes 
the ensemble mean coefficients; red dot is the observed TC–heat event 
rate. b, As in a but for the expected number of people directly impacted 
by TC–heat events. c, As a,b, but for mean maximum HI after TC landfall 
(see Methods). The red dotted line (slope annotated) is the best-fit linear 
approximation of the black curve.
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Overall, our assessment therefore provides a lower-bound  
estimate of the increasing number of people likely to be exposed to 
TC–heat as the climate warms. Understanding could be improved by 
assessing TC climatologies projected by next-generation ensembles 
of high-resolution, coupled physical models26 or through downscal-
ing27. TCs and humid heat are physically connected through moist 
enthalpy in the lower atmosphere25,28, so future work focusing on 
this diagnostic under climate change could improve understand-
ing of evolving risks in low latitudes. Future studies could also add 
more depth to the understanding of TC–heat impacts by explicitly 
modelling excess mortality as a function of humid heat, including 
the impact of increased vulnerability stemming from assumed air-
conditioning loss29.

Finally, our results present a simple but stark warning: with no 
change in TCs but plausible rises in the HI, potentially deadly heat-
waves are more likely to follow TCs and eventually strike vulner-
able populations. Although a TC–heat event has not yet impacted a 
heavily populated coastline, the likelihood is growing. The absence 
of experience in dealing with such a compound hazard places those 
exposed communities at even greater risk1. By drawing attention to 
this emergent hazard, we trust that our study will stimulate further 
research and adaptation planning to protect those at growing risk 
from a TC–heat compound event.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0525-6.
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Methods
Heat index. Following previous climate change studies14,30–32, we used the HI to 
characterize humid heat under climate change. We calculated the HI as in ref. 33  
using 2-m air temperature, 2-m specific humidity and surface pressure from 
the WATCH-Forcing-Data-ERA-Interim (WFDEI) dataset34, which constitutes 
ECMWF Re-Analysis (ERA)-Interim reanalysis data35 interpolated and corrected 
to land observations on a 0.5° × 0.5° grid. Specific humidity was converted to 
relative humidity using surface air pressure and the table look-up procedure 
(RELHUM) available in the NCL programming language (v.6.5.0). Because WFDEI 
data are available for the period 1979–2015, we extended the record to the end of 
2017 by bias-correcting the ERA-Interim reanalysis35

, using the quantile mapping 
procedure described in ref. 36, but with separate correction functions derived for 
each calendar month. All corrections were applied at intervals of one percentile.

Tropical cyclones and observations. The coordinates, distances to land, ocean basins 
and central air pressures of TCs were extracted from IBTrACS v.4 (beta), using data 
from 1979–2017 to overlap with the (extended) WFDEI record. Central air pressure 
was used to identify ‘major’ landfalling TCs, defined as those whose centre was at 
some point over land whilst the pressure was no higher than 945 hPa (corresponding 
to at least a Category 3 hurricane according to the Saffir–Simpson damage potential 
index37). We chose a definition of intensity based on central pressure, because this 
variable is reported more consistently by different agencies than maximum sustained 
wind speeds38. This filtering procedure left us with 121 TCs.

The evolution of the surface meteorology at the sites of TC landfall was 
assessed by extracting time series from the nearest-neighbour land grid points in 
the WFDEI dataset for all time steps when the respective TC was over land and still 
of ‘major’ status (that is, ≤945 hPa). This process yielded 181 locations (grid points) 
across the 121 TCs. The number of land grid points impacted by each TC varied 
between one and six, although most (~91%) TCs impacted no more than two land 
grid points. The frequency of TC–heat events was then determined by the number 
of TCs that had HI40.6 in at least one grid cell during the 30 d after landfall. Note 
that 30 d is a conservative search window given that longer mega-blackouts have 
followed some TCs (see main text).

The number of people exposed to different HI values was assessed using the 
0.042 × 0.042° (2.5 min) gridded 2015 population dataset available from ref. 39. For 
each of the 181 locations impacted by major TCs, person-counts were extracted 
from all 0.042° grid cells falling within the respective 0.5 × 0.5° WFDEI grid cell. 
In Fig. 1b we show the number of people as a function of (1) the maximum HI 
endured in the 30 d following TC landfall and (2) the all-time 99.9th percentile in 
the HI (a value occurring on average 3 d per decade). This general function can be 
written as

∑= × ̂ −fPop(HI) Pop (HI HI) (1)i j i j, ,

where Pop denotes the total population exposed to a heat hazard ( ̂HI: either the 
maximum in the 30 d following TC landfall or the all-time 99.9th percentile) of at 
least HI °C; i and j are the 181 row/column indices of the population (and WFDEI) 
grid, and the function f evaluates to 1 when ̂HIi j,  is ≥HI and it is otherwise zero.

To explore the rarity of compound TC–heat hazards, we computed day-of-
year probabilities of major TC landfall for the Northwest Pacific, South Indian 
and North Atlantic basins. These three oceans accounted for more than 85% of all 
major TC landfall events during the period 1979–2017. Probabilities were derived 
for each basin by counting for each day of the year (1–366) the number of times a 
TC made landfall somewhere in the basin, then dividing the total by the number 
of years of TC data (nTC = 2017−1979 + 1 = 39 years). We used the same approach 
to compute the mean day-of-year fraction of grid points experiencing HI40.6 in 
each basin. Note that only HI data from grid cells impacted by major TCs were 
considered in this averaging (see Fig. 2). These day-of-year series (probability of TC 
landfall, and fraction of grid points with HI40.6) were smoothed with a Gaussian 
kernel with standard deviation (σ) of 15/1.96 = 7.7 days, meaning that 95% of the 
kernel weight was applied to a one-month period centred on the day of interest. 
Smoothed series were then normalized by their respective maxima (Fig. 3).

The extent to which TC passage impacts the meteorological environment 
(Fig. 3) was assessed by screening anomalies at the 181 grid cells found to have 
experienced a major TC landfall during 1979–2017. We calculated anomalies 
by subtracting the seasonal cycle, generated by computing a day-of-year mean 
for each meteorological variable (1979–2017), before smoothing with the same 
Gaussian kernel (σ = 7.7 d).

The impact of each of the 121 TCs on HI before and after landfall was evaluated 
statistically by averaging HI anomalies for the 30 d either side of their landfall date. 
We then subjected these before/after series, each comprising 121 values, to a one-
sample t-test to investigate the null hypothesis that TCs do not result in HI being 
different from the climatology (that is, the population means for the anomalies 
were zero). The test statistic t is given by

σ
=

′
t HI (2)

where HI denotes the sample mean and σ′ is the sample standard deviation.

To investigate the change in HI following TC passage, we also applied a 
dependent t-test for paired samples, for which t was computed:

σ
= Δ

Δ ′
t HI (3)

where ΔHI denotes the mean of the 121 paired differences between the before/
after series, and σΔ ′ is the standard deviation of these differences. In this instance, 
the null hypothesis was for no change in HI following TC passage (that is, the 
population mean of the paired differences in mean HI anomalies was zero). 
We used Student’s t-distribution with 120 degrees of freedom to test these null 
hypotheses, concluding that TC impacts on the HI were statistically significant 
when P ≤ 0.05.

Scaling HI to simulate climate warming. We used pattern-scaling to explore 
the effect of climate warming on the probability of a compound TC–heat hazard. 
Temperatures (T) from the baseline climate (1981–2010) were re-scaled following

β= + −T T w c( ) (4)i j d w i j d i j d, , , , , , ,

where i and j retain their meaning as WFDEI row/column indices, and d represents 
the day of the year. The regression slope β quantifies the local change in running 
30-year mean air temperature per degree of running 30-year average of the 
global mean air temperature. The value of β was obtained at daily resolution by 
performing separate regressions for each month of the year, followed by linear 
interpolation of the slope coefficient to daily resolution. The regression analysis 
was performed with a sample of 58 CMIP5 model runs (see Supplementary 
information for an inventory). We mainly used the ensemble mean in the analysis, 
but the 5th and 95th percentiles of β across the ensemble were also used to derive 
the uncertainty range in Fig. 4. The level of climate warming (w) was incremented 
between 1 and 4 °C in steps of 0.25 °C. The constant subtracted from w (c = 0.68 °C) 
represents the amount by which 1981–2010 was warmer than pre-industrial 
(defined here as the average warming since 1880–1909 across datasets HadCRUT4 
(ref. 40), GISS41 and BEST42). Scaled T values from equation (4) were used in the 
HI algorithm along with the original relative humidity to compute daily HI values 
under the warmer climates. Transforming the observed HI distribution in this way 
is consistent with previous studies14,43, and has been shown to yield results at the 
global scale similar to daily resolution projections of HI from climate models14. 
We prefer this scaling of observed HI over direct use of climate model integrations 
because of the considerable cold bias in modelled heat–humidity indices in the 
low-latitude domain of TCs32.

Expected frequency of compound hazard and estimates of the population 
at risk. Observed independence between TC occurrence and subsequent HI 
conditions was represented within a stochastic simulation to gain deeper insight 
into the compound TC–deadly heat hazard for the present climate (baseline, 
1981–2010) and under scenarios of global warming. We adopt this stochastic, 
observation-driven approach because observed TC tracks are not reproduced 
well by climate model simulations in the most complete global ensemble available 
(CMIP5)21. Moreover, even very high-resolution model simulations presently 
struggle to capture the important intricacies of the TC climatology required for 
assessment of the TC–heat hazard (such as TC seasonality in all basins or extent of 
sea surface cooling)44.

We computed the expected number of TC–heat events given the 121 TCs and 
the HI climatology using

∑=
=

=

E N E N[ ] [ ] (5)
k

k

k
1

121

where E N[ ]k  is the expectation for each TC, defined (for example, ref. 45) as

∑= =E N x P N x[ ] { } (6)k
x

k

in which P denotes probability and x is assigned the value of either 1 (HI40.6 
follows TC within 30 d) or 0 (it does not). Setting = =P P N{ 1}k k , it is clear that 
E N[ ]k  is simply the probability of HI40.6:

=E N P[ ] (7)k k

We computed this probability using the observed climatology, extracting  
1981–2010 WFDEI HI data from the sites of TC landfall for the 30 d following 
landfall date, irrespective of the year in which the TC occurred. This provides 
a 900-d ensemble of HI data (30 years of 30 d) for each of the 121 TCs. We then 
calculated how many times HI40.6 occurred at least once in each of the 30 years, 
yielding the probability of HI40.6:















∑ ∑=
=

=

=

=

P f1
30

min 1, (TC , HI ) (8)k
y

y

l

l

k l k l y
1981

2010

1

nloc

, , ,
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where nloc is the number of grid points impacted by the respective TC (indexed by k)  
and the function, f, evaluates to 1 if the maximum HI in the 30-d post-landfall 
sample in year y at landfall location l exceeds HI40.6, otherwise 0. Note that nloc 
ranges between 1 and 6 across all TCs.

To compute the expected number of people impacted by TC–heat (E[P]) we 
used

∑=
=

=

E P E P[ ] [ ] (9)
k

k

k
1

121

where Pk is the expected number of people for each TC, which is defined as

∑=
=

=

E P P[ ] pop (10)k
l

l

k l k l
1

nloc

, ,

in which popk l,
 is the population estimate for grid point l impacted by TC k. Note 

that Pk l,  has the same meaning as in equation (7), although this time the l index 
highlights that probabilities are computed for each location impacted by the TC:

∑=
=

=

P f TC1
30

( , HI ) (11)k l
y

y

k l k l y,
1981

2010

, , ,

E N[ ]  and E P[ ]  as calculated from equations (5) and (9) yield the expected 
number of TC–heat events and people impacted given the 121 major TC tracks and 
the climate of 1981–2010; conversion to expected annual statistics was achieved by 
dividing by the number of years of TC data (1979–2017 = 39 years).

Whilst the HI40.6 metric enables us to track the changing frequency of 
compound TC–heat hazards, we recognize that populations may be differentially 
impacted by such events due to local variations in levels of acclimatization. 
Therefore, we also computed the changing intensity of humid heat, defined as the 
mean maximum HI in the 30 d following landfall, averaged across all 30 years and 
121 TCs:

∑ ∑=
× =

=

=

=

HI 1
30 121

max(HI ) (12)
k

k

y

y

k ymax
1

121

1981

2010

,

We evaluated equations (5)–(12) using the baseline climate, before repeating 
them using the pattern-scaled climates to assess the changing TC–heat compound 
hazard as a function of global warming.

Analogues. We used analogues to explore regions at risk and the potential 
impact of the TC–deadly heat hazard. Analogues draw on known cases (the 
actual occurrence of the TC, complete with experienced impacts) to infer new 
consequences (the potential impacts of a TC followed by deadly heat). This 
approach can help non-specialists comprehend the unknown14,46,47. Here, we 
assigned the terms possible and probable to those TCs with Pk > 0 and Pk > 0.5, 
respectively. These analogues then illustrate potential impacts to raise awareness of 
the emerging TC–heat compound hazard.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.
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